1
|
Zeng X, Wei X, Zhan J, Lu Y, Lei Y, Shen X, Ge X, Chen Q, Qu Y, Li F, Zhao H. Uncovering miRNA-mRNA regulatory modules of cotton in response to cadmium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109614. [PMID: 40015194 DOI: 10.1016/j.plaphy.2025.109614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Cadmium (Cd2+), a non-essential heavy metal for plant, adversely effects on crop productivity and food safety. Cotton, predominantly cultivated as a non-food crop, offers the advantage of not transferring Cd2+ into the food chain, making it an effective option for remediating Cd2+contaminated soils. While previous researches have extensively examined the gene expression responses of cotton to Cd2+ stress, insights at the post-transcriptional level remain limited. In this study, a comprehensive methodology was employed, incorporating miRNA sequencing, degradomics, and RNA sequencing, to investigate the responses of the Cd2+-tolerant cotton cultivar XM and the Cd2+-sensitive cotton cultivar ZM24 under Cd2+ exposure. The analysis revealed that these the identified miRNA-target gene pairs predominantly influence various biological processes, including light signaling, cell wall biogenesis, abiotic stress responses, transportation, and hormone signaling pathways in response to Cd2+ stress. Overall, our findings suggest that newly identified miRNAs and their corresponding target genes in cotton may contribute to enhance tolerance to Cd2+ stress through multiple mechanisms, facilitating the breeding of superior cotton cultivars with enhanced tolerance to Cd2+ toxicity.
Collapse
Affiliation(s)
- Xiaolin Zeng
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, Xinjiang, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Industrial Crops Institute of Jiangxi, Nanchang, 330203, China
| | - Xi Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jingjing Zhan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yi Lu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yuqi Lei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyi Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, Xinjiang, China.
| | - Yanying Qu
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, Xinjiang, China.
| | - Fuguang Li
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, Xinjiang, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Hang Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
2
|
Tan J, Zhang L, Liu C, Hong Z, Wu X, Zhang Y, Fahad M, Shen Y, Bian J, He H, Wu D, Shu Q, Bao J, Wu L. UCL23 hierarchically regulated by WRKY51-miR528 mediates cadmium uptake, tolerance, and accumulation in rice. Cell Rep 2025; 44:115336. [PMID: 39985767 DOI: 10.1016/j.celrep.2025.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/28/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
In humans, cadmium (Cd) toxicity caused by contaminated environments is associated with numerous chronic diseases. Breeding rice with low Cd accumulation is now deemed critical for sustainable agriculture development. Here, we elucidate the crucial functions of UCLACYANIN 23 (UCL23), a small copper protein, in Cd absorption, tolerance, and accumulation through modulation of reactive oxygen signals in rice. Additionally, we demonstrate that WRKY51 binds to promoters of UCL23 and miR528, a post-transcriptional regulator of UCL23, thereby contributing to Cd regulation in a dual-modulatory manner. Furthermore, we show that the natural variation of UCL23 is important for the differential accumulation of Cd in rice grains. Finally, we reveal that Indica rice harboring the major Japonica haplotype of UCL23 significantly reduces Cd uptake in roots and Cd accumulation in grains. Together, our study not only reveals a regulatory cascade in Cd regulation but also provides valuable resources for breeding low-Cd rice cultivars.
Collapse
Affiliation(s)
- Jingai Tan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lantian Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Chuanjia Liu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Zheyuan Hong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Xia Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaqi Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Muhammad Fahad
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuxin Shen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dezhi Wu
- Yuelushan Laboratory, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyao Shu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Jinsong Bao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China.
| |
Collapse
|
3
|
Fahad M, Tariq L, Li W, Wu L. MicroRNA gatekeepers: Orchestrating rhizospheric dynamics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:845-876. [PMID: 39981727 PMCID: PMC11951408 DOI: 10.1111/jipb.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
The rhizosphere plays a crucial role in plant growth and resilience to biotic and abiotic stresses, highlighting the complex communication between plants and their dynamic rhizosphere environment. Plants produce a wide range of signaling molecules that facilitate communication with various rhizosphere factors, yet our understanding of these mechanisms remains elusive. In addition to protein-coding genes, increasing evidence underscores the critical role of microRNAs (miRNAs), a class of non-coding single-stranded RNA molecules, in regulating plant growth, development, and responses to rhizosphere stresses under diverse biotic and abiotic factors. In this review, we explore the crosstalk between miRNAs and their target mRNAs, which influence the development of key plant structures shaped by the belowground environment. Moving forward, more focused studies are needed to clarify the functions and expression patterns of miRNAs, to uncover the common regulatory mechanisms that mediate plant tolerance to rhizosphere dynamics. Beyond that, we propose that using artificial miRNAs and manipulating the expression of miRNAs and their targets through overexpression or knockout/knockdown approaches could effectively investigate their roles in plant responses to rhizosphere stresses, offering significant potential for advancing crop engineering.
Collapse
Affiliation(s)
- Muhammad Fahad
- Hainan Yazhou Bay Seed Laboratory, Hainan InstituteZhejiang UniversitySanya572000China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhou310058China
| | - Wanchang Li
- Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan InstituteZhejiang UniversitySanya572000China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| |
Collapse
|
4
|
Zhang Y, Yan Q, Xia H, Yang J, Zeng X, Li Z, Cai X, Zou J, Chen H. Validation of suitable reference microRNAs for qRT-PCR in Osmanthus fragrans under abiotic stress, hormone and metal ion treatments. FRONTIERS IN PLANT SCIENCE 2025; 16:1517225. [PMID: 40026390 PMCID: PMC11868269 DOI: 10.3389/fpls.2025.1517225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Introduction Sweet osmanthus (Osmanthus fragrans) is a prominent woody ornamental plant extensively utilized in horticulture, the food industry, cosmetics, and traditional Chinese medicine. MicroRNAs (miRNAs) are crucial regulators of gene regulation, playing a vital role in enabling plants to adapt to environmental fluctuations. Despite their significance, research on miRNA expression in O. fragrans under adverse stress conditions remains limited. Therefore, the selection of appropriate reference miRNAs is essential to ensure accurate miRNA expression analysis. Methods In this study, qRT-PCR technology was combined with four algorithms (i.e., delta-Ct, geNorm, NormFinder, and BestKeeper) to systematically evaluate the expression stability of 14 candidate miRNAs across eleven environmental conditions, including under abiotic stress, under hormone and metal ion treatments, during flower opening and senescence, and across various tissues. Results The results revealed that under hormone treatments, ofr-miR159b-3p, novel8, and novel3 exhibited high expression stability; under abiotic stress, ofr-miR159b-3p, novel8, ofr-miR403-3p, and novel2 demonstrated considerable stability; during metal ion treatments, novel3, ofr-miR159b-3p, novel33, novel2, and ofr-miR395e were identified as stable miRNAs; in different tissues, novel2 and ofr-miR395e were relatively stable; and during flower opening and senescence, novel33 and ofr-miR395e maintained stable expression. Discussion This study represents the first comprehensive assessment of reference miRNA stability in O. fragrans, providing a reliable framework for miRNA expression analysis under diverse conditions, including flower development and senescence, abiotic stress, hormone treatments, and metal ion treatments. These findings carry significant implications for future research into the function of miRNAs.
Collapse
Affiliation(s)
- Yingting Zhang
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
| | - Qingyu Yan
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
| | - Hui Xia
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Jie Yang
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Xiangling Zeng
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Zeqing Li
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
| | - Xuan Cai
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Jingjing Zou
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| | - Hongguo Chen
- National Forestry and Grassland Administration Engineering Research Center for Osmanthus fragrans, Hubei University of Science and Technology, Xianning, China
- Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, China
- Research Center for Osmanthus fragrans, Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, China
| |
Collapse
|
5
|
Ma J, Pan Y, Huang W, Fan Z, Liu S, Huang Y, Yao S, Hao C, Jiang Q, Li T. Overexpression of tae-miR9670 enhances cadmium tolerance in wheat by targeting mTERFs without yield penalty. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136448. [PMID: 39522224 DOI: 10.1016/j.jhazmat.2024.136448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Cadmium (Cd) is a widely distributed heavy metal that poses significant hazards to both crop productivity and human health. MicroRNAs (miRNAs) play pivotal roles in plant growth, development and responses to environmental stresses, yet little is known about their roles in regulating Cd tolerance in wheat. In this study, we identified tae-miR9670, a Triticeae-specific miRNA, as responsive to Cd exposure in wheat through miRNAome analysis. Tae-miR9670 can target genes that encode mitochondrial transcription termination factors (mTERFs), mediating their mRNA cleavage and suppressing their expression. Overexpression of tae-miR9670 significantly enhanced Cd tolerance in wheat seedlings, as demonstrated by increased biomass and reduced levels of malondialdehyde (MDA), H2O2, and Cd content. Consequently, multiple downstream genes involved in ROS scavenging, detoxification and heavy metal transport were upregulated in tae-miR9670 overexpression plants. Moreover, the grain Cd content in mature plants overexpressing tae-miR9670 was reduced by over 60 % compared to wild-type controls. Our results also indicated that overexpressing tae-miR9670 in wheat preserved yield-related traits, thereby overcoming the trade-off between stress resistance and grain yield. Overall, our findings provide new insights into the role of tae-miR9670 in Cd tolerance in wheat and its potential application in breeding low-Cd cultivars.
Collapse
Affiliation(s)
- Jianhui Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yuxue Pan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weihua Huang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhiyao Fan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Shujuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yilin Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shixiang Yao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qiyan Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
6
|
Zhang QH, Chen YQ, Li ZB, Tan XT, Xin GR, He CT. Defense guard: strategies of plants in the fight against Cadmium stress. ADVANCED BIOTECHNOLOGY 2024; 2:44. [PMID: 39883385 PMCID: PMC11740865 DOI: 10.1007/s44307-024-00052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 01/31/2025]
Abstract
Soil Cadmium (Cd) contamination is a worldwide problem with negative impacts on human health. Cultivating the Cd-Pollution Safety Cultivar (Cd-PSC) with lower Cd accumulation in edible parts of plants is an environmentally friendly approach to ensure food security with wide application prospects. Specialized mechanisms have been addressed for Cd accumulation in crops. This review provides an extensive generality of molecular regulation mechanisms involved in Cd absorption, transport, detoxification, and tolerance in plants, highlighting key aspects of rhizosphere, apoplast barrier, Cd uptake, transfer, and cellular repair strategies under Cd stress. Additionally, we summarize the possible approaches for lowering the Cd accumulation crops, including molecular-assistant breeding, applying chemical materials, and microbial strategy to decrease Cd content in edible parts and improve Cd tolerance of crops under Cd stress. This review would provide valuable insights for cultivating low Cd accumulated crop cultivars, ultimately contributing to food safety.
Collapse
Affiliation(s)
- Qian-Hui Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China
| | - Yi-Qi Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China
| | - Zhen-Bang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China
| | - Xuan-Tong Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China
- Instrumental Analysis & Research Center, Guangdong Province, Sun Yat-Sen University, Guangzhou City, 510275, China
| | - Guo-Rong Xin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China.
| | - Chun-Tao He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China.
| |
Collapse
|
7
|
Noor I, Sohail H, Akhtar MT, Cui J, Lu Z, Mostafa S, Hasanuzzaman M, Hussain S, Guo N, Jin B. From stress to resilience: Unraveling the molecular mechanisms of cadmium toxicity, detoxification and tolerance in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176462. [PMID: 39332719 DOI: 10.1016/j.scitotenv.2024.176462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Soil contamination with cadmium (Cd) has become a global issue due to increasing human activities. Cd contamination poses threats to plant growth as well as jeopardizing food safety and human health through the accumulation of Cd in edible parts of plants. Unraveling the Cd toxicity mechanisms and responses of plants to Cd stress is critical for promoting plant growth and ensuring food safety in Cd-contaminated soils. Toxicological research on plant responses to heavy metal stress has extensively studied Cd, as it can disrupt multiple physiological processes. In addition to morpho-anatomical, hormonal, and biochemical responses, plants rapidly initiate transcriptional modifications to combat Cd stress-induced oxidative and genotoxic damage. Various families of transcription factors play crucial roles in triggering such responses. Moreover, epigenetic modifications have been identified as essential players in maintaining plant genome stability under genotoxic stress. Plants have developed several detoxification strategies to mitigate Cd-induced toxicity, such as cell-wall binding, complexation, vacuolar sequestration, efflux, and translocation. This review provides a comprehensive update on understanding of molecular mechanisms involved in Cd uptake, transportation, and detoxification, with a particular emphasis on the signaling pathways that involve transcriptional and epigenetic responses in plants. This review highlights the innovative strategies for enhancing Cd tolerance and explores their potential application in various crops. Furthermore, this review offers strategies for increasing Cd tolerance and limiting Cd bioavailability in edible parts of plants, thereby improving the safety of food crops.
Collapse
Affiliation(s)
- Iqra Noor
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Hamza Sohail
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Muhammad Tanveer Akhtar
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Jiawen Cui
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Zhaogeng Lu
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Salma Mostafa
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Sajjad Hussain
- Citrus Centre, Texas A&M University-Kingsville, Weslaco 78599, United States of America
| | - Nan Guo
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Biao Jin
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China.
| |
Collapse
|
8
|
Chakrabarty D. Editorial: Molecular mechanisms of metal toxicity and transcriptional/post-transcriptional regulation in plant model systems. FRONTIERS IN PLANT SCIENCE 2024; 15:1502021. [PMID: 39665110 PMCID: PMC11632460 DOI: 10.3389/fpls.2024.1502021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Affiliation(s)
- Debasis Chakrabarty
- Molecular Biology and Biotechnology, National Botanical Research Institute (CSIR), Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Sun M, Qiao HX, Yang T, Zhao P, Zhao JH, Luo JM, Liu FF, Xiong AS. DcMYB62, a transcription factor from carrot, enhanced cadmium tolerance of Arabidopsis by inducing the accumulation of carotenoids and hydrogen sulfide. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109114. [PMID: 39250846 DOI: 10.1016/j.plaphy.2024.109114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/11/2024]
Abstract
Cadmium (Cd) is a significant heavy metal contaminant within the environment, carrying a notable level of toxicity that presents a substantial hazard to both plant and human. Carrot (Daucus carota), a significant root vegetable crop globally, have evolved multiple transcriptional regulatory mechanisms to cope with Cd stress, with a crucial involvement of the myeloblastosis (MYB) transcription factor. In this study, the DcMYB62 gene encoding 288 amino acids, localized in the nucleus and demonstrated transcription activation property, was isolated from carrot (cv. 'Kuroda'). There was a positive relationship observed between the levels of DcMYB62 expression and the accumulation patterns of carotenoids in two distinct carrot cultivars. Further investigation revealed that the expression of DcMYB62 improved Cd tolerance of Arabidopsis by increasing seed germination rate, root length, and overall survival rate. The levels of carotenoids in DcMYB62 transgenic Arabidopsis surpassed those in wild type, accompanied by elevated expression levels of 15-cis-phytoene desaturase, zeta-carotene desaturase, and carotenoid isomerase. Meanwhile, the heterologous expression of DcMYB62 promoted the biosynthesis of abscisic acid (ABA) and hydrogen sulfide (H2S), which in turn suppressed the formation of hydrogen peroxide and superoxide anion, while also stimulating stomatal closure. Furthermore, the heterologous expression of DcMYB62 increased the transcription of genes associated with heavy metal resistance in Arabidopsis, notably nicotianamine synthase. Overall, this study contributes to understanding how DcMYB62 promote Cd stress resistance of plants by regulating the biosynthesis pathways of carotenoids, ABA, and H2S, which offers valuable insights into the regulatory mechanism connecting DcMYBs with Cd stress response of carrot.
Collapse
Affiliation(s)
- Miao Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huan-Xuan Qiao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Tao Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Peng Zhao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Jun-Hao Zhao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Jia-Ming Luo
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Fang-Fang Liu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
10
|
Charagh S, Wang H, Wang J, Raza A, Hui S, Cao R, Zhou L, Tang S, Hu P, Hu S. Leveraging multi-omics tools to comprehend responses and tolerance mechanisms of heavy metals in crop plants. Funct Integr Genomics 2024; 24:194. [PMID: 39441418 DOI: 10.1007/s10142-024-01481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Extreme anthropogenic activities and current farming techniques exacerbate the effects of water and soil impurity by hazardous heavy metals (HMs), severely reducing agricultural output and threatening food safety. In the upcoming years, plants that undergo exposure to HM might cause a considerable decline in the development as well as production. Hence, plants have developed sophisticated defensive systems to evade or withstand the harmful consequences of HM. These mechanisms comprise the uptake as well as storage of HMs in organelles, their immobilization via chemical formation by organic chelates, and their removal using many ion channels, transporters, signaling networks, and TFs, amid other approaches. Among various cutting-edge methodologies, omics, most notably genomics, transcriptomics, proteomics, metabolomics, miRNAomics, phenomics, and epigenomics have become game-changing approaches, revealing information about the genes, proteins, critical metabolites as well as microRNAs that govern HM responses and resistance systems. With the help of integrated omics approaches, we will be able to fully understand the molecular processes behind plant defense, enabling the development of more effective crop protection techniques in the face of climate change. Therefore, this review comprehensively presented omics advancements that will allow resilient and sustainable crop plants to flourish in areas contaminated with HMs.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
11
|
Yu Y, Alseekh S, Zhu Z, Zhou K, Fernie AR. Multiomics and biotechnologies for understanding and influencing cadmium accumulation and stress response in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2641-2659. [PMID: 38817148 PMCID: PMC11536459 DOI: 10.1111/pbi.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals faced by plants and, additionally, via the food chain, threatens human health. It is principally dispersed through agro-ecosystems via anthropogenic activities and geogenic sources. Given its high mobility and persistence, Cd, although not required, can be readily assimilated by plants thereby posing a threat to plant growth and productivity as well as animal and human health. Thus, breeding crop plants in which the edible parts contain low to zero Cd as safe food stuffs and harvesting shoots of high Cd-containing plants as a route for decontaminating soils are vital strategies to cope with this problem. Recently, multiomics approaches have been employed to considerably enhance our understanding of the mechanisms underlying (i) Cd toxicity, (ii) Cd accumulation, (iii) Cd detoxification and (iv) Cd acquisition tolerance in plants. This information can be deployed in the development of the biotechnological tools for developing plants with modulated Cd tolerance and detoxification to safeguard cellular and genetic integrity as well as to minimize food chain contamination. The aim of this review is to provide a current update about the mechanisms involved in Cd uptake by plants and the recent developments in the area of multiomics approach in terms of Cd stress responses, as well as in the development of Cd tolerant and low Cd accumulating crops.
Collapse
Affiliation(s)
- Yan Yu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Zonghe Zhu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Kejin Zhou
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| |
Collapse
|
12
|
Li Z, Jiang L, Long P, Wang C, Liu P, Hou F, Zhang M, Zou C, Huang Y, Ma L, Shen Y. A phased small interfering RNA-derived pathway mediates lead stress tolerance in maize. PLANT PHYSIOLOGY 2024; 196:1163-1179. [PMID: 39074204 DOI: 10.1093/plphys/kiae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Phased small interfering RNAs (phasiRNAs) are a distinct class of endogenous small interfering RNAs, which regulate plant growth, development, and environmental stress response. To determine the effect of phasiRNAs on maize (Zea mays L.) tolerance to lead (Pb) stress, the roots of 305 maize lines under Pb treatment were subjected to generation of individual databases of small RNAs. We identified 55 high-confidence phasiRNAs derived from 13 PHAS genes (genes producing phasiRNAs) in this maize panel, of which 41 derived from 9 PHAS loci were negatively correlated with Pb content in the roots. The potential targets of the 41 phasiRNAs were enriched in ion transport and import. Only the expression of PHAS_1 (ZmTAS3j, Trans-Acting Short Interference RNA3) was regulated by its cis-expression quantitative trait locus and thus affected the Pb content in the roots. Using the Nicotiana benthamiana transient expression system, 5'-rapid amplification of cDNA ends, and Arabidopsis heterologously expressed, we verified that ZmTAS3j was cleaved by zma-miR390 and thus generated tasiRNA targeting ARF genes (tasiARFs), and that the 5' and 3' zma-miR390 target sites of ZmTAS3j were both necessary for efficient biosynthesis and functional integrity of tasiARFs. We validated the involvement of the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-ZmHMA3 pathway in Pb accumulation in maize seedlings using genetic, molecular, and cytological methods. Moreover, the increased Pb tolerance in ZmTAS3j-overexpressed lines was likely attributed to the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-SAURs pathway, which elevated indole acetic acid levels and thus reactive oxygen species-scavenging capacity in maize roots. Our study reveals the importance of the TAS3-derived tasiRNA pathway in plant adaptation to Pb stress.
Collapse
Affiliation(s)
- Zhaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Li Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengxia Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Minyan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongcai Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
13
|
Zhao Y, Yang J, Jiang F, Zhao G. Hydrogen Peroxide Is Involved in Methane-Alleviated Cadmium Toxicity in Alfalfa ( Medicago sativa L.) Seedlings by Enhancing Cadmium Chelation onto Root Cell Walls. PLANTS (BASEL, SWITZERLAND) 2024; 13:2639. [PMID: 39339613 PMCID: PMC11435170 DOI: 10.3390/plants13182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Although previous studies have demonstrated that methane (CH4) can mitigate the toxicity of cadmium (Cd) in alfalfa seedlings, the CH4-rich water used in these studies may create hypoxic conditions, potentially influencing the experimental outcomes. Therefore, this study aimed to investigate whether CH4 can reduce Cd toxicity in alfalfa seedlings without the interference of hypoxia and to analyze its underlying mechanisms. Here, it was observed that supplementing oxygen with saturated CH4-rich water can significantly alleviate the inhibition of 75 μM CdCl2 on the growth of alfalfa (Medicago sativa L.) seedlings. Less Cd accumulation was also observed in both root and shoot parts, which could be explained by the CH4-altered cell wall components in alfalfa seedling roots, including covalent and ionic soluble pectin, and the degree of demethylation in pectin, thus enabling a higher proportion of Cd binding to the cell walls and reducing the entry of Cd into the cells. The above actions of CH4 were accompanied by an increase in hydrogen peroxide (H2O2) content and NADPH oxidase activity, which could be blocked by the addition of the NADPH oxidase inhibitor diphenylene iodonium (DPI). Taken together, these results implied that exogenously applied CH4 could alleviate Cd toxicity in alfalfa seedlings by enhancing Cd chelation onto the root cell walls, which might be closely associated with NADPH oxidase-dependent H2O2 signals. These findings could provide insight into the mechanism through which CH4 alleviates Cd toxicity in alfalfa plants.
Collapse
Affiliation(s)
- Yingying Zhao
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (Y.Z.); (F.J.)
| | - Jie Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Feiyan Jiang
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (Y.Z.); (F.J.)
| | - Gan Zhao
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (Y.Z.); (F.J.)
| |
Collapse
|
14
|
Zhang Z, Yang T, Li N, Tang G, Tang J. MicroRNA166: Old Players and New Insights into Crop Agronomic Traits Improvement. Genes (Basel) 2024; 15:944. [PMID: 39062723 PMCID: PMC11276106 DOI: 10.3390/genes15070944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
MicroRNA (miRNA), a type of non-coding RNA, is crucial for controlling gene expression. Among the various miRNA families, miR166 stands out as a highly conserved group found in both model and crop plants. It plays a key role in regulating a wide range of developmental and environmental responses. In this review, we explore the diverse sequences of MIR166s in major crops and discuss the important regulatory functions of miR166 in plant growth and stress responses. Additionally, we summarize how miR166 interacts with other miRNAs and highlight the potential for enhancing agronomic traits by manipulating the expression of miR166 and its targeted HD-ZIP III genes.
Collapse
Affiliation(s)
- Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China;
| | - Tianxiao Yang
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA;
| | - Na Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China;
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA;
| | - Jihua Tang
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
15
|
Lu L, Chen X, Chen J, Zhang Z, Zhang Z, Sun Y, Wang Y, Xie S, Ma Y, Song Y, Zeng R. MicroRNA-encoded regulatory peptides modulate cadmium tolerance and accumulation in rice. PLANT, CELL & ENVIRONMENT 2024; 47:1452-1470. [PMID: 38233741 DOI: 10.1111/pce.14819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/20/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play a vital role in plant responses to abiotic and biotic stresses. Recently, it has been discovered that some primary miRNAs (pri-miRNAs) encode regulatory short peptides called miPEPs. However, the presence of miPEPs in rice, and their functions in response to abiotic stresses, particularly stress induced by heavy metals, remain poorly understood. Here, we identified a functional small peptide (miPEP156e) encoded by pri-miR156e that regulates the expression of miR156 and its target SPL genes, thereby affecting miR156-mediated cadmium (Cd) tolerance in rice. Overexpression of miPEP156e led to decreased uptake and accumulation of Cd and reactive oxygen species (ROS) levels in plants under Cd stress, resulting in improved rice Cd tolerance, as observed in miR156-overexpressing lines. Conversely, miPEP156e mutants displayed sensitivity to Cd stress due to the elevated accumulation of Cd and ROS. Transcriptome analysis further revealed that miPEP156e improved rice Cd tolerance by modulating Cd transporter genes and ROS scavenging genes. Our study provides insights into the regulatory mechanism of miPEP156e in rice response to Cd stress and demonstrates the potential of miPEPs as an effective tool for improving crop abiotic stress tolerance.
Collapse
Affiliation(s)
- Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaming Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanyan Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siwen Xie
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yinuo Ma
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Anwar A, Wang Y, Chen M, Zhang S, Wang J, Feng Y, Xue Y, Zhao M, Su W, Chen R, Song S. Zero-valent iron (nZVI) nanoparticles mediate SlERF1 expression to enhance cadmium stress tolerance in tomato. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133829. [PMID: 38394894 DOI: 10.1016/j.jhazmat.2024.133829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Cadmium (Cd) pollution threatens plant physiological and biochemical activities and crop production. Significant progress has been made in characterizing how nanoparticles affect Cd stress tolerance; however, the molecular mechanism of nZVI nanoparticles in Cd stress remains largely uncharacterized. Plants treated with nZVI and exposed to Cd had increased antioxidant capacity and reduced Cd accumulation in plant tissues. The nZVI treatment differentially affected the expression of genes involved in plant environmental responses, including those associated with the ERF transcription factor. SlEFR1 was upregulated by Cd stress in nZVI-treated plants when compared with the control and the predicted protein-protein interactions suggested SlERF1 interacts with proteins associated with plant hormone signaling pathway and related to stress. Yeast overexpressing SlEFR1 grew faster after Cd exposure and significantly had higher Cd stress tolerance when compared with empty vector controls. These results suggest that nZVI induces Cd stress tolerance by activating SlERF1 expression to improve plant growth and nutrient accumulation. Our study reveals the molecular mechanism of Cd stress tolerance for improved plant growth and will support new research on overcoming Cd stress and improving vegetable crop production.
Collapse
Affiliation(s)
- Ali Anwar
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yudan Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mengqing Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shuaiwei Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jinmiao Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yunqiang Feng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanxu Xue
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mingfeng Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Su
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
17
|
Wei B, Wang Y, Ruan Q, Zhu X, Wang X, Wang T, Zhao Y, Wei X. Mechanism of action of microRNA166 on nitric oxide in alfalfa (Medicago sativa L.) under drought stress. BMC Genomics 2024; 25:316. [PMID: 38549050 PMCID: PMC10976769 DOI: 10.1186/s12864-024-10095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/07/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Alfalfa is a perennial forage crop of high importance, but its cultivation is often affected by drought stress. Currently, the investigation of drought-related small RNAs is a popular research topic to uncover plant drought resistance mechanisms. Among these small RNAs, microRNA166 (miR166) is associated with drought in numerous plant species. Initial small RNA sequencing studies have shown that miR166 is highly responsive to exogenous nitric oxide (NO) and drought. Therefore, analyzing the expression of Msa-miR166 under nitric oxide and drought treatment is significant. RESULT Bioinformatics analysis revealed that the miR166 family is widely distributed among plants, ranging from mosses to eudicots, with significant distribution differences between species. The evolutionary degree of Msa-miR166s is highly similar to that of Barrel medic (Medicago truncatula) and Soybean (Glycine max), but significantly different from the model plant Arabidopsis (Arabidopsis thaliana). It is suggested that there are no significant differences in miR166s within the species, and members of Msa-miR166s can form a typical stem-loop. The lowest level of exogenous nitric oxide was observed in Msa-miR166s under drought stress, followed by individual drought, and the highest level was observed after removing endogenous nitric oxide. CONCLUSION In response to short-term drought, Msa-miR166s down-regulate expression in alfalfa (Medicago sativa L.). Exogenous nitric oxide can reduce the expression of Msa-miR166s in response to short-term drought. These findings suggest that Msa-miR166e-5p is responsive to environmental changes. The expression levels of target genes showed an opposite trend to Msa-miR166s, verifying the accuracy of Degradome sequencing in the early stage. This suggests that alfalfa experiences drought stress when regulated by exogenous nitric oxide, targeting HD ZIP-III, FRI, and CoA ligase genes. Additionally, the expression of Msa-miR166s in response to drought stress varies between leaves and roots, indicating spatiotemporal specificity.
Collapse
Affiliation(s)
- Bochuang Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yizhen Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qian Ruan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xian Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tianjie Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
18
|
Wang H, Jia Y, Bai X, Wang J, Liu G, Wang H, Wu Y, Xin J, Ma H, Liu Z, Zou D, Zhao H. Whole-transcriptome profiling and identification of cold tolerance-related ceRNA networks in japonica rice varieties. FRONTIERS IN PLANT SCIENCE 2024; 15:1260591. [PMID: 38567126 PMCID: PMC10985246 DOI: 10.3389/fpls.2024.1260591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/02/2024] [Indexed: 04/04/2024]
Abstract
Introduction Low-temperature stress negatively impacts rice yield, posing a significant risk to food security. While previous studies have explored the physiological and linear gene expression alterations in rice under low-temperature conditions, the changes in competing endogenous RNA (ceRNA) networks remain largely unexamined. Methods We conducted RNA sequencing on two japonica rice varieties with differing cold-tolerance capabilities to establish ceRNA networks. This enabled us to investigate the transcriptional regulatory network and molecular mechanisms that rice employs in response to low-temperature stress. Results We identified 364 differentially expressed circular RNAs (circRNAs), 224 differentially expressed microRNAs (miRNAs), and 12,183 differentially expressed messenger RNAs (mRNAs). WRKY family was the most prominent transcription factor family involved in cold tolerance. Based on the expression patterns and targeted relationships of these differentially expressed RNAs, we discerned five potential ceRNA networks related to low-temperature stress in rice: osa-miR166j-5p from the miR166 family was associated with cold tolerance; osa-miR528-3p and osa-miR156j-3p were linked to stress response; and osa-miR156j-3p was involved in the antioxidant system. In addition, Os03g0152000 in the antioxidant system, as well as Os12g0491800 and Os05g0381400, correlated with the corresponding stress response and circRNAs in the network. A gene sequence difference analysis and phenotypic validation of Os11g0685700 (OsWRKY61) within the WRKY family suggested its potential role in regulating cold tolerance in rice. Discussion and conclusion We identified Os11g0685700 (OsWRKY61) as a promising candidate gene for enhancing cold tolerance in japonica rice. The candidate miRNAs, mRNAs, and circRNAs uncovered in this study are valuable targets for researchers and breeders. Our findings will facilitate the development of cold-tolerant rice varieties from multiple angles and provide critical directions for future research into the functions of cold-tolerance-related miRNAs, mRNAs, and circRNAs in rice.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yan Jia
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xu Bai
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jin Wang
- Bei Da Huang Kenfeng Seed Limited Company, Research and Breeding Center, Harbin, China
| | - Ge Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Haixing Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yulong Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Junying Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Huimiao Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhenyu Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongwei Zhao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
Charagh S, Hui S, Wang J, Raza A, Zhou L, Xu B, Zhang Y, Sheng Z, Tang S, Hu S, Hu P. Unveiling Innovative Approaches to Mitigate Metals/Metalloids Toxicity for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14226. [PMID: 38410873 DOI: 10.1111/ppl.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Due to anthropogenic activities, environmental pollution of heavy metals/metalloids (HMs) has increased and received growing attention in recent decades. Plants growing in HM-contaminated soils have slower growth and development, resulting in lower agricultural yield. Exposure to HMs leads to the generation of free radicals (oxidative stress), which alters plant morpho-physiological and biochemical pathways at the cellular and tissue levels. Plants have evolved complex defense mechanisms to avoid or tolerate the toxic effects of HMs, including HMs absorption and accumulation in cell organelles, immobilization by forming complexes with organic chelates, extraction via numerous transporters, ion channels, signaling cascades, and transcription elements, among others. Nonetheless, these internal defensive mechanisms are insufficient to overcome HMs toxicity. Therefore, unveiling HMs adaptation and tolerance mechanisms is necessary for sustainable agriculture. Recent breakthroughs in cutting-edge approaches such as phytohormone and gasotransmitters application, nanotechnology, omics, and genetic engineering tools have identified molecular regulators linked to HMs tolerance, which may be applied to generate HMs-tolerant future plants. This review summarizes numerous systems that plants have adapted to resist HMs toxicity, such as physiological, biochemical, and molecular responses. Diverse adaptation strategies have also been comprehensively presented to advance plant resilience to HMs toxicity that could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Yuanyuan Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| |
Collapse
|
20
|
Ni WJ, Mubeen S, Leng XM, He C, Yang Z. Molecular-Assisted Breeding of Cadmium Pollution-Safe Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37923701 DOI: 10.1021/acs.jafc.3c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cadmium (Cd) contamination in edible agricultural products, especially in crops intended for consumption, has raised worldwide concerns regarding food safety. Breeding of Cd pollution-safe cultivars (Cd-PSCs) is an effective solution to preventing the entry of Cd into the food chain from contaminated agricultural soil. Molecular-assisted breeding methods, based on molecular mechanisms for cultivar-dependent Cd accumulation and bioinformatic tools, have been developed to accelerate and facilitate the breeding of Cd-PSCs. This review summarizes the recent progress in the research of the low Cd accumulation traits of Cd-PSCs in different crops. Furthermore, the application of molecular-assisted breeding methods, including transgenic approaches, genome editing, marker-assisted selection, whole genome-wide association analysis, and transcriptome, has been highlighted to outline the breeding of Cd-PSCs by identifying critical genes and molecular biomarkers. This review provides a comprehensive overview of the development of Cd-PSCs and the potential future for breeding Cd-PSC using modern molecular technologies.
Collapse
Affiliation(s)
- Wen-Juan Ni
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Samavia Mubeen
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Chuntao He
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongyi Yang
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Aminian-Dehkordi J, Rahimi S, Golzar-Ahmadi M, Singh A, Lopez J, Ledesma-Amaro R, Mijakovic I. Synthetic biology tools for environmental protection. Biotechnol Adv 2023; 68:108239. [PMID: 37619824 DOI: 10.1016/j.biotechadv.2023.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Synthetic biology transforms the way we perceive biological systems. Emerging technologies in this field affect many disciplines of science and engineering. Traditionally, synthetic biology approaches were commonly aimed at developing cost-effective microbial cell factories to produce chemicals from renewable sources. Based on this, the immediate beneficial impact of synthetic biology on the environment came from reducing our oil dependency. However, synthetic biology is starting to play a more direct role in environmental protection. Toxic chemicals released by industries and agriculture endanger the environment, disrupting ecosystem balance and biodiversity loss. This review highlights synthetic biology approaches that can help environmental protection by providing remediation systems capable of sensing and responding to specific pollutants. Remediation strategies based on genetically engineered microbes and plants are discussed. Further, an overview of computational approaches that facilitate the design and application of synthetic biology tools in environmental protection is presented.
Collapse
Affiliation(s)
| | - Shadi Rahimi
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Mehdi Golzar-Ahmadi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | - Amritpal Singh
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | - Javiera Lopez
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | | | - Ivan Mijakovic
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
22
|
Yadav B, Majhi A, Phagna K, Meena MK, Ram H. Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing. Funct Integr Genomics 2023; 23:317. [PMID: 37837547 DOI: 10.1007/s10142-023-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Rice is a major global staple food crop, and improving its grain yield and nutritional quality has been a major thrust research area since last decades. Yield and nutritional quality are complex traits which are controlled by multiple signaling pathways. Sincere efforts during past decades of research have identified several key genetic and molecular regulators that governed these complex traits. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated gene knockout approaches has accelerated the development of improved varieties; however, finding out target gene with negative regulatory function in particular trait without giving any pleiotropic effect remains a challenge. Here, we have reviewed past and recent literature and identified important negative regulators of grain yield and mineral contents which could be potential targets for CRISPR-Cas9-mediated gene knockout. Additionally, we have also compiled a list of microRNAs (miRNAs), which target positive regulators of grain yield, plant stress tolerance, and grain mineral contents. Knocking out these miRNAs could help to increase expression of such positive regulators and thus improve the plant trait. The knowledge presented in this review would help to further accelerate the CRISPR-Cas9-mediated trait improvement in rice.
Collapse
Affiliation(s)
- Banita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashis Majhi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanika Phagna
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
23
|
Xu WB, Zhao L, Liu P, Guo QH, Wu CA, Yang GD, Huang JG, Zhang SX, Guo XQ, Zhang SZ, Zheng CC, Yan K. Intronic microRNA-directed regulation of mitochondrial reactive oxygen species enhances plant stress tolerance in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:710-726. [PMID: 37547968 DOI: 10.1111/nph.19168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
MicroRNAs (miRNAs) play crucial roles in regulating plant development and stress responses. However, the functions and mechanism of intronic miRNAs in plants are poorly understood. This study reports a stress-responsive RNA splicing mechanism for intronic miR400 production, whereby miR400 modulates reactive oxygen species (ROS) accumulation and improves plant tolerance by downregulating its target expression. To monitor the intron splicing events, we used an intronic miR400 splicing-dependent luciferase transgenic line. Luciferase activity was observed to decrease after high cadmium concentration treatment due to the retention of the miR400-containing intron, which inhibited the production of mature miR400. Furthermore, we demonstrated that under Cd treatments, Pentatricopeptide Repeat Protein 1 (PPR1), the target of miR400, acts as a positive regulator by inducing ROS accumulation. Ppr1 mutation affected the Complex III activity in the electron transport chain and RNA editing of the mitochondrial gene ccmB. This study illustrates intron splicing as a key step in intronic miR400 production and highlights the function of intronic miRNAs as a 'signal transducer' in enhancing plant stress tolerance.
Collapse
Affiliation(s)
- Wei-Bo Xu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Lei Zhao
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Peng Liu
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Qian-Huan Guo
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chang-Ai Wu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Guo-Dong Yang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jin-Guang Huang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shu-Xin Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xing-Qi Guo
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shi-Zhong Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Cheng-Chao Zheng
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Kang Yan
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
24
|
Yang W, Chen Y, Gao R, Chen Y, Zhou Y, Xie J, Zhang F. MicroRNA2871b of Dongxiang Wild Rice ( Oryza rufipogon Griff.) Negatively Regulates Cold and Salt Stress Tolerance in Transgenic Rice Plants. Int J Mol Sci 2023; 24:14502. [PMID: 37833950 PMCID: PMC10572564 DOI: 10.3390/ijms241914502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cold and salt stresses are major environmental factors that constrain rice production. Understanding their mechanisms is important to enhance cold and salt stress tolerance in rice. MicroRNAs (miRNAs) are a class of non-coding RNAs with only 21-24 nucleotides that are gene regulators in plants and animals. Previously, miR2871b expression was suppressed by cold stress in Dongxiang wild rice (DXWR, Oryza rufipogon Griff.). However, its biological functions in abiotic stress responses remain elusive. In the present study, miR2871b of DWXR was overexpressed to investigate its function under stress conditions. When miR2871b of DWXR was introduced into rice plants, the transgenic lines were more sensitive to cold and salt stresses, and their tolerance to cold and salt stress decreased. The increased expression of miR2871b in rice plants also increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA); however, it markedly decreased the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) and the contents of proline (Pro) and soluble sugar (SS). These data suggested that miR2871b of DXWR has negative regulatory effects on cold and salt stress tolerance. Meanwhile, 412 differentially expressed genes (DEGs) were found in rice transgenic plants using transcriptome sequencing, among which 266 genes were up-regulated and 146 genes were down-regulated. Furthermore, the upstream cis-acting elements and downstream targets of miR2871b were predicted and analyzed, and several critical acting elements (ABRE and TC-rich repeats) and potential target genes (LOC_Os03g41200, LOC_Os07g47620, and LOC_Os04g30260) were obtained. Collectively, these results generated herein further elucidate the vital roles of miR2871b in regulating cold and salt responses of DXWR.
Collapse
Affiliation(s)
- Wanling Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Yong Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Rifang Gao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Yaling Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Yi Zhou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Jiankun Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
25
|
Chandra T, Jaiswal S, Iquebal MA, Singh R, Gautam RK, Rai A, Kumar D. Revitalizing miRNAs mediated agronomical advantageous traits improvement in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107933. [PMID: 37549574 DOI: 10.1016/j.plaphy.2023.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
One of the key enigmas in conventional and modern crop improvement programmes is how to introduce beneficial traits without any penalty impairment. Rice (Oryza sativa L.), among the essential staple food crops grown and utilized worldwide, needs to improve genotypes in multifaceted ways. With the global view to feed ten billion under the climatic perturbation, only a potent functional master regulator can withstand with hope for the next green revolution and food security. miRNAs are such, miniature, fine tuners for crop improvement and provide a value addition in emerging technologies, namely large-scale genotyping, phenotyping, genome editing, marker-assisted selection, and genomic selection, to make rice production feasible. There has been surplus research output generated since the last decade on miRNAs in rice, however, recent functional knowledge is limited to reaping the benefits for conventional and modern improvements in rice to avoid ambiguity and redundancy in the generated data. Here, we present the latest functional understanding of miRNAs in rice. In addition, their biogenesis, intra- and inter-kingdom signaling and communication, implication of amiRNAs, and consequences upon integration with CRISPR-Cas9. Further, highlights refer to the application of miRNAs for rice agronomical trait improvements, broadly classified into three functional domains. The majority of functionally established miRNAs are responsible for growth and development, followed by biotic and abiotic stresses. Tabular cataloguing reveals and highlights two multifaceted modules that were extensively studied. These belong to miRNA families 156 and 396, orchestrate multifarious aspects of advantageous agronomical traits. Moreover, updated and exhaustive functional aspects of different supplemental miRNA modules that would strengthen rice improvement are also being discussed.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - R K Gautam
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India; Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
26
|
Zhang YC, Yuan C, Chen YQ. Noncoding RNAs and their roles in regulating the agronomic traits of crops. FUNDAMENTAL RESEARCH 2023; 3:718-726. [PMID: 38933294 PMCID: PMC11197796 DOI: 10.1016/j.fmre.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Molecular breeding is one of the most effective methods for improving the performance of crops. Understanding the genome features of crops, especially the physiological functions of individual genes, is of great importance to molecular breeding. Evidence has shown that genomes of both animals and plants transcribe numerous non-coding RNAs, which are involved in almost every aspect of development. In crops, an increasing number of studies have proven that non-coding RNAs are new genetic resources for regulating crop traits. In this review, we summarize the current knowledge of non-coding RNAs, which are potential crop trait regulators, and focus on the functions of long non-coding RNAs (lncRNAs) in determining crop grain yield, phased small-interfering RNAs (phasiRNAs) in regulating fertility, small interfering RNAs (siRNAs) and microRNAs (miRNAs) in facilitating plant immune response and disease resistance, and miRNAs mediating nutrient and metal stress. Finally, we also discuss the next-generation method for ncRNA application in crop domestication and breeding.
Collapse
Affiliation(s)
- Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chao Yuan
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
27
|
Raza A, Charagh S, Karikari B, Sharif R, Yadav V, Mubarik MS, Habib M, Zhuang Y, Zhang C, Chen H, Varshney RK, Zhuang W. miRNAs for crop improvement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107857. [PMID: 37437345 DOI: 10.1016/j.plaphy.2023.107857] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Climate change significantly impacts crop production by inducing several abiotic and biotic stresses. The increasing world population, and their food and industrial demands require focused efforts to improve crop plants to ensure sustainable food production. Among various modern biotechnological tools, microRNAs (miRNAs) are one of the fascinating tools available for crop improvement. miRNAs belong to a class of small non-coding RNAs playing crucial roles in numerous biological processes. miRNAs regulate gene expression by post-transcriptional target mRNA degradation or by translation repression. Plant miRNAs have essential roles in plant development and various biotic and abiotic stress tolerance. In this review, we provide propelling evidence from previous studies conducted around miRNAs and provide a one-stop review of progress made for breeding stress-smart future crop plants. Specifically, we provide a summary of reported miRNAs and their target genes for improvement of plant growth and development, and abiotic and biotic stress tolerance. We also highlight miRNA-mediated engineering for crop improvement and sequence-based technologies available for the identification of miRNAs associated with stress tolerance and plant developmental events.
Collapse
Affiliation(s)
- Ali Raza
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Vivek Yadav
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shanxi, 712100, China
| | | | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Rd., Islamabad 45500, Pakistan
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Hua Chen
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Rajeev K Varshney
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China; WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China.
| |
Collapse
|
28
|
Yue E, Rong F, Liu Z, Ruan S, Lu T, Qian H. Cadmium induced a non-coding RNA microRNA535 mediates Cd accumulation in rice. J Environ Sci (China) 2023; 130:149-162. [PMID: 37032032 DOI: 10.1016/j.jes.2022.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/19/2023]
Abstract
Identifying key regulators related to cadmium (Cd) tolerance and accumulation is the main factor for genetic engineering to improve plants for bioremediation and ensure crop food safety. MicroRNAs (miRNAs), as fine-tuning regulators of genes, participate in various abiotic stress processes. MiR535 is an ancient conserved non-coding small RNA in land plants, positively responding to Cd stress. We investigated the effects of knocking out (mir535) and overexpressing miR535 (mir535 and OE535) under Cd stress in rice plants in this study. The mir535 plants showed better Cd tolerance than wild type (WT), whereas the OE535 showed the opposite effect. Cd accumulated approximately 71.9% and 127% in the roots of mir535 and OE535 plants, respectively, compared to WT, after exposure to 2 µmol/L Cd. In brown rice, the total Cd accumulation of OE535 and mir535 was about 78% greater and 35% lower than WT. When growing in 2 mg/kg Cd of soil, the Cd concentration was significantly lower in mir535 and higher in OE535 than in the WT; afterward, we further revealed the most possible target gene SQUAMOSA promoter binding-like transcription factor 7(SPL7) and it negatively regulates Nramp5 expression, which in turn regulates Cd metabolism. Therefore, the CRISPR/Cas9 technology may be a valuable strategy for creating new rice varieties to ensure food safety.
Collapse
Affiliation(s)
- Erkui Yue
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Institute of Crops, Hangzhou Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fuxi Rong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhen Liu
- Hainan Institute, Zhejiang University, Hainan 572000, China
| | - Songlin Ruan
- Institute of Crops, Hangzhou Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
29
|
Li Y, Rahman SU, Qiu Z, Shahzad SM, Nawaz MF, Huang J, Naveed S, Li L, Wang X, Cheng H. Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121433. [PMID: 36907241 DOI: 10.1016/j.envpol.2023.121433] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities pose a more significant threat to the environment than natural phenomena by contaminating the environment with heavy metals. Cadmium (Cd), a highly poisonous heavy metal, has a protracted biological half-life and threatens food safety. Plant roots absorb Cd due to its high bioavailability through apoplastic and symplastic pathways and translocate it to shoots through the xylem with the help of transporters and then to the edible parts via the phloem. The uptake and accumulation of Cd in plants pose deleterious effects on plant physiological and biochemical processes, which alter the morphology of vegetative and reproductive parts. In vegetative parts, Cd stunts root and shoot growth, photosynthetic activities, stomatal conductance, and overall plant biomass. Plants' male reproductive parts are more prone to Cd toxicity than female reproductive parts, ultimately affecting their grain/fruit production and survival. To alleviate/avoid/tolerate Cd toxicity, plants activate several defense mechanisms, including enzymatic and non-enzymatic antioxidants, Cd-tolerant gene up-regulations, and phytohormonal secretion. Additionally, plants tolerate Cd through chelating and sequestering as part of the intracellular defensive mechanism with the help of phytochelatins and metallothionein proteins, which help mitigate the harmful effects of Cd. The knowledge on the impact of Cd on plant vegetative and reproductive parts and the plants' physiological and biochemical responses can help selection of the most effective Cd-mitigating/avoiding/tolerating strategy to manage Cd toxicity in plants.
Collapse
Affiliation(s)
- Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhixin Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Punjab, Pakistan
| | | | - Jianzhi Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sadiq Naveed
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lei Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Sarcheshmeh MK, Abedi A, Aalami A. Genome-wide survey of catalase genes in Brassica rapa, Brassica oleracea, and Brassica napus: identification, characterization, molecular evolution, and expression profiling of BnCATs in response to salt and cadmium stress. PROTOPLASMA 2023; 260:899-917. [PMID: 36495350 DOI: 10.1007/s00709-022-01822-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Catalase (CAT, EC 1.11.1.6), one of the most important antioxidant enzymes, can control excess levels of H2O2 produced under oxidative stress in plants. In this study, 16, 8, and 7 CAT genes in the genome of Brassica napus, B. rapa, and B. oleracea were identified, respectively. Phylogenetic studies showed that CATs could be divided into two main groups, each containing specific monocotyledon and dicotyledon subgroups. Motifs, gene structure, and intron phase of CATs in B. napus, Brassica rapa, and Brassica oleracea are highly conserved. Analysis of codon usage bias showed the mutation pressure and natural selection of the codon usage of CATs. Segmental duplication and polyploid were major factors in the expansion of this gene family in B. napus, and genes have experienced negative selection during evolution. Existence of hormones and stress-responsive cis-elements and identifying miRNA molecules affecting CATs showed that these genes are complexly regulated at the transcriptional and posttranscriptional levels. Based on RNA-seq data, CATs are divided into two groups; the first group has moderate and specific expression in flowers, leaves, stems, and roots, while the second group shows expression in most tissues. qRT-PCR analysis showed that the expression of these genes is dynamic and has a specific expression consistent with other CAT genes in response to salinity and cadmium (Cd) stresses. These results provide information for further investigation of the function of CAT genes in response to stresses and the development of tolerant plants.
Collapse
Affiliation(s)
- Monavar Kanani Sarcheshmeh
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Amin Abedi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Ali Aalami
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| |
Collapse
|
31
|
Teng L, Zhang X, Wang R, Lin K, Zeng M, Chen H, Cao F. miRNA transcriptome reveals key miRNAs and their targets contributing to the difference in Cd tolerance of two contrasting maize genotypes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114881. [PMID: 37030049 DOI: 10.1016/j.ecoenv.2023.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Soil cadmium (Cd) contamination is a global environmental and food safety production issue. microRNAs (miRNAs) are proven to be involved in plant growth and development, and abiotic/biotic stress response, but their role in Cd tolerance is largely unknown in maize. To understand the genetic basis of Cd tolerance, two maize genotypes differing in Cd tolerance (L42, a sensitive genotype and L63, a tolerant genotype) were selected, and miRNA sequencing was carried out at nine-day-old seedlings exposed to 24 h Cd stress (5 μM CdCl2). A total of 151 differentially expressed miRNAs were identified, including 20 known miRNAs and 131 novel miRNAs. The results revealed that 90 and 22 miRNAs were up-regulated and down-regulated by Cd in Cd-tolerant genotype L63, and there were 23 and 43 miRNAs in Cd-sensitive genotype L42, respectively. Twenty-six miRNAs were up-regulated in L42 and unchanged or down-regulated in L63, or unchanged in L42 and down-regulated in L63. There were 108 miRNAs that were up-regulated in L63 and unchanged or down-regulated in L42, or unchanged in L63 and down-regulated in L42. Their target genes were enriched mainly in peroxisomes, glutathione (GSH) metabolism, ABC transporter, and ubiquitin-protease system. Among them, target genes involved in the peroxisome pathway and GSH metabolism might play key roles in Cd tolerance in L63. Besides, several ABC transporters which might involve in Cd uptake and transport were identified. The differentially expressed miRNAs or target genes could be used for breeding low grain Cd accumulation and high Cd tolerance cultivars in maize.
Collapse
Affiliation(s)
- Lidong Teng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xueqing Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Runfeng Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Kaina Lin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Meng Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Hao Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
32
|
Lei X, Chen M, Xu K, Sun R, Zhao S, Wu N, Zhang S, Yang X, Xiao K, Zhao Y. The miR166d/ TaCPK7-D Signaling Module Is a Critical Mediator of Wheat ( Triticum aestivum L.) Tolerance to K + Deficiency. Int J Mol Sci 2023; 24:ijms24097926. [PMID: 37175632 PMCID: PMC10178733 DOI: 10.3390/ijms24097926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
It is well established that potassium (K+) is an essential nutrient for wheat (Triticum aestivum L.) growth and development. Several microRNAs (miRNAs), including miR166, are reportedly vital roles related to plant growth and stress responses. In this study, a K+ starvation-responsive miRNA (miR166d) was identified, which showed increased expression in the roots of wheat seedlings exposed to low-K+ stress. The overexpression of miR166d considerably increased the tolerance of transgenic Arabidopsis plants to K+ deprivation treatment. Furthermore, disrupting miR166d expression via virus-induced gene silencing (VIGS) adversely affected wheat adaptation to low-K+ stress. Additionally, miR166d directly targeted the calcium-dependent protein kinase 7-D gene (TaCPK7-D) in wheat. The TaCPK7-D gene expression was decreased in wheat seedling roots following K+ starvation treatment. Silencing TaCPK7-D in wheat increased K+ uptake under K+ starvation. Moreover, we observed that the miR166d/TaCPK7-D module could affect wheat tolerance to K+ starvation stress by regulating TaAKT1 and TaHAK1 expression. Taken together, our results indicate that miR166d is vital for K+ uptake and K+ starvation tolerance of wheat via regulation of TaCPK7-D.
Collapse
Affiliation(s)
- Xiaotong Lei
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Miaomiao Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Ke Xu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Ruoxi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Sihang Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Ningjing Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Shuhua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Xueju Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Yong Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
33
|
Wang W, Cheng M, Wei X, Wang R, Fan F, Wang Z, Tian Z, Li S, Yuan H. Comprehensive evolutionary analysis of growth-regulating factor gene family revealing the potential molecular basis under multiple hormonal stress in Gramineae crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1174955. [PMID: 37063175 PMCID: PMC10102486 DOI: 10.3389/fpls.2023.1174955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 06/17/2023]
Abstract
Growth-regulating factors (GRFs) are plant-specific transcription factors that contain two highly conserved QLQ and WRC domains, which control a range of biological functions, including leaf growth, floral organ development, and phytohormone signaling. However, knowledge of the evolutionary patterns and driving forces of GRFs in Gramineae crops is limited and poorly characterized. In this study, a total of 96 GRFs were identified from eight crops of Brachypodium distachyon, Hordeum vulgare, Oryza sativa L. ssp. indica, Oryza rufipogon, Oryza sativa L. ssp. japonica, Setaria italic, Sorghum bicolor and Zea mays. Based on their protein sequences, the GRFs were classified into three groups. Evolutionary analysis indicated that the whole-genome or segmental duplication plays an essential role in the GRFs expansion, and the GRFs were negatively selected during the evolution of Gramineae crops. The GRFs protein function as transcriptional activators with distinctive structural motifs in different groups. In addition, the expression of GRFs was induced under multiple hormonal stress, including IAA, BR, GA3, 6BA, ABA, and MeJ treatments. Specifically, OjGRF11 was significantly induced by IAA at 6 h after phytohormone treatment. Transgenic experiments showed that roots overexpressing OjGRF11 were more sensitive to IAA and affect root elongation. This study will broaden our insights into the origin and evolution of the GRF family in Gramineae crops and will facilitate further research on GRF function.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiao Wei
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhikai Wang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Zhihong Tian
- College of Life Science, Yangtze University, Jingzhou, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
34
|
Transcriptional Regulatory Network of Plant Cadmium Stress Response. Int J Mol Sci 2023; 24:ijms24054378. [PMID: 36901809 PMCID: PMC10001906 DOI: 10.3390/ijms24054378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Cadmium (Cd) is a non-essential heavy metal with high toxicity to plants. Plants have acquired specialized mechanisms to sense, transport, and detoxify Cd. Recent studies have identified many transporters involved in Cd uptake, transport, and detoxification. However, the complex transcriptional regulatory networks involved in Cd response remain to be elucidated. Here, we provide an overview of current knowledge regarding transcriptional regulatory networks and post-translational regulation of the transcription factors involved in Cd response. An increasing number of reports indicate that epigenetic regulation and long non-coding and small RNAs are important in Cd-induced transcriptional responses. Several kinases play important roles in Cd signaling that activate transcriptional cascades. We also discuss the perspectives to reduce grain Cd content and improve crop tolerance to Cd stress, which provides a theoretical reference for food safety and the future research of plant varieties with low Cd accumulation.
Collapse
|
35
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|
36
|
Tang Z, Wang HQ, Chen J, Chang JD, Zhao FJ. Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:570-593. [PMID: 36546407 DOI: 10.1111/jipb.13440] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Plants take up a wide range of trace metals/metalloids (hereinafter referred to as trace metals) from the soil, some of which are essential but become toxic at high concentrations (e.g., Cu, Zn, Ni, Co), while others are non-essential and toxic even at relatively low concentrations (e.g., As, Cd, Cr, Pb, and Hg). Soil contamination of trace metals is an increasing problem worldwide due to intensifying human activities. Trace metal contamination can cause toxicity and growth inhibition in plants, as well as accumulation in the edible parts to levels that threatens food safety and human health. Understanding the mechanisms of trace metal toxicity and how plants respond to trace metal stress is important for improving plant growth and food safety in contaminated soils. The accumulation of excess trace metals in plants can cause oxidative stress, genotoxicity, programmed cell death, and disturbance in multiple physiological processes. Plants have evolved various strategies to detoxify trace metals through cell-wall binding, complexation, vacuolar sequestration, efflux, and translocation. Multiple signal transduction pathways and regulatory responses are involved in plants challenged with trace metal stresses. In this review, we discuss the recent progress in understanding the molecular mechanisms involved in trace metal toxicity, detoxification, and regulation, as well as strategies to enhance plant resistance to trace metal stresses and reduce toxic metal accumulation in food crops.
Collapse
Affiliation(s)
- Zhong Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han-Qing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Dong Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
37
|
Genetic Regulation Mechanism of Cadmium Accumulation and Its Utilization in Rice Breeding. Int J Mol Sci 2023; 24:ijms24021247. [PMID: 36674763 PMCID: PMC9862080 DOI: 10.3390/ijms24021247] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Cadmium (Cd) is a heavy metal whose pollution in rice fields leads to varying degrees of Cd accumulation in rice. Furthermore, the long-term consumption of Cd-contaminated rice is harmful to human health. Therefore, it is of great theoretical significance and application value to clarify the genetic regulation mechanism of Cd accumulation in rice and cultivate rice varieties with low Cd accumulation for the safe use of Cd-contaminated soils. This review summarizes the effects of Cd on rice growth, yield, and quality; the physiological and molecular mechanisms of Cd absorption in the roots, loading, and transport of Cd in the xylem, the distribution of Cd in nodes, redistribution of Cd in leaves, and accumulation of Cd in the grains; the regulation mechanism of the Cd stress response; and the breeding of rice with low Cd accumulation. Future directions on the genetic regulation of Cd in rice and application are also discussed. This review provides a theoretical basis for studies exploring the genetic regulation of Cd stress in rice. It also offers a basis for formulating effective strategies to reduce the Cd content in rice.
Collapse
|
38
|
Zhu Y, Peng S, Zhao L, Feng W, Dong C. Genome-wide identification and characterization of the HD-Zip gene family and expression analysis in response to stress in Rehmannia glutinosa Libosch. PLANT SIGNALING & BEHAVIOR 2022; 17:2096787. [PMID: 35899840 PMCID: PMC9336491 DOI: 10.1080/15592324.2022.2096787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The HD-Zip family of transcription factors is unique to the plant kingdom, and play roles in modulation of plant growth and response to environmental stresses. R. glutinosa is an important Chinese medicinal material. Its yield and quality are susceptible to various stresses. The HD-Zip transcription factors is unique to the plant, and roles in modulation of plant growth and response to environmental stresses. However, there is no relevant research on the HD-ZIP of R. glutinosa. In this study, 92 HD-Zip transcription factors were identified in R. glutinosa, and denominated as RgHDZ1-RgHDZ92. Members of RgHDZ were classified into four groups (HD-ZipI-IV) based on the phylogenetic relationship of Arabidopsis HD-Zip proteins, and each group contains 38, 18, 17, and 19 members, respectively. Expression analyses of RgHDZ genes based on transcriptome data showed that the expression of these genes could be induced by the endophytic fungus of R. glutinosa. Additionally, we showed that RgHDZ genes were differentially expressed in response to drought, waterlogging, temperature, and salinity treatments. This study provides important information for different expression patterns of stress-responsive HD-Zip and may contribute to the better understanding of the different responses of plants to biotic and abiotic stresses, and provide a molecular basis for the cultivation of resistant varieties of R. glutinosa.
Collapse
Affiliation(s)
- Yunhao Zhu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R.China, Zhengzhou, Henan, China
| | - Shuping Peng
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Le Zhao
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R.China, Zhengzhou, Henan, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Chengming Dong
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R.China, Zhengzhou, Henan, China
| |
Collapse
|
39
|
Genome-Wide Identification and Expression Profile of the HD-Zip Transcription Factor Family Associated with Seed Germination and Abiotic Stress Response in Miscanthus sinensis. Genes (Basel) 2022; 13:genes13122256. [PMID: 36553523 PMCID: PMC9777646 DOI: 10.3390/genes13122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Miscanthus sinensis is an ornamental grass, non-food bioenergy crop, and forage with high feeding value. It can adapt to many kinds of soil conditions due to its high level of resistance to various abiotic stresses. However, a low level of seed germination restricts the utilization and application of M. sinensis. It is reported that the Homeodomain-leucine zipper (HD-Zip) gene family participates in plant growth and development and ability to cope with outside environment stresses, which may potentially regulate seed germination and stress resistance in M. sinensis. In this study, a complete overview of M. sinensis HD-Zip genes was conducted, including gene structure, conserved motifs, chromosomal distribution, and gene duplication patterns. A total of 169 members were identified, and the HD-Zip proteins were divided into four subgroups. Inter-chromosomal evolutionary analysis revealed that four pairs of tandem duplicate genes and 72 segmental duplications were detected, suggesting the possible role of gene replication events in the amplification of the M. sinensis HD-Zip gene family. There was an uneven distribution of HD-Zip genes on 19 chromosomes of M. sinensis. Also, evolutionary analysis showed that M. sinensis HD-Zip gene family members had more collinearity with monocotyledons and less with dicotyledons. The gene structure analysis showed that there were 93.5% of proteins with motif 1 and motif 4, while motif 10 was only found in group IV. Based on the cis-elements analysis, it appeared that most of the genes were related to plant growth and development, various hormones, and abiotic stress. Furthermore, qRT-PCR analysis showed that Misin06G303300.1 was significantly expressed in seed germination and Misin05G030000.1 and Misin06G303300.1 were highly expressed under chromium, salt, and drought stress. Results in this study will provide a basis for further exploring the potential role of HD-Zip genes in stress responses and genetic improvement of M. sinensis seed germination.
Collapse
|
40
|
Ullah I, Kamel EAR, Shah ST, Basit A, Mohamed HI, Sajid M. Application of RNAi technology: a novel approach to navigate abiotic stresses. Mol Biol Rep 2022; 49:10975-10993. [PMID: 36057876 DOI: 10.1007/s11033-022-07871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Due to the rising population globally, and the demand for food, it is critical to significantly increase crop production by 2050. However, climate change estimates show that droughts and heatwaves will become more prevalent in many parts of the world, posing a severe danger to food output. METHODS Selective breeding based on genetic diversity is falling short of meeting the expanding need for food and feed. However, the advent of modern plant genetic engineering, genome editing, and synthetic biology provides precise techniques for producing crops capable of sustaining yield under stress situations. RESULTS As a result, crop varieties with built-in genetic tolerance to environmental challenges are desperately needed. In the recent years, small RNA (sRNA) data has progressed to become one of the most effective approaches for the improvement of crops. So many sRNAs (18-30nt) have been found with the use of hi-tech bioinformatics and sequencing techniques which are involved in the regulation of sequence specific gene noncoding RNAs (short ncRNAs) i.e., microRNA (miRNA) and small interfering RNA (siRNA). Such research outcomes may advance our understanding of the genetic basis of adaptability of plants to various environmental challenges and the genetic variation of plant's tolerance to a number of abiotic stresses. CONCLUSION The review article highlights current trends and advances in sRNAs' critical role in responses of plants to drought, heat, cold, and salinity, and also the potential technology that identifies the abiotic stress-regulated sRNAs, and techniques for analyzing and validating the target genes.
Collapse
Affiliation(s)
- Izhar Ullah
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Ehab A R Kamel
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Syed Tanveer Shah
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Abdul Basit
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Muhammad Sajid
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| |
Collapse
|
41
|
Li Y, Yang Z, Zhang Y, Guo J, Liu L, Wang C, Wang B, Han G. The roles of HD-ZIP proteins in plant abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1027071. [PMID: 36311122 PMCID: PMC9598875 DOI: 10.3389/fpls.2022.1027071] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 05/31/2023]
Abstract
Homeodomain leucine zipper (HD-ZIP) proteins are plant-specific transcription factors that contain a homeodomain (HD) and a leucine zipper (LZ) domain. The highly conserved HD binds specifically to DNA and the LZ mediates homodimer or heterodimer formation. HD-ZIP transcription factors control plant growth, development, and responses to abiotic stress by regulating downstream target genes and hormone regulatory pathways. HD-ZIP proteins are divided into four subclasses (I-IV) according to their sequence conservation and function. The genome-wide identification and expression profile analysis of HD-ZIP proteins in model plants such as Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have improved our understanding of the functions of the different subclasses. In this review, we mainly summarize and discuss the roles of HD-ZIP proteins in plant response to abiotic stresses such as drought, salinity, low temperature, and harmful metals. HD-ZIP proteins mainly mediate plant stress tolerance by regulating the expression of downstream stress-related genes through abscisic acid (ABA) mediated signaling pathways, and also by regulating plant growth and development. This review provides a basis for understanding the roles of HD-ZIP proteins and potential targets for breeding abiotic stress tolerance in plants.
Collapse
|
42
|
OsNAC15 Regulates Tolerance to Zinc Deficiency and Cadmium by Binding to OsZIP7 and OsZIP10 in Rice. Int J Mol Sci 2022; 23:ijms231911771. [PMID: 36233067 PMCID: PMC9569620 DOI: 10.3390/ijms231911771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Zinc (Zn) deficiency and cadmium (Cd) stress are severe threats to the growth and development of plants. Increasing Zn content and/or decreasing Cd content in grain are also important objectives of rice breeding. However, the molecular mechanisms of Zn deficiency tolerance (ZDT) and Cd stress tolerance (CDT) are largely unknown in rice. Here, we report that a NAM/CUC2-like transcription factor, OsNAC15, contributes to ZDT and CDT in rice. Knockout of OsNAC15 reduced ZDT and CDT at the vegetative stage. OsNAC15 expresses in all tissues of different developmental stages, and is repressed by Zn deficiency and induced by Cd stress. OsNAC15 is a functional transcription factor with transactivation and DNA binding activities. Expression analysis of rice ZIP family genes suggested that the knockout of OsNAC15 activates or inhibits their transcriptions under Zn deficiency or Cd stress conditions. The yeast one-hybrid assay, transient transcriptional activity assay using the dual-luciferase reporter system and electrophoretic mobility shift assay demonstrated that OsNAC15 directly binds to the zinc deficiency-responsive element motifs in the promoters of OsZIP7 and OsZIP10 to repress their transcriptions. The OsNAC15–OsZIP7/10 module is an essential foundation for further study on the regulatory mechanisms of ZDT and CDT in rice.
Collapse
|
43
|
Islam W, Naveed H, Idress A, Ishaq DU, Kurfi BG, Zeng F. Plant responses to metals stress: microRNAs in focus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69197-69212. [PMID: 35951237 DOI: 10.1007/s11356-022-22451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Metal toxicity can largely affect the growth and yield of numerous plant species. Plants have developed specific mechanisms to withstand the varying amounts of metals. One approach involves utilization of microRNAs (miRNAs) that are known for cleaving transcripts or inhibiting translation to mediate post-transcriptional control. Use of transcription factors (TFs) or gene regulation in metal detoxification largely depends on metal-responsive miRNAs. Moreover, systemic signals and physiological processes for plants response to metal toxicities are likewise controlled by miRNAs. Therefore, it is necessary to understand miRNAs and their regulatory networks in relation to metal stress. The miRNA-based approach can be important to produce metal-tolerant plant species. Here, we have reviewed the importance of plant miRNAs and their role in mitigating metal toxicities. The current review also discusses the specific advances that have occurred as a result of the identification and validation of several metal stress-responsive miRNAs.
Collapse
Affiliation(s)
- Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Hassan Naveed
- College of Life Sciences, Leshan Normal University, Sichuan, 614004, China
| | - Atif Idress
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Daha Umar Ishaq
- Centre of Mitochondrial Biology & Medicine, Xian Joiotong University, Xi'An, 710049, China
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Binta G Kurfi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| |
Collapse
|
44
|
Ai H, Wu D, Li C, Hou M. Advances in molecular mechanisms underlying cadmium uptake and translocation in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1003953. [PMID: 36204081 PMCID: PMC9530829 DOI: 10.3389/fpls.2022.1003953] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
The increasing cadmium (Cd) pollution in paddy fields has severely threatened China's ecological and food safety. Cultivation of low Cd accumulation varieties to reduce Cd content in rice or cultivation of Cd-tolerant varieties for phytoremediation are considered effective methods to control Cd pollution in paddy fields. However, the underlying molecular mechanism of Cd absorption and transport by rice plants needs to be deciphered to cultivate these varieties. Here, we summarized the molecular mechanisms underlying Cd absorption and transport in rice, as well as the variation of Cd accumulation among rice varieties, the QTLs related to Cd accumulation in rice, and discusses the direction of future research.
Collapse
Affiliation(s)
- Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Daxia Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Chunli Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengmeng Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
45
|
Navarro C, Navarro MA, Leyva A. Arsenic perception and signaling: The yet unexplored world. FRONTIERS IN PLANT SCIENCE 2022; 13:993484. [PMID: 36119603 PMCID: PMC9479143 DOI: 10.3389/fpls.2022.993484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is one of the most potent carcinogens in the biosphere, jeopardizing the health of millions of people due to its entrance into the human food chain through arsenic-contaminated waters and staple crops, particularly rice. Although the mechanisms of arsenic sensing are widely known in yeast and bacteria, scientific evidence concerning arsenic sensors or components of early arsenic signaling in plants is still in its infancy. However, in recent years, we have gained understanding of the mechanisms involved in arsenic uptake and detoxification in different plant species and started to get insights into arsenic perception and signaling, which allows us to glimpse the possibility to design effective strategies to prevent arsenic accumulation in edible crops or to increase plant arsenic extraction for phytoremediation purposes. In this context, it has been recently described a mechanism according to which arsenite, the reduced form of arsenic, regulates the arsenate/phosphate transporter, consistent with the idea that arsenite functions as a selective signal that coordinates arsenate uptake with detoxification mechanisms. Additionally, several transcriptional and post-translational regulators, miRNAs and phytohormones involved in arsenic signaling and tolerance have been identified. On the other hand, studies concerning the developmental programs triggered to adapt root architecture in order to cope with arsenic toxicity are just starting to be disclosed. In this review, we compile and analyze the latest advances toward understanding how plants perceive arsenic and coordinate its acquisition with detoxification mechanisms and root developmental programs.
Collapse
|
46
|
Zhang F, Yang J, Zhang N, Wu J, Si H. Roles of microRNAs in abiotic stress response and characteristics regulation of plant. FRONTIERS IN PLANT SCIENCE 2022; 13:919243. [PMID: 36092392 PMCID: PMC9459240 DOI: 10.3389/fpls.2022.919243] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/08/2022] [Indexed: 05/27/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding endogenous small RNAs (long 20-24 nucleotides) that negatively regulate eukaryotes gene expression at post-transcriptional level via cleavage or/and translational inhibition of targeting mRNA. Based on the diverse roles of miRNA in regulating eukaryotes gene expression, research on the identification of miRNA target genes has been carried out, and a growing body of research has demonstrated that miRNAs act on target genes and are involved in various biological functions of plants. It has an important influence on plant growth and development, morphogenesis, and stress response. Recent case studies indicate that miRNA-mediated regulation pattern may improve agronomic properties and confer abiotic stress resistance of plants, so as to ensure sustainable agricultural production. In this regard, we focus on the recent updates on miRNAs and their targets involved in responding to abiotic stress including low temperature, high temperature, drought, soil salinity, and heavy metals, as well as plant-growing development. In particular, this review highlights the diverse functions of miRNAs on achieving the desirable agronomic traits in important crops. Herein, the main research strategies of miRNAs involved in abiotic stress resistance and crop traits improvement were summarized. Furthermore, the miRNA-related challenges and future perspectives of plants have been discussed. miRNA-based research lays the foundation for exploring miRNA regulatory mechanism, which aims to provide insights into a potential form of crop improvement and stress resistance breeding.
Collapse
Affiliation(s)
- Feiyan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Plant Genomics/Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics/Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
47
|
Yang Q, Li B, Rizwan HM, Sun K, Zeng J, Shi M, Guo T, Chen F. Genome-wide identification and comprehensive analyses of NAC transcription factor gene family and expression analysis under Fusarium kyushuense and drought stress conditions in Passiflora edulis. FRONTIERS IN PLANT SCIENCE 2022; 13:972734. [PMID: 36092439 PMCID: PMC9453495 DOI: 10.3389/fpls.2022.972734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/27/2022] [Indexed: 05/07/2023]
Abstract
The NAC gene family is one of the largest plant transcription factors (TFs) families and plays important roles in plant growth, development, metabolism, and biotic and abiotic stresses. However, NAC gene family has not been reported in passion fruit (Passiflora edulis). In this study, a total of 105 NAC genes were identified in the passion fruit genome and were unevenly distributed across all nine-passion fruit chromomere, with a maximum of 48 PeNAC genes on chromosome one. The physicochemical features of all 105 PeNAC genes varied including 120 to 3,052 amino acids, 3 to 8 conserved motifs, and 1 to 3 introns. The PeNAC genes were named (PeNAC001-PeNAC105) according to their chromosomal locations and phylogenetically grouped into 15 clades (NAC-a to NAC-o). Most PeNAC proteins were predicted to be localized in the nucleus. The cis-element analysis indicated the possible roles of PeNAC genes in plant growth, development, light, hormones, and stress responsiveness. Moreover, the PeNAC gene duplications including tandem (11 gene pairs) and segmental (12 gene pairs) were identified and subjected to purifying selection. All PeNAC proteins exhibited similar 3D structures, and a protein-protein interaction network analysis with known Arabidopsis proteins was predicted. Furthermore, 17 putative ped-miRNAs were identified to target 25 PeNAC genes. Potential TFs including ERF, BBR-BPC, Dof, and bZIP were identified in promoter region of all 105 PeNAC genes and visualized in a TF regulatory network. GO and KEGG annotation analysis exposed that PeNAC genes were related to different biological, molecular, and cellular terms. The qRT-PCR expression analysis discovered that most of the PeNAC genes including PeNAC001, PeNAC003, PeNAC008, PeNAC028, PeNAC033, PeNAC058, PeNAC063, and PeNAC077 were significantly upregulated under Fusarium kyushuense and drought stress conditions compared to controls. In conclusion, these findings lay the foundation for further functional studies of PeNAC genes to facilitate the genetic improvement of plants to stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
48
|
Yang Y, Huang J, Sun Q, Wang J, Huang L, Fu S, Qin S, Xie X, Ge S, Li X, Cheng Z, Wang X, Chen H, Zheng B, He Y. microRNAs: Key Players in Plant Response to Metal Toxicity. Int J Mol Sci 2022; 23:ijms23158642. [PMID: 35955772 PMCID: PMC9369385 DOI: 10.3390/ijms23158642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Environmental metal pollution is a common problem threatening sustainable and safe crop production. Heavy metals (HMs) cause toxicity by targeting key molecules and life processes in plant cells. Plants counteract excess metals in the environment by enhancing defense responses, such as metal chelation, isolation to vacuoles, regulating metal intake through transporters, and strengthening antioxidant mechanisms. In recent years, microRNAs (miRNAs), as a small non-coding RNA, have become the central regulator of a variety of abiotic stresses, including HMs. With the introduction of the latest technologies such as next-generation sequencing (NGS), more and more miRNAs have been widely recognized in several plants due to their diverse roles. Metal-regulated miRNAs and their target genes are part of a complex regulatory network. Known miRNAs coordinate plant responses to metal stress through antioxidant functions, root growth, hormone signals, transcription factors (TF), and metal transporters. This article reviews the research progress of miRNAs in the stress response of plants to the accumulation of HMs, such as Cu, Cd, Hg, Cr, and Al, and the toxicity of heavy metal ions.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Jiu Huang
- School of Environment Science and Spatial Informaftics, China University of Mining and Technology, Xuzhou 221116, China;
| | - Qiumin Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Jingqi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Lichao Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Siyi Fu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Sini Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Xiaoting Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Sisi Ge
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Xiang Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Zhuo Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Houming Chen
- Max Planck Institute for Biology, Max Planck Ring 5, 72076 Tübingen, Germany;
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
- Correspondence: (B.Z.); (Y.H.); Tel./Fax: +86-0571-8663-3652 (Y.H.)
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
- Correspondence: (B.Z.); (Y.H.); Tel./Fax: +86-0571-8663-3652 (Y.H.)
| |
Collapse
|
49
|
Kumar K, Mandal SN, Neelam K, de los Reyes BG. MicroRNA-mediated host defense mechanisms against pathogens and herbivores in rice: balancing gains from genetic resistance with trade-offs to productivity potential. BMC PLANT BIOLOGY 2022; 22:351. [PMID: 35850632 PMCID: PMC9290239 DOI: 10.1186/s12870-022-03723-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 06/29/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is the major source of daily caloric intake for more than 30% of the human population. However, the sustained productivity of this staple food crop is continuously threatened by various pathogens and herbivores. Breeding has been successful in utilizing various mechanisms of defense by gene pyramiding in elite cultivars, but the continuous resurgence of highly resistant races of pathogens and herbivores often overcomes the inherent capacity of host plant immunity. MicroRNAs (miRNAs) are endogenous, short, single-stranded, non-coding RNA molecules that regulate gene expression by sequence-specific cleavage of target mRNA or suppressing target mRNA translation. While miRNAs function as upstream regulators of plant growth, development, and host immunity, their direct effects on growth and development in the context of balancing defenses with agronomic potential have not been extensively discussed and explored as a more viable strategy in breeding for disease and pest resistant cultivars of rice with optimal agronomic potentials. RESULTS Using the available knowledge in rice and other model plants, this review examines the important roles of miRNAs in regulating host responses to various fungal, bacterial, and viral pathogens, and insect pests, in the context of gains and trade-offs to crop yield. Gains from R-gene-mediated resistance deployed in modern rice cultivars are often undermined by the rapid breakdown of resistance, negative pleiotropic effects, and linkage drags with undesirable traits. In stark contrast, several classes of miRNAs are known to efficiently balance the positive gains from host immunity without significant costs in terms of losses in agronomic potentials (i.e., yield penalty) in rice. Defense-related miRNAs such as Osa-miR156, Osa-miR159, Osa-miR162, Osa-miR396, Osa-530, Osa-miR1432, Osa-miR1871, and Osa-miR1873 are critical in fine-tuning and integrating immune responses with physiological processes that are necessary to the maintenance of grain yield. Recent research has shown that many defense-related miRNAs regulate complex and agronomically important traits. CONCLUSIONS Identification of novel immune-responsive miRNAs that orchestrate physiological processes critical to the full expression of agronomic potential will facilitate the stacking of optimal combinations of miRNA-encoding genes to develop high-yielding cultivars with durable resistance to disease and insect pests with minimal penalties to yield.
Collapse
Affiliation(s)
- Kishor Kumar
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata, 700103 India
| | - Swarupa Nanda Mandal
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX-79415 USA
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Extended Campus, Burdwan, West Bengal 713101 India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | | |
Collapse
|
50
|
Hu J, Chen G, Xu K, Wang J. Cadmium in Cereal Crops: Uptake and Transport Mechanisms and Minimizing Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5961-5974. [PMID: 35576456 DOI: 10.1021/acs.jafc.1c07896] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) contamination in soils and accumulation in cereal grains have posed food security risks and serious health concerns worldwide. Understanding the Cd transport process and its management for minimizing Cd accumulation in cereals may help to improve crop growth and grain quality. In this review, we summarize Cd uptake, translocation, and accumulation mechanisms in cereal crops and discuss efficient measures to reduce Cd uptake as well as potential remediation strategies, including the applications of plant growth regulators, microbes, nanoparticles, and cropping systems and developing low-Cd grain cultivars by CRISPR/Cas9. In addition, miRNAs modulate Cd translocation, and accumulation in crops through the regulation of their target genes was revealed. Combined use of multiple remediation methods may successfully decrease Cd concentrations in cereals. The findings in this review provide some insights into innovative and applicable approaches for reducing Cd accumulation in cereal grains and sustainable management of Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Kui Xu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, and Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China
| |
Collapse
|