1
|
Mia MS, Nayan SB, Islam MN, Talukder MEK, Hasan MS, Riazuddin M, Shadhin MST, Hossain MN, Wani TA, Zargar S, Rabby MG. Genome-wide exploration: Evolution, structural characterization, molecular docking, molecular dynamics simulation and expression analysis of sugar transporter (ST) gene family in potato (Solanum tuberosum). Comput Biol Chem 2025; 117:108402. [PMID: 40054022 DOI: 10.1016/j.compbiolchem.2025.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/09/2025]
Abstract
Sugars are the basic structural components of carbohydrates. Sugar transport is crucial for plants to ensure their optimal growth and development. Long-distance sugar transport occurs through either diffusion-based passive or active transport mediated by transporter proteins. In potatoes, STs play a vital role in sugar transport and total sugar accumulation. To better understand the roles of these transporters, in-depth structural, protein characterization, and tissue-specific expression analysis were performed. A total of 61 StSTs were identified and classified into eight sub-families (STP, PLT, ERD6L, INT, TMT, pGlcT, SUC, and VGT). The majority of StSTs were found in the plasma membrane, and all of them were dispersed throughout the 12 chromosomes. Exon and motif counts ranged from 1-18 and 1-10, respectively. In synteny analysis with four plant genomes, the highest (38) orthologous gene pair was found with S. lycopersicum (tomato). In 3D protein modeling, the alpha helix and transmembrane helices range varied from 32 % to 78 % and 53 %-57 %, respectively. During molecular docking analysis, the lowest binding energy was observed for Glu-StINT1 (ΔG: - 6.6 kcal/mol), Fru-StVGT1 (ΔG: - 6.1 kcal/mol), Gal-StSTP10 (ΔG: - 6.5 kcal/mol), and Suc-StINT2 (ΔG: - 7.5 kcal/mol), among 244 docking results. These complexes showed significant hydrogen and hydrophobic interactions, due to having significant amino acid residues. The molecular dynamics (MD) simulation of four complexes (Glu-StINT1, Fru-StVGT1, Gal-StSTP10, and Suc-StINT2) validated the ligand's stable attachment to the intended target proteins and it can be predicted that these complexes are the best sugar transporters of potato. In RNA-seq mediated expression analysis, StSTP12, StERD6L-6, 12, StpGlcT3, StVGT1, and StVGT2, were significantly upregulated in vegetative tissues/organs, revealing their significant role in vegetative organ development. In addition, stu-miRNA395 was the largest family interacting with StERD6L-1 and StTMT2 genes, demonstrating their significant role in sulfate metabolism. The detection and visualization of potential transcription factors (TFs) like ERF, Dof, MYB, BBR-BPC, LBD, and NAC in conjunction with the StSTs gene indicate their significant contribution to stress tolerance and DNA conversion and transcription into RNA. A significant interaction of StSTs in the PPI network might be due to their cumulative role in the same signaling pathways. The integration of these findings will guide the development of programming-based sugar transporter-mediated genetic circuits to improve the sugar accumulation in potatoes using synthetic biology approaches.
Collapse
Affiliation(s)
- Md Sohel Mia
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sourav Biswas Nayan
- Dept. of Food Engineering, North Pacific International University of Bangladesh, Bangladesh
| | - Md Numan Islam
- Department of Food Science and Technology, University of Nebraska Lincoln, USA
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sakib Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Riazuddin
- Dept. of Food Engineering, North Pacific International University of Bangladesh, Bangladesh
| | - Md Saklain Tanver Shadhin
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Nayim Hossain
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Md Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| |
Collapse
|
2
|
Gong L, Zhang L, Zhang H, Nie F, Liu Z, Liu X, Fang M, Yang W, Zhang Y, Zhang G, Guo Z, Zhang H. Haplotype-resolved genome assembly and genome-wide association study identifies the candidate gene closely related to sugar content and tuber yield in Solanum tuberosum. HORTICULTURE RESEARCH 2025; 12:uhaf075. [PMID: 40303439 PMCID: PMC12038253 DOI: 10.1093/hr/uhaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 05/02/2025]
Abstract
As an important noncereal food crop grown worldwide, the genetic improvement of potato in tuber yield and quality is largely constrained due to the lacking of a high-quality reference genome and understanding of the regulatory mechanism underlying the formation of superior alleles. Here, a chromosome-scale haplotype-resolved genome assembled from an anther-cultured progeny of 'Ningshu 15', a tetraploid variety featured by its high starch content and drought resistance was presented. The assembled genome size was 1.653 Gb, with a contig N50 of approximately 1.4 Mb and a scaffold N50 of 61 Mb. The long terminal repeat assembly index score of the two identified haplotypes of 'Ningshu 15' was 11.62 and 11.94, respectively. Comparative genomic analysis revealed that positive selection occurred in gene families related to starch, sucrose, fructose and mannose metabolism, and carotenoid biosynthesis. Further genome-wide association study in 141 accessions identified a total number of 53 quantitative trait loci related to fructose, glucose, and sucrose content. Among them, a tonoplast sugar transporter encoding gene, StTST2, closely associated with glucose content was identified. Constitutive expression of StTST2 in potato and Arabidopsis increased the photosynthetic rate, chlorophyll and sugar content, biomass tuber and seed production in transgenic plants. In addition, co-immunoprecipitation assays demonstrated that StTST2 directly interacted with SUT2. Our study provides a high-quality genome assembly and new genetic locus of potato for molecular breeding.
Collapse
Affiliation(s)
- Lei Gong
- Guyuan Branch Academy of Ningxia Academy of Agriculture and Forestry Science, 200 Yiwu Road, Guyuan, 756000 Ningxia Hui Nationality Autonomous Region, China
| | - Li Zhang
- Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Haiwen Zhang
- Peking University Institute of Advanced Agricultural Sciences, 699 Binhu Road, Xiashan District, Weifang, 261325 Shandong Province, China
| | - Fengjie Nie
- Ningxia Key Laboratory for Agro-biotechnology, Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Zhenning Liu
- College of Agriculture and Forestry Science, Linyi University, Middle Section of Shuangling Road, Linyi, 276000 Shandong Province, China
| | - Xuan Liu
- Ningxia Key Laboratory for Agro-biotechnology, Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Miaoquan Fang
- Huazhi Biotechnology Co. Ltd, 618 Heping Road, Furong District, Changsha, 410016 Hunan, China
| | - Wenjing Yang
- Ningxia Key Laboratory for Agro-biotechnology, Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Yu Zhang
- Ningxia Key Laboratory for Agro-biotechnology, Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Guohui Zhang
- Guyuan Branch Academy of Ningxia Academy of Agriculture and Forestry Science, 200 Yiwu Road, Guyuan, 756000 Ningxia Hui Nationality Autonomous Region, China
| | - Zhiqian Guo
- Guyuan Branch Academy of Ningxia Academy of Agriculture and Forestry Science, 200 Yiwu Road, Guyuan, 756000 Ningxia Hui Nationality Autonomous Region, China
| | - Hongxia Zhang
- College of Agriculture and Forestry Science, Linyi University, Middle Section of Shuangling Road, Linyi, 276000 Shandong Province, China
| |
Collapse
|
3
|
Berg J, Rodrigues CM, Scheid C, Pirrotte Y, Picco C, Scholz‐Starke J, Zierer W, Czarnecki O, Hackenberg D, Ludewig F, Koch W, Neuhaus HE, Müdsam C, Pommerrenig B, Keller I. The Vacuolar Inositol Transporter BvINT1;1 Contributes to Raffinose Biosynthesis and Reactive Oxygen Species Scavenging During Cold Stress in Sugar Beet. PLANT, CELL & ENVIRONMENT 2025; 48:3471-3486. [PMID: 39776406 PMCID: PMC11963481 DOI: 10.1111/pce.15367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Despite a high sucrose accumulation in its taproot vacuoles, sugar beet (Beta vulgaris subsp. vulgaris) is sensitive to freezing. Earlier, a taproot-specific accumulation of raffinose was shown to have beneficial effects on the freezing tolerance of the plant. However, synthesis of raffinose and other oligosaccharides of the raffinose family depends on the availability of myo-inositol. Since inositol and inositol-metabolising enzymes reside in different organelles, functional inositol metabolism and raffinose synthesis depend on inositol transporters. We identified five homologues of putative inositol transporters in the sugar beet genome, two of which, BvINT1;1 and BvINT1;2, are localised at the tonoplast. Among these, only the transcript of BvINT1;1 is highly upregulated in sugar beet taproots under cold. BvINT1;1 exhibits a high transport specificity for inositol and sugar beet mutants lacking functional BvINT1;1 contain increased inositol levels, likely accumulating in the vacuole, and decreased raffinose contents under cold treatment. Due to the quenching capacity of raffinose for Reactive Oxygen Species (ROS), which accumulate under cold stress, bvint1;1 sugar beet plants show increased expression of both, ROS marker genes and detoxifying enzymes. Based on these findings, we conclude that the vacuolar inositol transporter BvINT1;1 is contributing to ROS-homoeostasis in the cold metabolism of sugar beet.
Collapse
Affiliation(s)
- Johannes Berg
- University of KaiserslauternPlant Physiology, Paul‐Ehrlich‐Str.KaiserslauternGermany
| | | | - Claire Scheid
- University of KaiserslauternPlant Physiology, Paul‐Ehrlich‐Str.KaiserslauternGermany
| | - Yana Pirrotte
- University of KaiserslauternPlant Physiology, Paul‐Ehrlich‐Str.KaiserslauternGermany
| | - Cristiana Picco
- Istituto di BiofisicaConsiglio Nazionale delle Ricerche (CNR)Via De MariniGenovaItaly
| | - Joachim Scholz‐Starke
- Istituto di BiofisicaConsiglio Nazionale delle Ricerche (CNR)Via De MariniGenovaItaly
| | - Wolfgang Zierer
- Friedrich‐AlexanderUniversity of Erlangen‐NurembergBiochemistry, StaudtstrErlangenGermany
| | | | | | | | | | - H. Ekkehard Neuhaus
- University of KaiserslauternPlant Physiology, Paul‐Ehrlich‐Str.KaiserslauternGermany
| | - Christina Müdsam
- Friedrich‐AlexanderUniversity of Erlangen‐NurembergBiochemistry, StaudtstrErlangenGermany
| | - Benjamin Pommerrenig
- University of KaiserslauternPlant Physiology, Paul‐Ehrlich‐Str.KaiserslauternGermany
| | - Isabel Keller
- University of KaiserslauternPlant Physiology, Paul‐Ehrlich‐Str.KaiserslauternGermany
| |
Collapse
|
4
|
Jiang S, Sun Z, Feng Z, Qi Y, Chen H, Wang Y, Qi J, Guo Y, Yang S, Gong Z. ZmCIPK33 and ZmSnRK2.10 mutually reinforce the abscisic acid signaling pathway for combating drought stress in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40226964 DOI: 10.1111/jipb.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025]
Abstract
The calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) Ca²⁺ sensors play crucial roles in the plant's response to drought stress. However, there have been few reports on the synergistic regulation of drought stress by CBL-CIPK and abscisic acid (ABA) core signaling components. In this study, we discovered that ZmCIPK33 positively regulates drought resistance in maize. ZmCIPK33 physically interacts with and is enhanced by phosphorylation from ZmSnRK2.10. Drought stress can activate ZmCIPK33, which is partially dependent on ZmSnRK2.10. ZmCIPK33 in combination with ZmSnRK2.10 can activate the slow anion channel ZmSLAC1 in Xenopus laevis oocytes independently of CBLs, whereas ZmCIPK33 or ZmSnRK2.10 alone is unable to do so. Furthermore, ZmCIPK33 phosphorylates ZmPP2C11 at Ser60, which leads to a reduction in the interaction between ZmPP2C11 and ZmEAR1 (the ortholog of Arabidopsis Enhancer of ABA co-Receptor 1) and weakens the phosphatase activity of ZmPP2C11, consequently, enhancing the activity of ZmSnRK2.10 in an in vitro assay and in the in-gel assay of the zmcipk33 mutant. Our findings provide novel insights into the molecular mechanisms underlying the reciprocal enhancement of Ca²⁺ and ABA signaling under drought stress in maize.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Zhihui Sun
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Zhenkai Feng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Yuanpeng Qi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Hui Chen
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| |
Collapse
|
5
|
Keller I, Neuhaus HE. Innovations and threats facing the storage of sugar in sugar beet. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102721. [PMID: 40157131 DOI: 10.1016/j.pbi.2025.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Sugar beet has great economic impact, particularly in the Northern Hemisphere. Classical breeding has increased the plants' taproot sugar contents to 20 %, but further improvements require the identification of factors limiting sucrose accumulation. Recent research uncovered key elements for sucrose storage, including the identification of the transporter pumping sucrose into taproot vacuoles and regulatory proteins controlling its activity. As with other crops, sugar beet breeding led to undesirable trait-offs, like increased frost sensitivity. However, studies of the plants' metabolic reprogramming upon cold temperatures suggest potential strategies for i) improving cold/frost tolerance and ii) stabilizing yield. In addition, a rapidly evolving bacterial infection has emerged, causing "Syndrome basses richesses". Our understanding of this disease is limited, so research is needed to prevent its spread and secure sugar beet production. Accordingly, managing the effects of environmental stresses on genetically optimized plants and minimizing disease threats is critical for maintaining and improving yield.
Collapse
Affiliation(s)
- Isabel Keller
- University of Kaiserslautern-Landau, Plant Physiology, Paul-Ehrlich-Str., 67663 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- University of Kaiserslautern-Landau, Plant Physiology, Paul-Ehrlich-Str., 67663 Kaiserslautern, Germany.
| |
Collapse
|
6
|
Cai H, Liang M, Qin X, Dong R, Wang X, Wang H, Sun S, Cui X, Yang W, Li R. Tonoplast sugar transporters coordinately regulate tomato fruit development and quality. PLANT COMMUNICATIONS 2025:101314. [PMID: 40055896 DOI: 10.1016/j.xplc.2025.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/27/2025] [Accepted: 03/05/2025] [Indexed: 04/18/2025]
Abstract
Fruit yield and quality are antagonistically regulated traits in tomato. An excessive focus on increasing yield often leads to a decline in quality. Achieving a delicate balance between high yield and desirable fruit quality is a challenging aspect of tomato breeding. In this study, we discovered that disrupting the function of the tomato tonoplast sugar transporter 3a (TST3a) significantly enhances both fruit weight and flavor. Three TSTs have been identified in tomato, namely SlTST1, SlTST3a, and SlTST3b; they possess the same sugar transport specificity for fructose and glucose and redundantly control cell expansion during fruit development. Sugar accumulation in sltst mutants correlates significantly with fruit size and flavor. The enlarged fruits in sltst3a mutants result from sugar accumulation due to the increased abundance of SlTST1 at the tonoplast coupled with the highest sugar transport capacity of SlTST1 among the three SlTSTs. Further experiments established that SlTST3a prevents the localization of SlTST1 to the tonoplast by inhibiting its interaction with VH1-interacting kinase (SlVIK). Mutation of SlTST3a in cultivated tomato can enhance both tomato fruit size and sugar content. Our findings offer potential avenues for simultaneously improving fruit quality and yield, providing valuable insights into the mechanisms underlying sugar storage during fruit development.
Collapse
Affiliation(s)
- Hexu Cai
- College of Horticulture, China Agricultural University, Beijing 100193, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengyao Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Qin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongrong Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Cui
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Wencai Yang
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Liu W, Jiang H, Zeng F. The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review. Int J Biol Macromol 2025; 294:139252. [PMID: 39755309 DOI: 10.1016/j.ijbiomac.2024.139252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In higher plants, sugars are the primary products of photosynthesis, where CO2 is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant. Over the past decade, substantial progress has been achieved in identifying the functions of individual genes linked to sugar transporters; however, the diverse regulatory mechanisms influencing these transporters remain insufficiently explored. This review consolidates current and previous research on the functions of sugar transporter proteins, focusing on their involvement in phloem transport pathways their impact on crop yield, cross-talk with other signals, and plant-microbe interactions. Furthermore, we propose future directions for studying the mechanisms of sugar transporter proteins and their potential applications in agriculture, with the goal of improving sugar utilization efficiency in crops and ultimately increasing crop yield.
Collapse
Affiliation(s)
- Weigang Liu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Hong Jiang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Fankui Zeng
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China.
| |
Collapse
|
8
|
Li M, Mao Z, Zhao Z, Gao S, Luo Y, Liu Z, Sheng X, Zhai X, Liu J, Li C. CBL1/CIPK23 phosphorylates tonoplast sugar transporter TST2 to enhance sugar accumulation in sweet orange (Citrus sinensis). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:327-344. [PMID: 39611527 PMCID: PMC11814916 DOI: 10.1111/jipb.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/09/2024] [Indexed: 11/30/2024]
Abstract
Fruit taste quality is greatly influenced by the content of soluble sugars, which are predominantly stored in the vacuolar lumen. However, the accumulation and regulation mechanisms of sugars in most fruits remain unclear. Recently, we established the citrus fruit vacuole proteome and discovered the major transporters localized in the vacuole membrane. Here, we demonstrated that the expression of tonoplast sugar transporter 2 (CsTST2) is closely associated with sugar accumulation during sweet orange (Citrus sinensis) ripening. It was further demonstrated that CsTST2 had the function of transporting hexose and sucrose into the vacuole. Overexpression of CsTST2 resulted in an elevation of sugar content in citrus juice sac, calli, and tomato fruit, whereas the downregulation of its expression led to the reduction in sugar levels. CsTST2 was identified as interacting with CsCIPK23, which binds to the upstream calcium signal sensor protein CsCBL1. The phosphorylation of the three serine residues (Ser277, Ser337, and Ser354) in the loop region of CsTST2 by CsCIPK23 is crucial for maintaining the sugar transport activity of CsTST2. Additionally, the expression of CsCIPK23 is positively correlated with sugar content. Genetic evidence further confirmed that calcium and CsCIPK23-mediated increase in sugar accumulation depends on CsTST2 and its phosphorylation level. These findings not only unveil the functional mechanism of CsTST2 in sugar accumulation, but also explore a vital calcium signal regulation module of CsCBL1/CIPK23 for citrus sweetness quality.
Collapse
Affiliation(s)
- Mengdi Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | - Zuolin Mao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | - Zeqi Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | - Siyang Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | - Yanrou Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | - Ziyan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | - Xiawei Sheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | - Xiawan Zhai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | - Ji‐Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
9
|
Zhou P, Li J, Jiang H, Yang Z, Sun C, Wang H, Su Q, Jin Q, Wang Y, Xu Y. NpCIPK6-NpSnRK1 module facilitates intersubgeneric hybridization barriers in water lily ( Nymphaea) by reducing abscisic acid content. HORTICULTURE RESEARCH 2025; 12:uhae289. [PMID: 39882173 PMCID: PMC11775591 DOI: 10.1093/hr/uhae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/02/2024] [Indexed: 01/31/2025]
Abstract
Prefertilization hybridization barriers are the main causes of intersubgeneric hybridization challenges in water lily. However, the mechanism underlying low compatibility between pollen and stigma of water lily remains unclear. This study demonstrates that CBL-interacting protein kinase 6 (CIPK6) responded to the signaling exchange between incompatible pollen and stigma through interactions with SNF1-related kinase 1 (SnRK1) and promotes the accumulation of SnRK1 protein. Activated SnRK1 interacted with 9-cis-epoxycarotenoid dioxygenase 2 (NCED2) to promote its degradation, thereby inhibiting abscisic acid (ABA) synthesis. A decrease in ABA content in the stigma impaired the ABA-mediated removal of reactive oxygen species (ROS), ultimately resulting in the rejection of the incompatible pollen by the stigma. Our results highlight the essential role of the NpCIPK6-NpSnRK1-NpNCED2 module in conferring intersubgeneric hybridization barriers in water lily by interfering with ABA synthesis and promoting ROS accumulation. This study offers valuable mechanistic insights into cellular signaling and reproductive barriers in water lily as well as across other biological contexts.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Sanya Research Institute of Nanjing Agricultural University, Building 9, Wutong Industrial Park, Zhenzhou Road, Yazhou District, Sanya 572000, China
| | - Jingwen Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Sanya Research Institute of Nanjing Agricultural University, Building 9, Wutong Industrial Park, Zhenzhou Road, Yazhou District, Sanya 572000, China
| | - Huiyan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Sanya Research Institute of Nanjing Agricultural University, Building 9, Wutong Industrial Park, Zhenzhou Road, Yazhou District, Sanya 572000, China
| | - Zhijuan Yang
- College of Breeding and Multiplication, Hainan University (Sanya Institute of Breeding and Multiplication), Yazhou District Huanjin Road, Sanya, Hainan 570228, China
| | - Chunqing Sun
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Zhenjiang Institute of Agricultural Science in Jiangsu Hilly Areas, No. 1 Hongjing Road, Huayang Town, Jurong 212400, China
| | - Hongyan Wang
- Flower Research Institute, Guangxi Academy of Agricultural Science, 174 Daxue East Road, Nanning 530007, China
| | - Qun Su
- Flower Research Institute, Guangxi Academy of Agricultural Science, 174 Daxue East Road, Nanning 530007, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Sanya Research Institute of Nanjing Agricultural University, Building 9, Wutong Industrial Park, Zhenzhou Road, Yazhou District, Sanya 572000, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Sanya Research Institute of Nanjing Agricultural University, Building 9, Wutong Industrial Park, Zhenzhou Road, Yazhou District, Sanya 572000, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Sanya Research Institute of Nanjing Agricultural University, Building 9, Wutong Industrial Park, Zhenzhou Road, Yazhou District, Sanya 572000, China
| |
Collapse
|
10
|
Li H, Zhang QY, Xu P, Wang XH, Dai SJ, Liu ZN, Xu M, Cao X, Cui XY. GmTRAB1, a Basic Leucine Zipper Transcription Factor, Positively Regulates Drought Tolerance in Soybean ( Glycine max. L). PLANTS (BASEL, SWITZERLAND) 2024; 13:3104. [PMID: 39520022 PMCID: PMC11548361 DOI: 10.3390/plants13213104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The basic leucine zipper (bZIP) transcription factors play crucial roles in plant resistance to environmental challenges, but the biological functions of soybean bZIP members are still unclear. In this study, a drought-related soybean bZIP gene, GmTRAB1, was analyzed. The transcript of GmTRAB1 was upregulated under drought, ABA, and oxidative stresses. Overexpression of GmTRAB1 improved the osmotic stress tolerance of transgenic Arabidopsis and soybean hairy roots associated with increased proline content and activity of antioxidant enzymes and reduced accumulations of malonaldehyde and reactive oxide species. However, RNA interference silencing of GmTRAB1 in the soybean hairy roots improved drought sensitivity. Furthermore, GmTRAB1 increased the sensitivity of transgenic plants to ABA and participated in modulating ABA-regulated stomatal closure upon drought stress. In addition, GmTRAB1 stimulated the transcript accumulation of drought-, ABA-, and antioxidant-related genes to respond to drought. Collectively, this research will contribute to understanding the molecular mechanisms of bZIP transcription factors in soybean's resistance to drought.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiao-Yu Cui
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; (H.L.); (Q.-Y.Z.); (P.X.); (X.-H.W.); (S.-J.D.); (Z.-N.L.); (M.X.); (X.C.)
| |
Collapse
|
11
|
Wang Y, Zhu C, Chen G, Li X, Zhu M, Alariqi M, Hussian A, Ma W, Lindsey K, Zhang X, Nie X, Jin S. Cotton Bollworm (H. armigera) Effector PPI5 Targets FKBP17-2 to Inhibit ER Immunity and JA/SA Responses, Enhancing Insect Feeding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407826. [PMID: 39352314 PMCID: PMC11600268 DOI: 10.1002/advs.202407826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Indexed: 11/28/2024]
Abstract
The cotton bollworm causes severe mechanical damage to plants during feeding and leaves oral secretions (OSs) at the mechanical wounds. The role these OSs play in the invasion of plants is still largely unknown. Here, a novel H. armigera effector peptidyl prolyl trans-isomerase 5 (PPI5) was isolated and characterized. PPI5 induces the programmed cell death (PCD) due to the unfolded protein response (UPR) in tobacco leaf. We reveal that PPI5 is important for the growth and development of cotton bollworm on plants, as it renders plants more susceptible to feeding. The GhFKBP17-2, was identified as a host target for PPI5 with peptidyl-prolyl isomerase (PPIase) activity. CRISPR/Cas9 knock-out cotton mutant (CR-GhFKBP17-1/3), VIGS (TRV: GhFKBP17-2) and overexpression lines (OE-GhFKBP17-1/3) were created and the data indicate that GhFKBP17-2 positively regulates endoplasmic reticulum (ER) stress-mediated plant immunity in response to cotton bollworm infestation. We further confirm that PPI5 represses JA and SA levels by downregulating the expression of JA- and SA-associated genes, including JAZ3/9, MYC2/3, JAR4, PR4, LSD1, PAD4, ICS1 and PR1/5. Taken together, our results reveal that PPI5 reduces plant defense responses and makes plants more susceptible to cotton bollworm infection by targeting and suppressing GhFKBP17-2 -mediated plant immunity.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Chuanying Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Gefei Chen
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xuke Li
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Mingjv Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Muna Alariqi
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Amjad Hussian
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Weihua Ma
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Xianlong Zhang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction CorpsAgricultural CollegeShihezi UniversityShiheziXinjiang832003P. R. China
| | - Shuangxia Jin
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| |
Collapse
|
12
|
Sun W, Xia L, Deng J, Sun S, Yue D, You J, Wang M, Jin S, Zhu L, Lindsey K, Zhang X, Yang X. Evolution and subfunctionalization of CIPK6 homologous genes in regulating cotton drought resistance. Nat Commun 2024; 15:5733. [PMID: 38977687 PMCID: PMC11231324 DOI: 10.1038/s41467-024-50097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
The occurrence of whole-genome duplication or polyploidy may promote plant adaptability to harsh environments. Here, we clarify the evolutionary relationship of eight GhCIPK6 homologous genes in upland cotton (Gossypium hirsutum). Gene expression and interaction analyses indicate that GhCIPK6 homologous genes show significant functional changes after polyploidy. Among these, GhCIPK6D1 and GhCIPK6D3 are significantly up-regulated by drought stress. Functional studies reveal that high GhCIPK6D1 expression promotes cotton drought sensitivity, while GhCIPK6D3 expression promotes drought tolerance, indicating clear functional differentiation. Genetic and biochemical analyses confirm the synergistic negative and positive regulation of cotton drought resistance through GhCBL1A1-GhCIPK6D1 and GhCBL2A1-GhCIPK6D3, respectively, to regulate stomatal movement by controlling the directional flow of K+ in guard cells. These results reveal differentiated roles of GhCIPK6 homologous genes in response to drought stress in upland cotton following polyploidy. The work provides a different perspective for exploring the functionalization and subfunctionalization of duplicated genes in response to polyploidization.
Collapse
Affiliation(s)
- Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Linjie Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Jinwu Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Simin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
13
|
Zhu C, Jing B, Lin T, Li X, Zhang M, Zhou Y, Yu J, Hu Z. Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato. PLANT PHYSIOLOGY 2024; 195:1005-1024. [PMID: 38431528 DOI: 10.1093/plphys/kiae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Drought is a major environmental stress threatening plant growth and productivity. Calcium-dependent protein kinases (CPKs) are plant-specific Ca2+ sensors with multifaceted roles in signaling drought responses. Nonetheless, the mechanisms underpinning how CPKs transmit downstream drought signaling remain unresolved. Through genetic investigations, our study unveiled that knocking out CPK27 reduced drought tolerance in tomato (Solanum lycopersicum) plants and impaired abscisic acid (ABA)-orchestrated plant response to drought stress. Proteomics and phosphoproteomics revealed that CPK27-dependent drought-induced proteins were highly associated with the sugar metabolism pathway, which was further verified by reduced soluble sugar content in the cpk27 mutant under drought conditions. Using protein-protein interaction assays and phosphorylation assessments, we demonstrated that CPK27 directly interacted with and phosphorylated tonoplast sugar transporter 2 (TST2), promoting intercellular soluble sugar accumulation during drought stress. Furthermore, Ca2+ and ABA enhanced CPK27-mediated interaction and phosphorylation of TST2, thus revealing a role of TST2 in tomato plant drought tolerance. These findings extend the toolbox of potential interventions for enhancing plant drought stress tolerance and provide a target to improve drought tolerance by manipulating CPK27-mediated soluble sugar accumulation for rendering drought tolerance in a changing climate.
Collapse
Affiliation(s)
- Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Beiyu Jing
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Teng Lin
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xinyan Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Min Zhang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| |
Collapse
|
14
|
Chen JS, Wang ST, Mei Q, Sun T, Hu JT, Xiao GS, Chen H, Xuan YH. The role of CBL-CIPK signaling in plant responses to biotic and abiotic stresses. PLANT MOLECULAR BIOLOGY 2024; 114:53. [PMID: 38714550 DOI: 10.1007/s11103-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/06/2024] [Indexed: 05/10/2024]
Abstract
Plants have a variety of regulatory mechanisms to perceive, transduce, and respond to biotic and abiotic stress. One such mechanism is the calcium-sensing CBL-CIPK system responsible for the sensing of specific stressors, such as drought or pathogens. CBLs perceive and bind Calcium (Ca2+) in response to stress and then interact with CIPKs to form an activated complex. This leads to the phosphorylation of downstream targets, including transporters and ion channels, and modulates transcription factor levels and the consequent levels of stress-associated genes. This review describes the mechanisms underlying the response of the CBL-CIPK pathway to biotic and abiotic stresses, including regulating ion transport channels, coordinating plant hormone signal transduction, and pathways related to ROS signaling. Investigation of the function of the CBL-CIPK pathway is important for understanding plant stress tolerance and provides a promising avenue for molecular breeding.
Collapse
Affiliation(s)
- J S Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - S T Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Q Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - T Sun
- Chongqing Customs Technology Center, Chongqing, 400020, China
| | - J T Hu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - G S Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| | - H Chen
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Y H Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
15
|
Zhao Y, Yin T, Ran X, Liu W, Shen Y, Guo H, Peng Y, Zhang C, Ding Y, Tang S. Stimulus-responsive proteins involved in multi-process regulation of storage substance accumulation during rice grain filling under elevated temperature. BMC PLANT BIOLOGY 2023; 23:547. [PMID: 37936114 PMCID: PMC10631114 DOI: 10.1186/s12870-023-04563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND The intensified global warming during grain filling deteriorated rice quality, in particular increasing the frequency of chalky grains which markedly impact market value. The formation of rice quality is a complex process influenced by multiple genes, proteins and physiological metabolic processes. Proteins responsive to stimulus can adjust the ability of plants to respond to unfavorable environments, which may be an important protein involved in the regulation of quality formation under elevated temperature. However, relatively few studies have hindered our further understanding of rice quality formation under elevated temperature. RESULTS We conducted the actual field elevated temperature experiment and performed proteomic analysis of rice grains at the early stage of grain filling. Starting with the response to stimulus in GO annotation, 22 key proteins responsive to stimulus were identified in the regulation of grain filling and response to elevated temperature. Among the proteins responsive to stimulus, during grain filling, an increased abundance of signal transduction and other stress response proteins, a decreased abundance of reactive oxygen species-related proteins, and an increased accumulation of storage substance metabolism proteins consistently contributed to grain filling. However, the abundance of probable indole-3-acetic acid-amido synthetase GH3.4, probable indole-3-acetic acid-amido synthetase GH3.8 and CBL-interacting protein kinase 9 belonged to signal transduction were inhibited under elevated temperature. In the reactive oxygen species-related protein, elevated temperature increased the accumulation of cationic peroxidase SPC4 and persulfide dioxygenase ETHE1 homolog to maintain normal physiological homeostasis. The increased abundance of alpha-amylase isozyme 3E and seed allergy protein RA5 was related to the storage substance metabolism, which regulated starch and protein accumulation under elevated temperature. CONCLUSION Auxin synthesis and calcium signal associated with signal transduction, other stress responses, protein transport and modification, and reactive oxygen species-related proteins may be key proteins responsive to stimulus in response to elevated temperature. Alpha-amylase isozyme 3E and seed allergy protein RA5 may be the key proteins to regulate grain storage substance accumulation and further influence quality under elevated temperature. This study enriched the regulatory factors involved in the response to elevated temperature and provided a new idea for a better understanding of grain response to temperature.
Collapse
Affiliation(s)
- Yufei Zhao
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Tongyang Yin
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Xuan Ran
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Wenzhe Liu
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Yingying Shen
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Hao Guo
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Yuxuan Peng
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Chen Zhang
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095, Nanjing, People's Republic of China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095, Nanjing, People's Republic of China.
| |
Collapse
|
16
|
Khan A, Cheng J, Kitashova A, Fürtauer L, Nägele T, Picco C, Scholz-Starke J, Keller I, Neuhaus HE, Pommerrenig B. Vacuolar sugar transporter EARLY RESPONSE TO DEHYDRATION6-LIKE4 affects fructose signaling and plant growth. PLANT PHYSIOLOGY 2023; 193:2141-2163. [PMID: 37427783 DOI: 10.1093/plphys/kiad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Abstract
Regulation of intracellular sugar homeostasis is maintained by regulation of activities of sugar import and export proteins residing at the tonoplast. We show here that the EARLY RESPONSE TO DEHYDRATION6-LIKE4 (ERDL4) protein, a member of the monosaccharide transporter family, resides in the vacuolar membrane in Arabidopsis (Arabidopsis thaliana). Gene expression and subcellular fractionation studies indicated that ERDL4 participates in fructose allocation across the tonoplast. Overexpression of ERDL4 increased total sugar levels in leaves due to a concomitantly induced stimulation of TONOPLAST SUGAR TRANSPORTER 2 (TST2) expression, coding for the major vacuolar sugar loader. This conclusion is supported by the finding that tst1-2 knockout lines overexpressing ERDL4 lack increased cellular sugar levels. ERDL4 activity contributing to the coordination of cellular sugar homeostasis is also indicated by 2 further observations. First, ERDL4 and TST genes exhibit an opposite regulation during a diurnal rhythm, and second, the ERDL4 gene is markedly expressed during cold acclimation, representing a situation in which TST activity needs to be upregulated. Moreover, ERDL4-overexpressing plants show larger rosettes and roots, a delayed flowering time, and increased total seed yield. Consistently, erdl4 knockout plants show impaired cold acclimation and freezing tolerance along with reduced plant biomass. In summary, we show that modification of cytosolic fructose levels influences plant organ development and stress tolerance.
Collapse
Affiliation(s)
- Azkia Khan
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China
| | - Anastasia Kitashova
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Cristiana Picco
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Joachim Scholz-Starke
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Isabel Keller
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| |
Collapse
|
17
|
Mao J, Mo Z, Yuan G, Xiang H, Visser RGF, Bai Y, Liu H, Wang Q, van der Linden CG. The CBL-CIPK network is involved in the physiological crosstalk between plant growth and stress adaptation. PLANT, CELL & ENVIRONMENT 2023; 46:3012-3022. [PMID: 35822392 DOI: 10.1111/pce.14396] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved to deal with different stresses during plant growth, relying on complex interactions or crosstalk between multiple signalling pathways in plant cells. In this sophisticated regulatory network, Ca2+ transients in the cytosol ([Ca2+ ]cyt ) act as major physiological signals to initiate appropriate responses. The CALCINEURIN B-LIKE PROTEIN (CBL)-CBL-INTERACTING PROTEIN KINASE (CIPK) network relays physiological signals characterised by [Ca2+ ]cyt transients during plant development and in response to environmental changes. Many studies are aimed at elucidating the role of the CBL-CIPK network in plant growth and stress responses. This review discusses the involvement of the CBL-CIPK pathways in two levels of crosstalk between plant development and stress adaptation: direct crosstalk through interaction with regulatory proteins, and indirect crosstalk through adaptation of correlated physiological processes that affect both plant development and stress responses. This review thus provides novel insights into the physiological roles of the CBL-CIPK network in plant growth and stress adaptation.
Collapse
Affiliation(s)
- Jingjing Mao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
- Plant Breeding, Wageningen University & Research (WUR), Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Zhijie Mo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
| | - Guang Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
| | - Haiying Xiang
- Department of Biological Breeding, Yunnan Academy of Tobacco Science, Kunming, China
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | | |
Collapse
|
18
|
Chen L, Zhang B, Xia L, Yue D, Han B, Sun W, Wang F, Lindsey K, Zhang X, Yang X. The GhMAP3K62-GhMKK16-GhMPK32 kinase cascade regulates drought tolerance by activating GhEDT1-mediated ABA accumulation in cotton. J Adv Res 2023; 51:13-25. [PMID: 36414168 PMCID: PMC10491974 DOI: 10.1016/j.jare.2022.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Drought is the principal abiotic stress that severely impacts cotton (Gossypium hirsutum) growth and productivity. Upon sensing drought, plants activate stress-related signal transduction pathways, including ABA signal and mitogen-activated protein kinase (MAPK) cascade. However, as the key components with the fewest members in the MAPK cascade, the function and regulation of GhMKKs need to be elucidated. In addition, the relationship between MAPK module and the ABA core signaling pathway remains incompletely understood. OBJECTIVE Here we aim to elucidate the molecular mechanism of cotton response to drought, with a focus on mitogen-activated protein kinase (MAPK) cascades activating ABA signaling. METHODS Biochemical, molecular and genetic analysis were used to study the GhMAP3K62-GhMKK16-GhMPK32-GhEDT1 pathway genes. RESULTS A nucleus- and membrane-localized MAPK cascade pathway GhMAP3K62-GhMKK16-GhMPK32, which targets and phosphorylates the nuclear-localized transcription factor GhEDT1, to activate downstream GhNCED3 to mediate ABA-induced stomatal closure and drought response was characterized in cotton. Overexpression of GhMKK16 promotes ABA accumulation, and enhances drought tolerance via regulating stomatal closure under drought stress. Conversely, RNAi-mediated knockdown of GhMKK16 expression inhibits ABA accumulation, and reduces drought tolerance. Virus-induced gene silencing (VIGS)-mediated knockdown of either GhMAP3K62, GhMPK32 or GhEDT1 expression represses ABA accumulation and reduces drought tolerance through inhibiting stomatal closure. Expression knockdown of GhMPK32 or GhEDT1 in GhMKK16-overexpressing cotton reinstates ABA content and stomatal opening-dependent drought sensitivity to wild type levels. GhEDT1 could bind to the HD boxes in the promoter of GhNCED3 to activate its expression, resulting in ABA accumulation. We propose that the MAPK cascade GhMAP3K62-GhMKK16-GhMPK32 pathway functions on drought response through ABA-dependent stomatal movement in cotton.
Collapse
Affiliation(s)
- Lin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Bing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Linjie Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Bei Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengjiao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
19
|
Zhou Y, Li K, Wen S, Yang D, Gao J, Wang Z, Zhu P, Bie Z, Cheng J. Phloem unloading in cultivated melon fruits follows an apoplasmic pathway during enlargement and ripening. HORTICULTURE RESEARCH 2023; 10:uhad123. [PMID: 37554344 PMCID: PMC10405131 DOI: 10.1093/hr/uhad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/31/2023] [Indexed: 08/10/2023]
Abstract
Melon (Cucumis melo L.) has a long history of cultivation worldwide. During cultivation, domestication, and selection breeding, the sugar content of mature melon fruits has been significantly increased. Compared with unsweet melon and wild melon, rapid sucrose accumulation can occur in the middle and late stages of sweet melon fruit development. The phloem unloading pathway during the evolution and development of melon fruit has not been identified and analyzed. In this study, the phloem unloading pathway and the function of related sugar transporters in cultivated and wild melon fruits were analyzed by CFDA [5(6)-carbofluorescein diacetate] and esculin tracing, cytological pathway observation, qRT-PCR, and gene function analysis, etc. Results show that the phloem unloading pathway of wild melon fruit is largely symplastic, whereas the phloem unloading pathway of cultivated melon fruit shifts from symplastic to apoplasmic during development. According to a fruit grafting experiment, the fruit sink accumulates sugars independently. Correlation analysis showed that the expression amounts of several sucrose transporter genes were positively correlated with the sucrose content of melon fruit. Furthermore, CmSWEET10 was proved to be a sucrose transporter located on the plasma membrane of the phloem and highly expressed in the premature stage of sweet melon fruits, which means it may be involved in phloem apoplast unloading and sucrose accumulation in sweet melon fruits. Finally, we summarize a functional model of related enzymes and sugar transporters involved in the apoplast unloading of sweet melon fruits during enlargement and sucrose accumulation.
Collapse
Affiliation(s)
- Yixuan Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Kexin Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Suying Wen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Dong Yang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Jun Gao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Ziwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Peilu Zhu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Jintao Cheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| |
Collapse
|
20
|
Zhu L, Li Y, Wang C, Wang Z, Cao W, Su J, Peng Y, Li B, Ma B, Ma F, Ruan YL, Li M. The SnRK2.3-AREB1-TST1/2 cascade activated by cytosolic glucose regulates sugar accumulation across tonoplasts in apple and tomato. NATURE PLANTS 2023; 9:951-964. [PMID: 37291399 DOI: 10.1038/s41477-023-01443-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/12/2023] [Indexed: 06/10/2023]
Abstract
Soluble sugars are the core components of fruit quality, and the degree of sugar accumulation is largely determined by tonoplast-localized sugar transporters. We previously showed that two classes of tonoplast sugar transporters, MdERDL6 and MdTST1/2, coordinately regulate sugar accumulation in vacuoles. However, the mechanism underlying this coordination remains unknown. Here we discovered that two transcription factors, MdAREB1.1/1.2, regulate MdTST1/2 expression by binding their promoters in apple. The enhanced MdAREB1.1/1.2 expression in MdERDL6-1-overexpression plants resulted in an increase in MdTST1/2 expression and sugar concentration. Further studies established that MdSnRK2.3, whose expression could be regulated by expressing MdERDL6-1, could interact with and phosphorylate MdAREB1.1/1.2, thereby promoting the MdAREB1.1/1.2-mediated transcriptional activation of MdTST1/2. Finally, the orthologous SlAREB1.2 and SlSnRK2.3 exhibited similar functions in tomato fruit as in their apple counterparts. Together, our findings provide insights into the regulatory mechanism of tonoplast sugar transport exerted by SnRK2.3-AREB1-TST1/2 for fruit sugar accumulation.
Collapse
Affiliation(s)
- Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
- College of Life Science, Northwest A&F University, Xianyang, China
| | - Yanzhen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Chengcheng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Zhiqi Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Wenjing Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Jing Su
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Yunjing Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Baiyun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China.
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China.
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China.
| |
Collapse
|
21
|
Li J, Zhu R, Zhang M, Cao B, Li X, Song B, Liu Z, Wu J. Natural variations in the PbCPK28 promoter regulate sugar content through interaction with PbTST4 and PbVHA-A1 in pear. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:124-141. [PMID: 36710644 DOI: 10.1111/tpj.16126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Soluble sugars play an important role in plant growth, development and fruit quality. Pear fruits have demonstrated a considerable improvement in sugar quality during their long history of selection. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit sugar content as a result of selection by horticulturists. Here, we identified a calcium-dependent protein kinase (PbCPK28), which is located on LG15 and is present within a selective sweep region, thus linked to the quantitative trait loci for soluble solids. Association analysis indicates that a single nucleotide polymorphism-13 variation (SNP13T/C ) in the PbCPK28 regulatory region led to fructose content diversity in pear. Elevated expression of PbCPK28 resulted in significantly increased fructose levels in pear fruits. Furthermore, PbCPK28 interacts with and phosphorylates PbTST4, a proton antiporter, thereby coupling the sugar import into the vacuole with proton export. We demonstrated that residues S277 and S314 of PbTST4 are crucial for its function. Additionally, PbCPK28 interacts with and phosphorylates the vacuolar hydrogen proton pump PbVHA-A1, which could provide proton motive forces for PbTST4. We also found that the T11 and Y120 phosphorylation sites in PbVHA-A1 are essential for its function. Evolution analysis and yeast-two-hybrid results support that the CPK-TST/CPK-VHA-A regulatory network is highly conserved in plants, especially the corresponding phosphorylation sites. Together, our work identifies an agriculturally important natural variation and an important regulatory network, allowing genetic improvement of fruit sugar contents in pears through modulation of PbCPK28 expression and phosphorylation of PbTST4 and PbVHA-A1.
Collapse
Affiliation(s)
- Jiaming Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rongxiang Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Beibei Cao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaolong Li
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311200, China
| | - Bobo Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - Jun Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
22
|
Wang N, Tao B, Mai J, Guo Y, Li R, Chen R, Zhao L, Wen J, Yi B, Tu J, Fu T, Zou J, Shen J. Kinase CIPK9 integrates glucose and abscisic acid signaling to regulate seed oil metabolism in rapeseed. PLANT PHYSIOLOGY 2023; 191:1836-1856. [PMID: 36494098 PMCID: PMC10022627 DOI: 10.1093/plphys/kiac569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Rapeseed (Brassica napus), an important oil crop worldwide, provides large amounts of lipids for human requirements. Calcineurin B-like (CBL)-interacting protein kinase 9 (CIPK9) was reported to regulate seed oil content in the plant. Here, we generated gene-silenced lines through RNA interference biotechnology and loss-of-function mutant bnacipk9 using CRISPR/Cas9 to further study BnaCIPK9 functions in the seed oil metabolism of rapeseeds. We discovered that compared with wild-type (WT) lines, gene-silenced and bnacipk9 lines had substantially different oil contents and fatty acid compositions: seed oil content was improved by 3%-5% and 1%-6% in bnacipk9 lines and gene-silenced lines, respectively; both lines were with increased levels of monounsaturated fatty acids and decreased levels of polyunsaturated fatty acids. Additionally, hormone and glucose content analyses revealed that compared with WT lines the bnacipk9 lines showed significant differences: in bnacipk9 seeds, indoleacetic acid and abscisic acid (ABA) levels were higher; glucose and sucrose contents were higher with a higher hexose-to-sucrose ratio in bnacipk9 mid-to-late maturation development seeds. Furthermore, the bnacipk9 was less sensitive to glucose and ABA than the WT according to stomatal aperture regulation assays and the expression levels of genes involved in glucose and ABA regulating pathways in rapeseeds. Notably, in Arabidopsis (Arabidopsis thaliana), exogenous ABA and glucose imposed on developing seeds revealed the effects of ABA and glucose signaling on seed oil accumulation. Altogether, our results strongly suggest a role of CIPK9 in mediating the interaction between glucose flux and ABA hormone signaling to regulate seed oil metabolism in rapeseed.
Collapse
Affiliation(s)
- Nan Wang
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Baolong Tao
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaming Mai
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Guo
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Rihui Li
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Rundong Chen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Jitao Zou
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada
| | | |
Collapse
|
23
|
Ren Q, Xu Z, Xue Y, Yang R, Ma X, Sun J, Wang J, Lin S, Wang W, Yang L, Sun Z. Mechanism of calcium signal response to cadmium stress in duckweed. PLANT SIGNALING & BEHAVIOR 2022; 17:2119340. [PMID: 36102362 PMCID: PMC9481097 DOI: 10.1080/15592324.2022.2119340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) causes serious damage to plants. Although calcium (Ca) signal has been found to respond to certain stress, the localization of Ca and molecular mechanisms underlying Ca signal in plants during Cd stress are largely unknown. In this study, Ca2+-sensing fluorescent reporter (GCaMP3) transgenic duckweed showed the Ca2+ signal response in Lemna turionifera 5511 (duckweed) during Cd stress. Subsequently, the subcellular localization of Ca2+ has been studied during Cd stress by transmission electron microscopy, showing the accumulation of Ca2+ in vacuoles. Also, Ca2+ flow during Cd stress has been measured. At the same time, the effects of exogenous glutamic acid (Glu) and γ-aminobutyric (GABA) on duckweed can better clarify the signal operation mechanism of plants to Cd stress. The molecular mechanism of Ca2+ signal responsed during Cd stress showed that Cd treatment promotes the positive response of Ca signaling channels in plant cells, and thus affects the intracellular Ca content. These novel signal studies provided an important Ca2+ signal molecular mechanism during Cd stress.
Collapse
Affiliation(s)
- Qiuting Ren
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Ziyi Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Ying Xue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Rui Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xu Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jinge Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jing Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Shuang Lin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Wenqiao Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Zhanpeng Sun
- Faculty of Education, Tianjin Normal University, Tianjin, China
| |
Collapse
|
24
|
Lu L, Wu X, Tang Y, Zhu L, Hao Z, Zhang J, Li X, Shi J, Chen J, Cheng T. Halophyte Nitraria billardieri CIPK25 promotes photosynthesis in Arabidopsis under salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1052463. [PMID: 36589077 PMCID: PMC9800929 DOI: 10.3389/fpls.2022.1052463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The calcineurin B-like (CBL)-interacting protein kinases (CIPKs), a type of plant-specific genes in the calcium signaling pathway, function in response to adverse environments. However, few halophyte derived CIPKs have been studied for their role in plant physiological and developmental adaptation during abiotic stresses, which inhibits the potential application of these genes to improve environmental adaptability of glycophytes. In this study, we constructed Nitraria billardieri CIPK25 overexpressing Arabidopsis and analyzed the seedling development under salt treatment. Our results show that Arabidopsis with NbCIPK25 expression exhibits more vigorous growth than wild type plants under salt condition. To gain insight into the molecular mechanisms underlying salt tolerance, we profiled the transcriptome of WT and transgenic plants via RNA-seq. GO and KEGG analyses revealed that upregulated genes in NbCIPK25 overexpressing seedlings under salt stress are enriched in photosynthesis related terms; Calvin-cycle genes including glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) are significantly upregulated in transgenic plants, which is consistent with a decreased level of NADPH (GAPDH substrate) and increased level of NADP+. Accordingly, NbCIPK25 overexpressing plants exhibited more efficient photosynthesis; soluble sugar and proteins, as photosynthesis products, showed a higher accumulation in transgenic plants. These results provide molecular insight into how NbCIPK25 promotes the expression of genes involved in photosynthesis, thereby maintaining plant growth under salt stress. Our finding supports the potential application of halophyte-derived NbCIPK25 in genetic modification for better salt adaptation.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xinru Wu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yao Tang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Liming Zhu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jingbo Zhang
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, Inner Mongolia, China
| | - Xinle Li
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, Inner Mongolia, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
25
|
Wu Y, Zuo L, Ma Y, Jiang Y, Gao J, Tao J, Chen C. Protein Kinase RhCIPK6 Promotes Petal Senescence in Response to Ethylene in Rose ( Rosa Hybrida). Genes (Basel) 2022; 13:1989. [PMID: 36360225 PMCID: PMC9689952 DOI: 10.3390/genes13111989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 05/19/2024] Open
Abstract
Cultivated roses have the largest global market share among ornamental crops. Postharvest release of ethylene is the main cause of accelerated senescence and decline in rose flower quality. To understand the molecular mechanism of ethylene-induced rose petal senescence, we analyzed the transcriptome of rose petals during natural senescence as well as with ethylene treatment. A large number of differentially expressed genes (DEGs) were observed between developmental senescence and the ethylene-induced process. We identified 1207 upregulated genes in the ethylene-induced senescence process, including 82 transcription factors and 48 protein kinases. Gene Ontology enrichment analysis showed that ethylene-induced senescence was closely related to stress, dehydration, and redox reactions. We identified a calcineurin B-like protein (CBL) interacting protein kinase (CIPK) family gene in Rosa hybrida, RhCIPK6, that was regulated by age and ethylene induction. Reducing RhCIPK6 expression through virus-induced gene silencing significantly delayed petal senescence, indicating that RhCIPK6 mediates petal senescence. In the RhCIPK6-silenced petals, several senescence associated genes (SAGs) and transcription factor genes were downregulated compared with controls. We also determined that RhCIPK6 directly binds calcineurin B-like protein 3 (RhCBL3). Our work thus offers new insights into the function of CIPKs in petal senescence and provides a genetic resource for extending rose vase life.
Collapse
Affiliation(s)
- Yanqing Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Lanxin Zuo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanxing Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Changxi Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Gao C, Lu S, Zhou R, Wang Z, Li Y, Fang H, Wang B, Chen M, Cao Y. The OsCBL8-OsCIPK17 Module Regulates Seedling Growth and Confers Resistance to Heat and Drought in Rice. Int J Mol Sci 2022; 23:12451. [PMID: 36293306 PMCID: PMC9604039 DOI: 10.3390/ijms232012451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 12/01/2023] Open
Abstract
The calcium signaling pathway is critical for plant growth, development, and response to external stimuli. The CBL-CIPK pathway has been well characterized as a calcium-signaling pathway. However, in most reports, only a single function for this module has been described. Here, we examined multiple functions of this module. CIPK showed a similar distribution to that of CBL, and OsCBL and OsCIPK families were retained after experiencing whole genome duplication events through the phylogenetic and synteny analysis. This study found that OsCBL8 negatively regulated rice seed germination and seedling growth by interacting with OsCIPK17 with overexpression and gene editing mutant plants as materials combining plant phenotype, physiological indicators and transcriptome sequencing. This process is likely mediated by OsPP2C77, which is a member of the ABA signaling pathway. In addition, OsCBL mediated the targeting of OsNAC77 and OsJAMYB by OsCIPK17, thus conferring resistance to high temperatures and pathogens in rice. Our work reveals a unique signaling pathway, wherein OsCBL8 interacts with OsCIPK17 and provides rice with multiple resistance while also regulating seedling growth.
Collapse
Affiliation(s)
- Cong Gao
- College of Life Sciences, Nantong University, Nantong 226007, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuai Lu
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Rong Zhou
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Zihui Wang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Yi Li
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Hui Fang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Baohua Wang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Moxian Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271000, China
| | - Yunying Cao
- College of Life Sciences, Nantong University, Nantong 226007, China
| |
Collapse
|
27
|
Aslam M, Greaves JG, Jakada BH, Fakher B, Wang X, Qin Y. AcCIPK5, a pineapple CBL-interacting protein kinase, confers salt, osmotic and cold stress tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111284. [PMID: 35643609 DOI: 10.1016/j.plantsci.2022.111284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Plant-specific calcineurin B-like proteins (CBLs) and their interacting kinases, CBL-interacting protein kinases (CIPKs) module, are essential for dealing with various biotic and abiotic stress. The kinases (CIPKs) of this module have been well studied in several plants; however, the information about pineapple CIPKs remains limited. To understand how CIPKs function against environmental cues in pineapple, the CIPK5 gene of pineapple was cloned and characterized. The phylogenetic analyses revealed that AcCIPK5 is homologous to the CIPK12 of Arabidopsis and other plant species. Quantitative real-time PCR (qRT-PCR) analysis revealed that AcCIPK5 responds to multiple stresses, including osmotic, salt stress, heat and cold. Under optimal conditions, AcCIPK5 gets localized to the cytoplasm and cell membrane. The ectopic expression of AcCIPK5 in Arabidopsis improved the germination under osmotic and salt stress. Furthermore, AcCIPK5 positively regulated osmotic, drought, salt and cold tolerance and negatively regulated heat and fungal stress in Arabidopsis. Besides, the expression of AcCIPK impacted ABA-related genes and ROS homeostasis. Overall, the present study demonstrates that AcCIPK5 contributes to multiple stress tolerance and has the potential to be utilized in the development of stress-tolerant crops.
Collapse
Affiliation(s)
- Mohammad Aslam
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Joseph G Greaves
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Bello Hassan Jakada
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Beenish Fakher
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning 530007, China
| | - Yuan Qin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
28
|
Braun DM. Phloem Loading and Unloading of Sucrose: What a Long, Strange Trip from Source to Sink. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:553-584. [PMID: 35171647 DOI: 10.1146/annurev-arplant-070721-083240] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Sucrose is transported from sources (mature leaves) to sinks (importing tissues such as roots, stems, fruits, and seeds) through the phloem tissues in veins. In many herbaceous crop species, sucrose must first be effluxed to the cell wall by a sugar transporter of the SWEET family prior to being taken up into phloem companion cells or sieve elements by a different sugar transporter, called SUT or SUC. The import of sucrose into these cells is termed apoplasmic phloem loading. In sinks, sucrose can similarly exit the phloem apoplasmically or, alternatively, symplasmically through plasmodesmata into connecting parenchyma storage cells. Recent advances describing the regulation and manipulation of sugar transporter expression and activities provide stimulating new insights into sucrose phloem loading in sources and unloading processes in sink tissues. Additionally, new breakthroughs have revealed distinct subpopulations of cells in leaves with different functions pertaining to phloem loading. These and other discoveries in sucrose transport are discussed.
Collapse
Affiliation(s)
- David M Braun
- Division of Plant Science and Technology, Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri-Columbia, Columbia, Missouri, USA;
| |
Collapse
|
29
|
Wen S, Neuhaus HE, Cheng J, Bie Z. Contributions of sugar transporters to crop yield and fruit quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2275-2289. [PMID: 35139196 DOI: 10.1093/jxb/erac043] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/04/2022] [Indexed: 05/09/2023]
Abstract
The flux, distribution, and storage of soluble sugars regulate crop yield in terms of starch, oil, protein, and total carbohydrates, and affect the quality of many horticultural products. Sugar transporters contribute to phloem loading and unloading. The mechanisms of phloem loading have been studied in detail, but the complex and diverse mechanisms of phloem unloading and sugar storage in sink organs are less explored. Unloading and subsequent transport mechanisms for carbohydrates vary in different sink organs. Analyzing the transport and storage mechanisms of carbohydrates in important storage organs, such as cereal seeds, fruits, or stems of sugarcane, will provide information for genetic improvements to increase crop yield and fruit quality. This review discusses current research progress on sugar transporters involved in carbohydrate unloading and storage in sink organs. The roles of sugar transporters in crop yield and the accumulation of sugars are also discussed to highlight their contribution to efficient breeding.
Collapse
Affiliation(s)
- Suying Wen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| |
Collapse
|
30
|
Okooboh GO, Haferkamp I, Valifard M, Pommerrenig B, Kelly A, Feussner I, Neuhaus HE. Overexpression of the vacuolar sugar importer BvTST1 from sugar beet in Camelina improves seed properties and leads to altered root characteristics. PHYSIOLOGIA PLANTARUM 2022; 174:e13653. [PMID: 35187664 DOI: 10.1111/ppl.13653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of the vacuolar sugar transporter TST1 in Arabidopsis leads to higher seed lipid levels and higher total seed yield per plant. However, effects on fruit biomass have not been observed in crop plants like melon, strawberry, cotton, apple, or tomato with increased tonoplast sugar transporter (TST) activity. Thus, it was unclear whether overexpression of TST in selected crops might lead to increased fruit yield, as observed in Arabidopsis. Here, we report that constitutive overexpression of TST1 from sugar beet in the important crop species Camelina sativa (false flax) resembles the seed characteristics observed for Arabidopsis upon increased TST activity. These effects go along with a stimulation of sugar export from source leaves and not only provoke optimised seed properties like higher lipid levels and increased overall seed yield per plant, but also modify the root architecture of BvTST1 overexpressing Camelina lines. Such mutants grew longer primary roots and showed an increased number of lateral roots, especially when developed under conditions of limited water supply. These changes in root properties result in a stabilisation of total seed yield under drought conditions. In summary, we demonstrate that increased vacuolar TST activity may lead to optimised yield of an oil-seed crop species with high levels of healthy ω3 fatty acids in storage lipids. Moreover, since BvTST1 overexpressing Camelina mutants, in addition, exhibit optimised yield under limited water availability, we might devise a strategy to create crops with improved tolerance against drought, representing one of the most challenging environmental cues today and in future.
Collapse
Affiliation(s)
- Gloria O Okooboh
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Ilka Haferkamp
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Marzieh Valifard
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Benjamin Pommerrenig
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Amélie Kelly
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
31
|
New functions of CIPK gene family are continue to emerging. Mol Biol Rep 2022; 49:6647-6658. [PMID: 35229240 DOI: 10.1007/s11033-022-07255-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
CIPK protein family is a key protein family in Ca2+ mediated plant signaling pathway, which plays an indispensable role in plant response to stress and development. Every gene in this family encodes specific proteins. They interact with calcium ion signals, make plants to deal with various stress or stimuli. This article mainly reviews the mechanism, positioning and physiological functions of the CIPK family in different species in recent years. According to our team's research, CIPK8 interacts with CBL5 to improve salt tolerance, and CIPK23 interacts with TGA1 to regulate nitrate uptake negatively in chrysanthemum. In addition, we discussed current limitations and future research directions. The article will enhance the understanding of the functional characteristics of the CIPK gene family under different stresses, provide insights for future breeding and the development of new crop varieties with enhanced stress tolerance.
Collapse
|
32
|
Kawochar MA, Cheng Y, Begum S, Wang E, Zhou T, Liu T, Liu T, Song B. Suppression of the tonoplast sugar transporter StTST3.2 improves quality of potato chips. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153603. [PMID: 34959218 DOI: 10.1016/j.jplph.2021.153603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Which sugar transporter regulates sugar accumulation in tubers is largely unknown. Accumulation of reducing sugar (RS) in potato (Solanum tuberosum L.) tubers negatively affects the quality of tubers undergoing the frying process. However, little is known about the genes involved in regulating RS content in tubers at harvest. Here, we have identified two tonoplast sugar transporter (TST) 3-type isoforms (StTST3.1 and StTST3.2) in potato. Quantitative real-time PCR results indicate that StTST3.1 and StTST3.2 possess distinct expression patterns in various potato tissues. StTST3.2 was found to be the expressed TST3-type isoform in tubers. Further subcellular localization analysis revealed that StTST3.2 was targeted to the tonoplast. Silencing of StTST3.2 in potato by stable transformation resulted in significantly lower RS content in tubers at harvest or after room temperature storage, suggesting StTST3.2 plays an important role in RS accumulation in tubers. Accordingly, compared with the unsilenced control, potato chips processed from StTST3.2-silenced tubers exhibited lighter color and dramatically decreased acrylamide production at harvest or after room temperature storage. In addition, we demonstrated that silencing of StTST3.2 has no significant effect on potato growth and development. Thus, suppression of StTST3.2 could be another effective approach for improving processing quality and decreasing acrylamide content in potato tubers.
Collapse
Affiliation(s)
- Md Abu Kawochar
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Bangladesh Agricultural Research Institute, Gazipur, 1701, Bangladesh
| | - Yunxia Cheng
- College of Plant Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Shahnewaz Begum
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Bangladesh Agricultural Research Institute, Gazipur, 1701, Bangladesh
| | - Enshuang Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tingting Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tiantian Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tengfei Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
33
|
Ma R, Liu W, Li S, Zhu X, Yang J, Zhang N, Si H. Genome-Wide Identification, Characterization and Expression Analysis of the CIPK Gene Family in Potato ( Solanum tuberosum L.) and the Role of StCIPK10 in Response to Drought and Osmotic Stress. Int J Mol Sci 2021; 22:ijms222413535. [PMID: 34948331 PMCID: PMC8708990 DOI: 10.3390/ijms222413535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
The potato (Solanum tuberosum L.), one of the most important food crops worldwide, is sensitive to environmental stresses. Sensor–responder complexes comprising calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs) not only modulate plant growth and development but also mediate numerous stress responses. Here, using a Hidden Markov Model and BLAST searches, 27 CIPK genes were identified in potato and divided into five groups by phylogenetic analysis and into two clades (intron-poor and intron-rich) by gene structure analysis. Quantitative reverse-transcription PCR (qRT-PCR) assays revealed that StCIPK genes play important roles in plant growth, development and abiotic stress tolerance. Up-regulated expression of StCIPK10 was significantly induced by drought, PEG6000 and ABA. StCIPK10 enhances both the ability of potato to scavenge reactive oxygen species and the content of corresponding osmoregulation substances, thereby strengthening tolerance to drought and osmotic stress. StCIPK10 is located at the intersection between the abscisic acid and abiotic stress signaling pathways, which control both root growth and stomatal closure in potato. In addition, StCIPK10 interacts with StCBL1, StCBL4, StCBL6, StCBL7, StCBL8, StCBL11 and StCBL12, and is specifically recruited to the plasma membrane by StCBL11.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
| | - Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xi Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-1875
| |
Collapse
|
34
|
Dhungana SR, Braun DM. Sugar transporters in grasses: Function and modulation in source and storage tissues. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153541. [PMID: 34634553 DOI: 10.1016/j.jplph.2021.153541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Carbohydrate partitioning, the process of transporting carbohydrates from photosynthetic (source) tissues, such as leaves, to non-photosynthetic (sink) tissues, such as stems, roots, and reproductive structures, is vital not only for the growth and development of plants but also for withstanding biotic and abiotic stress. In many plants, sucrose is the primary form of carbohydrate loaded into the phloem for long-distance transport and unloaded into the sink tissues for utilization or storage. We highlight recent findings about 1) phloem loading in grasses, 2) the principal families of sugar transporters involved in sucrose transport, and 3) novel mechanisms by which the activities of sugar transporters are modulated. We discuss exciting discoveries from eudicot species that provide valuable insights regarding the regulation of these sugar transporters, which may be translatable to monocot species. As we better understand the intricate pathways that control the activities of various sugar transporters, we can utilize this knowledge for developing improved crop varieties.
Collapse
Affiliation(s)
- Singha R Dhungana
- Divisions of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri-Columbia, USA
| | - David M Braun
- Divisions of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri-Columbia, USA; Plant Science and Technology, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri-Columbia, USA.
| |
Collapse
|
35
|
Xu M, Li H, Liu ZN, Wang XH, Xu P, Dai SJ, Cao X, Cui XY. The soybean CBL-interacting protein kinase, GmCIPK2, positively regulates drought tolerance and ABA signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:980-989. [PMID: 34583133 DOI: 10.1016/j.plaphy.2021.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 05/27/2023]
Abstract
Calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) play important roles in plant environmental stress responses. However, the biological functions of the CBL-CIPK signaling pathway in the tolerance of soybean (Glycine max) to drought stress remain elusive. Here, we characterized the GmCIPK2 gene in soybean, and its expression was induced by drought stress and exogenous abscisic acid (ABA) treatments. The overexpression of GmCIPK2 enhanced drought tolerance in transgenic Arabidopsis and soybean hairy roots, whereas downregulation of GmCIPK2 expression in soybean hairy roots by RNA interference resulted in increased drought sensitivity. Further analysis showed that GmCIPK2 was involved in ABA-mediated stomatal closure in plants under drought stress conditions. GmCIPK2 increased the expression of ABA- and drought-responsive genes during drought stress. Additionally, yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays demonstrated that a positive regulator of drought stress, GmCBL1, physically interacted with GmCIPK2 on the plasma membrane. Collectively, our results demonstrated that GmCIPK2 positively regulates drought tolerance and ABA signaling in plants, providing new insights into the underlying mechanisms of how the CBL-CIPK signaling pathway contributes to drought tolerance in soybean.
Collapse
Affiliation(s)
- Meng Xu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Hui Li
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Zhen-Ning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Xiao-Hua Wang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Ping Xu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Sheng-Jie Dai
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Xue Cao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Xiao-Yu Cui
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| |
Collapse
|
36
|
Combined Profiling of Transcriptome and DNA Methylome Reveal Genes Involved in Accumulation of Soluble Sugars and Organic Acid in Apple Fruits. Foods 2021; 10:foods10092198. [PMID: 34574306 PMCID: PMC8467953 DOI: 10.3390/foods10092198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Organic acids and soluble sugars are the major determinants of fruit organoleptic quality. Additionally, DNA methylation has crucial regulatory effects on various processes. However, the epigenetic modifications in the regulation of organic acid and soluble sugar accumulation in apple fruits remain uncharacterized. In this study, DNA methylation and the transcriptome were compared between ‘Honeycrisp’ and ‘Qinguan’ mature fruits, which differ significantly regarding soluble sugar and organic acid contents. In both ‘Honeycrisp’ and ‘Qinguan’ mature fruits, the CG context had the highest level of DNA methylation, and then CHG and CHH contexts. The number and distribution of differentially methylated regions (DMRs) varied among genic regions and transposable elements. The DNA methylation levels in all three contexts in the DMRs were significantly higher in ‘Honeycrisp’ mature fruits than in ‘Qinguan’ mature fruits. A combined methylation and transcriptome analysis revealed a negative correlation between methylation levels and gene expression in DMRs in promoters and gene bodies in the CG and CHG contexts and in gene bodies in the CHH context. Two candidate genes (MdTSTa and MdMa11), which encode tonoplast-localized proteins, potentially associated with fruit soluble sugar contents and acidity were identified based on expression and DNA methylation levels. Overexpression of MdTSTa in tomato increased the fruit soluble sugar content. Moreover, transient expression of MdMa11 in tobacco leaves significantly decreased the pH value. Our results reflect the diversity in epigenetic modifications influencing gene expression and will facilitate further elucidating the complex mechanism underlying fruit soluble sugar and organic acid accumulation.
Collapse
|
37
|
Weighted Gene Co-Expression Network Analysis Reveals Hub Genes Contributing to Fuzz Development in Gossypium arboreum. Genes (Basel) 2021; 12:genes12050753. [PMID: 34067654 PMCID: PMC8156360 DOI: 10.3390/genes12050753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Fuzzless mutants are ideal materials to decipher the regulatory network and mechanism underlying fuzz initiation and formation. In this study, we utilized two Gossypium arboreum accessions differing in fuzz characteristics to explore expression pattern differences and discriminate genes involved in fuzz development using RNA sequencing. Gene ontology (GO) analysis was conducted and found that DEGs were mainly enriched in the regulation of transcription, metabolic processes and oxidation–reduction-related processes. Weighted gene co-expression network analysis discerned the MEmagenta module highly associated with a fuzz/fuzzless trait, which included a total of 50 hub genes differentially expressed between two materials. GaFZ, which negatively regulates trichome and fuzz formation, was found involved in MEmagenta cluster1. In addition, twenty-eight hub genes in MEmagenta cluster1 were significantly up-regulated and expressed in fuzzless mutant DPL972. It is noteworthy that Ga04G1219 and Ga04G1240, which, respectively, encode Fasciclin-like arabinogalactan protein 18(FLA18) and transport protein, showed remarkable differences of expression level and implied that they may be involved in protein glycosylation to regulate fuzz formation and development. This module and hub genes identified in this study will provide new insights on fiber and fuzz formation and be useful for the molecular design breeding of cotton genetic improvement.
Collapse
|
38
|
Saddhe AA, Manuka R, Penna S. Plant sugars: Homeostasis and transport under abiotic stress in plants. PHYSIOLOGIA PLANTARUM 2021; 171:739-755. [PMID: 33215734 DOI: 10.1111/ppl.13283] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/10/2020] [Accepted: 11/16/2020] [Indexed: 05/21/2023]
Abstract
The sessile nature of plants' life is endowed with a highly evolved defense system to adapt and survive under environmental extremes. To combat such stresses, plants have developed complex and well-coordinated molecular and metabolic networks encompassing genes, metabolites, and acclimation responses. These modulate growth, photosynthesis, osmotic maintenance, and carbohydrate homeostasis. Under a given stress condition, sugars act as key players in stress perception, signaling, and are a regulatory hub for stress-mediated gene expression ensuring responses of osmotic adjustment, scavenging of reactive oxygen species, and maintaining the cellular energy status through carbon partitioning. Several sugar transporters are known to regulate carbohydrate partitioning and key signal transduction steps involved in the perception of biotic and abiotic stresses. Sugar transporters such as SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER (SWEETs), SUCROSE TRANSPORTERS (SUTs), and MONOSACCHARIDE TRANSPORTERS (MSTs) are involved in sugar loading and unloading as well as long-distance transport (source to sink) besides orchestrating oxidative and osmotic stress tolerance. It is thus necessary to understand the structure-function relationship of these sugar transporters to fine-tune the abiotic stress-modulated responses. Advances in genomics have unraveled many sugars signaling components playing a key role in cross-talk in abiotic stress pathways. An integrated omics approach may aid in the identification and characterization of sugar transporters that could become targets for developing stress tolerance plants to mitigate climate change effects and improve crop yield. In this review, we have presented an up-to-date analysis of the sugar homeostasis under abiotic stresses as well as describe the structure and functions of sugar transporters under abiotic stresses.
Collapse
Affiliation(s)
- Ankush A Saddhe
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - K. K. Birla Goa Campus, Zuarinagar Goa, India
| | - Rakesh Manuka
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Suprasanna Penna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
39
|
Ye Z, Qiao L, Luo X, Chen X, Zhang X, Tu L. Genome-wide identification of cotton GRAM family proteins reveals that GRAM31 regulates fiber length. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2477-2490. [PMID: 33367778 DOI: 10.1093/jxb/eraa597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/24/2020] [Indexed: 05/28/2023]
Abstract
The glucosyltransferases, Rab-like GTPase activators and myotubularins (GRAM) domain is highly conserved in eukaryotic cells and is found in proteins involved in membrane-associated processes. GRAM domain proteins have not yet been functionally characterized in cotton. In this study, we identified 164 genes encoding GRAM domain proteins in four cotton species, comprising two subfamilies. In Gossypium hirsutum, our transcriptome data showed that GhGRAM31 was predominantly expressed during the rapid elongation stage of fiber development and that it might control fiber length. GhGRAM31-RNAi transgenic cotton lines showed inhibition of fiber elongation and produced shorter mature fibers, and this was coupled with expression changes of genes related to fiber development. In addition, lint percentage and seed size were also decreased in the RNAi lines. Further examination revealed that GhGRAM31 directly interacts with two other GRAM-domain proteins, GhGRAM5 and GhGRAM35. GhGRAM5 also interacts with the transcription factor GhTTG1, while GhGRAM35 interacts with the transcription factors GhHOX1 and GhHD1. Co-expression of GhGRAM31 and GhGRAM35 was able to promote GhHD1 transcription activity in cotton protoplasts. Our results provide new insights into the biological function of the GRAM-domain protein family in cotton, and selected genes have the potential to be utilized in future programs for the genetic improvement of fibers.
Collapse
Affiliation(s)
- Zhengxiu Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lu Qiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangyin Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Xinyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
40
|
Sun W, Zhang B, Deng J, Chen L, Ullah A, Yang X. Genome-wide analysis of CBL and CIPK family genes in cotton: conserved structures with divergent interactions and expression. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:359-368. [PMID: 33707874 PMCID: PMC7907412 DOI: 10.1007/s12298-021-00943-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2020] [Accepted: 01/28/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Calcineurin B-like proteins (CBLs) interact with CBL-interacting protein kinases (CIPKs) to form complex molecular modules in response to diverse abiotic stresses. Although previous studies demonstrated that the CBL-CIPK networks play a crucial role in plants response to abiotic stresses, however, little is known about their functions in cotton. In the present study, a total of 22 GhCBL and 79 GhCIPK gene family members were identified in upland cotton (Gossypium hirsutum Linn). Synteny analysis revealed that most genes of GhCBL and GhCIPK exist in pairs between At sub-genome and Dt sub-genome. Interaction analysis between GhCBL and GhCIPK proteins by yeast two-hybrid (Y2H) suggested that the GhCBL-GhCIPK networks were complex, and exhibited functional redundancy in cotton. Quantitative expression analysis by public transcriptome datasets revealed that some GhCBL and GhCIPK genes are differentially expressed under abiotic stress treatments, and especially under drought stress. Our results not only contribute to understanding the structural features of GhCBL and GhCIPK genes but also provide the basis for in-depth functional studies of GhCBL-GhCIPK networks in stress response for plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (doi:10.1007/s12298-021-00943-1).
Collapse
Affiliation(s)
- Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Bing Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Jinwu Deng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Lin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Abid Ullah
- Department of Botany, University of Malakand, Chakdara Dir Lower, 18800 Khyber Pakhtunkhwa Pakistan
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
41
|
Ma X, Li QH, Yu YN, Qiao YM, Haq SU, Gong ZH. The CBL-CIPK Pathway in Plant Response to Stress Signals. Int J Mol Sci 2020; 21:E5668. [PMID: 32784662 PMCID: PMC7461506 DOI: 10.3390/ijms21165668] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Plants need to cope with multitudes of stimuli throughout their lifecycles in their complex environments. Calcium acts as a ubiquitous secondary messenger in response to numerous stresses and developmental processes in plants. The major Ca2+ sensors, calcineurin B-like proteins (CBLs), interact with CBL-interacting protein kinases (CIPKs) to form a CBL-CIPK signaling network, which functions as a key component in the regulation of multiple stimuli or signals in plants. In this review, we describe the conserved structure of CBLs and CIPKs, characterize the features of classification and localization, draw conclusions about the currently known mechanisms, with a focus on novel findings in response to multiple stresses, and summarize the physiological functions of the CBL-CIPK network. Moreover, based on the gradually clarified mechanisms of the CBL-CIPK complex, we discuss the present limitations and potential prospects for future research. These aspects may provide a deeper understanding and functional characterization of the CBL-CIPK pathway and other signaling pathways under different stresses, which could promote crop yield improvement via biotechnological intervention.
Collapse
Affiliation(s)
- Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| | - Yi-Ming Qiao
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| |
Collapse
|
42
|
Affiliation(s)
- Kerri Hunter
- Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
43
|
Li YM, Forney C, Bondada B, Leng F, Xie ZS. The Molecular Regulation of Carbon Sink Strength in Grapevine ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2020; 11:606918. [PMID: 33505415 PMCID: PMC7829256 DOI: 10.3389/fpls.2020.606918] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 05/17/2023]
Abstract
Sink organs, the net receivers of resources from source tissues, provide food and energy for humans. Crops yield and quality are improved by increased sink strength and source activity, which are affected by many factors, including sugars and hormones. With the growing global population, it is necessary to increase photosynthesis into crop biomass and yield on a per plant basis by enhancing sink strength. Sugar translocation and accumulation are the major determinants of sink strength, so understanding molecular mechanisms and sugar allocation regulation are conducive to develop biotechnology to enhance sink strength. Grapevine (Vitis vinifera L.) is an excellent model to study the sink strength mechanism and regulation for perennial fruit crops, which export sucrose from leaves and accumulates high concentrations of hexoses in the vacuoles of fruit mesocarp cells. Here recent advances of this topic in grape are updated and discussed, including the molecular biology of sink strength, including sugar transportation and accumulation, the genes involved in sugar mobilization and their regulation of sugar and other regulators, and the effects of hormones on sink size and sink activity. Finally, a molecular basis model of the regulation of sugar accumulation in the grape is proposed.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Charles Forney
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Bhaskar Bondada
- Wine Science Center, Washington State University, Richland, WA, United States
| | - Feng Leng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhao-Sen Xie
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhao-Sen Xie,
| |
Collapse
|