1
|
Van Hautegem T, Takasaki H, Lorenzo CD, Demuynck K, Claeys H, Villers T, Sprenger H, Debray K, Schaumont D, Verbraeken L, Pevernagie J, Merchie J, Cannoot B, Aesaert S, Coussens G, Yamaguchi-Shinozaki K, Nuccio ML, Van Ex F, Pauwels L, Jacobs TB, Ruttink T, Inzé D, Nelissen H. Division Zone Activity Determines the Potential of Drought-Stressed Maize Leaves to Resume Growth after Rehydration. PLANT, CELL & ENVIRONMENT 2025; 48:1242-1258. [PMID: 39444139 DOI: 10.1111/pce.15227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/19/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Drought is one of the most devastating causes of yield losses in crops like maize, and the anticipated increases in severity and duration of drought spells due to climate change pose an imminent threat to agricultural productivity. To understand the drought response, phenotypic and molecular studies are typically performed at a given time point after drought onset, representing a steady-state adaptation response. Because growth is a dynamic process, we monitored the drought response with high temporal resolution and examined cellular and transcriptomic changes after rehydration at 4 and 6 days after leaf four appearance. These data showed that division zone activity is a determinant for full organ growth recovery upon rehydration. Moreover, a prolonged maintenance of cell division by the ectopic expression of PLASTOCHRON1 extends the ability to resume growth after rehydration. The transcriptome analysis indicated that GROWTH-REGULATING FACTORS (GRFs) affect leaf growth by impacting cell division duration, which was confirmed by a prolonged recovery potential of the GRF1-overexpression line after rehydration. Finally, we used a multiplex genome editing approach to evaluate the most promising differentially expressed genes from the transcriptome study and as such narrowed down the gene space from 40 to seven genes for future functional characterization.
Collapse
Affiliation(s)
- Tom Van Hautegem
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Hironori Takasaki
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Christian Damian Lorenzo
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Kirin Demuynck
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | - Timothy Villers
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Heike Sprenger
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Kevin Debray
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Dries Schaumont
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Lennart Verbraeken
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Julie Pevernagie
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Julie Merchie
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Bernard Cannoot
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stijn Aesaert
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Griet Coussens
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | - Laurens Pauwels
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Thomas B Jacobs
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Tom Ruttink
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Dirk Inzé
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Hilde Nelissen
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Cowling CL, Homayouni AL, Callwood JB, McReynolds MR, Khor J, Ke H, Draves MA, Dehesh K, Walley JW, Strader LC, Kelley DR. ZmPILS6 is an auxin efflux carrier required for maize root morphogenesis. Proc Natl Acad Sci U S A 2024; 121:e2313216121. [PMID: 38781209 PMCID: PMC11145266 DOI: 10.1073/pnas.2313216121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Plant root systems play a pivotal role in plant physiology and exhibit diverse phenotypic traits. Understanding the genetic mechanisms governing root growth and development in model plants like maize is crucial for enhancing crop resilience to drought and nutrient limitations. This study focused on identifying and characterizing ZmPILS6, an annotated auxin efflux carrier, as a key regulator of various crown root traits in maize. ZmPILS6-modified roots displayed reduced network area and suppressed lateral root formation, which are desirable traits for the "steep, cheap, and deep" ideotype. The research revealed that ZmPILS6 localizes to the endoplasmic reticulum and plays a vital role in controlling the spatial distribution of indole-3-acetic acid (IAA or "auxin") in primary roots. The study also demonstrated that ZmPILS6 can actively efflux IAA when expressed in yeast. Furthermore, the loss of ZmPILS6 resulted in significant proteome remodeling in maize roots, particularly affecting hormone signaling pathways. To identify potential interacting partners of ZmPILS6, a weighted gene coexpression analysis was performed. Altogether, this research contributes to the growing knowledge of essential genetic determinants governing maize root morphogenesis, which is crucial for guiding agricultural improvement strategies.
Collapse
Affiliation(s)
- Craig L. Cowling
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | | | - Jodi B. Callwood
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Maxwell R. McReynolds
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Jasper Khor
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Haiyan Ke
- Botany and Plant Sciences Department, University of California, Riverside, CA92521
| | - Melissa A. Draves
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Katayoon Dehesh
- Botany and Plant Sciences Department, University of California, Riverside, CA92521
| | - Justin W. Walley
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | | | - Dior R. Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| |
Collapse
|
3
|
Schneider M, Van Bel M, Inzé D, Baekelandt A. Leaf growth - complex regulation of a seemingly simple process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1018-1051. [PMID: 38012838 DOI: 10.1111/tpj.16558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Understanding the underlying mechanisms of plant development is crucial to successfully steer or manipulate plant growth in a targeted manner. Leaves, the primary sites of photosynthesis, are vital organs for many plant species, and leaf growth is controlled by a tight temporal and spatial regulatory network. In this review, we focus on the genetic networks governing leaf cell proliferation, one major contributor to final leaf size. First, we provide an overview of six regulator families of leaf growth in Arabidopsis: DA1, PEAPODs, KLU, GRFs, the SWI/SNF complexes, and DELLAs, together with their surrounding genetic networks. Next, we discuss their evolutionary conservation to highlight similarities and differences among species, because knowledge transfer between species remains a big challenge. Finally, we focus on the increase in knowledge of the interconnectedness between these genetic pathways, the function of the cell cycle machinery as their central convergence point, and other internal and environmental cues.
Collapse
Affiliation(s)
- Michele Schneider
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Michiel Van Bel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
4
|
Crawford T, Siebler L, Sulkowska A, Nowack B, Jiang L, Pan Y, Lämke J, Kappel C, Bäurle I. The Mediator kinase module enhances polymerase activity to regulate transcriptional memory after heat stress in Arabidopsis. EMBO J 2024; 43:437-461. [PMID: 38228917 PMCID: PMC10897291 DOI: 10.1038/s44318-023-00024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.
Collapse
Affiliation(s)
- Tim Crawford
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Lara Siebler
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Bryan Nowack
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Li Jiang
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Yufeng Pan
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jörn Lämke
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
5
|
White DWR. PEAPOD repressors modulate and coordinate developmental responses to light intensity in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:1470-1485. [PMID: 35510737 PMCID: PMC9544094 DOI: 10.1111/nph.18198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/27/2022] [Indexed: 06/09/2023]
Abstract
Higher plants adapt to different light intensities by altering hypocotyl elongation, stomatal density, seed size, and flowering time. Despite the importance of this developmental plasticity, knowledge of the underlying genetic and molecular mechanisms modulating and coordinating responses to light intensity remains incomplete. Here, I report that in Arabidopsis the PEAPOD (PPD) repressors PPD1 and PPD2 prevent exaggerated responses to light intensity. Genetic and transcriptome analyses, of a ppd deletion mutant and a PPD1 overexpression genotype, were used to identify how PPD repressors modulate the light signalling network. A ppd1/ppd2 deletion mutant has elongated hypocotyls, elevated stomatal density, enlarged seed, and delayed flowering, whereas overexpression of PPD1 results in the reverse. Transcription of both PPD1 and PPD2, upregulated in low light and downregulated in higher light, is activated by PHYTOCHROME INTERACTING FACTOR 4. I found PPDs modulate light signalling by negative regulation of SUPPRESSOR OF phyA-105 (SPA1) transcription. Whereas PPDs coordinate many of the responses to light intensity - hypocotyl elongation, flowering time, and stomatal density - by repression/de-repression of SPA1, PPD regulation of seed size occurs independent of SPA1. In conclusion PPD repressors modulate and coordinate developmental responses to light intensity by altering light signal transduction.
Collapse
Affiliation(s)
- Derek W. R. White
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
6
|
PIF7 controls leaf cell proliferation through an AN3 substitution repression mechanism. Proc Natl Acad Sci U S A 2022; 119:2115682119. [PMID: 35086930 PMCID: PMC8812563 DOI: 10.1073/pnas.2115682119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Phytochrome photoreceptors can markedly alter leaf blade growth in response to far-red (FR) rich neighbor shade, yet we have a limited understanding of how this is accomplished. This study identifies ANGUSTIFOLIA3 (AN3) as a central component in phytochrome promotion of leaf cell proliferation and PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) as a potent repressor. AN3 and PIF7 impose opposing regulation on a shared suite of genes through common cis-acting promoter elements. In response to FR light, activated PIF7 blocks AN3 action by evicting and substituting for AN3 at target promoters. This molecular switch module provides a mechanism through which changes in external light quality can dynamically manipulate gene expression, cell division, and leaf size. Plants are agile, plastic organisms able to adapt to everchanging circumstances. Responding to far-red (FR) wavelengths from nearby vegetation, shade-intolerant species elicit the adaptive shade-avoidance syndrome (SAS), characterized by elongated petioles, leaf hyponasty, and smaller leaves. We utilized end-of-day FR (EODFR) treatments to interrogate molecular processes that underlie the SAS leaf response. Genetic analysis established that PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) is required for EODFR-mediated constraint of leaf blade cell division, while EODFR messenger RNA sequencing data identified ANGUSTIFOLIA3 (AN3) as a potential PIF7 target. We show that PIF7 can suppress AN3 transcription by directly interacting with and sequestering AN3. We also establish that PIF7 and AN3 impose antagonistic control of gene expression via common cis-acting promoter motifs in several cell-cycle regulator genes. EODFR triggers the molecular substitution of AN3 to PIF7 at G-box/PBE-box promoter regions and a switch from promotion to repression of gene expression.
Collapse
|
7
|
Gong P, Bontinck M, Demuynck K, De Block J, Gevaert K, Eeckhout D, Persiau G, Aesaert S, Coussens G, Van Lijsebettens M, Pauwels L, De Jaeger G, Inzé D, Nelissen H. SAMBA controls cell division rate during maize development. PLANT PHYSIOLOGY 2022; 188:411-424. [PMID: 34791456 PMCID: PMC8774815 DOI: 10.1093/plphys/kiab514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/02/2021] [Indexed: 05/10/2023]
Abstract
SAMBA has been identified as a plant-specific regulator of the anaphase-promoting complex/cyclosome (APC/C) that controls unidirectional cell cycle progression in Arabidopsis (Arabidopsis thaliana), but so far its role has not been studied in monocots. Here, we show the association of SAMBA with the APC/C is conserved in maize (Zea mays). Two samba genome edited mutants showed growth defects, such as reduced internode length, shortened upper leaves with erect leaf architecture, and reduced leaf size due to an altered cell division rate and cell expansion, which aggravated with plant age. The two mutants differed in the severity and developmental onset of the phenotypes, because samba-1 represented a knockout allele, while translation re-initiation in samba-3 resulted in a truncated protein that was still able to interact with the APC/C and regulate its function, albeit with altered APC/C activity and efficiency. Our data are consistent with a dosage-dependent role for SAMBA to control developmental processes for which a change in growth rate is pivotal.
Collapse
Affiliation(s)
- Pan Gong
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Michiel Bontinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kirin Demuynck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jolien De Block
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Author for communication:
| |
Collapse
|
8
|
Sorkin ML, Nusinow DA. Using Tandem Affinity Purification to Identify Circadian Clock Protein Complexes from Arabidopsis. Methods Mol Biol 2022; 2398:189-203. [PMID: 34674177 DOI: 10.1007/978-1-0716-1912-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Identification of protein-protein interactions is an effective method of elucidating new roles for circadian clock-associated proteins that can expand beyond the information collected from transcriptional studies and genetic screens. Tandem affinity purification coupled with liquid chromatography mass spectrometry (APMS) utilizes epitope-tagged versions of your protein of interest to co-precipitate direct and indirect protein partners. Here, we provide a protocol and suggestions for proper design of 6x-His-3x-FLAG-tagged clock proteins and isolation of protein-protein interactions using two immunoprecipitation steps for increased specificity.
Collapse
Affiliation(s)
- Maria L Sorkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
9
|
Kerbler SM, Natale R, Fernie AR, Zhang Y. From Affinity to Proximity Techniques to Investigate Protein Complexes in Plants. Int J Mol Sci 2021; 22:ijms22137101. [PMID: 34281155 PMCID: PMC8267905 DOI: 10.3390/ijms22137101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 02/02/2023] Open
Abstract
The study of protein–protein interactions (PPIs) is fundamental in understanding the unique role of proteins within cells and their contribution to complex biological systems. While the toolkit to study PPIs has grown immensely in mammalian and unicellular eukaryote systems over recent years, application of these techniques in plants remains under-utilized. Affinity purification coupled to mass spectrometry (AP-MS) and proximity labeling coupled to mass spectrometry (PL-MS) are two powerful techniques that have significantly enhanced our understanding of PPIs. Relying on the specific binding properties of a protein to an immobilized ligand, AP is a fast, sensitive and targeted approach used to detect interactions between bait (protein of interest) and prey (interacting partners) under near-physiological conditions. Similarly, PL, which utilizes the close proximity of proteins to identify potential interacting partners, has the ability to detect transient or hydrophobic interactions under native conditions. Combined, these techniques have the potential to reveal an unprecedented spatial and temporal protein interaction network that better understands biological processes relevant to many fields of interest. In this review, we summarize the advantages and disadvantages of two increasingly common PPI determination techniques: AP-MS and PL-MS and discuss their important application to plant systems.
Collapse
Affiliation(s)
- Sandra M. Kerbler
- Theodor-Echtermeyer-Weg 1, Leibniz-Institut für Gemüse- und Zierpflanzenbau, 14979 Groβbeeren, Germany;
| | - Roberto Natale
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (R.N.); (A.R.F.)
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (R.N.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (R.N.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
10
|
Smythers AL, Hicks LM. Mapping the plant proteome: tools for surveying coordinating pathways. Emerg Top Life Sci 2021; 5:203-220. [PMID: 33620075 PMCID: PMC8166341 DOI: 10.1042/etls20200270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Plants rapidly respond to environmental fluctuations through coordinated, multi-scalar regulation, enabling complex reactions despite their inherently sessile nature. In particular, protein post-translational signaling and protein-protein interactions combine to manipulate cellular responses and regulate plant homeostasis with precise temporal and spatial control. Understanding these proteomic networks are essential to addressing ongoing global crises, including those of food security, rising global temperatures, and the need for renewable materials and fuels. Technological advances in mass spectrometry-based proteomics are enabling investigations of unprecedented depth, and are increasingly being optimized for and applied to plant systems. This review highlights recent advances in plant proteomics, with an emphasis on spatially and temporally resolved analysis of post-translational modifications and protein interactions. It also details the necessity for generation of a comprehensive plant cell atlas while highlighting recent accomplishments within the field.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| |
Collapse
|
11
|
Vu LD, Xu X, Zhu T, Pan L, van Zanten M, de Jong D, Wang Y, Vanremoortele T, Locke AM, van de Cotte B, De Winne N, Stes E, Russinova E, De Jaeger G, Van Damme D, Uauy C, Gevaert K, De Smet I. The membrane-localized protein kinase MAP4K4/TOT3 regulates thermomorphogenesis. Nat Commun 2021; 12:2842. [PMID: 33990595 PMCID: PMC8121802 DOI: 10.1038/s41467-021-23112-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Plants respond to mild warm temperature conditions by increased elongation growth of organs to enhance cooling capacity, in a process called thermomorphogenesis. To this date, the regulation of thermomorphogenesis has been exclusively shown to intersect with light signalling pathways. To identify regulators of thermomorphogenesis that are conserved in flowering plants, we map changes in protein phosphorylation in both dicots and monocots exposed to warm temperature. We identify MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE KINASE4 (MAP4K4)/TARGET OF TEMPERATURE3 (TOT3) as a regulator of thermomorphogenesis that impinges on brassinosteroid signalling in Arabidopsis thaliana. In addition, we show that TOT3 plays a role in thermal response in wheat, a monocot crop. Altogether, the conserved thermal regulation by TOT3 expands our knowledge of thermomorphogenesis beyond the well-studied pathways and can contribute to ensuring food security under a changing climate. Plants respond to warmth via growth processes termed thermomorphogenesis. Here, via a phosphoproteomics approach, the authors show that the mitogen activated protein kinase TOT3 regulates thermomorphogenesis in both wheat and Arabidopsis and modifies brassinosteroid signaling in Arabidopsis.
Collapse
Affiliation(s)
- Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium.,VIB Center for Medical Biotechnology, B-9000, Ghent, Belgium
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH, Utrecht, The Netherlands
| | - Dorrit de Jong
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Yaowei Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Tim Vanremoortele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Anna M Locke
- Soybean & Nitrogen Fixation Research Unit, United States Department of Agriculture- Agricultural Research Service, Raleigh, NC, 27695, USA.,Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brigitte van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium.,VIB Center for Medical Biotechnology, B-9000, Ghent, Belgium.,VIB Headquarters, 9052, Gent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, NR4 7UH, UK
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium. .,VIB Center for Medical Biotechnology, B-9000, Ghent, Belgium.
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium. .,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.
| |
Collapse
|
12
|
Boruc J, Deng X, Mylle E, Besbrugge N, Van Durme M, Demidov D, Tomaštíková ED, Tan TRC, Vandorpe M, Eeckhout D, Beeckman T, Nowack MK, De Jaeger G, Lin H, Liu B, Van Damme D. TPX2-LIKE PROTEIN3 Is the Primary Activator of α-Aurora Kinases and Is Essential for Embryogenesis. PLANT PHYSIOLOGY 2019; 180:1389-1405. [PMID: 31097675 PMCID: PMC6752915 DOI: 10.1104/pp.18.01515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
Aurora kinases are key regulators of mitosis. Multicellular eukaryotes generally possess two functionally diverged types of Aurora kinases. In plants, including Arabidopsis (Arabidopsis thaliana), these are termed α- and β-Auroras. As the functional specification of Aurora kinases is determined by their specific interaction partners, we initiated interactomics analyses using both Arabidopsis α-Aurora kinases (AUR1 and AUR2). Proteomics results revealed that TPX2-LIKE PROTEINS2 and 3 (TPXL2/3) prominently associated with α-Auroras, as did the conserved TPX2 to a lower degree. Like TPX2, TPXL2 and TPXL3 strongly activated the AUR1 kinase but exhibited cell-cycle-dependent localization differences on microtubule arrays. The separate functions of TPX2 and TPXL2/3 were also suggested by their different influences on AUR1 localization upon ectopic expressions. Furthermore, genetic analyses showed that TPXL3, but not TPX2 and TPXL2, acts nonredundantly to enable proper embryo development. In contrast to vertebrates, plants have an expanded TPX2 family and these family members have both redundant and unique functions. Moreover, as neither TPXL2 nor TPXL3 contains the C-terminal Kinesin-5 binding domain present in the canonical TPX2, the targeting and activity of this kinesin must be organized differently in plants.
Collapse
Affiliation(s)
- Joanna Boruc
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Xingguang Deng
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nienke Besbrugge
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Matthias Van Durme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany
| | - Eva Dvořák Tomaštíková
- The Czech Academy of Sciences, Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic
| | - Tong-Reen Connie Tan
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Michaël Vandorpe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
13
|
Pick a Tag and Explore the Functions of Your Pet Protein. Trends Biotechnol 2019; 37:1078-1090. [PMID: 31036349 DOI: 10.1016/j.tibtech.2019.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
Abstract
Protein tags have been essential for advancing our knowledge of the function of proteins, their localization, and the mapping of their interaction partners. Expressing epitope-tagged proteins has become a standard practice in every life science laboratory and, thus, continues to enable new studies. In recent years, several new tagging moieties have entered the limelight, many of them bringing new functionalities, such as targeted protein degradation, accurate quantification, and proximity labeling. Other novel tags aim at tackling research questions in challenging niches. In this review, we elaborate on recently introduced tags and the opportunities they provide for future research endeavors. In addition, we highlight how the genome-engineering revolution may boost the field of protein tags.
Collapse
|
14
|
Van Leene J, Han C, Gadeyne A, Eeckhout D, Matthijs C, Cannoot B, De Winne N, Persiau G, Van De Slijke E, Van de Cotte B, Stes E, Van Bel M, Storme V, Impens F, Gevaert K, Vandepoele K, De Smet I, De Jaeger G. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. NATURE PLANTS 2019; 5:316-327. [PMID: 30833711 DOI: 10.1038/s41477-019-0378-z] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/28/2019] [Indexed: 05/18/2023]
Abstract
The target of rapamycin (TOR) kinase is a conserved regulatory hub that translates environmental and nutritional information into permissive or restrictive growth decisions. Despite the increased appreciation of the essential role of the TOR complex in plants, no large-scale phosphoproteomics or interactomics studies have been performed to map TOR signalling events in plants. To fill this gap, we combined a systematic phosphoproteomics screen with a targeted protein complex analysis in the model plant Arabidopsis thaliana. Integration of the phosphoproteome and protein complex data on the one hand shows that both methods reveal complementary subspaces of the plant TOR signalling network, enabling proteome-wide discovery of both upstream and downstream network components. On the other hand, the overlap between both data sets reveals a set of candidate direct TOR substrates. The integrated network embeds both evolutionarily-conserved and plant-specific TOR signalling components, uncovering an intriguing complex interplay with protein synthesis. Overall, the network provides a rich data set to start addressing fundamental questions about how TOR controls key processes in plants, such as autophagy, auxin signalling, chloroplast development, lipid metabolism, nucleotide biosynthesis, protein translation or senescence.
Collapse
Affiliation(s)
- Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Chao Han
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, China
| | - Astrid Gadeyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Caroline Matthijs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bernard Cannoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brigitte Van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Francis Impens
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
15
|
Struk S, Jacobs A, Sánchez Martín-Fontecha E, Gevaert K, Cubas P, Goormachtig S. Exploring the protein-protein interaction landscape in plants. PLANT, CELL & ENVIRONMENT 2019; 42:387-409. [PMID: 30156707 DOI: 10.1111/pce.13433] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
Protein-protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Anse Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Elena Sánchez Martín-Fontecha
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
16
|
Bontinck M, Van Leene J, Gadeyne A, De Rybel B, Eeckhout D, Nelissen H, De Jaeger G. Recent Trends in Plant Protein Complex Analysis in a Developmental Context. FRONTIERS IN PLANT SCIENCE 2018; 9:640. [PMID: 29868093 PMCID: PMC5962756 DOI: 10.3389/fpls.2018.00640] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/26/2018] [Indexed: 05/30/2023]
Abstract
Because virtually all proteins interact with other proteins, studying protein-protein interactions (PPIs) is fundamental in understanding protein function. This is especially true when studying specific developmental processes, in which proteins often make developmental stage- or tissue specific interactions. However, studying these specific PPIs in planta can be challenging. One of the most widely adopted methods to study PPIs in planta is affinity purification coupled to mass spectrometry (AP/MS). Recent developments in the field of mass spectrometry have boosted applications of AP/MS in a developmental context. This review covers two main advancements in the field of affinity purification to study plant developmental processes: increasing the developmental resolution of the harvested tissues and moving from affinity purification to affinity enrichment. Furthermore, we discuss some new affinity purification approaches that have recently emerged and could have a profound impact on the future of protein interactome analysis in plants.
Collapse
Affiliation(s)
- Michiel Bontinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Astrid Gadeyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|