1
|
Sun H, Wang X, Gu G, Zhang M, Wang X. The PuERF27-PuMYB10-PuGSTF12 Module Regulates Melatonin-Induced Anthocyanin Biosynthesis in Pear Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40304257 DOI: 10.1021/acs.jafc.5c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Anthocyanins, flavonoids with strong antioxidant activity, give rise to a fruit peel color and provide health benefits. Studies have revealed that melatonin promotes anthocyanin accumulation. However, the function of endogenous hormones in this process remains elusive. Here, we investigated the effect of ethylene signaling on anthocyanin accumulation in melatonin-treated pear fruit. Melatonin promoted anthocyanin accumulation while repressing ethylene production; its effect on anthocyanin biosynthesis in the background of ethephon pretreatment was eliminated. Transcriptome analysis revealed PuERF27, a melatonin-induced ethylene response factor (ERF), as a candidate gene. Transient overexpression of PuERF27 is essential for enhancing anthocyanin accumulation and activating anthocyanin biosynthesis genes, whereas PuERF27 silencing repressed melatonin-induced anthocyanin accumulation. Yeast one-hybrid, electrophoretic mobility shift, and GUS assays indicated that PuERF27 could bind directly to and positively regulate the PuMYB10 and PuGSTF12 promoters. Further studies revealed that PuERF27, together with PuMYB10, synergistically transactivates the PuGSTF12 promoter. These results indicate that melatonin-induced PuERF27 may directly promote PuGSTF12 expression and indirectly activate structural genes through PuMYB10, thereby leading to the biosynthesis and transport of anthocyanins.
Collapse
Affiliation(s)
- Huili Sun
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, P.R. China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Xinyue Wang
- Liaoning Institute of Pomology, Yingkou 115009, P.R. China
| | - Guangfu Gu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Miao Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Xiaoqian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R. China
| |
Collapse
|
2
|
Xu Y, Wang R, Ma Y, Li M, Bai M, Wei G, Wang J, Feng L. Metabolite and Transcriptome Profiling Analysis Provides New Insights into the Distinctive Effects of Exogenous Melatonin on Flavonoids Biosynthesis in Rosa rugosa. Int J Mol Sci 2024; 25:9248. [PMID: 39273197 PMCID: PMC11395435 DOI: 10.3390/ijms25179248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Although the petals of Rosa rugosa are rich in flavonoids and their bioactivity has a significant impact on human health, the flavonoid content decreases during flower development. In this study, R. rugosa 'Feng hua' was used to investigate the effects of the melatonin foliar spray on enhancing the quality of rose by focusing on major flavonoids. The results showed that the contents of total flavonoids in rose petals at the full bloom stage induced by melatonin obeyed a bell-shaped curve, with a maximum at 0.3 mM, indicating the concentration-dependent up-regulation of flavonoid biosynthesis. In the treatment with 0.3 mM melatonin, metabolomic analyses showed that the concentrations of ten main flavonoids were identified to be increased by melatonin induction, with high levels and increases observed in three flavonols and two anthocyanins. KEGG enrichment of transcriptomic analysis revealed a remarkable enrichment of DEGs in flavonoid and flavonol biosynthesis, such as Rr4CL, RrF3H, and RrANS. Furthermore, functional validation using virus-induced gene silencing technology demonstrated that Rr4CL3 is the crucial gene regulating flavonoid biosynthesis in response to the stimulant of melatonin. This study provides insights into the exogenous melatonin regulation mechanism of biosynthesis of flavonoids, thereby offering potential industrial applications.
Collapse
Affiliation(s)
- Yong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Ruotong Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuanxiao Ma
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Meng Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Mengjuan Bai
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Gao Y, Wang X, Hou X, Chen J. Evolution and Analysis of Caffeic Acid Transferase (COMT) in Seed Plants. Biochem Genet 2024; 62:1953-1976. [PMID: 37801144 DOI: 10.1007/s10528-023-10525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Caffeic acid transferase (COMT) is a key enzyme in the lignin and melatonin synthesis pathways and plays an important role in plant growth and development. All seed plants have two characteristics: they have vascular tissues, phloem, and xylem, and they can produce and reproduce seeds. In order to understand the distribution and evolution of COMTs in seed plants, we performed physicochemical property analysis, subcellular localization, phylogenetic analysis, conserved motif analysis, and protein interaction network analysis of 44 COMT homologs from 26 seed plants through in silico. The results showed that in seed plants, the structure of COMT genes tends to be stable in different plant taxa, while the relationship between the chromosomal positions of different COMT genes in the same plant was more intricate. The conserved distribution of COMT in seed plants reflected its highly specialized function.
Collapse
Affiliation(s)
- Yinghui Gao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xuan Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xiaoyan Hou
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China.
| |
Collapse
|
4
|
Rahmanzadeh-Ishkeh S, Shirzad H, Tofighi Z, Fattahi M, Ghosta Y. Exogenous melatonin prolongs raspberry postharvest life quality by increasing some antioxidant and enzyme activity and phytochemical contents. Sci Rep 2024; 14:11508. [PMID: 38769439 PMCID: PMC11106078 DOI: 10.1038/s41598-024-62111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
There is a growing trend towards enhancing the post-harvest shelf life and maintaining the nutritional quality of horticultural products using eco-friendly methods. Raspberries are valued for their diverse array of phenolic compounds, which are key contributors to their health-promoting properties. However, raspberries are prone to a relatively short post-harvest lifespan. The present study aimed to investigate the effect of exogenous melatonin (MEL; 0, 0.001, 0.01, and 0.1 mM) on decay control and shelf-life extension. The results demonstrated that MEL treatment significantly reduced the fruit decay rate (P ≤ 0.01). Based on the findings, MEL treatment significantly increased titratable acidity (TA), total phenolics content (TPC), total flavonoid content (TFC), and total anthocyanin content (TAC). Furthermore, the MEL-treated samples showed increased levels of rutin and quercetin content, as well as antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reduction activity potential (FRAP). Additionally, the samples exhibited higher levels of phenylalanine ammonia-lyase (PAL) and catalase (CAT) enzymes compared to the control samples. Moreover, the levels of pH, total soluble solids (TSS), and IC50 were decreased in the MEL-treated samples (P ≤ 0.01). The highest amount of TA (0.619 g/100 ml juice), rutin (16.722 µg/ml juice) and quercetin (1.467 µg/ml juice), and PAL activity (225.696 nm/g FW/min) was observed at 0.001 mM treatment, while, the highest amount of TAC (227.235 mg Cy-g/100 ml juice) at a concentration of 0.01 mM and CAT (0.696 u/g FW) and TAL activities (9.553 nm/100 g FW) at a concentration of 0.1 mM were obtained. Considering the lack of significant differences in the effects of melatonin concentrations and the low dose of 0.001 mM, this concentration is recommended for further research. The hierarchical cluster analysis (HCA) and principal component analysis (PCA) divided the treatments into three groups based on their characteristics. Based on the Pearson correlation between TPC, TFC, TAC, and TAA, a positive correlation was observed with antioxidant (DPPH and FRAP) and enzyme (PAL and CAT) activities. The results of this study have identified melatonin as an eco-friendly compound that enhances the shelf life of raspberry fruits by improving phenolic compounds, as well as antioxidant and enzyme activities.
Collapse
Affiliation(s)
| | - Habib Shirzad
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Zahra Tofighi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Fattahi
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
5
|
He S, Min Y, Liu Z, Zhi F, Ma R, Ge A, Wang S, Zhao Y, Peng D, Zhang D, Jin M, Song B, Wang J, Guo Y, Chen M. Antagonistic MADS-box transcription factors SEEDSTICK and SEPALLATA3 form a transcriptional regulatory network that regulates seed oil accumulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:121-142. [PMID: 38146678 DOI: 10.1111/jipb.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
Transcriptional regulation is essential for balancing multiple metabolic pathways that influence oil accumulation in seeds. Thus far, the transcriptional regulatory mechanisms that govern seed oil accumulation remain largely unknown. Here, we identified the transcriptional regulatory network composed of MADS-box transcription factors SEEDSTICK (STK) and SEPALLATA3 (SEP3), which bridges several key genes to regulate oil accumulation in seeds. We found that STK, highly expressed in the developing embryo, positively regulates seed oil accumulation in Arabidopsis (Arabidopsis thaliana). Furthermore, we discovered that SEP3 physically interacts with STK in vivo and in vitro. Seed oil content is increased by the SEP3 mutation, while it is decreased by SEP3 overexpression. The chromatin immunoprecipitation, electrophoretic mobility shift assay, and transient dual-luciferase reporter assays showed that STK positively regulates seed oil accumulation by directly repressing the expression of MYB5, SEP3, and SEED FATTY ACID REDUCER 4 (SFAR4). Moreover, genetic and molecular analyses demonstrated that STK and SEP3 antagonistically regulate seed oil production and that SEP3 weakens the binding ability of STK to MYB5, SEP3, and SFAR4. Additionally, we demonstrated that TRANSPARENT TESTA 8 (TT8) and ACYL-ACYL CARRIER PROTEIN DESATURASE 3 (AAD3) are direct targets of MYB5 during seed oil accumulation in Arabidopsis. Together, our findings provide the transcriptional regulatory network antagonistically orchestrated by STK and SEP3, which fine tunes oil accumulation in seeds.
Collapse
Affiliation(s)
- Shuangcheng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yuanchang Min
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Zijin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Fang Zhi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Rong Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Ankang Ge
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Shixiang Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yu Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Danshuai Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Da Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Minshan Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Bo Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Jianjun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yuan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Mingxun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
6
|
Li L, Tian Z, Chen J, Tan Z, Zhang Y, Zhao H, Wu X, Yao X, Wen W, Chen W, Guo L. Characterization of novel loci controlling seed oil content in Brassica napus by marker metabolite-based multi-omics analysis. Genome Biol 2023; 24:141. [PMID: 37337206 DOI: 10.1186/s13059-023-02984-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Seed oil content is an important agronomic trait of Brassica napus (B. napus), and metabolites are considered as the bridge between genotype and phenotype for physical traits. RESULTS Using a widely targeted metabolomics analysis in a natural population of 388 B. napus inbred lines, we quantify 2172 metabolites in mature seeds by liquid chromatography mass spectrometry, in which 131 marker metabolites are identified to be correlated with seed oil content. These metabolites are then selected for further metabolite genome-wide association study and metabolite transcriptome-wide association study. Combined with weighted correlation network analysis, we construct a triple relationship network, which includes 21,000 edges and 4384 nodes among metabolites, metabolite quantitative trait loci, genes, and co-expression modules. We validate the function of BnaA03.TT4, BnaC02.TT4, and BnaC05.UK, three candidate genes predicted by multi-omics analysis, which show significant impacts on seed oil content through regulating flavonoid metabolism in B. napus. CONCLUSIONS This study demonstrates the advantage of utilizing marker metabolites integrated with multi-omics analysis to dissect the genetic basis of agronomic traits in crops.
Collapse
Affiliation(s)
- Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaowei Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
7
|
Gao Y, Chen H, Chen D, Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J Pineal Res 2023; 74:e12850. [PMID: 36585354 DOI: 10.1111/jpi.12850] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The expansion of gene families during evolution could generate functional diversity among their members to regulate plant growth and development. Melatonin, a phylogenetically ancient molecule, is vital for many aspects of a plant's life. Understanding the functional diversity of the molecular players involved in melatonin biosynthesis, signaling, and metabolism will facilitate the regulation of plant phenotypes. However, the molecular mechanism of melatonin response signaling elements in regulating this network still has many challenges. Here, we provide an in-depth analysis of the functional diversity and evolution of molecular components in melatonin signaling pathway. Genetic analysis of multiple mutants in plant species will shed light on the role of gene families in melatonin regulatory pathways. Phylogenetic analysis of these genes was performed, which will facilitate the identification of melatonin-related genes for future study. Based on the abovementioned signal networks, the mechanism of these genes was summarized to provide reference for studying the regulatory mechanism of melatonin in plant phenotypes. We hope that this work will facilitate melatonin research in higher plants and finely tuned spatio-temporal regulation of melatonin signaling.
Collapse
Affiliation(s)
- Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Huimin Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Dongyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
8
|
Xie L, Lu Y, Zhou Y, Hao X, Chen W. Functional Analysis of a Methyltransferase Involved in Anthocyanin Biosynthesis from Blueberries ( Vaccinium corymbosum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16253-16262. [PMID: 36519893 DOI: 10.1021/acs.jafc.2c06743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anthocyanins are natural water-soluble pigments that widely exist in plants, with various biological activities, including antioxidant, anti-obesity, and anti-diabetic activities. Currently, monomeric anthocyanins are mainly obtained through natural sources, which limits their availability. In the biosynthesis of anthocyanins, anthocyanin methyltransferases are recognized to play important roles in the water solubility and structural stability of anthocyanins. Blueberries are a rich source of anthocyanins with more than 30 chemical structures. However, the enzymes that were responsible for the methylation of anthocyanidin cores in blueberries had not been reported. Here, blueberries (Vaccinium corymbosum) have been selected as the candidate for characterization of the key enzyme. Phylogenic analysis, enzymatic activity assay, homology modeling, molecular simulation, protein expression and purification assay, site-directed mutation, isothermal titration calorimetry assay, and enzyme kinetic assay were used to identify the enzymatic function and molecular mechanism of VcOMT, which was responsible for the methylation of anthocyanidin cores. VcOMT could use delphinidin as a substrate but not cyanidin, petunidin, anthocyanins, flavonols, and flavonol glycosides. Ile191 and Glu198 were both identified as important amino acid residues for the binding interactions of anthocyanidins with VcOMT.
Collapse
Affiliation(s)
- Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Yi yang Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yang Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yiyang Zhou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Xin Hao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Yi yang Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
9
|
Zhang Z, Yuan L, Ma Y, Kang Z, Zhou F, Gao Y, Yang S, Li T, Hu X. Exogenous 5-aminolevulinic acid alleviates low-temperature damage by modulating the xanthophyll cycle and nutrient uptake in tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:83-93. [PMID: 36058015 DOI: 10.1016/j.plaphy.2022.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
5-Aminolevulinic acid (ALA), an antioxidant existing in plants, has been widely reported to participate in the process of coping with cold stress of plants. In this study, exogenous ALA promoted the growth of tomato plants and alleviated the appearance of purple tomato leaves under low-temperature stress. At the same time, exogenous ALA improved antioxidant enzyme activities, SlSOD gene expression, Fv/Fm, and proline contents and reduced H2O2 contents, SlRBOH gene expression, relative electrical conductivity, and malondialdehyde contents to alleviate the damage caused by low temperature to tomato seedlings. Compared with low-temperature stress, spraying exogenous ALA before low-temperature stress could restore the indicators of photochemical quenching, actual photochemical efficiency, electron transport rate, and nonphotochemical quenching to normal. Exogenous ALA could increase the total contents of the xanthophyll cycle pool, the positive de-epoxidation rate of the xanthophyll cycle and improved the expression levels of key genes in the xanthophyll cycle under low-temperature stress. In addition, we found that exogenous ALA significantly enhanced the absorption of mineral nutrients, promoted the transfer and distribution of mineral nutrients to the leaves, and improved the expression levels of mineral nutrient absorption-related genes, which were all conducive to the improved adaptation of tomato seedlings under low-temperature stress. In summary, the application of exogenous ALA can increase tomato seedlings' tolerance to low-temperature stress by improving the xanthophyll cycle and the ability of the absorption of mineral nutrients in tomato seedlings.
Collapse
Affiliation(s)
- Zhengda Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Luqiao Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Yongbo Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Zhen Kang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Fan Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yi Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shichun Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Yao Z, Zhang X, Liang Y, Zhang J, Xu Y, Chen S, Zhao D. NtCOMT1 responsible for phytomelatonin biosynthesis confers drought tolerance in Nicotiana tabacum. PHYTOCHEMISTRY 2022; 202:113306. [PMID: 35798089 DOI: 10.1016/j.phytochem.2022.113306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Nicotiana tabacum (tobacco) is one of the most important industrial crops and its productivity is vulnerable to drought, particularly in Yunnan province, China due to the long water-deficit spring. Here, we aimed at identifying caffeic acid O-methyltransferase (COMT) in melatonin biosynthesis to provide genetic resources against drought tolerance of tobacco. The integration of the genome-wide identification, phylogenetic relationships, and conserved domain/motif analysis revealed that NtCOMT1 could be the probable functional COMT homolog for melatonin production. In vitro enzyme activity test approved that NtCOMT1 enabled the conversion of N-acetylserotonin into melatonin, occurring both in the cytoplasm and nucleus by subcellular localization analysis. The Km and Vmax values for NtCOMT1 at the optimum temperature (30 °C) were 266.0 μM and 2.155 nmol/min/mg protein. NtCOMT1 was significantly induced by drought stress; whereby if this gene functioned on promoting drought resistance was further conducted. Overexpression of NtCOMT1 resulted in decreased wilting in transgenic tobacco plants subjected to dehydration treatment. The combinatorial effects of NtCOMT1 in increasing melatonin content, inducing antioxidant system, and elevating the expression of drought-related genes could deliver the drought tolerance in tobacco. The characterization of NtCOMT1 may represent a solution to cope with the increasing drought stress in tobacco production in Yunnan province.
Collapse
Affiliation(s)
- Zhengping Yao
- Biocontrol Engineering Research Center of Plant Disease & Pest, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, China; School of Life Science, Yunnan University, Kunming, China
| | - Xue Zhang
- Biocontrol Engineering Research Center of Plant Disease & Pest, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, China; School of Life Science, Yunnan University, Kunming, China
| | - Yingchong Liang
- Biocontrol Engineering Research Center of Plant Disease & Pest, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, China; School of Life Science, Yunnan University, Kunming, China
| | - Jiemei Zhang
- Biocontrol Engineering Research Center of Plant Disease & Pest, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, China; School of Life Science, Yunnan University, Kunming, China
| | - Yi Xu
- Yunnan Institute of Materia Medica, Yunnan Baiyao Group Company Limited, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease & Pest, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, China; School of Ecology and Environmental Science, Yunnan University, Kunming, China.
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease & Pest, Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, China; School of Ecology and Environmental Science, Yunnan University, Kunming, China.
| |
Collapse
|
11
|
Chen Q, Hou S, Pu X, Li X, Li R, Yang Q, Wang X, Guan M, Rengel Z. Dark secrets of phytomelatonin. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5828-5839. [PMID: 35522068 DOI: 10.1093/jxb/erac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is a newly identified plant hormone, and its primary functions in plant growth and development remain relatively poorly appraised. Phytomelatonin is a master regulator of reactive oxygen species (ROS) signaling and acts as a darkness signal in circadian stomatal closure. Plants exhibit at least three interrelated patterns of interaction between phytomelatonin and ROS production. Exogenous melatonin can induce flavonoid biosynthesis, which might be required for maintenance of antioxidant capacity under stress, after harvest, and in leaf senescence conditions. However, several genetic studies have provided direct evidence that phytomelatonin plays a negative role in the biosynthesis of flavonoids under non-stress conditions. Phytomelatonin delays flowering time in both dicot and monocot plants, probably via its receptor PMTR1 and interactions with the gibberellin, strigolactone, and ROS signaling pathways. Furthermore, phytomelatonin signaling also functions in hypocotyl and shoot growth in skotomorphogenesis and ultraviolet B (UV-B) exposure; the G protein α-subunit (Arabidopsis GPA1 and rice RGA1) and constitutive photomorphogenic1 (COP1) are important signal components during this process. Taken together, these findings indicate that phytomelatonin acts as a darkness signal with important regulatory roles in circadian stomatal closure, flavonoid biosynthesis, flowering, and hypocotyl and shoot growth.
Collapse
Affiliation(s)
- Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Suying Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaomin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongrong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xinjia Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| |
Collapse
|
12
|
Wang K, Xing Q, Ahammed GJ, Zhou J. Functions and prospects of melatonin in plant growth, yield, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5928-5946. [PMID: 35640564 DOI: 10.1093/jxb/erac233] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indole molecule widely found in animals and plants. It is well known that melatonin improves plant resistance to various biotic and abiotic stresses due to its potent free radical scavenging ability while being able to modulate plant signaling and response pathways through mostly unknown mechanisms. In recent years, an increasing number of studies have shown that melatonin plays a crucial role in improving crop quality and yield by participating in the regulation of various aspects of plant growth and development. Here, we review the effects of melatonin on plant vegetative growth and reproductive development, and systematically summarize its molecular regulatory network. Moreover, the effective concentrations of exogenously applied melatonin in different crops or at different growth stages of the same crop are analysed. In addition, we compare endogenous phytomelatonin concentrations in various crops and different organs, and evaluate a potential function of phytomelatonin in plant circadian rhythms. The prospects of different approaches in regulating crop yield and quality through exogenous application of appropriate concentrations of melatonin, endogenous modification of phytomelatonin metabolism-related genes, and the use of nanomaterials and other technologies to improve melatonin utilization efficiency are also discussed.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qufan Xing
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, China
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
13
|
Arnao MB, Cano A, Hernández-Ruiz J. Phytomelatonin: an unexpected molecule with amazing performances in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5779-5800. [PMID: 35029657 DOI: 10.1093/jxb/erac009] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 05/14/2023]
Abstract
Phytomelatonin, a multifunctional molecule that has been found to be present in all plants examined to date, has an important role in plants as a modulatory agent (a biostimulator) that improves plant tolerance to both biotic and abiotic stress. We present a review of phytomelatonin that considers its roles in plant metabolism and in particular its interactions with plant hormone network. In the primary metabolism of plants, melatonin improves the rate and efficiency of photosynthesis, as well related factors such as stomatal conductance, intercellular CO2, and Rubisco activity. It has also been shown to down-regulate some senescence transcription factors. Melatonin up-regulates many enzyme transcripts related to carbohydrates (including sucrose and starch), amino acids, and lipid metabolism, optimizing N, P, and S uptake. With respect to the secondary metabolism, clear increases in polyphenol, glucosinolate, terpenoid, and alkaloid contents have been described in numerous melatonin-treated plants. Generally, the most important genes of these secondary biosynthesis pathways have been found to be up-regulated by melatonin. The great regulatory capacity of melatonin is a result of its control of the redox and plant hormone networks. Melatonin acts as a plant master regulator, up-/down-regulating different plant hormone levels and signalling, and is a key player in redox homeostasis. It has the capacity to counteract diverse critical situations such as pathogen infections and abiotic stresses, and provide plants with varying degrees of tolerance. We propose possible future applications of melatonin for crop improvement and post-harvest product preservation.
Collapse
Affiliation(s)
- Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Antonio Cano
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| |
Collapse
|
14
|
Xia H, Hong Y, Li X, Fan R, Li Q, Ouyang Z, Yao X, Lu S, Guo L, Tang S. BnaNTT2 regulates ATP homeostasis in plastid to sustain lipid metabolism and plant growth in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:54. [PMID: 37313423 PMCID: PMC10248631 DOI: 10.1007/s11032-022-01322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The plastid inner envelope membrane-bond nucleotide triphosphate transporter (NTT) transports cytosolic adenosine triphosphate (ATP) into plastid, which is necessary for the biochemical activities in plastid. We identified a chloroplast-localized BnaC08.NTT2 and obtained the overexpressed lines of BnaC08.NTT2 and CRISPR/Cas9 edited double mutant lines of BnaC08.NTT2 and BnaA08.NTT2 in B. napus. Further studies certified that overexpression (OE) of BnaC08.NTT2 could help transport ATP into chloroplast and exchange adenosine diphosphate (ADP) and this process was inhibited in BnaNTT2 mutants. Additional results showed that the thylakoid was abnormal in a8 c8 double mutants, which also had lower photosynthetic efficiency, leading to retarded plant growth. The BnaC08.NTT2 OE plants had higher photosynthetic efficiency and better growth compared to WT. OE of BnaC08.NTT2 could improve carbon flowing into protein and oil synthesis from glycolysis both in leaves and seeds. Lipid profile analysis showed that the contents of main chloroplast membrane lipids, including monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylglycerol (PG), were significantly reduced in mutants, while there were no differences in OE lines compared to WT. These results suggest that BnaNTT2 is involved in the regulation of ATP/ADP homeostasis in plastid to impact plant growth and seed oil accumulation in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01322-8.
Collapse
Affiliation(s)
- Hui Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Yue Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xiao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Ruyi Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
15
|
Rehmani MS, Aziz U, Xian B, Shu K. Seed Dormancy and Longevity: A Mutual Dependence or a Trade-Off? PLANT & CELL PHYSIOLOGY 2022; 63:1029-1037. [PMID: 35594901 DOI: 10.1093/pcp/pcac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy is an important agronomic trait in cereals and leguminous crops as low levels of seed dormancy during harvest season, coupled with high humidity, can cause preharvest sprouting. Seed longevity is another critical trait for commercial crop propagation and production, directly influencing seed germination and early seedling establishment. Both traits are precisely regulated by the integration of genetic and environmental cues. Despite the significance of these two traits in crop production, the relationship between them at the molecular level is still elusive, even with contradictory conclusions being reported. Some studies have proposed a positive correlation between seed dormancy and longevity in association with differences in seed coat permeability or seed reserve accumulation, whereas an increasing number of studies have highlighted a negative relationship, largely with respect to phytohormone-dependent pathways. In this review paper, we try to provide some insights into the interactions between regulatory mechanisms of genetic and environmental cues, which result in positive or negative relationships between seed dormancy and longevity. Finally, we conclude that further dissection of the molecular mechanism responsible for this apparently contradictory relationship between them is needed.
Collapse
Affiliation(s)
- Muhammad Saad Rehmani
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
| | - Usman Aziz
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
| | - BaoShan Xian
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
| | - Kai Shu
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45, Gaoxin South 9 Road, Shenzhen 518057, China
| |
Collapse
|
16
|
Hong Y, Xia H, Li X, Fan R, Li Q, Ouyang Z, Tang S, Guo L. Brassica napus BnaNTT1 modulates ATP homeostasis in plastids to sustain metabolism and growth. Cell Rep 2022; 40:111060. [PMID: 35830794 DOI: 10.1016/j.celrep.2022.111060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/12/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
The plastid-localized nucleotide triphosphate transporter (NTT) transports cytosolic adenosine triphosphate (ATP) into plastid to satisfy the needs of biochemistry activities in plastid. Here, we investigate the key functions of two conserved BnaNTT1 genes, BnaC06.NTT1b and BnaA07.NTT1a, in Brassica napus. Binding assays and metabolic analysis indicate that BnaNTT1 binds ATP/adenosine diphosphate (ADP), transports cytosolic ATP into chloroplast, and exchanges ADP into cytoplasm. Thylakoid structures are abnormal and plant growth is retarded in CRISPR mutants of BnaC06.NTT1b and BnaA07.NTT1a. Both BnaC06.NTT1b and BnaA07.NTT1a play important roles in the regulation of ATP/ADP homeostasis in plastid. Manipulation of BnaC06.NTT1b and BnaA07.NTT1a causes significant changes in glycolysis and membrane lipid composition, suggesting that increased ATP in plastid fuels more seed-oil accumulation. Together, this study implicates the vital role of BnaC06.NTT1b and BnaA07.NTT1a in plant metabolism and growth in B. napus.
Collapse
Affiliation(s)
- Yue Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hui Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruyi Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
17
|
Ding LN, Liu R, Li T, Li M, Liu XY, Wang WJ, Yu YK, Cao J, Tan XL. Physiological and comparative transcriptome analyses reveal the mechanisms underlying waterlogging tolerance in a rapeseed anthocyanin-more mutant. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:55. [PMID: 35596185 PMCID: PMC9123723 DOI: 10.1186/s13068-022-02155-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Rapeseed (Brassica napus) is the second largest oil crop worldwide. It is widely used in food, energy production and the chemical industry, as well as being an ornamental. Consequently, it has a large economic value and developmental potential. Waterlogging is an important abiotic stress that restricts plant growth and development. However, little is known about the molecular mechanisms underlying waterlogging tolerance in B. napus. RESULTS In the present study, the physiological changes and transcriptomes of germination-stage rapeseed in response to waterlogging stress were investigated in the B. napus cultivar 'Zhongshuang 11' (ZS11) and its anthocyanin-more (am) mutant, which was identified in our previous study. The mutant showed stronger waterlogging tolerance compared with ZS11, and waterlogging stress significantly increased anthocyanin, soluble sugar and malondialdehyde contents and decreased chlorophyll contents in the mutant after 12 days of waterlogging. An RNA-seq analysis identified 1370 and 2336 differently expressed genes (DEGs) responding to waterlogging stress in ZS11 and am, respectively. An enrichment analysis revealed that the DEGs in ZS11 were predominately involved in carbohydrate metabolism, whereas those in the am mutant were particularly enriched in plant hormone signal transduction and response to endogenous stimulation. In total, 299 DEGs were identified as anthocyanin biosynthesis-related structural genes (24) and regulatory genes encoding transcription factors (275), which may explain the increased anthocyanin content in the am mutant. A total of 110 genes clustered in the plant hormone signal transduction pathway were also identified as DEGs, including 70 involved in auxin and ethylene signal transduction that were significantly changed in the mutant. Furthermore, the expression levels of 16 DEGs with putative roles in anthocyanin accumulation and biotic/abiotic stress responses were validated by quantitative real-time PCR as being consistent with the transcriptome profiles. CONCLUSION This study provides new insights into the molecular mechanisms of increased anthocyanin contents in rapeseed in response to waterlogging stress, which should be useful for reducing the damage caused by waterlogging stress and for further breeding new rapeseed varieties with high waterlogging tolerance.
Collapse
Affiliation(s)
- Li-Na Ding
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rui Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Teng Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Yan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Wei-Jie Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yan-Kun Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
18
|
Yu Y, Deng L, Zhou L, Chen G, Wang Y. Exogenous Melatonin Activates Antioxidant Systems to Increase the Ability of Rice Seeds to Germinate under High Temperature Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:886. [PMID: 35406866 PMCID: PMC9003151 DOI: 10.3390/plants11070886] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
High temperatures are a major concern that limit rice germination and plant growth. Although previous studies found that melatonin can promote seed germination, the physiological regulation mechanism by which exogenous melatonin mediates high temperature tolerance during rice seed germination is still largely unknown. In order to overcome these challenges, the present study investigates the effects of melatonin on the characteristics of rice seed germination as well as on antioxidant properties, under different high temperature conditions. The results show that 100 μM melatonin seed-soaking treatment under high temperature conditions effectively improves the germination potential, the germination index, and the vigor index of rice seeds; increases the length of the shoot and the root; improves the activity of the antioxidant enzymes; and significantly reduces the malondialdehyde content. The gray relational grade of the shoot peroxidase activity and the melatonin soaking treatment was the highest, which was used to evaluate the effect of melatonin on the heat tolerance of rice. The subordinate function method was used to comprehensively evaluate the tolerance, and the results show that the critical concentration of melatonin is 100 μM, and the critical interactive treatment is the germination at 38 °C and followed by the recovery at 26 °C for 1 day + 100 μM. In conclusion, 100 μM of melatonin concentration improved the heat resistance of rice seeds by enhancing the activity of the antioxidant enzymes.
Collapse
Affiliation(s)
- Yufeng Yu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (L.D.); (L.Z.)
| | - Liyuan Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (L.D.); (L.Z.)
| | - Lu Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (L.D.); (L.Z.)
| | - Guanghui Chen
- The Key Laboratory of Crop Germplasm Innovation and Resource Utilization of Hunan Province, Hunan Agricultural University, Changsha 410128, China
| | - Yue Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (L.D.); (L.Z.)
| |
Collapse
|
19
|
Song S, Chen A, Zhu J, Yan Z, An Q, Zhou J, Liao H, Yu Y. Structure basis of the caffeic acid O-methyltransferase from Ligusiticum chuanxiong to understand its selective mechanism. Int J Biol Macromol 2022; 194:317-330. [PMID: 34838855 DOI: 10.1016/j.ijbiomac.2021.11.135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/20/2021] [Indexed: 02/08/2023]
Abstract
Caffeic acid O-methyltransferase from Ligusticum chuanxiong (LcCOMT) showed strict regiospecificity despite a relative degree of preference. Compared with caffeic acid, methyl caffeate was the preferential substrate by its low Km and high Kcat. In this study, we obtained the SAM binary (1.80 Å) and SAH binary (1.95 Å) complex LcCOMT crystal structures, and established the ternary complex structure with methyl caffeate by molecular docking. The active site of LcCOMT included phenolic substrate pocket, SAM/SAH ligand pocket and conserved catalytic residues as well. The regiospecificity of LcCOMT that permitted only 3-hydroxyl group to be methylated arise from the interactions between the active site and the phenyl ring. However, the propanoid tail governed the relative preference of LcCOMT. The ester group in methyl caffeate stabilized the anionic intermediate caused by His268-Asp269 pair, whereas caffeic acid was unable to stabilize the anionic intermediate due to the adjacent carboxylate anion in the propanoid tail. Ser183 residue formed an additional hydrogen bond with SAH and its role was identified by S183A mutation. Ile318 residue might be a potential site for determination of substrate preference, and its mutation led to the change of tertiary conformation. The results supported the selective mechanism of LcCOMT.
Collapse
Affiliation(s)
- Simin Song
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Anqi Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jianquan Zhu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Zicheng Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qiuju An
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Yamei Yu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China.
| |
Collapse
|
20
|
Integument-Specific Transcriptional Regulation in the Mid-Stage of Flax Seed Development Influences the Release of Mucilage and the Seed Oil Content. Cells 2021; 10:cells10102677. [PMID: 34685657 PMCID: PMC8534900 DOI: 10.3390/cells10102677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Flax (Linum usitatissimum L.) seed oil, which accumulates in the embryo, and mucilage, which is synthesized in the seed coat, are of great economic importance for food, pharmaceutical as well as chemical industries. Theories on the link between oil and mucilage production in seeds consist in the spatio-temporal competition of both compounds for photosynthates during the very early stages of seed development. In this study, we demonstrate a positive relationship between seed oil production and seed coat mucilage extrusion in the agronomic model, flax. Three recombinant inbred lines were selected for low, medium and high mucilage and seed oil contents. Metabolite and transcript profiling (1H NMR and DNA oligo-microarrays) was performed on the seeds during seed development. These analyses showed main changes in the seed coat transcriptome during the mid-phase of seed development (25 Days Post-Anthesis), once the mucilage biosynthesis and modification processes are thought to be finished. These transcriptome changes comprised genes that are putatively involved in mucilage chemical modification and oil synthesis, as well as gibberellic acid (GA) metabolism. The results of this integrative biology approach suggest that transcriptional regulations of seed oil and fatty acid (FA) metabolism could occur in the seed coat during the mid-stage of seed development, once the seed coat carbon supplies have been used for mucilage biosynthesis and mechanochemical properties of the mucilage secretory cells.
Collapse
|
21
|
Inhibition of Rice Serotonin N-Acetyltransferases by MG149 Decreased Melatonin Synthesis in Rice Seedlings. Biomolecules 2021; 11:biom11050658. [PMID: 33946959 PMCID: PMC8145546 DOI: 10.3390/biom11050658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
We examined the effects of two histone acetyltransferase (HAT) inhibitors on the activity of rice serotonin N-acetyltransferases (SNAT). Two rice recombinant SNAT isoenzymes (SNAT1 and SNAT2) were incubated in the presence of either MG149 or MB3, HAT inhibitors. MG149 significantly inhibited the SNAT enzymes in a dose-dependent manner, especially SNAT1, while SNAT2 was moderately inhibited. By contrast, MB3 had no effect on SNAT1 or SNAT2. The application of 100 μM MG149 to rice seedlings decreased melatonin by 1.6-fold compared to the control, whereas MB3 treatment did not alter the melatonin level. MG149 significantly decreased both melatonin and N-acetylserotonin when rice seedlings were challenged with cadmium, a potent elicitor of melatonin synthesis in rice. Although MG149 inhibited melatonin synthesis in rice seedlings, no melatonin deficiency-induced lamina angle decrease was observed due to the insufficient suppression of SNAT2, which is responsible for the lamina angle decrease in rice.
Collapse
|
22
|
Suppression of Rice Cryptochrome 1b Decreases Both Melatonin and Expression of Brassinosteroid Biosynthetic Genes Resulting in Salt Tolerance. Molecules 2021; 26:molecules26041075. [PMID: 33670642 PMCID: PMC7922549 DOI: 10.3390/molecules26041075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
We investigated the relationship between the blue-light photoreceptor cryptochrome (CRY) and melatonin biosynthesis by generating RNA interference (RNAi) transgenic rice plants that suppress the cryptochrome 1b gene (CRY1b). The resulting CRY1b RNAi rice lines expressed less CRY1b mRNA, but not CRY1a or CRY2 mRNA, suggesting that the suppression is specific to CRY1b. The growth of CRY1b RNAi rice seedlings was enhanced under blue light compared to wild-type growth, providing phenotypic evidence for impaired CRY function. When these CRY1b RNAi rice plants were challenged with cadmium to induce melatonin, wild-type plants produced 100 ng/g fresh weight (FW) melatonin, whereas CRY1b RNAi lines produced 60 ng/g FW melatonin on average, indicating that melatonin biosynthesis requires the CRY photoreceptor. Due to possible feedback regulation, the expression of melatonin biosynthesis genes such as T5H, SNAT1, SNAT2, and COMT was elevated in the CRY1b RNAi lines compared to the wild-type plants. In addition, laminar angles decreased in the CRY1b RNAi lines via the suppression of brassinosteroid (BR) biosynthesis genes such as DWARF. The main cause of the BR decrease in the CRY1b RNAi lines seems to be the suppression of CRY rather than decreased melatonin because the melatonin decrease suppressed DWARF4 rather than DWARF.
Collapse
|