1
|
Liu B, Meng S, Yang J, Wu J, Peng Y, Zhang J, Ye N. Carbohydrate flow during grain filling: Phytohormonal regulation and genetic control in rice (Oryza sativa). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1086-1104. [PMID: 40192007 PMCID: PMC12016746 DOI: 10.1111/jipb.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/06/2025] [Indexed: 04/24/2025]
Abstract
Both the filling and development of grain are key processes determining agriculture production and reproductive growth in rice. The processes of grain filling and endosperm development are crucial for the accumulation of major storage compounds in rice grains. This requires extensive remobilization of carbon reserves from source to sink and the precise regulation of sucrose-to-starch conversion. Both the developmental sequence of the panicle and environmental signals influence the carbon flow between the leaves, leaf sheath, stem, and spikelets during grain filling. This, in turn, affects endosperm development and the production of storage compounds. In this review, we synthesize recent insight into grain development in rice, focusing on the dynamic changes in phytohormones and how their homeostasis integrates developmental and environmental cues to control grain filling in the developing panicle. We also highlight recent advances in the genetic control of carbohydrate remobilization and the transcriptional regulatory networks governing carbohydrate metabolism and grain development in rice. The asynchronous initiation and imbalance in grain filling limit the full yield potential of cereal crops. The "superior/inferior spikelets" serve as a model system for understanding the regulatory mechanisms underlying grain filling and development. Systematic research on carbohydrate flow and phytohormone crosstalk could enhance our understanding of optimizing yield production in cereal crops. Additionally, a thorough analysis of key genetic regulatory mechanisms can offer a genetic foundation and targets for precisely adjusting grain filling traits, ultimately aiding in the development of high-yield crop varieties.
Collapse
Affiliation(s)
- Bohan Liu
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Shuan Meng
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Jianchang Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhou225009China
| | - Jun Wu
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Yan Peng
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Jianhua Zhang
- Department of BiologyHong Kong Baptist UniversityHong Kong999077China
- School of Life Sciences and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongHong Kong999077China
| | - Nenghui Ye
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| |
Collapse
|
2
|
Liu S, Wu J, Mawia AM, Wei X, Cao R, Jiao G, Wu Y, Zhang J, Xie L, Sheng Z, Hu S, Li S, Lv Y, Lu F, Chen Y, Fiaz S, Tabassum J, Du Z, Gao F, Ren G, Shao G, Hu P, Tang S. A novel transcription factor OsMYB73 affects grain size and chalkiness by regulating endosperm storage substances' accumulation-mediated auxin biosynthesis signalling pathway in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1021-1038. [PMID: 39726220 PMCID: PMC11933829 DOI: 10.1111/pbi.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/06/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Enhanced grain yield and quality traits are everlasting breeding goals. It is therefore of great significance to uncover more genetic resources associated with these two important agronomic traits. Plant MYB family transcription factors play important regulatory roles in diverse biological processes. However, studies on genetic functions of MYB in rice yield and quality are rarely to be reported. Here, we investigated a nucleus-localized transcription factor OsMYB73 which is preferentially expressed in the early developing pericarp and endosperm. We generated targeted mutagenesis of OsMYB73 in rice, and the mutants had longer grains with obvious white-belly chalky endosperm appearance phenotype. The mutants displayed various changes in starch physicochemical characteristics and lipid components. Transcriptome sequencing analysis showed that OsMYB73 was chiefly involved in cell wall development and starch metabolism. OsMYB73 mutation affects the expression of genes related to grain size, starch and lipid biosynthesis and auxin biosynthesis. Moreover, inactivation of OsMYB73 triggers broad changes in secondary metabolites. We speculate that rice OsMYB73 and OsNF-YB1 play synergistic pivotal role in simultaneously as transcription activators to regulate grain filling and storage compounds accumulation to affect endosperm development and grain chalkiness through binding OsISA2, OsLTPL36 and OsYUC11. The study provides important germplasm resources and theoretical basis for genetic improvement of rice yield and quality. In addition, we enriches the potential biological functions of rice MYB family transcription factors.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
- Environment‐friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Tianfu Seed Industry Innovation (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Research Institute (Sichuan Provincial Germplasm Center)Sichuan Academy of Agricultural SciencesChengduChina
| | - Jiamin Wu
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Ruijie Cao
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Guiai Jiao
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Yawen Wu
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Jian Zhang
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Lihong Xie
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Shikai Hu
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Sanfeng Li
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Yusong Lv
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Feifei Lu
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Yujuan Chen
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Sajid Fiaz
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Zhimin Du
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Fangyuan Gao
- Environment‐friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Tianfu Seed Industry Innovation (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Research Institute (Sichuan Provincial Germplasm Center)Sichuan Academy of Agricultural SciencesChengduChina
| | - Guangjun Ren
- Environment‐friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Tianfu Seed Industry Innovation (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Research Institute (Sichuan Provincial Germplasm Center)Sichuan Academy of Agricultural SciencesChengduChina
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Peisong Hu
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
3
|
Jain R, Dhaka N, Krishnan K, Yadav G, Priyam P, Sharma MK, Sharma RA. Temporal Gene Expression Profiles From Pollination to Seed Maturity in Sorghum Provide Core Candidates for Engineering Seed Traits. PLANT, CELL & ENVIRONMENT 2025; 48:2662-2690. [PMID: 39248611 DOI: 10.1111/pce.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a highly nutritional multipurpose millet crop. However, the genetic and molecular regulatory mechanisms governing sorghum grain development and the associated agronomic traits remain unexplored. In this study, we performed a comprehensive transcriptomic analysis of pistils collected 1-2 days before pollination, and developing seeds collected -2, 10, 20 and 30 days after pollination of S. bicolor variety M35-1. Out of 31 337 genes expressed in these stages, 12 804 were differentially expressed in the consecutive stages of seed development. These exhibited 10 dominant expression patterns correlated with the distinct pathways and gene functions. Functional analysis, based on the pathway mapping, transcription factor enrichment and orthology, delineated the key patterns associated with pollination, fertilization, early seed development, grain filling and seed maturation. Furthermore, colocalization with previously reported quantitative trait loci (QTLs) for grain weight/size revealed 48 differentially expressed genes mapping to these QTL regions. Comprehensive literature mining integrated with QTL mapping and expression data shortlisted 25, 17 and 8 core candidates for engineering grain size, starch and protein content, respectively.
Collapse
Affiliation(s)
- Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Kushagra Krishnan
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Garima Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Prachi Priyam
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | | | - Rita A Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani, Rajasthan, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
4
|
Chen Y, Xia P. NAC transcription factors as biological macromolecules responded to abiotic stress: A comprehensive review. Int J Biol Macromol 2025; 308:142400. [PMID: 40127789 DOI: 10.1016/j.ijbiomac.2025.142400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
NAC transcription factors (NAC TFs) represent a large and vital family of transcription factors in the plant kingdom, playing a central role in regulating plant growth, developmental processes, and responses to abiotic stresses. As key regulators, NAC TFs fine-tune the expression of downstream genes, thereby actively contributing to the adaptation of crops to various abiotic stresses. The functions of NAC TFs are controlled by several complex signaling pathways, including those involving phytohormones (such as abscisic acid (ABA) and ethylene (ET)), reactive oxygen species (ROS), and mitogen-activated protein kinases (MAPKs). This review highlights recent advances in the biological functions and signaling pathways of NAC TFs in crops under abiotic stress conditions, such as drought, salinity, and extreme temperatures. It also offers prospects for further exploration of the complex mechanisms by which NAC TFs operate within signaling networks, with the aim of developing food crops with enhanced physiological traits.
Collapse
Affiliation(s)
- Yeer Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Li R, Wu MW, Liu J, Xu X, Bao Y, Liu CM. NAC25 transcription factor regulates the degeneration of cytoplasmic membrane integrity and starch biosynthesis in rice endosperm through interacting with MADS29. FRONTIERS IN PLANT SCIENCE 2025; 16:1563065. [PMID: 40171481 PMCID: PMC11958719 DOI: 10.3389/fpls.2025.1563065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 04/03/2025]
Abstract
Introduction Grain filling is a crucial stage of the rice endosperm development. During this process, the endosperm accumulates abundant storage products such as starch and proteins, which determine both the yield and quality of the grain. Methods Here, we analyzed the expression of NAC25 transcription factor via qRT-PCR and histochemical GUS assays, and obtained its mutants by CRISPR/Cas9-based gene editing in ZH11. Results and discussion The results showed that NAC25 was expressed specifically in developing rice endosperm, and knockout of NAC25 led to delayed degeneration of cytoplasmic membrane integrity, reduced starch accumulation and chalky starchy endosperm. We showed that NAC25 interacted with MADS29, a MADS family transcription factor whose mutant also showed defective grain filling. These results provide novel insight into the transcriptional regulation of rice grain filling.
Collapse
Affiliation(s)
- Rong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xintong Xu
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chun-Ming Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Xiong H, He H, Chang Y, Miao B, Liu Z, Wang Q, Dong F, Xiong L. Multiple roles of NAC transcription factors in plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:510-538. [PMID: 39950532 DOI: 10.1111/jipb.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 03/29/2025]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are a family of plant-specific TFs that play crucial roles in various aspects of plant development and stress responses. Here, we provide an in-depth review of the structural characteristics, regulatory mechanisms, and functional roles of NACs in different plant species. One of the key features of NACs is their ability to regulate gene expression through a variety of mechanisms, including binding to DNA sequences in the promoter regions of target genes, interacting with other TFs, and modulating chromatin structure. We discuss these mechanisms in detail, providing insights into the complex regulatory networks that govern the activity of NACs. We explore the diverse functions of these TFs in plant growth and development processes, including embryogenesis, seed development, root and shoot development, floral development and fruit ripening, secondary cell wall formation, and senescence. We also discuss the diverse regulatory roles of NACs in response to various stresses, including drought, flooding, heat, cold, salinity, nutrient deficit, and diseases. Lastly, we emphasize the crosstalk role of NACs between developmental processes and stress responses. This integrated perspective highlights how NACs orchestrate plant growth and resilience. Overall, this review provides a comprehensive overview of the pivotal roles of NACs in plant development and stress responses, emphasizing their potential for engineering stress-resistant crops and enhancing agricultural productivity.
Collapse
Affiliation(s)
- Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haidong He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Binbin Miao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianqian Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Zhao S, Zhang C, Jiao J, Zhang Y, Jiang T, Wu P, Feng K, Li L. The transcription factor NnNAC100 positively regulates amylopectin biosynthesis by activating NnSBEII in the rhizome of Nelumbo nucifera Gaertn. PLANT CELL REPORTS 2025; 44:21. [PMID: 39751893 DOI: 10.1007/s00299-024-03408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
KEY MESSAGE NnNAC100-NnSBEII modules enhance starch content of the rhizome in Nelumbo nucifera Gaertn. Nelumbo nucifera Gaertn. is a popular aquatic vegetable and traditional Chinese medicine whose quality and taste are mainly determined by the starch. Although starch-related genes have been functionally characterized, the regulated mechanism of enzyme (SBE) remains unclear. In this study, we identified and functionally elucidated the functions of NnSBEII and NnNAC100 using transient overexpression of NnSBEII and NnNAC100 in rhizomes of lotus, and it significantly increased the amylopectin content and total starch content. Accordingly, functional complementation assay in defective Arabidopsis also showed that NnSBEII compensated for the low content of starch in the mutant sbe2.2. In addition, overexpression of NnSBEII and NnNAC100 significantly increased the content of starch in transgenic lines. Consistently, opposite results were observed under the background of repressed NnSBEII and NnNAC100 in rhizomes of lotus. Furthermore, yeast one-hybrid and dual-luciferase assays revealed that NnNAC100 could directly bind to the NnSBEII promoter and promote the expression of NnSBEII. Transient overexpression of NnNAC100 upregulated NnSBEII expression significantly, while the expression level of AtSBE2.2 in transgenic Arabidopsis overexpressing NnNAC100 was higher than that of WT, which indicated that NnNAC100 promoted the synthesis of amylopectin by enhancing the expression of NnSBEII. In addition, we found that NnSBEII could form a complex protein by interacting with soluble starch synthase (NnSS2) to increase the activity of the SBEII enzyme. These results reveal a novel mechanism that the NnNAC100-NnSBEII-NnSBEII/NnSS2 module regulates amylopectin biosynthesis and these will provide insights into the broader implications of the regulation mechanism of starch biosynthesis.
Collapse
Affiliation(s)
- Shuping Zhao
- School of Horticulture and Gardens, Yangzhou University, Yangzhou, 225009, China
| | - Chuyan Zhang
- School of Horticulture and Gardens, Yangzhou University, Yangzhou, 225009, China
| | - Jiao Jiao
- School of Horticulture and Gardens, Yangzhou University, Yangzhou, 225009, China
| | - Yao Zhang
- School of Horticulture and Gardens, Yangzhou University, Yangzhou, 225009, China
| | - Tao Jiang
- School of Horticulture and Gardens, Yangzhou University, Yangzhou, 225009, China
| | - Peng Wu
- School of Horticulture and Gardens, Yangzhou University, Yangzhou, 225009, China
| | - Kai Feng
- School of Horticulture and Gardens, Yangzhou University, Yangzhou, 225009, China
| | - Liangjun Li
- School of Horticulture and Gardens, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Ying Y, Deng B, Zhang L, Hu Y, Liu L, Bao J, Xu F. Multi-omics analyses reveal mechanism for high resistant starch formation in an indica rice SSIIIa mutant. Carbohydr Polym 2025; 347:122708. [PMID: 39486949 DOI: 10.1016/j.carbpol.2024.122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/18/2024] [Accepted: 09/03/2024] [Indexed: 11/04/2024]
Abstract
Soluble starch synthase IIIa (SSIIIa) is a key enzyme involved in amylopectin biosynthesis in rice, and deficiency of SSIIIa results in high content of resistant starch, which is benefit to human health. However, little is known about metabolic differences and carbon re-allocation in the seeds of the indica rice ss3a mutant. We found that SSIIIa deficiency impaired the storage of starch, but increased the soluble sugars, free amino acids and lipids. By multi-omic analyses, we found inactivation of SSIIIa triggered carbon repartitioning by downregulating sucrose synthase, grain incomplete filling 1, fructokinase and hexokinase (HK), and promoted the accumulation of soluble sugars. Meanwhile, the downregulation of HK and upregulation of plastidic phosphoglucomutase reduced the carbon flow through glycolysis and promoted glycogenesis. The downregulation of OsbZIP58 and the deleterious effect on ribosome formation might result in the reduction of storage protein synthesis and increased free amino acids content in ss3a. The higher levels of amylose and lipids could form more amylose-lipid complexes (starch phospholipids), resulting in a higher resistant starch content. Taken together, our study unraveled a functional cross talk between starch, protein and lipids in rice endosperm during seed development of ss3a, providing new insights for formation of high resistant starch in rice.
Collapse
Affiliation(s)
- Yining Ying
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Bowen Deng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Lin Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
9
|
Tu B, Zhang T, Liu P, Yang W, Zheng L, Dai Y, Wang H, Lin S, Zhang Z, Zheng X, Yuan M, Chen Y, Zhu X, Yuan H, Li T, Xiong J, Zhong Z, Chen W, Ma B, Qin P, Wang Y, Li S. The LCG1-OsBP5/OsEBP89-Wx module regulates the grain chalkiness and taste quality in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:36-50. [PMID: 39312475 DOI: 10.1111/pbi.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
It is well known that the overall quality of japonica/geng rice is superior to that of indica/xian rice varieties. However, the molecular mechanisms underlying the quality disparities between these two subspecies of rice are still largely unknown. In this study, we have pinpointed a gene homologous to SLR1, termed LCG1, exhibiting significant expression during early caryopsis development and playing a specific role in regulating rice chalkiness and taste by affecting the accumulation of grain storage components, starch granule structure and chain length distribution of amylopectin. LCG1 physically interacts with OsBP5 and indirectly influences the expression of the amylose synthesis gene Waxy (Wx) by hindering the transcriptional activity of the OsBP5/OsEBP89 complex. Notably, sequence variations in the promoter region of LCG1 result in enhanced transcription in japonica rice accessions. This leads to elevated LCG1 expression in CSSL-LCG1Nip, thereby enhancing rice quality. Our research elucidates the molecular mechanism underlying the impact of the LCG1-OsBP5/OsEBP89-Wx regulatory pathway on rice chalkiness and taste quality, offering new genetic resources for improving the indica rice quality.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Pin Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wen Yang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Zheng
- Hybrid Rice Research Center of Neijiang Academy of Agricultural, Neijiang, Sichuan, China
| | - Ying Dai
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hao Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Song Lin
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zehua Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Xiaohang Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengting Yuan
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Chen
- Hybrid Rice Research Center of Neijiang Academy of Agricultural, Neijiang, Sichuan, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Jiawei Xiong
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhaohui Zhong
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weilan Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bingtian Ma
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Xie Z, Sun Y, Zhan C, Qu C, Jin N, Gu X, Huang J. The E3 ligase OsPUB33 controls rice grain size and weight by regulating the OsNAC120-BG1 module. THE PLANT CELL 2024; 37:koae297. [PMID: 39499669 DOI: 10.1093/plcell/koae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024]
Abstract
Grain size and weight are important determinants of crop yield. Although the ubiquitin pathway has been implicated in the grain development in rice (Oryza sativa), the underlying genetic and molecular mechanisms remain largely unknown. Here, we report that the plant U-box E3 ubiquitin ligase OsPUB33 interferes with the OsNAC120-BG1 module to control rice grain development. Functional loss of OsPUB33 triggers elevated photosynthetic rates and greater sugar translocation, leading to enhanced cell proliferation and accelerated grain filling. These changes cause enlarged spikelet hulls, thereby increasing final grain size and weight. OsPUB33 interacts with transcription factor OsNAC120, resulting in its ubiquitination and degradation. Unlike OsPUB33, OsNAC120 promotes grain size and weight: OsNAC120-overexpression plants harbor large and heavy grains, whereas osnac120 loss-of-function mutants produce small grains. Genetic interaction analysis supports that OsPUB33 and OsNAC120 function at least partially in a common pathway to control grain development, but have opposite functions. Additionally, OsNAC120 transcriptionally activates BIG GRAIN1 (BG1), a prominent modulator of grain size, whereas OsPUB33 impairs the OsNAC120-mediated regulation of BG1. Collectively, our findings uncover an important molecular framework for the control of grain size and weight by the OsPUB33-OsNAC120-BG1 regulatory module and provide promising targets for improving crop yield.
Collapse
Affiliation(s)
- Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Chengfeng Qu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ning Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xinyue Gu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Tao J, Kong W, Luo W, Wang L, Dai X, Lin X, Dong H, Yang X, Mo B, Chen X, Yu Y. The rice microRNA159-SPOROCYTELESS EAR2 module regulates starch biosynthesis during pollen development and maintains male fertility. THE PLANT CELL 2024; 37:koae324. [PMID: 39665752 DOI: 10.1093/plcell/koae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/28/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Starch is an indispensable energy reserve for pollen and failure of starch biosynthesis in pollen leads to male sterility in flowering crops. Nonetheless, the regulatory mechanisms underlying starch biosynthesis in rice (Oryza sativa) pollen remain unclear. Here, we identified a target of the microRNA OsmiR159, SPOROCYTELESS ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR-ASSOCIATED AMPHIPHILIC-REPRESSION 2 (OsSPEAR2). OsSPEAR2 is predominantly expressed in mature pollen and OsSPEAR2 possesses transcriptional repressor activity and localizes in the nucleus. Disruption of OsSPEAR2 results in severely shrunken pollen grains and male sterility. OsSPEAR2 interacts with multiple OsTCPs, including OsTCP14. OsTCP14 is a target of OsmiR319 and a knockout mutation in OsTCP14 partially rescues the defective pollen phenotype of Osspear2. In addition, transcriptome analyses revealed significant downregulation of numerous genes associated with carbohydrate metabolism, specifically in Osspear2 anthers, including several genes critical for starch biosynthesis. Moreover, OsTCP14 directly represses the expression of the essential starch biosynthesis gene OsUGP2; however, this repression could be alleviated by OsSPEAR2. Noteworthily, embryophyte-specific SPEAR2 and SPOROCYTELESS were also identified as miR159 targets involved in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana), indicating that the miR159-SPEAR regulatory module may be conserved among embryophytes. Collectively, our findings reveal OsmiR159-OsSPEAR2-OsTCP14-OsUGP2 as a regulatory cascade that modulates starch biosynthesis during pollen development in rice.
Collapse
Affiliation(s)
- Jinyuan Tao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, Beijing 100871, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wenwen Kong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Weigui Luo
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Li Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Dai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Xiaojing Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Haijiao Dong
- Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing 100081, China
| | - Xiaoyu Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Xuemei Chen
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Yu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Xu S, Zhang Y, Cai H, He Y, Chen L, Zhang G, Chen R, Gu C, Teng X, Duan E, Jiang L, Ren Y, Wang Y, Dong H, Wan J. Lysine 98 in NAC20/NAC26 transcription factors: a key regulator of starch and protein synthesis in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112258. [PMID: 39277049 DOI: 10.1016/j.plantsci.2024.112258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Starch and proteins are main storage product to determine the appearance, cooking, texture, and nutritional quality of rice (Oryza sativa L.). OsNAC20 and OsNAC26, as pivotal transcription factors, redundantly regulate the expression of genes responsible for starch and protein synthesis in the rice endosperm. Any knockout of OsNAC20 or OsNAC26 did not result in visible endosperm defects. In this study, we had isolated and characterized a mutant named as floury endosperm25 (flo25). The caryopsis of the flo25 mutant exhibits a floury endosperm, accompanied by reductions in both the 1000-grain weight and grain length, as well as diminished levels of total starch and protein. Through map-based cloning, it was determined that FLO25 encodes a NAM, ATAF, and CUC (NAC) transcription factors, namely OsNAC26, with a lysine to asparagine substitution at position 98 in the flo25 mutant. Remarkably, lysine 98 is conserved across plants species, and this mutation does not alter the subcellular localization of OsNAC26 but significantly attenuates its transcriptional activity and its ability to activate downstream target genes. Furthermore, the mutant protein encoded by OsNAC26-flo25 could interact with OsNAC20, disrupting the native interaction between OsNAC20 proteins. Additionally, when lysine 98 is substituted with asparagine in OsNAC20, the resulting mutant protein, OsNAC20(K98N), similarly disrupts the interaction between OsNAC26 proteins. Collectively, these findings underscore the pivotal role of Lysine 98 (K) in modulating the transcriptional activity of NAC20/NAC26 within the rice endosperm.
Collapse
Affiliation(s)
- Shanbin Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuzhe He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Laibao Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongbo Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanwei Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Erchao Duan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Hui Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
13
|
Chen J, Miao Z, Kong D, Zhang A, Wang F, Liu G, Yu X, Luo L, Liu Y. Application of CRISPR/Cas9 Technology in Rice Germplasm Innovation and Genetic Improvement. Genes (Basel) 2024; 15:1492. [PMID: 39596692 PMCID: PMC11593773 DOI: 10.3390/genes15111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Improving the efficiency of germplasm innovation has always been the aim of rice breeders. Traditional hybrid breeding methods for variety selection rarely meet the practical needs of rice production. The emergence of genome-editing technologies, such as CRISPR/Cas9, provides a new approach to the genetic improvement of crops such as rice. The number of published scientific papers related to "gene editing" and "CRISPR/Cas9" retrievable on websites both from China and other countries exhibited an increasing trend, year by year, from 2014 to 2023. Research related to gene editing in rice accounts for 33.4% and 12.3% of all the literature on gene editing published in China and other countries, respectively, much higher than that on maize and wheat. This article reviews recent research on CRISPR/Cas9 gene-editing technology in rice, especially germplasm innovation and genetic improvement of commercially promoted varieties with improved traits such as disease, insect, and herbicide resistance, salt tolerance, quality, nutrition, and safety. The aim is to provide a reference for the precise and efficient development of new rice cultivars that meet market demand.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yi Liu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (J.C.); (Z.M.)
| |
Collapse
|
14
|
Yan X, Zhou W, Huang X, Ouyang J, Li S, Gao J, Wang X. RAL6 encodes a seed allergenic protein that positively regulates grain weight and seed germination. JOURNAL OF PLANT RESEARCH 2024; 137:1105-1114. [PMID: 39242482 DOI: 10.1007/s10265-024-01581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The rice albumin (RAG) gene family belongs to the Tryp_alpha_amyl family. RAG2, specifically expressed in 14-21 DAP (days after pollination) seeds, regulates grain yield and quality. In this study, we identified another RAG family gene, RAL6, which exhibits specific expression in developing seeds, particularly in 7, 10, and 15 DAP seeds. Employing the CRISPR/Cas9 system, we analyzed functions of RAL6 and found that the ral6 lines (ral6-1, ral6-2, ral6-3, and ral6-4) displayed thinner seeds with significantly decreased 1000-grain weight and grain thickness compared to ZH11. Additionally, the cell width of spikelet cells, total protein and glutelin contents were significantly reduced in ral6. The germination assay and 1% TTC staining revealed a significant decrease in seed vigor among the ral6 lines. The alpha-amylase activity in ral6 mutant seeds was also markedly lower than in ZH11 seeds after 2 days of imbibition. Furthermore, co-expression analysis and GO annotation showed that co-expressed genes were involved in immune response, oligopeptide transport, and the glucan biosynthetic process. Collectively, our findings suggest that RAL6 plays a coordinating role in regulating grain weight and seed germination in rice.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life science, Nanchang University, Nanchang, 330031, China
| | - Wei Zhou
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Xirui Huang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life science, Nanchang University, Nanchang, 330031, China
| | - Jiexiu Ouyang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life science, Nanchang University, Nanchang, 330031, China
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life science, Nanchang University, Nanchang, 330031, China
| | - Jiadong Gao
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, 510640, China.
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510555, China.
| | - Xin Wang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
15
|
Prodhan ZH, Samonte SOPB, Sanchez DL, Talukder SK. Profiling and Improvement of Grain Quality Traits for Consumer Preferable Basmati Rice in the United States. PLANTS (BASEL, SWITZERLAND) 2024; 13:2326. [PMID: 39204762 PMCID: PMC11359321 DOI: 10.3390/plants13162326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Basmati rice is a premium aromatic rice that consumers choose primarily because of its distinct aroma and excellent grain quality. The grain quality of Basmati rice (GQBR) reflects the perspectives of producers, processors, sellers, and consumers related to the production, processing, marketing, and consumption of Basmati rice. Consumers, an invaluable part of the production demand and value chain of the Basmati rice industry, have the freedom to choose from different types of aromatic rice. Consumers expect their preferred Basmati rice to possess all superior rice grain qualities, including the physical, biochemical, and physiological properties. Gene functional analysis explained that a 10-base pair deletion in the promoter region of the OsSPL16 gene causes the slender grains in Basmati rice, whereas an 8-base-pair deletion in exon 7 of the OsBadh2 gene (located in the fgr region on rice chromosome 8) results in the distinct aroma. Furthermore, a combination of the genetic characteristics of the gw8 and gs3 genes has led to the creation of a long-grain Basmati-type rice cultivar. It has also been demonstrated that agricultural, genetic, and environmental conditions significantly influence GQBR. Hence, research on improving GQBR requires a multidimensional approach and sophisticated elements due to the complexity of its nature and preference diversity. This review covers the basic definitions of grain quality traits, consumer preference criteria, influencing factors, and strategies for producing superior-quality Basmati rice in the United States. This knowledge will be useful in improving the grain quality of Basmati and Basmati-type rice, as well as developing appropriate breeding programs that will meet the preferences of different countries and cultures.
Collapse
Affiliation(s)
- Zakaria Hossain Prodhan
- Texas A&M AgriLife Research Center, 1509 Aggie Drive, Beaumont, TX 77713, USA; (D.L.S.); (S.K.T.)
| | | | | | | |
Collapse
|
16
|
Long Y, Wang C, Liu C, Li H, Pu A, Dong Z, Wei X, Wan X. Molecular mechanisms controlling grain size and weight and their biotechnological breeding applications in maize and other cereal crops. J Adv Res 2024; 62:27-46. [PMID: 37739122 PMCID: PMC11331183 DOI: 10.1016/j.jare.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Cereal crops are a primary energy source for humans. Grain size and weight affect both evolutionary fitness and grain yield of cereals. Although studies on gene mining and molecular mechanisms controlling grain size and weight are constantly emerging in cereal crops, only a few systematic reviews on the underlying molecular mechanisms and their breeding applications are available so far. AIM OF REVIEW This review provides a general state-of-the-art overview of molecular mechanisms and targeted strategies for improving grain size and weight of cereals as well as insights for future yield-improving biotechnology-assisted breeding. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, the evolution of research on grain size and weight over the last 20 years is traced based on a bibliometric analysis of 1158 publications and the main signaling pathways and transcriptional factors involved are summarized. In addition, the roles of post-transcriptional regulation and photosynthetic product accumulation affecting grain size and weight in maize and rice are outlined. State-of-the-art strategies for discovering novel genes related to grain size and weight in maize and other cereal crops as well as advanced breeding biotechnology strategies being used for improving yield including marker-assisted selection, genomic selection, transgenic breeding, and genome editing are also discussed.
Collapse
Affiliation(s)
- Yan Long
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Cheng Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
17
|
Dong N, Jiao G, Cao R, Li S, Zhao S, Duan Y, Ma L, Li X, Lu F, Wang H, Wang S, Shao G, Sheng Z, Hu S, Tang S, Wei X, Hu P. OsLESV and OsESV1 promote transitory and storage starch biosynthesis to determine rice grain quality and yield. PLANT COMMUNICATIONS 2024; 5:100893. [PMID: 38581128 PMCID: PMC11287174 DOI: 10.1016/j.xplc.2024.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Transitory starch is an important carbon source in leaves, and its biosynthesis and metabolism are closely related to grain quality and yield. The molecular mechanisms controlling leaf transitory starch biosynthesis and degradation and their effects on rice (Oryza sativa) quality and yield remain unclear. Here, we show that OsLESV and OsESV1, the rice orthologs of AtLESV and AtESV1, are associated with transitory starch biosynthesis in rice. The total starch and amylose contents in leaves and endosperms are significantly reduced, and the final grain quality and yield are compromised in oslesv and osesv1 single and oslesv esv1 double mutants. Furthermore, we found that OsLESV and OsESV1 bind to starch, and this binding depends on a highly conserved C-terminal tryptophan-rich region that acts as a starch-binding domain. Importantly, OsLESV and OsESV1 also interact with the key enzymes of starch biosynthesis, granule-bound starch synthase I (GBSSI), GBSSII, and pyruvate orthophosphote dikiase (PPDKB), to maintain their protein stability and activity. OsLESV and OsESV1 also facilitate the targeting of GBSSI and GBSSII from plastid stroma to starch granules. Overexpression of GBSSI, GBSSII, and PPDKB can partly rescue the phenotypic defects of the oslesv and osesv1 mutants. Thus, we demonstrate that OsLESV and OsESV1 play a key role in regulating the biosynthesis of both leaf transitory starch and endosperm storage starch in rice. These findings deepen our understanding of the molecular mechanisms underlying transitory starch biosynthesis in rice leaves and reveal how the transitory starch metabolism affects rice grain quality and yield, providing useful information for the genetic improvement of rice grain quality and yield.
Collapse
Affiliation(s)
- Nannan Dong
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Sanfeng Li
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaolu Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Yingqing Duan
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Liuyang Ma
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xinwei Li
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Feifei Lu
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shiwen Wang
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
18
|
Pham HA, Cho K, Tran AD, Chandra D, So J, Nguyen HTT, Sang H, Lee JY, Han O. Compensatory Modulation of Seed Storage Protein Synthesis and Alteration of Starch Accumulation by Selective Editing of 13 kDa Prolamin Genes by CRISPR-Cas9 in Rice. Int J Mol Sci 2024; 25:6579. [PMID: 38928285 PMCID: PMC11204006 DOI: 10.3390/ijms25126579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Rice prolamins are categorized into three groups by molecular size (10, 13, or 16 kDa), while the 13 kDa prolamins are assigned to four subgroups (Pro13a-I, Pro13a-II, Pro13b-I, and Pro13b-II) based on cysteine residue content. Since lowering prolamin content in rice is essential to minimize indigestion and allergy risks, we generated four knockout lines using CRISPR-Cas9, which selectively reduced the expression of a specific subgroup of the 13 kDa prolamins. These four mutant rice lines also showed the compensatory expression of glutelins and non-targeted prolamins and were accompanied by low grain weight, altered starch content, and atypically-shaped starch granules and protein bodies. Transcriptome analysis identified 746 differentially expressed genes associated with 13 kDa prolamins during development. Correlation analysis revealed negative associations between genes in Pro13a-I and those in Pro13a-II and Pro13b-I/II subgroups. Furthermore, alterations in the transcription levels of 9 ER stress and 17 transcription factor genes were also observed in mutant rice lines with suppressed expression of 13 kDa prolamin. Our results provide profound insight into the functional role of 13 kDa rice prolamins in the regulatory mechanisms underlying rice seed development, suggesting their promising potential application to improve nutritional and immunological value.
Collapse
Affiliation(s)
- Hue Anh Pham
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Kyoungwon Cho
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Anh Duc Tran
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Deepanwita Chandra
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Jinpyo So
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Hanh Thi Thuy Nguyen
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi 12406, Vietnam;
| | - Hyunkyu Sang
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Jong-Yeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, RDA, Jeonju 54874, Republic of Korea
| | - Oksoo Han
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| |
Collapse
|
19
|
Lu Z, Huang W, Ge Q, Liang G, Sun L, Wu J, Ghouri F, Shahid MQ, Liu X. Seed development-related genes contribute to high yield heterosis in integrated utilization of elite autotetraploid and neo-tetraploid rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1421207. [PMID: 38933462 PMCID: PMC11204133 DOI: 10.3389/fpls.2024.1421207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Introduction Autotetraploid rice holds high resistance to abiotic stress and substantial promise for yield increase, but it could not be commercially used because of low fertility. Thus, our team developed neo-tetraploid rice with high fertility and hybrid vigor when crossed with indica autotetraploid rice. Despite these advances, the molecular mechanisms underlying this heterosis remain poorly understood. Methods An elite indica autotetraploid rice line (HD11) was used to cross with neo-tetraploid rice, and 34 hybrids were obtained to evaluate agronomic traits related to yield. WE-CLSM, RNA-seq, and CRISPR/Cas9 were employed to observe endosperm structure and identify candidate genes from two represent hybrids. Results and discussion These hybrids showed high seed setting and an approximately 55% increase in 1000-grain weight, some of which achieved grain yields comparable to those of the diploid rice variety. The endosperm observations indicated that the starch grains in the hybrids were more compact than those in paternal lines. A total of 119 seed heterosis related genes (SHRGs) with different expressions were identified, which might contribute to high 1000-grain weight heterosis in neo-tetraploid hybrids. Among them, 12 genes had been found to regulate grain weight formation, including OsFl3, ONAC023, OsNAC024, ONAC025, ONAC026, RAG2, FLO4, FLO11, OsISA1, OsNF-YB1, NF-YC12, and OsYUC9. Haplotype analyses of these 12 genes revealed the various effects on grain weight among different haplotypes. The hybrids could polymerize more dominant haplotypes of above grain weight regulators than any homozygous cultivar. Moreover, two SHRGs (OsFl3 and SHRG2) mutants displayed a significant reduction in 1000-grain weight and an increase in grain chalkiness, indicating that OsFl3 and SHRG2 positively regulate grain weight. Our research has identified a valuable indica autotetraploid germplasm for generating strong yield heterosis in combination with neo-tetraploid lines and gaining molecular insights into the regulatory processes of heterosis in tetraploid rice.
Collapse
Affiliation(s)
- Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Weicong Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qi Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Guobin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Chakraborty A, Singh B, Pandey V, Parida SK, Bhatia S. MicroRNA164e suppresses NAC100 transcription factor-mediated synthesis of seed storage proteins in chickpea. THE NEW PHYTOLOGIST 2024; 242:2652-2668. [PMID: 38649769 DOI: 10.1111/nph.19770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Development of protein-enriched chickpea varieties necessitates an understanding of specific genes and key regulatory circuits that govern the synthesis of seed storage proteins (SSPs). Here, we demonstrated the novel involvement of Ca-miR164e-CaNAC100 in regulating SSP synthesis in chickpea. Ca-miRNA164e was significantly decreased during seed maturation, especially in high-protein accessions. The miRNA was found to directly target the transactivation conferring C-terminal region of a nuclear-localized transcription factor, CaNAC100 as revealed using RNA ligase-mediated-rapid amplification of cDNA ends and target mimic assays. The functional role of CaNAC100 was demonstrated through seed-specific overexpression (NACOE) resulting in significantly augmented seed protein content (SPC) consequential to increased SSP transcription. Further, NACOE lines displayed conspicuously enhanced seed weight but reduced numbers and yield. Conversely, a downregulation of CaNAC100 and SSP transcripts was evident in seed-specific overexpression lines of Ca-miR164e that culminated in significantly lowered SPC. CaNAC100 was additionally demonstrated to transactivate the SSP-encoding genes by directly binding to their promoters as demonstrated using electrophoretic mobility shift and dual-luciferase reporter assays. Taken together, our study for the first time established a distinct role of CaNAC100 in positively influencing SSP synthesis and its critical regulation by CamiR164e, thereby serving as an understanding that can be utilized for developing SPC-rich chickpea varieties.
Collapse
Affiliation(s)
- Anirban Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Vimal Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| |
Collapse
|
21
|
Wang J, Zhang H, Wang Y, Meng S, Liu Q, Li Q, Zhao Z, Liu Q, Wei C. Regulatory loops between rice transcription factors OsNAC25 and OsNAC20/26 balance starch synthesis. PLANT PHYSIOLOGY 2024; 195:1365-1381. [PMID: 38471799 DOI: 10.1093/plphys/kiae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/14/2024]
Abstract
Several starch synthesis regulators have been identified, but these regulators are situated in the terminus of the regulatory network. Their upstream regulators and the complex regulatory network formed between these regulators remain largely unknown. A previous study demonstrated that NAM, ATAF, and CUC (NAC) transcription factors, OsNAC20 and OsNAC26 (OsNAC20/26), redundantly and positively regulate the accumulation of storage material in rice (Oryza sativa) endosperm. In this study, we detected OsNAC25 as an upstream regulator and interacting protein of OsNAC20/26. Both OsNAC25 mutation and OE resulted in a chalky seed phenotype, decreased starch content, and reduced expression of starch synthesis-related genes, but the mechanisms were different. In the osnac25 mutant, decreased expression of OsNAC20/26 resulted in reduced starch synthesis; however, in OsNAC25-overexpressing plants, the OsNAC25-OsNAC20/26 complex inhibited OsNAC20/26 binding to the promoter of starch synthesis-related genes. In addition, OsNAC20/26 positively regulated OsNAC25. Therefore, the mutual regulation between OsNAC25 and OsNAC20/26 forms a positive regulatory loop to stimulate the expression of starch synthesis-related genes and meet the great demand for starch accumulation in the grain filling stage. Simultaneously, a negative regulatory loop forms among the 3 proteins to avoid the excessive expression of starch synthesis-related genes. Collectively, our findings demonstrate that both promotion and inhibition mechanisms between OsNAC25 and OsNAC20/26 are essential for maintaining stable expression of starch synthesis-related genes and normal starch accumulation.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Haiqin Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yuanjiang Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Shanshan Meng
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Qing Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Qian Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Zhiwen Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
22
|
Wang JD, Wang J, Huang LC, Kan LJ, Wang CX, Xiong M, Zhou P, Zhou LH, Chen C, Zhao DS, Fan XL, Zhang CQ, Zhou Y, Zhang L, Liu QQ, Li QF. ABA-mediated regulation of rice grain quality and seed dormancy via the NF-YB1-SLRL2-bHLH144 Module. Nat Commun 2024; 15:4493. [PMID: 38802342 PMCID: PMC11130328 DOI: 10.1038/s41467-024-48760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
Abscisic acid (ABA) plays a crucial role in promoting plant stress resistance and seed dormancy. However, how ABA regulates rice quality remains unclear. This study identifies a key transcription factor SLR1-like2 (SLRL2), which mediates the ABA-regulated amylose content (AC) of rice. Mechanistically, SLRL2 interacts with NF-YB1 to co-regulate Wx, a determinant of AC and rice quality. In contrast to SLR1, SLRL2 is ABA inducible but insensitive to GA. In addition, SLRL2 exhibits DNA-binding activity and directly regulates the expression of Wx, bHLH144 and MFT2. SLRL2 competes with NF-YC12 for interaction with NF-YB1. NF-YB1 also directly represses SLRL2 transcription. Genetic validation supports that SLRL2 functions downstream of NF-YB1 and bHLH144 in regulating rice AC. Thus, an NF-YB1-SLRL2-bHLH144 regulatory module is successfully revealed. Furthermore, SLRL2 regulates rice dormancy by modulating the expression of MFT2. In conclusion, this study revealed an ABA-responsive regulatory cascade that functions in both rice quality and seed dormancy.
Collapse
Affiliation(s)
- Jin-Dong Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jing Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Li-Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Li-Jun Kan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chu-Xin Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Min Xiong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Peng Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Li-Hui Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dong-Sheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiao-Lei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lin Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
23
|
Fuertes-Aguilar J, Matilla AJ. Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family. Int J Mol Sci 2024; 25:5369. [PMID: 38791407 PMCID: PMC11121595 DOI: 10.3390/ijms25105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by binding to specific sequences on DNA through their DNA-binding domain (DBD), a universal process. This update conveys information about the diverse roles of TFs, focusing on the NACs (NAM-ATAF-CUC), in regulating target-gene expression and influencing various aspects of plant biology. NAC TFs appeared before the emergence of land plants. The NAC family constitutes a diverse group of plant-specific TFs found in mosses, conifers, monocots, and eudicots. This update discusses the evolutionary origins of plant NAC genes/proteins from green algae to their crucial roles in plant development and stress response across various plant species. From mosses and lycophytes to various angiosperms, the number of NAC proteins increases significantly, suggesting a gradual evolution from basal streptophytic green algae. NAC TFs play a critical role in enhancing abiotic stress tolerance, with their function conserved in angiosperms. Furthermore, the modular organization of NACs, their dimeric function, and their localization within cellular compartments contribute to their functional versatility and complexity. While most NAC TFs are nuclear-localized and active, a subset is found in other cellular compartments, indicating inactive forms until specific cues trigger their translocation to the nucleus. Additionally, it highlights their involvement in endoplasmic reticulum (ER) stress-induced programmed cell death (PCD) by activating the vacuolar processing enzyme (VPE) gene. Moreover, this update provides a comprehensive overview of the diverse roles of NAC TFs in plants, including their participation in ER stress responses, leaf senescence (LS), and growth and development. Notably, NACs exhibit correlations with various phytohormones (i.e., ABA, GAs, CK, IAA, JA, and SA), and several NAC genes are inducible by them, influencing a broad spectrum of biological processes. The study of the spatiotemporal expression patterns provides insights into when and where specific NAC genes are active, shedding light on their metabolic contributions. Likewise, this review emphasizes the significance of NAC TFs in transcriptional modules, seed reserve accumulation, and regulation of seed dormancy and germination. Overall, it effectively communicates the intricate and essential functions of NAC TFs in plant biology. Finally, from an evolutionary standpoint, a phylogenetic analysis suggests that it is highly probable that the WRKY family is evolutionarily older than the NAC family.
Collapse
Affiliation(s)
| | - Angel J. Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971 Santiago de Compostela, Spain
| |
Collapse
|
24
|
Yan M, Jiao G, Shao G, Chen Y, Zhu M, Yang L, Xie L, Hu P, Tang S. Chalkiness and premature controlled by energy homeostasis in OsNAC02 Ko-mutant during vegetative endosperm development. BMC PLANT BIOLOGY 2024; 24:196. [PMID: 38494545 PMCID: PMC10946104 DOI: 10.1186/s12870-024-04845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Chalkiness is a common phenotype induced by various reasons, such as abiotic stress or the imbalance of starch synthesis and metabolism during the development period. However, the reason mainly for one gene losing its function such as NAC (TFs has a large family in rice) which may cause premature is rarely known to us. RESULTS The Ko-Osnac02 mutant demonstrated an obviously early maturation stage compared to the wild type (WT) with 15 days earlier. The result showed that the mature endosperm of Ko-Osnac02 mutant exhibited chalkiness, characterized by white-core and white-belly in mature endosperm. As grain filling rate is a crucial factor in determining the yield and quality of rice (Oryza sativa, ssp. japonica), it's significant that mutant has a lower amylose content (AC) and higher soluble sugar content in the mature endosperm. Interestingly among the top DEGs in the RNA sequencing of N2 (3DAP) and WT seeds revealed that the OsBAM2 (LOC_Os10g32810) expressed significantly high in N2 mutant, which involved in Maltose up-regulated by the starch degradation. As Prediction of Protein interaction showed in the chalky endosperm formation in N2 seeds (3 DAP), seven genes were expressed at a lower-level which should be verified by a heatmap diagrams based on DEGs of N2 versus WT. The Tubulin genes controlling cell cycle are downregulated together with the MCM family genes MCM4 ( ↓), MCM7 ( ↑), which may cause white-core in the early endosperm development. In conclusion, the developing period drastically decreased in the Ko-Osnac02 mutants, which might cause the chalkiness in seeds during the early endosperm development. CONCLUSIONS The gene OsNAC02 which controls a great genetic co-network for cell cycle regulation in early development, and KO-Osnac02 mutant shows prematurity and white-core in endosperm.
Collapse
Affiliation(s)
- Mei Yan
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ying Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Maodi Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Lingwei Yang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
25
|
Cao S, Liu B, Wang D, Rasheed A, Xie L, Xia X, He Z. Orchestrating seed storage protein and starch accumulation toward overcoming yield-quality trade-off in cereal crops. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:468-483. [PMID: 38409921 DOI: 10.1111/jipb.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Achieving high yield and good quality in crops is essential for human food security and health. However, there is usually disharmony between yield and quality. Seed storage protein (SSP) and starch, the predominant components in cereal grains, determine yield and quality, and their coupled synthesis causes a yield-quality trade-off. Therefore, dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality. Here, we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops, including maize, rice and wheat. We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights. We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding. Finally, future perspectives on major challenges are proposed.
Collapse
Affiliation(s)
- Shuanghe Cao
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Bingyan Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Daowen Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Awais Rasheed
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lina Xie
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Xianchun Xia
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
26
|
Chen Z, Zhou W, Guo X, Ling S, Li W, Wang X, Yao J. Heat Stress Responsive Aux/IAA Protein, OsIAA29 Regulates Grain Filling Through OsARF17 Mediated Auxin Signaling Pathway. RICE (NEW YORK, N.Y.) 2024; 17:16. [PMID: 38374238 PMCID: PMC10876508 DOI: 10.1186/s12284-024-00694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
High temperature during grain filling considerably reduces yield and quality in rice, but its molecular mechanisms are not fully understood. We investigated the functions of a seed preferentially expressed Aux/IAA gene, OsIAA29, under high temperature-stress in grain filling using CRISPR/Cas9, RNAi, and overexpression. We observed that the osiaa29 had a higher percentage of shrunken and chalkiness seed, as well as lower 1000-grain weight than ZH11 under high temperature. Meanwhile, the expression of OsIAA29 was induced and the IAA content was remarkably reduced in the ZH11 seeds under high temperature. In addition, OsIAA29 may enhance the transcriptional activation activity of OsARF17 through competition with OsIAA21 binding to OsARF17. Finally, chromatin immunoprecipitation quantitative real-time PCR (ChIP-qPCR) results proved that OsARF17 regulated expression of several starch and protein synthesis related genes (like OsPDIL1-1, OsSS1, OsNAC20, OsSBE1, and OsC2H2). Therefore, OsIAA29 regulates seed development in high temperature through competition with OsIAA21 in the binding to OsARF17, mediating auxin signaling pathway in rice. This study provides a theoretical basis and gene resources for auxin signaling and effective molecular design breeding.
Collapse
Affiliation(s)
- Zhanghao Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Zhou
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Xianyu Guo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Ling
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wang Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
27
|
Sachdeva S, Singh R, Maurya A, Singh VK, Singh UM, Kumar A, Singh GP. Multi-model genome-wide association studies for appearance quality in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1304388. [PMID: 38273959 PMCID: PMC10808671 DOI: 10.3389/fpls.2023.1304388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
Improving the quality of the appearance of rice is critical to meet market acceptance. Mining putative quality-related genes has been geared towards the development of effective breeding approaches for rice. In the present study, two SL-GWAS (CMLM and MLM) and three ML-GWAS (FASTmrEMMA, mrMLM, and FASTmrMLM) genome-wide association studies were conducted in a subset of 3K-RGP consisting of 198 rice accessions with 553,831 SNP markers. A total of 594 SNP markers were identified using the mixed linear model method for grain quality traits. Additionally, 70 quantitative trait nucleotides (QTNs) detected by the ML-GWAS models were strongly associated with grain aroma (AR), head rice recovery (HRR, %), and percentage of grains with chalkiness (PGC, %). Finally, 39 QTNs were identified using single- and multi-locus GWAS methods. Among the 39 reliable QTNs, 20 novel QTNs were identified for the above-mentioned three quality-related traits. Based on annotation and previous studies, four functional candidate genes (LOC_Os01g66110, LOC_Os01g66140, LOC_Os07g44910, and LOC_Os02g14120) were found to influence AR, HRR (%), and PGC (%), which could be utilized in rice breeding to improve grain quality traits.
Collapse
Affiliation(s)
- Supriya Sachdeva
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Vikas Kumar Singh
- International Rice Research Institute, South Asia Hub, International Crop Reseach Institute for Semi Arid Tropics (ICRISAT), Hyderabad, India
| | - Uma Maheshwar Singh
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
| | - Arvind Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
28
|
Li Y, Zhao L, Guo C, Tang M, Lian W, Chen S, Pan Y, Xu X, Luo C, Yi Y, Cui Y, Chen L. OsNAC103, an NAC transcription factor negatively regulates plant height in rice. PLANTA 2024; 259:35. [PMID: 38193994 PMCID: PMC10776745 DOI: 10.1007/s00425-023-04309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
MAIN CONCLUSION OsNAC103 negatively regulates rice plant height by influencing the cell cycle and crosstalk of phytohormones. Plant height is an important characteristic of rice farming and is directly related to agricultural yield. Although there has been great progress in research on plant growth regulation, numerous genes remain to be elucidated. NAC transcription factors are widespread in plants and have a vital function in plant growth. Here, we observed that the overexpression of OsNAC103 resulted in a dwarf phenotype, whereas RNA interference (RNAi) plants and osnac103 mutants showed no significant difference. Further investigation revealed that the cell length did not change, indicating that the dwarfing of plants was caused by a decrease in cell number due to cell cycle arrest. The content of the bioactive cytokinin N6-Δ2-isopentenyladenine (iP) decreased as a result of the cytokinin synthesis gene being downregulated and the enhanced degradation of cytokinin oxidase. OsNAC103 overexpression also inhibited cell cycle progression and regulated the activity of the cell cyclin OsCYCP2;1 to arrest the cell cycle. We propose that OsNAC103 may further influence rice development and gibberellin-cytokinin crosstalk by regulating the Oryza sativa homeobox 71 (OSH71). Collectively, these results offer novel perspectives on the role of OsNAC103 in controlling plant architecture.
Collapse
Affiliation(s)
- Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Liming Zhao
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Chiming Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Wenli Lian
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Siyu Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuehan Pan
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaorong Xu
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Chengke Luo
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
29
|
Peng B, Sun X, Tian X, Kong D, He L, Peng J, Liu Y, Guo G, Sun Y, Pang R, Zhou W, Zhao J, Wang Q. OsNAC74 affects grain protein content and various biological traits by regulating OsAAP6 expression in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:87. [PMID: 38037655 PMCID: PMC10684849 DOI: 10.1007/s11032-023-01433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
The grain protein content is an important quality trait in cereals, and the expression level of the OsAAP6 can significantly affect the grain protein content in rice. Through site-directed mutagenesis, we found that the position from -7 to -12 bp upstream of the transcription start site of the OsAAP6 was the functional variation site. By using the yeast single hybrid test, point-to-point in yeast, and the local surface plasmon resonance test, the OsNAC74 was screened and verified to be a regulator upstream of OsAAP6. The OsNAC74 is a constitutively expressed gene whose product is located on the cell membrane. The OsAAP6 and the genes related to the seed storage in the Osnac74 mutants were downregulated, and grain protein content was significantly reduced. In addition, OsNAC74 had a significant impact on quality traits such as grain chalkiness and gel consistency in rice. Although the Osnac74 mutant seeds were relatively small, the individual plant yield was not decreased. Therefore, OsNAC74 is an important regulatory factor with multiple biological functions. This study provides important information for the later use of OsNAC74 gene for molecular design and breeding in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01433-w.
Collapse
Affiliation(s)
- Bo Peng
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Xiaoyu Sun
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Xiayu Tian
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Dongyan Kong
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Lulu He
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Juan Peng
- Xinyang Station of Plant Protection and Inspection, Xinyang, 464000 China
| | - Yan Liu
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Guiying Guo
- Xinyang Academy of Agricultural Science, Xinyang, 464000 China
| | - Yanfang Sun
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Ruihua Pang
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Wei Zhou
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Jinhui Zhao
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Quanxiu Wang
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| |
Collapse
|
30
|
Liu Y, Xi W, Wang X, Li H, Liu H, Li T, Hou J, Liu X, Hao C, Zhang X. TabHLH95-TaNF-YB1 module promotes grain starch synthesis in bread wheat. J Genet Genomics 2023; 50:883-894. [PMID: 37062449 DOI: 10.1016/j.jgg.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Starch is the most abundant substance in wheat (Triticum aestivum L.) endosperm and provides the major carbohydrate energy for human daily life. Starch synthesis-related (SSR) genes are believed to be spatiotemporally specific, but their transcriptional regulation remains unclear in wheat. Here, we investigate the role of the basic helix-loop-helix (bHLH) transcription factor TabHLH95 in starch synthesis. TabHLH95 is preferentially expressed in the developing grains in wheat and encodes a nucleus localized protein without autoactivation activity. The Tabhlh95 knockout mutants display smaller grain size and less starch content than wild type, whereas overexpression of TabHLH95 enhances starch accumulation and significantly improves thousand grain weight. Transcriptome analysis reveals that the expression of multiple SSR genes is significantly reduced in the Tabhlh95 mutants. TabHLH95 binds to the promoters of ADP-glucose pyrophosphorylase large subunit 1 (AGPL1-1D/-1B), AGPL2-5D, and isoamylase (ISA1-7D) and enhances their transcription. Intriguingly, TabHLH95 interacts with the nuclear factor Y (NF-Y) family transcription factor TaNF-YB1, thereby synergistically regulating starch synthesis. These results suggest that the TabHLH95-TaNF-YB1 complex positively modulates starch synthesis and grain weight by regulating the expression of a subset of SSR genes, thus providing a good potential approach for genetic improvement of grain productivity in wheat.
Collapse
Affiliation(s)
- Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Xi
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Aridland Crop Science (Gansu Agricultural University)/Gansu Provincial Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, Gansu 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaolu Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
31
|
Jin SK, Xu LN, Leng YJ, Zhang MQ, Yang QQ, Wang SL, Jia SW, Song T, Wang RA, Tao T, Liu QQ, Cai XL, Gao JP. The OsNAC24-OsNAP protein complex activates OsGBSSI and OsSBEI expression to fine-tune starch biosynthesis in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2224-2240. [PMID: 37432878 PMCID: PMC10579716 DOI: 10.1111/pbi.14124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
Starch accounts for up to 90% of the dry weight of rice endosperm and is a key determinant of grain quality. Although starch biosynthesis enzymes have been comprehensively studied, transcriptional regulation of starch-synthesis enzyme-coding genes (SECGs) is largely unknown. In this study, we explored the role of a NAC transcription factor, OsNAC24, in regulating starch biosynthesis in rice. OsNAC24 is highly expressed in developing endosperm. The endosperm of osnac24 mutants is normal in appearance as is starch granule morphology, while total starch content, amylose content, chain length distribution of amylopectin and the physicochemical properties of the starch are changed. In addition, the expression of several SECGs was altered in osnac24 mutant plants. OsNAC24 is a transcriptional activator that targets the promoters of six SECGs; OsGBSSI, OsSBEI, OsAGPS2, OsSSI, OsSSIIIa and OsSSIVb. Since both the mRNA and protein abundances of OsGBSSI and OsSBEI were decreased in the mutants, OsNAC24 functions to regulate starch synthesis mainly through OsGBSSI and OsSBEI. Furthermore, OsNAC24 binds to the newly identified motifs TTGACAA, AGAAGA and ACAAGA as well as the core NAC-binding motif CACG. Another NAC family member, OsNAP, interacts with OsNAC24 and coactivates target gene expression. Loss-of-function of OsNAP led to altered expression in all tested SECGs and reduced the starch content. These results demonstrate that the OsNAC24-OsNAP complex plays key roles in fine-tuning starch synthesis in rice endosperm and further suggest that manipulating the OsNAC24-OsNAP complex regulatory network could be a potential strategy for breeding rice cultivars with improved cooking and eating quality.
Collapse
Affiliation(s)
- Su-Kui Jin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Na Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Ming-Qiu Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qing-Qing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Shui-Lian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Wen Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-An Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Tao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiu-Ling Cai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Chen E, Yu H, He J, Peng D, Zhu P, Pan S, Wu X, Wang J, Ji C, Chao Z, Xu Z, Wu Y, Chao D, Wu Y, Zhang Z. The transcription factors ZmNAC128 and ZmNAC130 coordinate with Opaque2 to promote endosperm filling in maize. THE PLANT CELL 2023; 35:4066-4090. [PMID: 37542515 PMCID: PMC10615213 DOI: 10.1093/plcell/koad215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
Endosperm filling in maize (Zea mays), which involves nutrient uptake and biosynthesis of storage reserves, largely determines grain yield and quality. However, much remains unclear about the synchronization of these processes. Here, we comprehensively investigated the functions of duplicate NAM, ATAF1/2, and CUC2 (NAC)-type transcription factors, namely, ZmNAC128 and ZmNAC130, in endosperm filling. The gene-edited double mutant zmnac128 zmnac130 exhibits a poorly filled kernel phenotype such that the kernels have an inner cavity. RNA sequencing and protein abundance analysis revealed that the expression of many genes involved in the biosynthesis of zein and starch is reduced in the filling endosperm of zmnac128 zmnac130. Further, DNA affinity purification and sequencing combined with chromatin-immunoprecipitation quantitative PCR and promoter transactivation assays demonstrated that ZmNAC128 and ZmNAC130 are direct regulators of 3 (16-, 27-, and 50-kD) γ-zein genes and 6 important starch metabolism genes (Brittle2 [Bt2], pullulanase-type starch debranching enzyme [Zpu1], granule-bound starch synthase 1 [GBSS1], starch synthase 1 [SS1], starch synthase IIa [SSIIa], and sucrose synthase 1 [Sus1]). ZmNAC128 and ZmNAC130 recognize an additional cis-element in the Opaque2 (O2) promoter to regulate its expression. The triple mutant zmnac128 zmnac130 o2 exhibits extremely poor endosperm filling, which results in more than 70% of kernel weight loss. ZmNAC128 and ZmNAC130 regulate the expression of the transporter genes sugars that will eventually be exported transporter 4c (ZmSWEET4c), sucrose and glucose carrier 1 (ZmSUGCAR1), and yellow stripe-like2 (ZmYSL2) and in turn facilitate nutrient uptake, while O2 plays a supporting role. In conclusion, ZmNAC128 and ZmNAC130 cooperate with O2 to facilitate endosperm filling, which involves nutrient uptake in the basal endosperm transfer layer (BETL) and the synthesis of zeins and starch in the starchy endosperm (SE).
Collapse
Affiliation(s)
- Erwang Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Huiqin Yu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Juan He
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Di Peng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Panpan Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Shuxing Pan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Xu Wu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Jincang Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032,China
| | - Zhenfei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032,China
| | - Zhuopin Xu
- Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031,China
| | - Yuejin Wu
- Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031,China
| | - Daiyin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032,China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032,China
| | - Zhiyong Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| |
Collapse
|
33
|
Xie L, Liu S, Zhang Y, Tian W, Xu D, Li J, Luo X, Li L, Bian Y, Li F, Hao Y, He Z, Xia X, Song X, Cao S. Efficient proteome-wide identification of transcription factors targeting Glu-1: A case study for functional validation of TaB3-2A1 in wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1952-1965. [PMID: 37381172 PMCID: PMC10502752 DOI: 10.1111/pbi.14103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/13/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
High-molecular-weight glutenin subunits (HMW-GS), a major component of seed storage proteins (SSP) in wheat, largely determine processing quality. HMW-GS encoded by GLU-1 loci are mainly controlled at the transcriptional level by interactions between cis-elements and transcription factors (TFs). We previously identified a conserved cis-regulatory module CCRM1-1 as the most essential cis-element for Glu-1 endosperm-specific high expression. However, the TFs targeting CCRM1-1 remained unknown. Here, we built the first DNA pull-down plus liquid chromatography-mass spectrometry platform in wheat and identified 31 TFs interacting with CCRM1-1. TaB3-2A1 as proof of concept was confirmed to bind to CCRM1-1 by yeast one hybrid and electrophoretic mobility shift assays. Transactivation experiments demonstrated that TaB3-2A1 repressed CCRM1-1-driven transcription activity. TaB3-2A1 overexpression significantly reduced HMW-GS and other SSP, but enhanced starch content. Transcriptome analyses confirmed that enhanced expression of TaB3-2A1 down-regulated SSP genes and up-regulated starch synthesis-related genes, such as TaAGPL3, TaAGPS2, TaGBSSI, TaSUS1 and TaSUS5, suggesting that it is an integrator modulating the balance of carbon and nitrogen metabolism. TaB3-2A1 also had significant effects on agronomic traits, including heading date, plant height and grain weight. We identified two major haplotypes of TaB3-2A1 and found that TaB3-2A1-Hap1 conferred lower seed protein content, but higher starch content, plant height and grain weight than TaB3-2A1-Hap2 and was subjected to positive selection in a panel of elite wheat cultivars. These findings provide a high-efficiency tool to detect TFs binding to targeted promoters, considerable gene resources for dissecting regulatory mechanisms underlying Glu-1 expression, and a useful gene for wheat improvement.
Collapse
Affiliation(s)
- Lina Xie
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Siyang Liu
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Wenfei Tian
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
- International Maize and Wheat Improvement Center (CIMMYT) China OfficeChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Dengan Xu
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Jihu Li
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xumei Luo
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Lingli Li
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Yingjie Bian
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Faji Li
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Yuanfeng Hao
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
- International Maize and Wheat Improvement Center (CIMMYT) China OfficeChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiyue Song
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| |
Collapse
|
34
|
Zhao Y, Zhang C, Zhao Y, Peng Y, Ran X, Guo H, Shen Y, Liu W, Ding Y, Tang S. Multiple regulators were involved in glutelin synthesis and subunit accumulation in response to temperature and nitrogen during rice grain-filling stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107967. [PMID: 37597275 DOI: 10.1016/j.plaphy.2023.107967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Rice glutelin is sensitive to temperature and nitrogen, however, the regulatory mechanism of glutelin response to temperature and nitrogen is unclear. In this study, we conducted the open field warming experiment by the Free-air temperature enhancement facility and application of nitrogen during grain filling. In three-year field warming experiments, glutelin relative content was significantly increased under elevated temperature and application of nitrogen. Temperature and nitrogen and their interaction increased the glutelin accumulation rate in the early and middle grain filling stages (10-25d after flowering), but decreased the glutelin accumulation rate in the middle and late grain filling stages (25-45d after flowering). Elevated temperature promoted pro-glutelin levels whereas application of nitrogen under warming increased the amount of α-glutelin. At the transcriptional level, the expression levels of the glutelin-encoding genes and protein disulphide isomerase-like enzyme (PDIL1-1), glutelin precursor accumulation 4 (GPA4), glutelin precursor mutant 6 (GPA2), glutelin precursor accumulation 3 (GPA3) and vacuolar processing enzyme (OsVPE1) of glutelin folding, transport and accumulation-related genes were up-regulated by nitrogen under natural temperature as early as 5d after flowering. However, elevated temperature up-regulated glutelin-encoding genes before 20d after flowering, and the expression of endoplasmic reticulum chaperone (OsBip1), OsPDIL1-1, small GTPase gene (GPA1), GPA2-GPA4 and OsVPE1 were significantly increased post 20d after flowering under warming. In addition, the increase in glutelin content worsened grain quality, particularly chalkiness and eating quality. Overall, the results were helpful to understand glutelin accumulation and provide a theoretical basis for further study the relationship between rice quality and glutelin under global warming.
Collapse
Affiliation(s)
- Yufei Zhao
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Chen Zhang
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yigong Zhao
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yuxuan Peng
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xuan Ran
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Hao Guo
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yingying Shen
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Wenzhe Liu
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095, Nanjing, PR China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095, Nanjing, PR China.
| |
Collapse
|
35
|
Xia F, Liang X, Tan L, Sun W, Dai X, Yan H. Genome-Wide Identification, Evolution and Expression Profile Analysis of NAC Transcription Factor in Simmondsia chinensis. Curr Issues Mol Biol 2023; 45:5422-5436. [PMID: 37504260 PMCID: PMC10378596 DOI: 10.3390/cimb45070344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
NAC transcription factors (TFs) are one of the largest plant-specific gene families and play important roles in plant growth, development, and the biotic and abiotic stress response. Although the sequencing of Jojoba (Simmondsia chinensis) has been completed, the genome-wide identification and analysis of its NAC TFs has not been reported. In this study, a total of 57 genes were identified in Jojoba, which were divided into eight groups based on phylogenetic analysis. The genes clustered in the same groups have a similar gene structure and motif distribution. Based on the analysis of cis-elements in NAC TFs, nine cis-acting elements were identified in the promoter region that involved in light response, hormonal response, and stress response. Synteny analysis showed a greater collinearity between Jojoba and V. vinifera than Arabidopsis thaliana. The 24 genes in the Jojoba NAC TFs are derived from fragment replication, which may be the main source of NAC amplification. Gene expression analysis identified seven genes that were highly expressed in seeds. The differential expression analysis of NAC TFs in cotyledon and embryonic axis tissues showed that the expression of 10 genes was up-regulated and 1 gene was down-regulated. This study provides more information on the classification, gene structure, conserved motif, and evolution of NAC TFs in Jojoba, facilitating further exploration of their specific functional analysis in Jojoba seed development.
Collapse
Affiliation(s)
- Fan Xia
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Liang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Lina Tan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Wen Sun
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaogang Dai
- Key Laboratory of Tree Breeding & Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
36
|
Sharma V, Gangurde SS, Nayak SN, Gowda AS, Sukanth B, Mahadevaiah SS, Manohar SS, Choudhary RS, Anitha T, Malavalli SS, Srikanth S, Bajaj P, Sharma S, Varshney RK, Latha P, Janila P, Bhat RS, Pandey MK. Genetic mapping identified three hotspot genomic regions and candidate genes controlling heat tolerance-related traits in groundnut. FRONTIERS IN PLANT SCIENCE 2023; 14:1182867. [PMID: 37287715 PMCID: PMC10243373 DOI: 10.3389/fpls.2023.1182867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 06/09/2023]
Abstract
Groundnut productivity and quality have been impeded by rising temperatures in semi-arid environments. Hence, understanding the effects and molecular mechanisms of heat stress tolerance will aid in tackling yield losses. In this context, a recombinant inbred line (RIL) population was developed and phenotyped for eight seasons at three locations for agronomic, phenological, and physiological traits under heat stress. A genetic map was constructed using genotyping-by-sequencing with 478 single-nucleotide polymorphism (SNP) loci spanning a map distance of 1,961.39 cM. Quantitative trait locus (QTL) analysis using phenotypic and genotypic data identified 45 major main-effect QTLs for 21 traits. Intriguingly, three QTL clusters (Cluster-1-Ah03, Cluster-2-Ah12, and Cluster-3-Ah20) harbor more than half of the major QTLs (30/45, 66.6%) for various heat tolerant traits, explaining 10.4%-38.6%, 10.6%-44.6%, and 10.1%-49.5% of phenotypic variance, respectively. Furthermore, important candidate genes encoding DHHC-type zinc finger family protein (arahy.J0Y6Y5), peptide transporter 1 (arahy.8ZMT0C), pentatricopeptide repeat-containing protein (arahy.4A4JE9), Ulp1 protease family (arahy.X568GS), Kelch repeat F-box protein (arahy.I7X4PC), FRIGIDA-like protein (arahy.0C3V8Z), and post-illumination chlorophyll fluorescence increase (arahy.92ZGJC) were the underlying three QTL clusters. The putative functions of these genes suggested their involvement in seed development, regulating plant architecture, yield, genesis and growth of plants, flowering time regulation, and photosynthesis. Our results could provide a platform for further fine mapping, gene discovery, and developing markers for genomics-assisted breeding to develop heat-tolerant groundnut varieties.
Collapse
Affiliation(s)
- Vinay Sharma
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, India
| | - Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Anjan S. Gowda
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B.S. Sukanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | | | - Surendra S. Manohar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - T. Anitha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Sachin S. Malavalli
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - S.N. Srikanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Putta Latha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Pasupuleti Janila
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Ramesh S. Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| |
Collapse
|
37
|
Wang X, Liu Y, Hao C, Li T, Majeed U, Liu H, Li H, Hou J, Zhang X. Wheat NAC-A18 regulates grain starch and storage proteins synthesis and affects grain weight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:123. [PMID: 37147554 DOI: 10.1007/s00122-023-04365-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Wheat NAC-A18 regulates both starch and storage protein synthesis in the grain, and a haplotype with positive effects on grain weight showed increased frequency during wheat breeding in China. Starch and seed storage protein (SSP) directly affect the processing quality of wheat grain. The synthesis of starch and SSP are also regulated at the transcriptional level. However, only a few starch and SSP regulators have been identified in wheat. In this study, we discovered a NAC transcription factor, designated as NAC-A18, which acts as a regulator of both starch and SSP synthesis. NAC-A18, is predominately expressed in wheat developing grains, encodes a transcription factor localized in the nucleus, with both activation and repression domains. Ectopic expression of wheat NAC-A18 in rice significantly decreased starch accumulation and increased SSP accumulation and grain size and weight. Dual-luciferase reporter assays indicated that NAC-A18 could reduce the expression of TaGBSSI-A1 and TaGBSSI-A2, and enhance the expression of TaLMW-D6 and TaLMW-D1. A yeast one hybrid assay demonstrated that NAC-A18 bound directly to the cis-element "ACGCAA" in the promoters of TaLMW-D6 and TaLMW-D1. Further analysis indicated that two haplotypes were formed at NAC-A18, and that NAC-A18_h1 was a favorable haplotype correlated with higher thousand grain weight. Based on limited population data, NAC-A18_h1 underwent positive selection during Chinese wheat breeding. Our study demonstrates that wheat NAC-A18 regulates starch and SSP accumulation and grain size. A molecular marker was developed for the favorable allele for breeding applications.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Uzma Majeed
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
38
|
Wu M, Liu J, Bai X, Chen W, Ren Y, Liu J, Chen M, Zhao H, Yao X, Zhang J, Wan J, Liu C. Transcription factors NAC20 and NAC26 interact with RPBF to activate albumin accumulations in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:890-892. [PMID: 36579664 PMCID: PMC10106859 DOI: 10.1111/pbi.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/20/2022] [Accepted: 12/17/2022] [Indexed: 05/04/2023]
Affiliation(s)
- Ming‐Wei Wu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Jinxin Liu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
| | - Xue Bai
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Wen‐Qiang Chen
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yulong Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Jin‐Lei Liu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Meng‐Meng Chen
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Heng Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xuefeng Yao
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
| | - Jin‐Dan Zhang
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
| | - Jianmin Wan
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Chun‐Ming Liu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- School of Advanced Agricultural SciencesPeking UniversityBeijingChina
| |
Collapse
|
39
|
Ab'lah N, Yusuf CYL, Rojsitthisak P, Wong TW. Reinvention of starch for oral drug delivery system design. Int J Biol Macromol 2023; 241:124506. [PMID: 37085071 DOI: 10.1016/j.ijbiomac.2023.124506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Starch is a polysaccharide with varying amylose-to-amylopectin ratios as a function of its biological sources. It is characterized by low shear stress resistance, poor aqueous/organic solubility and gastrointestinal digestibility which limit its ease of processing and functionality display as an oral drug delivery vehicle. Modulation of starch composition through genetic engineering primarily alters amylose-to-amylopectin ratio. Greater molecular properties changes require chemical and enzymatic modifications of starch. Acetylation reduces water solubility and enzymatic digestibility of starch. Carboxymethylation turns starch acid-insoluble and aggregative at low pHs. The summative effects are sustaining drug release in the upper gut. Acid-insoluble carboxymethylated starch can be aminated to provide an ionic character essential for hydrogel formation which further reduces its drug release. Ionic starch can coacervate with oppositely charged starch, non-starch polyelectrolyte or drug into insoluble, controlled-release complexes. Enzymatically debranched and resistant starch has a small molecular size which confers chain aggregation into a helical hydrogel network that traps the drug molecules, protecting them from biodegradation. The modified starch has been used to modulate the intestinal/colon-specific or controlled systemic delivery of oral small molecule drugs and macromolecular therapeutics. This review highlights synthesis aspects of starch and starch derivatives, and their outcomes and challenges of applications in oral drug delivery.
Collapse
Affiliation(s)
- NorulNazilah Ab'lah
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Centre of Foundation Studies, Universiti Teknologi MARA Selangor, Dengkil 43800, Dengkil, Malaysia
| | - Chong Yu Lok Yusuf
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin, 77300, Merlimau, Melaka, Malaysia
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, 10330 Bangkok, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
Tiozon RJN, Fettke J, Sreenivasulu N, Fernie AR. More than the main structural genes: Regulation of resistant starch formation in rice endosperm and its potential application. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153980. [PMID: 37086697 DOI: 10.1016/j.jplph.2023.153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
In the past decade, research on resistant starch has evoked interest due to the prevention and inhibition of chronic human diseases, such as diabetes, cancer, and obesity. Increasing the amylose content (AC) and resistant starch (RS) has been pivotal in improving the nutritional benefit of rice. However, the exact mechanism of RS formation is complex due to interconnected genetic factors regulating amylose-amylopectin variation. In this review, we discussed the regulatory factors influencing the RS formation centered on the transcription, post-transcriptional, and post-translational processes. Furthermore, we described the developments in RS and AC levels in rice compared with other high RS cereals. Briefly, we enumerated potential applications of high RS mutants in health, medical, and other industries. We contest that the information captured herein can be deployed for marker-assisted breeding and precision breeding techniques through genome editing to improve rice varieties with enhanced RS content.
Collapse
Affiliation(s)
- Rhowell Jr N Tiozon
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines; Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
41
|
Bi Y, Wang H, Yuan X, Yan Y, Li D, Song F. The NAC transcription factor ONAC083 negatively regulates rice immunity against Magnaporthe oryzae by directly activating transcription of the RING-H2 gene OsRFPH2-6. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:854-875. [PMID: 36308720 DOI: 10.1111/jipb.13399] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
NAC transcription factors (TFs) play critical roles in plant immunity by modulating the expression of downstream genes via binding to specific cis-elements in promoters. Here, we report the function and regulatory network of a pathogen- and defense phytohormone-inducible NAC TF gene, ONAC083, in rice (Oryza sativa) immunity. ONAC083 localizes to the nucleus and exhibits transcriptional activation activity that depends on its C-terminal region. Knockout of ONAC083 enhances rice immunity against Magnaporthe oryzae, strengthening pathogen-induced defense responses, and boosting chitin-induced pattern-triggered immunity (PTI), whereas ONAC083 overexpression has opposite effects. We identified ONAC083-binding sites in the promoters of 82 genes, and showed that ONAC083 specifically binds to a conserved element with the core sequence ACGCAA. ONAC083 activated the transcription of the genes OsRFPH2-6, OsTrx1, and OsPUP4 by directly binding to the ACGCAA element. OsRFPH2-6, encoding a RING-H2 protein with an N-terminal transmembrane region and a C-terminal typical RING domain, negatively regulated rice immunity against M. oryzae and chitin-triggered PTI. These data demonstrate that ONAC083 negatively contributes to rice immunity against M. oryzae by directly activating the transcription of OsRFPH2-6 through the ACGCAA element in its promoter. Overall, our study provides new insight into the molecular regulatory network of NAC TFs in rice immunity.
Collapse
Affiliation(s)
- Yan Bi
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xi Yuan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
42
|
Molecular bases of rice grain size and quality for optimized productivity. Sci Bull (Beijing) 2023; 68:314-350. [PMID: 36710151 DOI: 10.1016/j.scib.2023.01.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The accomplishment of further optimization of crop productivity in grain yield and quality is a great challenge. Grain size is one of the crucial determinants of rice yield and quality; all of these traits are typical quantitative traits controlled by multiple genes. Research advances have revealed several molecular and developmental pathways that govern these traits of agronomical importance. This review provides a comprehensive summary of these pathways, including those mediated by G-protein, the ubiquitin-proteasome system, mitogen-activated protein kinase, phytohormone, transcriptional regulators, and storage product biosynthesis and accumulation. We also generalize the excellent precedents for rice variety improvement of grain size and quality, which utilize newly developed gene editing and conventional gene pyramiding capabilities. In addition, we discuss the rational and accurate breeding strategies, with the aim of better applying molecular design to breed high-yield and superior-quality varieties.
Collapse
|
43
|
Liu C, Wang T, Chen H, Ma X, Jiao C, Cui D, Han B, Li X, Jiao A, Ruan R, Xue D, Wang Y, Han L. Genomic footprints of Kam Sweet Rice domestication indicate possible migration routes of the Dong people in China and provide resources for future rice breeding. MOLECULAR PLANT 2023; 16:415-431. [PMID: 36578210 DOI: 10.1016/j.molp.2022.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The Dong people are one of China's 55 recognized ethnic minorities, but there has been a long-standing debate about their origins. In this study, we performed whole-genome resequencing of Kam Sweet Rice (KSR), a valuable, rare, and ancient rice landrace unique to the Dong people. Through comparative genomic analyses of KSR and other rice landraces from south of the Yangtze River Basin in China, we provide evidence that the ancestors of the Dong people likely originated from the southeast coast of China at least 1000 years ago. Alien introgression and admixture in KSR demonstrated multiple migration events in the history of the Dong people. Genomic footprints of domestication demonstrated characteristics of KSR that arose from artificial selection and geographical adaptation by the Dong people. The key genes GS3, Hd1, and DPS1 (related to agronomic traits) and LTG1 and MYBS3 (related to cold tolerance) were identified as domestication targets, reflecting crop improvement and changes in the geographical environment of the Dong people during migration. A genome-wide association study revealed a candidate yield-associated gene, Os01g0923300, a specific haplotype in KSR that is important for regulating grain number per panicle. RNA-sequencing and quantitative reverse transcription-PCR results showed that this gene was more highly expressed in KSR than in ancestral populations, indicating that it may have great value in increasing yield potential in other rice accessions. In summary, our work develops a novel approach for studying human civilization and migration patterns and provides valuable genomic datasets and resources for future breeding of high-yield and climate-resilient rice varieties.
Collapse
Affiliation(s)
- Chunhui Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tianyi Wang
- Smartgenomics Technology Institute, Tianjin 301700, China
| | - Huicha Chen
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengzhi Jiao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaobing Li
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Aixia Jiao
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Renchao Ruan
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Dayuan Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yanjie Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
44
|
Ma B, Zhang L, He Z. Understanding the regulation of cereal grain filling: The way forward. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:526-547. [PMID: 36648157 DOI: 10.1111/jipb.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
During grain filling, starch and other nutrients accumulate in the endosperm; this directly determines grain yield and grain quality in crops such as rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum). Grain filling is a complex trait affected by both intrinsic and environmental factors, making it difficult to explore the underlying genetics, molecular regulation, and the application of these genes for breeding. With the development of powerful genetic and molecular techniques, much has been learned about the genes and molecular networks related to grain filling over the past decades. In this review, we highlight the key factors affecting grain filling, including both biological and abiotic factors. We then summarize the key genes controlling grain filling and their roles in this event, including regulators of sugar translocation and starch biosynthesis, phytohormone-related regulators, and other factors. Finally, we discuss how the current knowledge of valuable grain filling genes could be integrated with strategies for breeding cereal varieties with improved grain yield and quality.
Collapse
Affiliation(s)
- Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
45
|
Cui Y, Liu D, Zhao Z, Zhang J, Li S, Liu Z. Transcriptome analysis and identification of genes associated with leaf crude protein content in foxtail millet [ Setaria italica (L.) P. Beauv.]. Front Genet 2023; 14:1122212. [PMID: 36741329 PMCID: PMC9895776 DOI: 10.3389/fgene.2023.1122212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
Introduction: Spruce spider mite is a primary insect pest of Chinese chestnut in China and seriously influences its yield and quality. However, the current management against this mite is costly and poorly effective. In previous research, we bred several foxtail millet materials for interplanting with chestnut tree, and found that they had high levels of crude protein (CP) in leaves and attracted spruce spider mite to feed on the leaves, thereby reducing chestnut damage. Methods: In this study, four foxtail millet varieties with significant differences in leaf crude protein content were used for high-throughput sequencing and identification of genes associated with leaf crude protein content. Gene enrichment analyses were carried out to comprehend the functions of these genes and the biological processes in which they are involved. In addition, transcription factors (TFs) were evaluated. Results: 435 differentially expressed genes (DEGs) were identified, suggesting their potential role in crude protein accumulation. Some differentially expressed genes were found to be associated with nitrogen metabolism and ubiquitin-mediated proteolysis pathways. Moreover, we identified 40 TF genes categorized into 11 transcription factor families. Discussion: Our findings represent an important resource that clarifies the mechanisms of accumulation and control of leaf crude protein in foxtail millet, and provide an opportunity for suppression of spruce spider mite attack on Chinese chestnut by interplanting with foxtail millet varieties with high concentrations of leaf crude protein.
Collapse
Affiliation(s)
- Yanjiao Cui
- Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Dan Liu
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Sciences, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zilong Zhao
- Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Jing Zhang
- Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Suying Li
- Department of Life Sciences, Tangshan Normal University, Tangshan, China,*Correspondence: Suying Li, ; Zhengli Liu,
| | - Zhengli Liu
- Department of Life Sciences, Tangshan Normal University, Tangshan, China,*Correspondence: Suying Li, ; Zhengli Liu,
| |
Collapse
|
46
|
Yang T, Wu X, Wang W, Wu Y. Regulation of seed storage protein synthesis in monocot and dicot plants: A comparative review. MOLECULAR PLANT 2023; 16:145-167. [PMID: 36495013 DOI: 10.1016/j.molp.2022.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Seeds are a major source of nutrients for humans and animal livestock worldwide. With improved living standards, high nutritional quality has become one of the main targets for breeding. Storage protein content in seeds, which is highly variable depending on plant species, serves as a pivotal criterion of seed nutritional quality. In the last few decades, our understanding of the molecular genetics and regulatory mechanisms of storage protein synthesis has greatly advanced. Here, we systematically and comprehensively summarize breakthroughs on the conservation and divergence of storage protein synthesis in dicot and monocot plants. With regard to storage protein accumulation, we discuss evolutionary origins, developmental processes, characteristics of main storage protein fractions, regulatory networks, and genetic modifications. In addition, we discuss potential breeding strategies to improve storage protein accumulation and provide perspectives on some key unanswered problems that need to be addressed.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xingguo Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Wenqin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
47
|
Chen X, Ji Y, Zhao W, Niu H, Yang X, Jiang X, Zhang Y, Lei J, Yang H, Chen R, Gu C, Xu H, Dong H, Duan E, Teng X, Wang Y, Zhang Y, Zhang W, Wang Y, Wan J. Fructose-6-phosphate-2-kinase/fructose-2,6-bisphosphatase regulates energy metabolism and synthesis of storage products in developing rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111503. [PMID: 36270512 DOI: 10.1016/j.plantsci.2022.111503] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Starch accounts for about 80-85 % of the dry weight of grains and determines yield by impact on grain weight. And, the content and composition of starch also determine appearance, eating, cooking and nutritional quality of rice. By coordinating crucial reactions of the primary carbohydrate metabolism in all eukaryotes, fructose-2,6-bisphosphate (Fru-2,6-P2) is a traffic signal in metabolism. However, the metabolic regulation of starch in plant sink tissues by Fru-2,6-P2 remains unclear. Here we isolated rice mutant floury endosperm23 (flo23) which has opaque endosperm and anomalous compound starch grains (SGs). flo23 mutant grains had reduced contents of starch, lipids and proteins. Map-based cloning and genetic complementation experiments showed that FLO23 encodes a cytoplasmic Fructose-6-phosphate-2-kinase/Fructose-2,6-bisphosphatase (F2KP). Mutation of OsF2KP2 decreased Fru-2,6-P2 content in endosperm cells, leading to drastically reduced phosphoenolpyruvate (PEP) and pyruvate contents and disordered glycolysis and energy metabolism. The results imply that OsF2KP2 participates in the glycolytic pathway by providing precursors and energy for synthesis of grain storage compounds.
Collapse
Affiliation(s)
- Xiaoli Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Ji
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiying Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huanying Niu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xue Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaokang Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yipeng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hang Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Rongbo Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chuanwei Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongyi Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hui Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Erchao Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
48
|
Iqbal A, Bocian J, Hameed A, Orczyk W, Nadolska-Orczyk A. Cis-Regulation by NACs: A Promising Frontier in Wheat Crop Improvement. Int J Mol Sci 2022; 23:15431. [PMID: 36499751 PMCID: PMC9736367 DOI: 10.3390/ijms232315431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Crop traits are controlled by multiple genes; however, the complex spatio-temporal transcriptional behavior of genes cannot be fully understood without comprehending the role of transcription factors (TFs) and the underlying mechanisms of the binding interactions of their cis-regulatory elements. NAC belongs to one of the largest families of plant-specific TFs and has been associated with the regulation of many traits. This review provides insight into the cis-regulation of genes by wheat NACs (TaNACs) for the improvement in yield-related traits, including phytohormonal homeostasis, leaf senescence, seed traits improvement, root modulation, and biotic and abiotic stresses in wheat and other cereals. We also discussed the current potential, knowledge gaps, and prospects of TaNACs.
Collapse
Affiliation(s)
| | | | | | | | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| |
Collapse
|
49
|
Cao R, Zhao S, Jiao G, Duan Y, Ma L, Dong N, Lu F, Zhu M, Shao G, Hu S, Sheng Z, Zhang J, Tang S, Wei X, Hu P. OPAQUE3, encoding a transmembrane bZIP transcription factor, regulates endosperm storage protein and starch biosynthesis in rice. PLANT COMMUNICATIONS 2022; 3:100463. [PMID: 36258666 PMCID: PMC9700205 DOI: 10.1016/j.xplc.2022.100463] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 05/11/2023]
Abstract
Starch and storage proteins are the main components of rice (Oryza sativa L.) grains. Despite their importance, the molecular regulatory mechanisms of storage protein and starch biosynthesis remain largely elusive. Here, we identified a rice opaque endosperm mutant, opaque3 (o3), that overaccumulates 57-kDa proglutelins and has significantly lower protein and starch contents than the wild type. The o3 mutant also has abnormal protein body structures and compound starch grains in its endosperm cells. OPAQUE3 (O3) encodes a transmembrane basic leucine zipper (bZIP) transcription factor (OsbZIP60) and is localized in the endoplasmic reticulum (ER) and the nucleus, but it is localized mostly in the nucleus under ER stress. We demonstrated that O3 could activate the expression of several starch synthesis-related genes (GBSSI, AGPL2, SBEI, and ISA2) and storage protein synthesis-related genes (OsGluA2, Prol14, and Glb1). O3 also plays an important role in protein processing and export in the ER by directly binding to the promoters and activating the expression of OsBIP1 and PDIL1-1, two major chaperones that assist with folding of immature secretory proteins in the ER of rice endosperm cells. High-temperature conditions aggravate ER stress and result in more abnormal grain development in o3 mutants. We also revealed that OsbZIP50 can assist O3 in response to ER stress, especially under high-temperature conditions. We thus demonstrate that O3 plays a central role in rice grain development by participating simultaneously in the regulation of storage protein and starch biosynthesis and the maintenance of ER homeostasis in endosperm cells.
Collapse
Affiliation(s)
- Ruijie Cao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaolu Zhao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China; Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng 224002, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Yingqing Duan
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Liuyang Ma
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Nannan Dong
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Feifei Lu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Mingdong Zhu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
50
|
Vranic M, Perochon A, Benbow H, Doohan FM. Comprehensive analysis of pathogen-responsive wheat NAC transcription factors: new candidates for crop improvement. G3 (BETHESDA, MD.) 2022; 12:jkac247. [PMID: 36130261 PMCID: PMC9635653 DOI: 10.1093/g3journal/jkac247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Wheat NAC (TaNAC) transcription factors are important regulators of stress responses and developmental processes. This study proposes a new TaNAC nomenclature and identified defense-associated TaNACs based on the analysis of RNA-sequencing datasets of wheat tissue infected with major fungal pathogens. A total of 146 TaNACs were pathogen-responsive, of which 52 were orthologous with functionally characterized defense-associated NACs from barley, rice, and Arabidopsis, as deduced via phylogenetic analysis. Next, we focused on the phylogenetic relationship of the pathogen-responsive TaNACs and their expression profiles in healthy and diseased tissues. Three subfamilies ("a," "e," and "f") were significantly enriched in pathogen-responsive TaNACs, of which the majority were responsive to at least 2 pathogens (universal pathogen response). Uncharacterized TaNACs from subfamily "a" enriched with defense-associated NACs are promising candidates for functional characterization in pathogen defense. In general, pathogen-responsive TaNACs were expressed in at least 2 healthy organs. Lastly, we showed that the wheat NAM domain is significantly divergent in sequence in subfamilies "f," "g," and "h" based on HMMER and motif analysis. New protein motifs were identified in both the N- and C-terminal parts of TaNACs. Three of those identified in the C-terminal part were linked to pathogen responsiveness of the TaNACs and 2 were linked to expression in grain tissue. Future studies should benefit from this comprehensive in silico analysis of pathogen-responsive TaNACs as a basis for selecting the most promising candidates for functional validation and crop improvement.
Collapse
Affiliation(s)
- Monika Vranic
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin 4, Ireland
| | - Alexandre Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin 4, Ireland
| | - Harriet Benbow
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin 4, Ireland
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|