1
|
Wang R, Zhang B, Gu G, Lin J, Zhang W, He D, Wang F, Jin L, Xie X. Multiomics provides insights into dynamic changes of aromatic profile during flue-curing process in tobacco (Nicotiana tabacum L.) leaves. BMC PLANT BIOLOGY 2025; 25:244. [PMID: 39994521 PMCID: PMC11849165 DOI: 10.1186/s12870-025-06273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Tobacco (Nicotiana tabacum L.) is a globally crop due to its distinctive flavor and economic value. In this study, we systematically analyzed the dynamic changes in volatile substances, broad-spectrum metabolites, enzymes, and biochemical compounds in tobacco leaves during flue-curing process. Combining metabolomics with enzyme activity and biochemical analysis, we identified that 43℃ is a critical period for enzyme activity and metabolite transitions, while 45 ℃ requires stringent moisture control. During the T3 stages, phenolic acids, amino acids, and derivatives were notably enriched, with increases of 19.58-fold, 18.59-fold, and 17.33-fold in lmmn001643, MWS20633g, and Lmhn004756, respectively. These compounds may serve as candidate biomarkers for non-volatile compounds. Aroma dynamics primarily contributed to the green and sweet flavor of flue-cured tobacco leaves, and the key aroma components included D114, KMW1317, and KMW0466. Differential volatile and non-volatile metabolites were enriched in four pathways, including monoterpenoid biosynthesis, tyrosine metabolism, phenylalanine metabolism, and phenylpropanoid biosynthesis. These pathways are closely related to phenylalanine ammonia-lyase and the synthesis of chlorogenic acid and rutin, which influence the aroma quality, aroma intensity, irritation, and volatility of tobacco. Additionally, the contents of caffeic acid, ferulic acid, sinapic acid, and PAL activity in phenylpropanoid biosynthesis pathway, increased with the rising temperature, accelerating reactions with alcohols and leading to increase lignin formation. This study enhances our understanding of the dynamic changes in the aroma and metabolic substances of Cuibi 1(CB-1) at the critical stages of the curing process and offers valuable insights for process improvement.
Collapse
Affiliation(s)
- Ruiqi Wang
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Binghui Zhang
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, 350003, China
| | - Gang Gu
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, 350003, China
| | - Jianfeng Lin
- Yanping Branch of Nanping Tobacco Company, Nanping, 353000, China
| | - Wenwei Zhang
- Yanping Branch of Nanping Tobacco Company, Nanping, 353000, China
| | - Dongwang He
- Jianning Branch of Sanming Tobacco Company, Sanming, 354500, China
| | - Fei Wang
- Jianning Branch of Sanming Tobacco Company, Sanming, 354500, China
| | - Liao Jin
- Yanping Branch of Nanping Tobacco Company, Nanping, 353000, China.
| | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Berrabah F, Benaceur F, Yin C, Xin D, Magne K, Garmier M, Gruber V, Ratet P. Defense and senescence interplay in legume nodules. PLANT COMMUNICATIONS 2024; 5:100888. [PMID: 38532645 PMCID: PMC11009364 DOI: 10.1016/j.xplc.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Immunity and senescence play a crucial role in the functioning of the legume symbiotic nodules. The miss-regulation of one of these processes compromises the symbiosis leading to death of the endosymbiont and the arrest of the nodule functioning. The relationship between immunity and senescence has been extensively studied in plant organs where a synergistic response can be observed. However, the interplay between immunity and senescence in the symbiotic organ is poorly discussed in the literature and these phenomena are often mixed up. Recent studies revealed that the cooperation between immunity and senescence is not always observed in the nodule, suggesting complex interactions between these two processes within the symbiotic organ. Here, we discuss recent results on the interplay between immunity and senescence in the nodule and the specificities of this relationship during legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Fathi Berrabah
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria.
| | - Farouk Benaceur
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Chaoyan Yin
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Dawei Xin
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France.
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Wang G, Liu X, Gan SS. The ABA-AtNAP-SAG113 PP2C module regulates leaf senescence by dephoshorylating SAG114 SnRK3.25 in Arabidopsis. MOLECULAR HORTICULTURE 2023; 3:22. [PMID: 37899482 PMCID: PMC10614403 DOI: 10.1186/s43897-023-00072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
We previously reported that ABA inhibits stomatal closure through AtNAP-SAG113 PP2C regulatory module during leaf senescence. The mechanism by which this module exerts its function is unknown. Here we report the identification and functional analysis of SAG114, a direct target of the regulatory module. SAG114 encodes SnRK3.25. Both bimolecular fluorescence complementation (BiFC) and yeast two-hybrid assays show that SAG113 PP2C physically interacts with SAG114 SnRK3.25. Biochemically the SAG113 PP2C dephosphorylates SAG114 in vitro and in planta. RT-PCR and GUS reporter analyses show that SAG114 is specifically expressed in senescing leaves in Arabidopsis. Functionally, the SAG114 knockout mutant plants have a significantly bigger stomatal aperture and a much faster water loss rate in senescing leaves than those of wild type, and display a precocious senescence phenotype. The premature senescence phenotype of sag114 is epistatic to sag113 (that exhibits a remarkable delay in leaf senescence) because the sag113 sag114 double mutant plants show an early leaf senescence phenotype, similar to that of sag114. These results not only demonstrate that the ABA-AtNAP-SAG113 PP2C regulatory module controls leaf longevity by dephosphorylating SAG114 kinase, but also reveal the involvement of the SnRK3 family gene in stomatal movement and water loss during leaf senescence.
Collapse
Affiliation(s)
- Gaopeng Wang
- Present Address: Shanghai Institute of Technology, Shanghai, 201418, China
| | - Xingwang Liu
- Present Address: Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Su-Sheng Gan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Dirk LMA, Zhao T, May J, Li T, Han Q, Zhang Y, Sahib MR, Downie AB. Alterations in Carbohydrate Quantities in Freeze-Dried, Relative to Fresh or Frozen Maize Leaf Disks. Biomolecules 2023; 13:biom13010148. [PMID: 36671533 PMCID: PMC9855396 DOI: 10.3390/biom13010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
For various reasons, leaves are occasionally lyophilized prior to storage at -80 °C and preparing extracts. Soluble carbohydrate identity and quantity from maize leaf disks were ascertained in two separate years using anion exchange HPLC with pulsed electrochemical detection. Analyses were made from disks after freezing in liquid nitrogen with or without subsequent lyophilization (both years) or directly after removal from plants with or without lyophilization (only in the second year). By adding the lyophilizing step, galactose content consistently increased and, frequently, so did galactoglycerols. The source of the galactose increase with the added lyophilizing step was not due to metabolizing raffinose, as the raffinose synthase (rafs) null mutant leaves, which do not make that trisaccharide, also had a similar increase in galactose content with lyophilization. Apparently, the ester linkages attaching free fatty acids to galactoglycerolipids of the chloroplast are particularly sensitive to cleavage during lyophilization, resulting in increases in galactoglycerols. Regardless of the galactose source, a systematic error is introduced for carbohydrate (and, most likely, also chloroplast mono- or digalactosyldiacylglycerol) amounts when maize leaf samples are lyophilized prior to extraction. The recognition of lyophilization as a source of galactose increase provides a cautionary note for investigators of soluble carbohydrates.
Collapse
Affiliation(s)
- Lynnette M. A. Dirk
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food and Environment, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546, USA
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - John May
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, N-222A Ag Science North, Lexington, KY 40546, USA
| | - Tao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agriculture University, Zhengzhou 450002, China
| | - Qinghui Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yumin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Mohammad R. Sahib
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food and Environment, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546, USA
- College of Agriculture, Al-Qasim Green University, Babylon 00964, Iraq
| | - Allan Bruce Downie
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food and Environment, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546, USA
- Correspondence: ; Tel.: +1-(859)-257-5237
| |
Collapse
|
5
|
Li S, Xie H, Zhou L, Dong D, Liu Y, Jia C, Han L, Chao Y, Chen Y. Overexpression of MsSAG113 gene promotes leaf senescence in alfalfa via participating in the hormone regulatory network. FRONTIERS IN PLANT SCIENCE 2022; 13:1085497. [PMID: 36570962 PMCID: PMC9774027 DOI: 10.3389/fpls.2022.1085497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Introduction Alfalfa (Medicago sativa) is a kind of high quality leguminous forage species, which was widely cultivated in the world. Leaf senescence is an essential process in plant development and life cycle. Here, we reported the isolation and functional analysis of an alfalfa SENESCENCE-ASSOCIATED GENE113 (MsSAG113), which belongs to the PP2C family and mainly plays a role in promoting plant senescence. Methods In the study, Agrobacterium-mediated, gene expression analysis, next generation sequencing, DNA pull-down, yeast single hybridization and transient expression were used to identify the function of MsSAG113 gene. Results The MsSAG113 gene was isolated from alfalfa, and the transgenic plants were obtained by Agrobacterium-mediated method. Compared with the wildtype, transgenic plants showed premature senescence in leaves, especially when cultivated under dark conditions. Meanwhile, application of exogenous hormones ABA, SA, MeJA, obviously acclerated leaf senescence of transgenic plants. Furthermore, the detached leaves from transgenic plants turned yellow earlier with lower chlorophyll content. Transcriptome analysis identified a total of 1,392 differentially expressed genes (DEGs), involving 13 transcription factor families. Of which, 234 genes were related to phytohormone synthesis, metabolism and transduction. Pull-down assay and yeast one-hybrid assay confirmed that alfalfa zinc finger CCCH domain-containing protein 39 (MsC3H-39) could directly bind the upstream of MsSAG113 gene. In conclusion, the MsSAG113 gene plays a crucial role in promoting leaf senescence in alfalfa via participating in the hormone regulatory network. Discussion This provides an essential basis for further analysis on the regulatory network involving senescence-associated genes in alfalfa.
Collapse
Affiliation(s)
- Shuwen Li
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Hong Xie
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Lingfang Zhou
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Di Dong
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yaling Liu
- Inner Mongolia M-Grass Ecology And Environment (Group) Co., Ltd, Hohhot, China
| | - Chenyan Jia
- Inner Mongolia M-Grass Ecology And Environment (Group) Co., Ltd, Hohhot, China
| | - Liebao Han
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yinglong Chen
- The University of Western Australia (UWA) Institute of Agriculture, and University of Western Australia School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
6
|
Wen L, Liu T, Deng Z, Zhang Z, Wang Q, Wang W, Li W, Guo Y. Characterization of NAC transcription factor NtNAC028 as a regulator of leaf senescence and stress responses. FRONTIERS IN PLANT SCIENCE 2022; 13:941026. [PMID: 36046590 PMCID: PMC9421438 DOI: 10.3389/fpls.2022.941026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
NAC proteins constitute one of the largest transcription factor families and are involved in regulation of plant development and stress responses. Our previous transcriptome analyses of tobacco revealed a significant increase in the expression of NtNAC028 during leaf yellowing. In this study, we found that NtNAC028 was rapidly upregulated in response to high salinity, dehydration, and abscisic acid (ABA) stresses, suggesting a vital role of this gene in abiotic stress response. NtNAC028 loss-of-function tobacco plants generated via CRISPR-Cas9 showed delayed leaf senescence and increased tolerance to drought and salt stresses. Meanwhile NtNAC028 overexpression led to precocious leaf senescence and hypersensitivity to abiotic stresses in Arabidopsis, indicating that NtNAC028 functions as a positive regulator of natural leaf senescence and a negative regulator of stress tolerance. Furthermore, NtNAC028-overexpressing Arabidopsis plants showed lower antioxidant enzyme activities, higher reactive oxygen species (ROS), and H2O2 accumulation under high salinity, resulted in more severe oxidative damage after salt stress treatments. On the other hand, NtNAC028 mutation in tobacco resulted in upregulated expression of ROS-scavenging and abiotic stress-related genes, higher antioxidant enzyme activities, and enhanced tolerance against abiotic stresses, suggesting that NtNAC028 might act as a vital regulator for plant stress response likely by mediating ROS scavenging ability. Collectively, our results indicated that the NtNAC028 plays a key regulatory role in leaf senescence and response to multiple abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| |
Collapse
|
7
|
Specific Changes in Arabidopsis thaliana Rosette Lipids during Freezing Can Be Associated with Freezing Tolerance. Metabolites 2022; 12:metabo12050385. [PMID: 35629889 PMCID: PMC9145600 DOI: 10.3390/metabo12050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
While the roles of a few specific lipids in plant freezing tolerance are understood, the effect of many plant lipids remains to be determined. Acclimation of plants to non-freezing cold before exposure to freezing temperatures improves the outcome of plants, compared to plants exposed to freezing without acclimation. Arabidopsis thaliana plants were subjected to one of three treatments: (1) "control", i.e., growth at 21 °C, (2) "non-acclimated", i.e., 3 days at 21 °C, 2 h at -8 °C, and 24 h recovery at 21 °C, and (3) "acclimated", i.e., 3 days at 4 °C, 2 h at -8 °C, and 24 h recovery at 21 °C. Plants were harvested at seven time points during the treatments, and lipid levels were measured by direct-infusion electrospray ionization tandem mass spectrometry. Ion leakage was measured at the same time points. To examine the function of lipid species in relation to freezing tolerance, the lipid levels in plants immediately following the freezing treatment were correlated with the outcome, i.e., ion leakage 24-h post-freezing. Based on the correlations, hypotheses about the functions of specific lipids were generated. Additionally, analysis of the lipid levels in plants with mutations in genes encoding patatin-like phospholipases, lipoxygenases, and 12-oxophytodienoic acid reductase 3 (opr3), under the same treatments as the wild-type plants, identified only the opr3-2 mutant as having major lipid compositional differences compared to wild-type plants.
Collapse
|
8
|
Zhang B, Yang J, Gu G, Jin L, Chen C, Lin Z, Song J, Xie X. Integrative Analyses of Biochemical Properties and Transcriptome Reveal the Dynamic Changes in Leaf Senescence of Tobacco ( Nicotiana tabacum L.). Front Genet 2022; 12:790167. [PMID: 35003224 PMCID: PMC8727547 DOI: 10.3389/fgene.2021.790167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Leaf senescence is an important process of growth and development in plant, and it is a programmed decline controlled by a series of genes. In this study, the biochemical properties and transcriptome at five maturity stages (M1∼M5) of tobacco leaves were analyzed to reveal the dynamic changes in leaf senescence of tobacco. A total of 722, 1,534, 3,723, and 6,933 genes were differentially expressed (DEG) between M1 and M2, M1 and M3, M1 and M4, and M1 and M5, respectively. Significant changes of nitrogen, sugars, and the DEGs related to metabolite accumulation were identified, suggesting the importance of energy metabolism during leaf senescence. Gene Ontology (GO) analysis found that DEGs were enriched in biosynthetic, metabolic, photosynthesis, and redox processes, and especially, the nitrogen metabolic pathways were closely related to the whole leaf senescence process (M1∼M5). All the DEGs were grouped into 12 expression profiles according to their distinct expression patterns based on Short Time-series Expression Miner (STEM) software analysis. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that these DEGs were enriched in pathways of carbon metabolism, starch and sucrose metabolism, nitrogen metabolism, and photosynthesis among these expression profiles. A total of 30 core genes were examined by Weight Gene Co-expression Network Analysis (WGCNA), and they appeared to play a crucial role in the regulatory of tobacco senescence. Our results provided valuable information for further functional investigation of leaf senescence in plants.
Collapse
Affiliation(s)
- Binghui Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Jiahan Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Gu
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Liao Jin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | | | - Zhiqiang Lin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | | | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
O'Gallagher B, Ghahremani M, Stigter K, Walker EJL, Pyc M, Liu AY, MacIntosh GC, Mullen RT, Plaxton WC. Arabidopsis PAP17 is a dual-localized purple acid phosphatase up-regulated during phosphate deprivation, senescence, and oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:382-399. [PMID: 34487166 DOI: 10.1093/jxb/erab409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
A 35 kDa monomeric purple acid phosphatase (APase) was purified from cell wall extracts of Pi starved (-Pi) Arabidopsis thaliana suspension cells and identified as AtPAP17 (At3g17790) by mass spectrometry and N-terminal microsequencing. AtPAP17 was de novo synthesized and dual-localized to the secretome and/or intracellular fraction of -Pi or salt-stressed plants, or senescing leaves. Transiently expressed AtPAP17-green fluorescent protein localized to lytic vacuoles of the Arabidopsis suspension cells. No significant biochemical or phenotypical changes associated with AtPAP17 loss of function were observed in an atpap17 mutant during Pi deprivation, leaf senescence, or salinity stress. Nevertheless, AtPAP17 is hypothesized to contribute to Pi metabolism owing to its marked up-regulation during Pi starvation and leaf senescence, broad APase substrate selectivity and pH activity profile, and rapid repression and turnover following Pi resupply to -Pi plants. While AtPAP17 also catalyzed the peroxidation of luminol, which was optimal at pH 9.2, it exhibited a low Vmax and affinity for hydrogen peroxide relative to horseradish peroxidase. These results, coupled with absence of a phenotype in the salt-stressed or -Pi atpap17 mutant, do not support proposals that the peroxidase activity of AtPAP17 contributes to the detoxification of reactive oxygen species during stresses that trigger AtPAP17 up-regulation.
Collapse
Affiliation(s)
- Bryden O'Gallagher
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Mina Ghahremani
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Public Health Agency of Canada, 130 Colonnade Rd, A.L. 6501H, Ottawa, Ontario K1A 0K9, Canada
| | - Kyla Stigter
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Emma J L Walker
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| | - Michal Pyc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Willow Biosciences, Burnaby, British Columbia V5M 3Z3, Canada
| | - Ang-Yu Liu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011-1079, USA
| | - Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011-1079, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
10
|
Ren Y, Li M, Wang W, Lan W, Schenke D, Cai D, Miao Y. MicroRNA840 (MIR840) accelerates leaf senescence by targeting the overlapping 3'UTRs of PPR and WHIRLY3 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:126-143. [PMID: 34724261 DOI: 10.1111/tpj.15559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs negatively regulate gene expression by promoting target mRNA cleavage and/or impairing its translation, thereby playing a crucial role in plant development and environmental stress responses. In Arabidopsis, the MIR840 gene is located within the overlapping 3'UTR of the PPR and WHIRLY3 (WHY3) genes, both being predicted targets of miR840* and miR840, the short maturation products of MIR840. Gain- and loss-of-function of MIR840 in Arabidopsis resulted in opposite senescence phenotypes. The highest expression levels of the MIR840 precursor transcript pre-miR840 were observed at senescence initiation, and pre-miR840 expression is significantly correlated with a reduction in PPR, but not WHY3, transcript levels. Although a reduction of transcript level of PPR, but not WHY3 transcript levels were not significantly affected by MIR840 overexpression, its protein levels were strongly reduced. Mutating the cleavage sites or replacing the target sequences abolishes the miR840*/miR840-mediated degradation of PPR transcripts and accumulation of WHY3 protein. In support for this, concurrent knockdown of both PPR and WHY3 in wild-type plants resulted in a senescence phenotype resembling that of the MIR840-overexpressing plant. This indicates that both PRR and WHY3 are targets in the MIR840-mediated senescence pathway. Moreover, single knockout mutants of PPR and WHY3 show a convergent upregulated subset of senescence-associated genes, which are also found among those induced by MIR840 overexpression. Our data provide evidence for a regulatory role of MIR840 in plant senescence.
Collapse
Affiliation(s)
- Yujun Ren
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengsi Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wanzhen Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Lan
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dirk Schenke
- Department of Molecular Phytopathology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Daguang Cai
- Department of Molecular Phytopathology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
11
|
He H, Song XQ, Jiang C, Liu YL, Wang D, Wen SS, Chai GH, Zhao ST, Lu MZ. The role of senescence-associated gene101 (PagSAG101a) in the regulation of secondary xylem formation in poplar. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:73-86. [PMID: 34845845 DOI: 10.1111/jipb.13195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Wood is produced by the accumulation of secondary xylem via proliferation and differentiation of the cambium cells in woody plants. Identifying the regulators involved in this process remains a challenging task. In this study, we isolated PagSAG101a, the homolog of Arabidopsis thaliana SAG101, from a hybrid poplar (Populus alba × Populus glandulosa) clone 84K and investigated its role in secondary xylem development. PagSAG101a was expressed predominantly in lignified stems and localized in the nucleus. Compared with non-transgenic 84K plants, transgenic plants overexpressing PagSAG101a displayed increased plant height, internode number, stem diameter, xylem width, and secondary cell wall thickness, while opposite phenotypes were observed for PagSAG101a knock-out plants. Transcriptome analyses revealed that differentially expressed genes were enriched for those controlling cambium cell division activity and subsequent secondary cell wall deposition during xylem formation. In addition, the tandem CCCH zinc finger protein PagC3H17, which positively regulates secondary xylem width and secondary wall thickening in poplar, could bind to the promoter of PagSAG101a and mediate the regulation of xylem differentiation. Our results support that PagSAG101a, downstream of PagC3H17, functions in wood development.
Collapse
Affiliation(s)
- Hui He
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xue-Qin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Dian Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuang-Shuang Wen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Guo-Hua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
12
|
Lee CP, Elsässer M, Fuchs P, Fenske R, Schwarzländer M, Millar AH. The versatility of plant organic acid metabolism in leaves is underpinned by mitochondrial malate-citrate exchange. THE PLANT CELL 2021; 33:3700-3720. [PMID: 34498076 PMCID: PMC8643697 DOI: 10.1093/plcell/koab223] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 05/07/2023]
Abstract
Malate and citrate underpin the characteristic flexibility of central plant metabolism by linking mitochondrial respiratory metabolism with cytosolic biosynthetic pathways. However, the identity of mitochondrial carrier proteins that influence both processes has remained elusive. Here we show by a systems approach that DICARBOXYLATE CARRIER 2 (DIC2) facilitates mitochondrial malate-citrate exchange in vivo in Arabidopsis thaliana. DIC2 knockout (dic2-1) retards growth of vegetative tissues. In vitro and in organello analyses demonstrate that DIC2 preferentially imports malate against citrate export, which is consistent with altered malate and citrate utilization in response to prolonged darkness of dic2-1 plants or a sudden shift to darkness of dic2-1 leaves. Furthermore, isotopic glucose tracing reveals a reduced flux towards citrate in dic2-1, which results in a metabolic diversion towards amino acid synthesis. These observations reveal the physiological function of DIC2 in mediating the flow of malate and citrate between the mitochondrial matrix and other cell compartments.
Collapse
Affiliation(s)
- Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Philippe Fuchs
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| |
Collapse
|
13
|
Su Y, Huang Y, Dong X, Wang R, Tang M, Cai J, Chen J, Zhang X, Nie G. Exogenous Methyl Jasmonate Improves Heat Tolerance of Perennial Ryegrass Through Alteration of Osmotic Adjustment, Antioxidant Defense, and Expression of Jasmonic Acid-Responsive Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:664519. [PMID: 34025701 PMCID: PMC8137847 DOI: 10.3389/fpls.2021.664519] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 05/14/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) is an important cool-season grass species that is widely cultivated in temperate regions worldwide but usually sensitive to heat stress. Jasmonates (JAs) may have a positive effect on plant tolerance under heat stress. In this study, results showed that exogenous methyl jasmonic acid (MeJA) could significantly improve heat tolerance of perennial ryegrass through alteration of osmotic adjustment, antioxidant defense, and the expression of JA-responsive genes. MeJA-induced heat tolerance was involved in the maintenance of better relative water content (RWC), the decline of chlorophyll (Chl) loss for photosynthetic maintenance, as well as maintained lower electrolyte leakage (EL) and malondialdehyde (MDA) content under heat condition, so as to avoid further damage to plants. Besides, results also indicated that exogenous MeJA treatment could increase the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), thus enhancing the scavenging ability of reactive oxygen species, alleviating the oxidative damage caused by heat stress. Heat stress and exogenous MeJA upregulated transcript levels of related genes (LpLOX2, LpAOC, LpOPR3, and LpJMT) in JA biosynthetic pathway, which also could enhance the accumulation of JA and MeJA content. Furthermore, some NAC transcription factors and heat shock proteins may play a positive role in enhancing resistance of perennial ryegrass with heat stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinquan Zhang
- Department of Forage Science, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- Department of Forage Science, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Wang G, Wu Y, Ma L, Lin Y, Hu Y, Li M, Li W, Ding Y, Chen L. Phloem loading in rice leaves depends strongly on the apoplastic pathway. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3723-3738. [PMID: 33624763 DOI: 10.1093/jxb/erab085] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Phloem loading is the first step in sucrose transport from source leaves to sink organs. The phloem loading strategy in rice remains unclear. To determine the potential phloem loading mechanism in rice, yeast invertase (INV) was overexpressed by a 35S promoter specifically in the cell wall to block sugar transmembrane loading in rice. The transgenic lines exhibited obvious phloem loading suppression characteristics accompanied by the accumulation of sucrose and starch, restricted vegetative growth and decreased grain yields. The decreased sucrose exudation rate with p-chloromercuribenzenesulfonic acid (PCMBS) treatment also indicated that rice actively transported sucrose into the phloem. OsSUT1 (SUCROSE TRANSPORTER 1) showed the highest mRNA levels of the plasma membrane-localized OsSUTs in source leaves. Cross sections of the OsSUT::GUS transgenic plants showed that the expression of OsSUT1 and OsSUT5 occurred in the phloem companion cells. Rice ossut1 mutants showed reduced growth and grain yield, supporting the hypothesis of OsSUT1 acting in phloem loading. Based on these results, we conclude that apoplastic phloem loading plays a major role in the export of sugar from rice leaves.
Collapse
Affiliation(s)
- Gaopeng Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yue Wu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Li Ma
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yan Lin
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Mengzhu Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Weiwei Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Lin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| |
Collapse
|
15
|
Yan J, Chen Q, Cui X, Zhao P, Gao S, Yang B, Liu JX, Tong T, Deyholos MK, Jiang YQ. Ectopic overexpression of a membrane-tethered transcription factor gene NAC60 from oilseed rape positively modulates programmed cell death and age-triggered leaf senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:600-618. [PMID: 33119146 DOI: 10.1111/tpj.15057] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Senescence is an integrative final stage of plant development that is governed by internal and external cues. The NAM, ATAF1/2, CUC2 (NAC) transcription factor (TF) family is specific to plants and membrane-tethered NAC TFs (MTTFs) constitute a unique and sophisticated mechanism in stress responses and development. However, the function of MTTFs in oilseed rape (Brassica napus L.) remains unknown. Here, we report that BnaNAC60 is an MTTF associated with the endoplasmic reticulum (ER) membrane. Expression of BnaNAC60 was induced during the progression of leaf senescence. Translocation of BnaNAC60 into nuclei was induced by ER stress and oxidative stress treatments. It binds to the NTLBS motif, rather than the canonical NAC recognition site. Overexpression of BnaNAC60 devoid of the transmembrane domain, but not the full-length BnaNAC60, induces significant reactive oxygen species (ROS) accumulation and hypersensitive response-like cell death in both tobacco (Nicotiana benthamiana) and oilseed rape protoplasts. Moreover, ectopic overexpression of BnaNAC60 devoid of the transmembrane domain, but not the full-length BnaNAC60, in Arabidopsis also induces precocious leaf senescence. Furthermore, screening and expression profiling identified an array of functional genes that are significantly induced by BnaNAC60 expression. Further it was found that BnaNAC60 can activate the promoter activities of BnaNYC1, BnaRbohD, BnaBFN1, BnaZAT12, and multiple BnaVPEs in a dual-luciferase reporter assay. Electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative PCR assays revealed that BnaNAC60 directly binds to the promoter regions of these downstream target genes. To summarize, our data show that BnaNAC60 is an MTTF that modulates cell death, ROS accumulation, and leaf senescence.
Collapse
Affiliation(s)
- Jingli Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Qinqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xing Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Peiyu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shidong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tiantian Tong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Michael K Deyholos
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
16
|
Zhao X, Zhang T, Feng H, Qiu T, Li Z, Yang J, Peng YL, Zhao W. OsNBL1, a Multi-Organelle Localized Protein, Plays Essential Roles in Rice Senescence, Disease Resistance, and Salt Tolerance. RICE (NEW YORK, N.Y.) 2021; 14:10. [PMID: 33423130 PMCID: PMC7797018 DOI: 10.1186/s12284-020-00450-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/26/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Plant senescence is a complicated process involving multiple regulations, such as temperature, light, reactive oxygen species (ROS), endogenous hormone levels, and diseases. Although many such genes have been characterized to understand the process of leaf senescence, there still remain many unknowns, and many more genes need to be characterized. RESULTS We identified a rice mutant nbl1 with a premature leaf senescence phenotype. The causative gene, OsNBL1, encodes a small protein with 94 amino acids, which is conserved in monocot, as well as dicot plants. Disruption of OsNBL1 resulted in accelerated dark-induced leaf senescence, accompanied by a reduction in chlorophyll content and up-regulation of several senescence-associated genes. Notably, the nbl1 mutant was more susceptible to rice blast and bacterial blight but more tolerant to sodium chloride. Several salt-induced genes, including HAK1, HAK5, and three SNAC genes, were also up-regulated in the nbl1 mutant. Additionally, the nbl1 mutant was more sensitive to salicylic acid. Plants overexpressing OsNBL1 showed delayed dark-induced senescence, consistent with a higher chlorophyll content compared to wild-type plants. However, the overexpression plants were indistinguishable from the wild-types for resistance to the rice blast disease. OsNBL1 is a multi-organelle localized protein and interacts with OsClpP6, which is associated with senescence. CONCLUSIONS We described a novel leaf senescence mutant nbl1 in rice. It is showed that OsNBL1, a multi-organelle localized protein which interacts with a plastidic caseinolytic protease OsClpP6, is essential for controlling leaf senescence, disease resistance, and salt tolerance.
Collapse
Affiliation(s)
- Xiaosheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Tianbo Zhang
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Huijing Feng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Tiancheng Qiu
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
Jahan MS, Shu S, Wang Y, Hasan MM, El-Yazied AA, Alabdallah NM, Hajjar D, Altaf MA, Sun J, Guo S. Melatonin Pretreatment Confers Heat Tolerance and Repression of Heat-Induced Senescence in Tomato Through the Modulation of ABA- and GA-Mediated Pathways. FRONTIERS IN PLANT SCIENCE 2021; 12:650955. [PMID: 33841479 PMCID: PMC8027311 DOI: 10.3389/fpls.2021.650955] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/18/2021] [Indexed: 05/03/2023]
Abstract
Heat stress and abscisic acid (ABA) induce leaf senescence, whereas melatonin (MT) and gibberellins (GA) play critical roles in inhibiting leaf senescence. Recent research findings confirm that plant tolerance to diverse stresses is closely associated with foliage lifespan. However, the molecular mechanism underlying the signaling interaction of MT with GA and ABA regarding heat-induced leaf senescence largely remains undetermined. Herein, we investigated putative functions of melatonin in suppressing heat-induced leaf senescence in tomato and how ABA and GA coordinate with each other in the presence of MT. Tomato seedlings were pretreated with 100 μM MT or water and exposed to high temperature (38/28°C) for 5 days (d). Heat stress significantly accelerated senescence, damage to the photosystem and upregulation of reactive oxygen species (ROS), generating RBOH gene expression. Melatonin treatment markedly attenuated heat-induced leaf senescence, as reflected by reduced leaf yellowing, an increased Fv/Fm ratio, and reduced ROS production. The Rbohs gene, chlorophyll catabolic genes, and senescence-associated gene expression levels were significantly suppressed by MT addition. Exogenous application of MT elevated the endogenous MT and GA contents but reduced the ABA content in high-temperature-exposed plants. However, the GA and ABA contents were inhibited by paclobutrazol (PCB, a GA biosynthesis inhibitor) and sodium tungstate (ST, an ABA biosynthesis inhibitor) treatment. MT-induced heat tolerance was compromised in both inhibitor-treated plants. The transcript abundance of ABA biosynthesis and signaling genes was repressed; however, the biosynthesis genes MT and GA were upregulated in MT-treated plants. Moreover, GA signaling suppressor and catabolic gene expression was inhibited, while ABA catabolic gene expression was upregulated by MT application. Taken together, MT-mediated suppression of heat-induced leaf senescence has collaborated with the activation of MT and GA biosynthesis and inhibition of ABA biosynthesis pathways in tomato.
Collapse
Affiliation(s)
- Mohammad Shah Jahan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Md. Mahadi Hasan
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dina Hajjar
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Muhammad Ahsan Altaf
- Center for Terrestrial Biodiversity of the South China Sea, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Shirong Guo,
| |
Collapse
|
18
|
Li J, Chen G, Zhang J, Shen H, Kang J, Feng P, Xie Q, Hu Z. Suppression of a hexokinase gene, SlHXK1, leads to accelerated leaf senescence and stunted plant growth in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110544. [PMID: 32771157 DOI: 10.1016/j.plantsci.2020.110544] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 05/18/2023]
Abstract
Sugars are the key regulatory molecules that impact diverse biological processes in plants. Hexokinase, the key rate-limiting enzyme in hexose metabolism, takes part in the first step of glycolytic pathway. Acting as a sensor that mediates sugar regulation, hexokinase has been proved to play significant roles in regulating plant growth and development. Here, we isolated a hexokinase gene SlHXK1 from tomato. Its transcript levels were higher in flowers and leaves than in other organs and decreased during leaf and petiole development. SlHXK1-RNAi lines displayed advanced leaf senescence and stunted plant growth. Physiological features including plant height, leaf length, thickness and size, the contents of chlorophyll, starch and MDA, and hexokinase activity were dramatically altered in SlHXK1-RNAi plants. Dark-induced leaf senescence were advanced and the transcripts of senescence-related genes after darkness treatment were markedly increased in SlHXK1-RNAi plants. RNA-seq and qRT-PCR analyses showed that the transcripts of genes related to plant hormones, photosynthesis, chloroplast development, chlorophyll synthesis and metabolism, cellular process, starch and sucrose metabolism, and senescence were significantly altered in SlHXK1-RNAi plants. Taken together, our data demonstrate that SlHXK1 is a significant gene involved in leaf senescence and plant growth and development in tomato through affecting starch turnover.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jing Kang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Panpan Feng
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
19
|
Yuan L, Wang D, Cao L, Yu N, Liu K, Guo Y, Gan S, Chen L. Regulation of Leaf Longevity by DML3-Mediated DNA Demethylation. MOLECULAR PLANT 2020; 13:1149-1161. [PMID: 32561358 DOI: 10.1016/j.molp.2020.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/25/2019] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Leaf senescence is driven by the expression of senescence-associated genes (SAGs). Development-specific genes often undergo DNA demethylation in their promoter and other regions, which regulates gene expression. Whether and how DNA demethylation regulates the expression of SAGs and thus leaf senescence remain elusive. Whole-genome bisulfite sequencing (WGBS) analyses of wild-type (WT) and demeter-like 3 (dml3) Arabidopsis leaves at three developmental stages revealed hypermethylation during leaf senescence in dml3 compared with WT, and 20 556 differentially methylated regions (DMRs) were identified by comparing the methylomes of dml3 and WT in the CG, CHG, and CHH contexts. Furthermore, we identified that 335 DMR-associated genes (DMGs), such as NAC016 and SEN1, are upregulated during leaf senescence, and found an inverse correlation between the DNA methylation levels (especially in the promoter regions) and the transcript abundances of the related SAGs in WT. In contrast, in dml3 the promoters of SAGs were hypermethylated and their transcript levels were remarkably reduced, and leaf senescence was significantly delayed. Collectively, our study unraveled a novel epigenetic regulatory mechanism underlying leaf senescence in which DML3 is expressed at the onset of and during senescence to demethylate promoter, gene body or 3' UTR regions to activate a set of SAGs.
Collapse
Affiliation(s)
- Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dan Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liwen Cao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ningning Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ke Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Susheng Gan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Genetic Network between Leaf Senescence and Plant Immunity: Crucial Regulatory Nodes and New Insights. PLANTS 2020; 9:plants9040495. [PMID: 32294898 PMCID: PMC7238237 DOI: 10.3390/plants9040495] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Leaf senescence is an essential physiological process that is accompanied by the remobilization of nutrients from senescent leaves to young leaves or other developing organs. Although leaf senescence is a genetically programmed process, it can be induced by a wide variety of biotic and abiotic factors. Accumulating studies demonstrate that senescence-associated transcription factors (Sen-TFs) play key regulatory roles in controlling the initiation and progression of leaf senescence process. Interestingly, recent functional studies also reveal that a number of Sen-TFs function as positive or negative regulators of plant immunity. Moreover, the plant hormone salicylic acid (SA) and reactive oxygen species (ROS) have been demonstrated to be key signaling molecules in regulating leaf senescence and plant immunity, suggesting that these two processes share similar or common regulatory networks. However, the interactions between leaf senescence and plant immunity did not attract sufficient attention to plant scientists. Here, we review the regulatory roles of SA and ROS in biotic and abiotic stresses, as well as the cross-talks between SA/ROS and other hormones in leaf senescence and plant immunity, summarize the transcriptional controls of Sen-TFs on SA and ROS signal pathways, and analyze the cross-regulation between senescence and immunity through a broad literature survey. In-depth understandings of the cross-regulatory mechanisms between leaf senescence and plant immunity will facilitate the cultivation of high-yield and disease-resistant crops through a molecular breeding strategy.
Collapse
|
21
|
Zhang Y, Li Y, Hassan MJ, Li Z, Peng Y. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC PLANT BIOLOGY 2020; 20:150. [PMID: 32268884 PMCID: PMC7140375 DOI: 10.1186/s12870-020-02354-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/23/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Auxin may have a positive effect on plants under drought stress. White clover is widely cultivated and often prone to water shortages. In the present study, we investigated the effects of exogenous indole - 3-acetic acid (IAA) on growth and physiological changes of white clover under drought stress condition. The contents of endogenous IAA and other hormones including ABA, CTK, JA, GA, IAA, and SA were assayed. Moreover, expressions of auxin-responsive genes, drought-responsive genes and leaf senescence-associated genes were detected in response to exogenous IAA. RESULTS Compared to control, drought stress alone significantly diminished stem dry weigh, relative water content (RWC) and total chlorophyll content (Chl). Exogenous IAA treatment significantly increased RWC and Chl, whereas L-AOPP treatment drastically decreased stem dry weight, RWC and Chl under drought stress condition. Additionally, exogenous IAA treatment significantly increased ABA content and JA content, up-regulated expression of auxin responsive genes (GH3.1, GH3.9, IAA8), drought stress responsive genes (bZIP11, DREB2, MYB14, MYB48, WRKY2, WRKY56, WRKY108715 and RD22), and down-regulated expressions of auxin-responding genes (GH3.3, GH3.6, IAA27) and leaf senescence genes (SAG101 and SAG102) in the presence of PEG. Contrarily, L-AOPP treatment significantly reduced contents of ABA, GA3 and JA, down-regulated expressions of GH3.1, GH3.9, IAA8, bZIP11, DREB2, MYB14, MYB48, WRKY2, WRKY56, WRKY108715, ERD and RD22, and up-regulated SAG101 and SAG102. CONCLUSIONS Exogenous IAA improved drought tolerance of white clover possibly due to endogenous plant hormone concentration changes and modulation of genes involving in drought stress response and leaf senescence. These results provided useful information to understand mechanisms of IAA improved drought tolerance in white clover.
Collapse
Affiliation(s)
- Youzhi Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- College of Life science, Changchun Normal University, Changchun, 130032, China
| | - Yaping Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Jawad Hassan
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
22
|
Yao L, Yang B, Xian B, Chen B, Yan J, Chen Q, Gao S, Zhao P, Han F, Xu J, Jiang YQ. The R2R3-MYB transcription factor BnaMYB111L from rapeseed modulates reactive oxygen species accumulation and hypersensitive-like cell death. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:280-288. [PMID: 31891862 DOI: 10.1016/j.plaphy.2019.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
As one of the largest families of transcription factors in plants, the R2R3-MYB proteins play important roles in diverse biological processes including growth and development, primary and secondary metabolism such as flavonoid and anthocyanin biosynthesis as well as abiotic and biotic stress responses. However, functions of R2R3-MYB genes in rapeseed (Brassica napus L.) remain elusive. Here, we characterized BnaMYB111L, which is homologous to Arabidopsis MYB111 and encodes an R2R3-MYB protein in rapeseed. BnaMYB111L is responsive to abscisic acid (ABA), heat, cold, hydrogen peroxide and fungal pathogen Sclerotinia scelerotiorum treatments through quantitative RT-PCR assay. BnaMYB111L encodes a transcriptional activator and is localized exclusively to nuclei. Interestingly, overexpression of BnaMYB111L in tobacco (Nicotiana benthamiana) and rapeseed protoplasts promoted reactive oxygen species (ROS) production and hypersensitive response-like cell death, accumulation of malondialdehyde (MDA) as well as degradation of chlorophyll. Furthermore, BnaMYB111L expression evoked the alterations of transcript levels of genes encoding ROS-producing enzyme, vacuolar processing enzymes and genes implicated in defense responses. A further dual luciferase reporter assay indicated that BnaMYB111L activated the expression of RbohB, MC4 and ACRE132, which are involved in ROS generation, cell death as well as defense responses. Taken together, this study characterized the function of rapeseed MYB111L and identified its putative target genes involved in ROS production and cell death.
Collapse
Affiliation(s)
- Lingfang Yao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Bo Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Baoshan Xian
- College of Science, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Bisi Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jingli Yan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Qinqin Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shidong Gao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Peiyu Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Feng Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jianwei Xu
- College of Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Yuan-Qing Jiang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
23
|
Grulke NE, Heath RL. Ozone effects on plants in natural ecosystems. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:12-37. [PMID: 30730096 DOI: 10.1111/plb.12971] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/04/2019] [Indexed: 05/03/2023]
Abstract
Tropospheric ozone (O3 ) is an important stressor in natural ecosystems, with well-documented impacts on soils, biota and ecological processes. The effects of O3 on individual plants and processes scale up through the ecosystem through effects on carbon, nutrient and hydrologic dynamics. Ozone effects on individual species and their associated microflora and fauna cascade through the ecosystem to the landscape level. Systematic injury surveys demonstrate that foliar injury occurs on sensitive species throughout the globe. However, deleterious impacts on plant carbon, water and nutrient balance can also occur without visible injury. Because sensitivity to O3 may follow coarse physiognomic plant classes (in general, herbaceous crops are more sensitive than deciduous woody plants, grasses and conifers), the task still remains to use stomatal O3 uptake to assess class and species' sensitivity. Investigations of the radial growth of mature trees, in combination with data from many controlled studies with seedlings, suggest that ambient O3 reduces growth of mature trees in some locations. Models based on tree physiology and forest stand dynamics suggest that modest effects of O3 on growth may accumulate over time, other stresses (prolonged drought, excess nitrogen deposition) may exacerbate the direct effects of O3 on tree growth, and competitive interactions among species may be altered. Ozone exposure over decades may be altering the species composition of forests currently, and as fossil fuel combustion products generate more O3 than deteriorates in the atmosphere, into the future as well.
Collapse
Affiliation(s)
- N E Grulke
- Pacific Northwest Research Station, Western Wildlands Environmental Threats Assessment Center, US Forest Service, Bend, OR, USA
| | - R L Heath
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
24
|
Voss M, Toelzer C, Bhandari DD, Parker JE, Niefind K. Arabidopsis immunity regulator EDS1 in a PAD4/SAG101-unbound form is a monomer with an inherently inactive conformation. J Struct Biol 2019; 208:107390. [PMID: 31550533 DOI: 10.1016/j.jsb.2019.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022]
Abstract
In plant innate immunity, enhanced disease susceptibility 1 (EDS1) integrates all pathogen-induced signals transmitted by TIR-type NLR receptors. Driven by an N-terminal α/β-hydrolase-fold domain with a protruding interaction helix, EDS1 assembles with two homologs, phytoalexin-deficient 4 (PAD4) and senescence-associated gene 101 (SAG101). The resulting heterodimers are critical for EDS1 function and structurally well characterized. Here, we resolve solution and crystal structures of unbound Arabidopsis thaliana EDS1 (AtEDS1) using nanobodies for crystallization. These structures, together with gel filtration and immunoprecipitation data, show that PAD4/SAG101-unbound AtEDS1 is stable as a monomer and does not form the homodimers recorded in public databases. Its PAD4/SAG101 anchoring helix is disordered unless engaged in protein/protein interactions. As in the complex with SAG101, monomeric AtEDS1 has a substrate-inaccessible esterase triad with a blocked oxyanion hole and without space for a covalent acyl intermediate. These new structures suggest that the AtEDS1 monomer represents an inactive or pre-activated ground state.
Collapse
Affiliation(s)
- Martin Voss
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Zülpicher Str. 47, D-50674 Cologne, Germany
| | - Christine Toelzer
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Zülpicher Str. 47, D-50674 Cologne, Germany
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Karsten Niefind
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Zülpicher Str. 47, D-50674 Cologne, Germany.
| |
Collapse
|
25
|
Mayta ML, Hajirezaei MR, Carrillo N, Lodeyro AF. Leaf Senescence: The Chloroplast Connection Comes of Age. PLANTS (BASEL, SWITZERLAND) 2019; 8:E495. [PMID: 31718069 PMCID: PMC6918220 DOI: 10.3390/plants8110495] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
Abstract
Leaf senescence is a developmental process critical for plant fitness, which involves genetically controlled cell death and ordered disassembly of macromolecules for reallocating nutrients to juvenile and reproductive organs. While natural leaf senescence is primarily associated with aging, it can also be induced by environmental and nutritional inputs including biotic and abiotic stresses, darkness, phytohormones and oxidants. Reactive oxygen species (ROS) are a common thread in stress-dependent cell death and also increase during leaf senescence. Involvement of chloroplast redox chemistry (including ROS propagation) in modulating cell death is well supported, with photosynthesis playing a crucial role in providing redox-based signals to this process. While chloroplast contribution to senescence received less attention, recent findings indicate that changes in the redox poise of these organelles strongly affect senescence timing and progress. In this review, the involvement of chloroplasts in leaf senescence execution is critically assessed in relation to available evidence and the role played by environmental and developmental cues such as stress and phytohormones. The collected results indicate that chloroplasts could cooperate with other redox sources (e.g., mitochondria) and signaling molecules to initiate the committed steps of leaf senescence for a best use of the recycled nutrients in plant reproduction.
Collapse
Affiliation(s)
- Martín L. Mayta
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina;
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany;
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina;
| | - Anabella F. Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina;
| |
Collapse
|
26
|
Gao X, Wu X, Liu G, Zhang Z, Chao J, Li Z, Guo Y, Sun Y. Characterization and Mapping of a Novel Premature Leaf Senescence Mutant in Common Tobacco ( Nicotiana tabacum L.). PLANTS 2019; 8:plants8100415. [PMID: 31618834 PMCID: PMC6843228 DOI: 10.3390/plants8100415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022]
Abstract
As the last stage of plant development, leaf senescence has a great impact on plant’s life cycle. Genetic manipulation of leaf senescence has been used as an efficient approach in improving the yield and quality of crop plants. Here we describe an ethyl methane sulfonate (EMS) mutagenesis induced premature leaf senescence mutant yellow leaf 1 (yl1) in common tobacco (Nicotiana tabacum L.). The yl1 plants displayed early leaf yellowing. Physiological parameters and marker genes expression indicated that the yl1 phenotype was caused by premature leaf senescence. Genetic analyses indicated that the yl1 phenotype was controlled by a single recessive gene that was subsequently mapped to a specific interval of tobacco linkage group 11 using simple sequence repeat (SSR) markers. Exogenous plant hormone treatments of leaves showed that the yl1 mutant was more sensitive to ethylene and jasmonic acid than the wild type. No similar tobacco premature leaf senescence mutants have been reported. This study laid a foundation for finding the gene controlling the mutation phenotype and revealing the molecular regulation mechanism of tobacco leaf senescence in the next stage.
Collapse
Affiliation(s)
- Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Plant Genetic, Gembloux Agro-Bio Tech, University of Liege, Gembloux B-5030, Belgium.
| | - Xinru Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zhiyuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
27
|
Shi X, Xu S, Mu D, Sadeghnezhad E, Li Q, Ma Z, Zhao L, Zhang Q, Wang L. Exogenous Melatonin Delays Dark-Induced Grape Leaf Senescence by Regulation of Antioxidant System and Senescence Associated Genes (SAGs). PLANTS (BASEL, SWITZERLAND) 2019; 8:E366. [PMID: 31547618 PMCID: PMC6843164 DOI: 10.3390/plants8100366] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/23/2022]
Abstract
Leaf senescence is a developmentally programmed and degenerative process which comprises the last stage of the life cycle of leaves. In order to understand the melatonin effect on grapevine leaf senescence, the dark treatment on detached leaves of Vitis vinifera L. cv. Red Globe was performed to induce leaf senescence at short period of time. Then, a series of physiological and molecular changes in response to exogenous melatonin were measured. Results showed that 100 μM of melatonin treatment could significantly delay the dark induced leaf senescence, which is accompanied by the decreased production of reactive oxygen species (ROS). Meanwhile, melatonin treatment could increase the scavenging activity of antioxidant enzymes, such as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). Simultaneously, ascorbate (AsA) and glutathione (GSH) contents, the activities of ascorbate peroxidase (APX), and glutathione reductase (GR) were significantly higher than control treatment in samples treated with melatonin. Furthermore, melatonin treatment showed to suppress the expression of leaf senescence-associated genes (SAGs). All these results demonstrated that melatonin could activate the antioxidant and Ascorbate-Glutathione (AsA-GSH) cycle system and repress the expression of SAGs that lead to delay the dark induced grape leaf senescence.
Collapse
Affiliation(s)
- Xingyun Shi
- Wuwei Academy of Forestry Science, Wuwei 733000, China; (X.S.); (Q.Z.); (Q.L.); (L.Z.); (Q.Z.)
- Economic Crops Technical Advising Station of Huzhou City, Huzhou 313000, China
| | - Shanshan Xu
- Wuwei Management Office for Forestry and Fruit Industry, Wuwei 733000, China;
| | - Desheng Mu
- Wuwei Academy of Forestry Science, Wuwei 733000, China; (X.S.); (Q.Z.); (Q.L.); (L.Z.); (Q.Z.)
| | - Ehsan Sadeghnezhad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Teheran 14115-111, Iran;
| | - Qiang Li
- Wuwei Academy of Forestry Science, Wuwei 733000, China; (X.S.); (Q.Z.); (Q.L.); (L.Z.); (Q.Z.)
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Lianxin Zhao
- Wuwei Academy of Forestry Science, Wuwei 733000, China; (X.S.); (Q.Z.); (Q.L.); (L.Z.); (Q.Z.)
| | - Qinde Zhang
- Wuwei Academy of Forestry Science, Wuwei 733000, China; (X.S.); (Q.Z.); (Q.L.); (L.Z.); (Q.Z.)
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
28
|
WITHDRAWN: Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology. Prog Lipid Res 2019. [DOI: 10.1016/j.plipres.2019.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Patharkar OR, Walker JC. Connections between abscission, dehiscence, pathogen defense, drought tolerance, and senescence. PLANT SCIENCE 2019; 284:25-29. [PMID: 31084875 DOI: 10.1016/j.plantsci.2019.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 05/22/2023]
|
30
|
Zhu Z, Li G, Yan C, Liu L, Zhang Q, Han Z, Li B. DRL1, Encoding A NAC Transcription Factor, Is Involved in Leaf Senescence in Grapevine. Int J Mol Sci 2019; 20:ijms20112678. [PMID: 31151316 PMCID: PMC6600502 DOI: 10.3390/ijms20112678] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
The NAC (for NAM, ATAF1,2, and CUC2) proteins family are plant-specific transcription factors, which play important roles in leaf development and response to environmental stresses. In this study, an NAC gene, DRL1, isolated from grapevine Vitis vinifera L. "Yatomi Rose", was shown to be involved in leaf senescence. The quantity of DRL1 transcripts decreased with advancing leaf senescence in grapevine. Overexpressing the DRL1 gene in tobacco plants significantly delayed leaf senescence with respect to chlorophyll concentration, potential quantum efficiency of photosystem II (Fv/Fm), and ion leakage. Moreover, exogenous abscisic acid (ABA) markedly reduced the expression of DRL1, and the ABA and salicylic acid (SA) concentration was lower in the DRL1-overexpressing transgenic plants than in the wild-type plants. The DRL1 transgenic plants exhibited reduced sensitivity to ABA-induced senescence but no significant change in the sensitivity to jasmonic acid-, SA- or ethylene-induced senescence. Transcriptomic analysis and RNA expression studies also indicated that the transcript abundance of genes associated with ABA biosynthesis and regulation, including 9-cis-epoxycarotenoid dioxygenase (NCED1), NCED5, zeaxanthin epoxidase1 (ZEP1), ABA DEFICIENT2 (ABA2), ABA4, and ABA INSENSITIVE 2 (ABI2), was markedly reduced in the DRL1-overexpressing plants. These results suggested that DRL1 plays a role as a negative regulator of leaf senescence by regulating ABA synthesis.
Collapse
Affiliation(s)
- Ziguo Zhu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Guirong Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Chaohui Yan
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Li Liu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Qingtian Zhang
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Zhen Han
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Bo Li
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| |
Collapse
|
31
|
Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology. Prog Lipid Res 2019; 75:100987. [PMID: 31078649 DOI: 10.1016/j.plipres.2019.100987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/22/2022]
Abstract
Most current knowledge about plant lipid metabolism has focused on the biosynthesis of lipids and their transport between different organelles. However, lipid composition changes during development and in response to environmental cues often go beyond adjustments of lipid biosynthesis. When lipids have to be removed to adjust the extent of membranes during down regulation of photosynthesis, or lipid composition has to be adjusted to alter the biophysical properties of membranes, or lipid derived chemical signals have to be produced, lipid-degrading enzymes come into play. This review focuses on glycerolipid acylhydrolases that remove acyl groups from glycerolipids and will highlight their roles in lipid remodeling and lipid-derived signal generation. One emerging theme is that these enzymes are involved in the dynamic movement of acyl groups through different lipid pools, for example from polar membrane lipids to neutral lipids sequestered in lipid droplets during de novo triacylglycerol synthesis. Another example of acyl group sequestration in the form of triacylglycerols in lipid droplets is membrane lipid remodeling in response to abiotic stresses. Fatty acids released for membrane lipids can also give rise to potent signaling molecules and acylhydrolases are therefore often the first step in initiating the formation of these lipid signals.
Collapse
|
32
|
Tamary E, Nevo R, Naveh L, Levin‐Zaidman S, Kiss V, Savidor A, Levin Y, Eyal Y, Reich Z, Adam Z. Chlorophyll catabolism precedes changes in chloroplast structure and proteome during leaf senescence. PLANT DIRECT 2019; 3:e00127. [PMID: 31245770 PMCID: PMC6508775 DOI: 10.1002/pld3.127] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 05/18/2023]
Abstract
The earliest visual changes of leaf senescence occur in the chloroplast as chlorophyll is degraded and photosynthesis declines. Yet, a comprehensive understanding of the sequence of catabolic events occurring in chloroplasts during natural leaf senescence is still missing. Here, we combined confocal and electron microscopy together with proteomics and biochemistry to follow structural and molecular changes during Arabidopsis leaf senescence. We observed that initiation of chlorophyll catabolism precedes other breakdown processes. Chloroplast size, stacking of thylakoids, and efficiency of PSII remain stable until late stages of senescence, whereas the number and size of plastoglobules increase. Unlike catabolic enzymes, whose level increase, the level of most proteins decreases during senescence, and chloroplast proteins are overrepresented among these. However, the rate of their disappearance is variable, mostly uncoordinated and independent of their inherent stability during earlier developmental stages. Unexpectedly, degradation of chlorophyll-binding proteins lags behind chlorophyll catabolism. Autophagy and vacuole proteins are retained at relatively high levels, highlighting the role of extra-plastidic degradation processes especially in late stages of senescence. The observation that chlorophyll catabolism precedes all other catabolic events may suggest that this process enables or signals further catabolic processes in chloroplasts.
Collapse
Affiliation(s)
- Eyal Tamary
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew UniversityRehovotIsrael
| | - Reinat Nevo
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Leah Naveh
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew UniversityRehovotIsrael
| | - Smadar Levin‐Zaidman
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Vladimir Kiss
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Alon Savidor
- de Botton Institute for Protein ProfilingThe Nancy and Stephen Grand Israel National Center for Personalized MedicineWeizmann Institute of ScienceRehovotIsrael
| | - Yishai Levin
- de Botton Institute for Protein ProfilingThe Nancy and Stephen Grand Israel National Center for Personalized MedicineWeizmann Institute of ScienceRehovotIsrael
| | - Yoram Eyal
- Institute of Plant SciencesThe Volcani Center ARORishon LeZionIsrael
| | - Ziv Reich
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew UniversityRehovotIsrael
| |
Collapse
|
33
|
Jan S, Abbas N, Ashraf M, Ahmad P. Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. PROTOPLASMA 2019; 256:313-329. [PMID: 30311054 DOI: 10.1007/s00709-018-1310-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Plant leaves offer an exclusive windowpane to uncover the changes in organs, tissues, and cells as they advance towards the process of senescence and death. Drought-induced leaf senescence is an intricate process with remarkably coordinated phases of onset, progression, and completion implicated in an extensive reprogramming of gene expression. Advancing leaf senescence remobilizes nutrients to younger leaves thereby contributing to plant fitness. However, numerous mysteries remain unraveled concerning leaf senescence. We are not still able to correlate leaf senescence and drought stress to endogenous and exogenous environments. Furthermore, we need to decipher how molecular mechanisms of the leaf senescence and levels of drought tolerance are advanced and how is the involvement of SAGs in drought tolerance and plant fitness. This review provides the perspicacity indispensable for facilitating our coordinated point of view pertaining to leaf senescence together with inferences on progression of whole plant aging. The main segments discussed in the review include coordination between hormonal signaling, leaf senescence, drought tolerance, and crosstalk between hormones in leaf senescence regulation.
Collapse
Affiliation(s)
- Sumira Jan
- ICAR- Central Institute of Temperate Horticulture, Rangreth, Air Field, Srinagar, Jammu and Kashmir, India
| | - Nazia Abbas
- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Jammu and Kashmir, India
| | | | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India.
| |
Collapse
|
34
|
Tak H, Negi S, Gupta A, Ganapathi TR. A stress associated NAC transcription factor MpSNAC67 from banana (Musa x paradisiaca) is involved in regulation of chlorophyll catabolic pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:61-71. [PMID: 30172854 DOI: 10.1016/j.plaphy.2018.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 05/02/2023]
Abstract
Process of senescence includes multiple steps involving break-down of chlorophyll to degrade photosynthetic machinery. In this study, we showed that a stress-associated NAC transcription factor MpSNAC67 regulates senescence by promoting chlorophyll-catabolic genes. MpSNAC67 encodes a transcriptional activator and its promoter activity is restricted to vascular tissue of banana. Expression of MpSNAC67 showed positive responses to multiple abiotic stress conditions suggesting that MpSNAC67 is a stress associated NAC transcription factor. Transgenic banana lines overexpressing MpSNAC67 showed highly senesced phenotype including yellowing and de-greening of leaves similar to etiolated leaves. Transgenic leaves possessed low chlorophyll content and failed to retain normal chloroplast morphology including loss of granum thylakoid, non-uniform chloroplast membrane and increased number as well as size of plastoglobulins. In a gel shift assay MpSNAC67 could retard the mobility of chlorophyll catabolic genes such as PAO-like (Pheophorbide-a-oxygenase), HCAR-like (hydroxymethyl chlorophyll-a-reductase), NYC/NOL-like (Chlorophyll-b-reductase) as well as ORS1-like (a SenNAC). Expression of these genes were highly elevated in transgenic lines which indicate that MpSNAC67 is a positive regulator of senescence in banana and exercise its effect by regulating the expression of chlorophyll catabolic genes and ORS1.
Collapse
Affiliation(s)
- Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Alka Gupta
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
35
|
Chao Y, Xie L, Yuan J, Guo T, Li Y, Liu F, Han L. Transcriptome analysis of leaf senescence in red clover ( Trifolium pratense L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:753-765. [PMID: 30150852 PMCID: PMC6103954 DOI: 10.1007/s12298-018-0562-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 03/24/2018] [Accepted: 05/22/2018] [Indexed: 05/28/2023]
Abstract
Red clover (Trifolium pratense L.) is an important cool-season legume plant, which is used as forage. Leaf senescence is a critical developmental process that negatively affects plant quality and yield. The regulatory mechanism of leaf senescence has been studied, and genes involved in leaf senescence have been cloned and characterized in many plants. However, those works mainly focused on model plants. Information about regulatory pathways and the genes involved in leaf senescence in red clover is very sparse. In this study, to better understand leaf senescence in red clover, transcriptome analysis of mature and senescent leaves was investigated using RNA-Seq. A total of about 35,067 genes were identified, and 481 genes were differentially expressed in mature and senescent leaves. Some identified differentially expressed genes showed similar expression patterns as those involved in leaf senescence in other species, such as Arabidopsis, Medicago truncatula and rice. Differentially expressed genes were confirmed by quantitative real-time PCR (qRT-PCR). Genes involved in signal transduction, transportation and metabolism of plant hormones, transcription factors and plant senescence were upregulated, while the downregulated genes were primarily involved in nutrient cycling, lipid/carbohydrate metabolism, hormone response and other processes. There were 64 differentially expressed transcription factor genes identified by RNA-Seq, including ERF, WRKY, bHLH, MYB and NAC. A total of 90 genes involved in biosynthesis, metabolism and transduction of plant hormones, including abscisic acid, jasmonic acid, cyokinin, brassinosteroid, salicylic acid and ethylene, were identified. Furthermore, 207 genes with direct roles in leaf senescence were demonstrated, such as senescence-associated genes. These genes were associated with senescence in other plants. Transcriptome analysis of mature and senescent leaves in red clover provides a large number of differentially expressed genes. Further analysis and identification of senescence-associated genes can provide new insight into the regulatory mechanisms of leaf development and senescence in legume plant and red clover.
Collapse
Affiliation(s)
- Yuehui Chao
- Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Lijuan Xie
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen, 518055 China
| | - Jianbo Yuan
- Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Tao Guo
- Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Yinruizhi Li
- Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Fengqi Liu
- Institute of Grassland Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Liebao Han
- Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
36
|
Plant Desiccation Tolerance and its Regulation in the Foliage of Resurrection “Flowering-Plant” Species. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The majority of flowering-plant species can survive complete air-dryness in their seed and/or pollen. Relatively few species (‘resurrection plants’) express this desiccation tolerance in their foliage. Knowledge of the regulation of desiccation tolerance in resurrection plant foliage is reviewed. Elucidation of the regulatory mechanism in resurrection grasses may lead to identification of genes that can improve stress tolerance and yield of major crop species. Well-hydrated leaves of resurrection plants are desiccation-sensitive and the leaves become desiccation tolerant as they are drying. Such drought-induction of desiccation tolerance involves changes in gene-expression causing extensive changes in the complement of proteins and the transition to a highly-stable quiescent state lasting months to years. These changes in gene-expression are regulated by several interacting phytohormones, of which drought-induced abscisic acid (ABA) is particularly important in some species. Treatment with only ABA induces desiccation tolerance in vegetative tissue of Borya constricta Churchill. and Craterostigma plantagineum Hochstetter. but not in the resurrection grass Sporobolus stapfianus Gandoger. Suppression of drought-induced senescence is also important for survival of drying. Further research is needed on the triggering of the induction of desiccation tolerance, on the transition between phases of protein synthesis and on the role of the phytohormone, strigolactone and other potential xylem-messengers during drying and rehydration.
Collapse
|
37
|
Bernacki MJ, Czarnocka W, Witoń D, Rusaczonek A, Szechyńska-Hebda M, Ślesak I, Dąbrowska-Bronk J, Karpiński S. ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) affects development, photosynthesis, and hormonal homeostasis in hybrid aspen (Populus tremula L. × P. tremuloides). JOURNAL OF PLANT PHYSIOLOGY 2018; 226:91-102. [PMID: 29730441 DOI: 10.1016/j.jplph.2018.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/08/2018] [Accepted: 04/23/2018] [Indexed: 05/23/2023]
Abstract
ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) was first described as a protein involved in salicylic acid (SA)-, ethylene-, and reactive oxygen species (ROS)-dependent defense and acclimation responses. It is a molecular regulator of biotic and abiotic stress-induced programmed cell death. Its role is relatively well known in annual plants, such as Arabidopsis thaliana or Nicotiana benthamiana. However, little is known about its functions in woody plants. Therefore, in this study, we aimed to characterize the function of EDS1 in the Populus tremula L. × P. tremuloides hybrid grown for several seasons in the natural environment. We used two transgenic lines, eds1-7 and eds1-12, with decreased EDS1 expression levels in this study. The observed changes in physiological and biochemical parameters corresponded with the EDS1 silencing level. Both transgenic lines produced more lateral shoots in comparison to the wild-type (WT) plants, which resulted in the modification of tree morphology. Photosynthetic parameters, such as quantum yield of photosystem II (ϕPSII), photochemical and non-photochemical quenching (qP and NPQ, respectively), as well as chlorophyll content were found to be increased in both transgenic lines, which resulted in changes in photosynthetic efficiency. Our data also revealed lower foliar concentrations of SA and ROS, the latter resulting most probably from more efficient antioxidant system in both transgenic lines. In addition, our data indicated significantly decreased rate of leaf senescence during several autumn seasons. Transcriptomic analysis revealed deregulation of 2215 and 376 genes in eds1-12 and eds1-7, respectively, and also revealed 207 genes that were commonly deregulated in both transgenic lines. The deregulation was primarily observed in the genes involved in photosynthesis, signaling, hormonal metabolism, and development, which was found to agree with the results of biochemical and physiological tests. In general, our data proved that poplar EDS1 affects tree morphology, photosynthetic efficiency, ROS and SA metabolism, as well as leaf senescence.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Magdalena Szechyńska-Hebda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-001 Cracow, Poland; Plant Breeding and Acclimatization Institute, 05-870 Błonie, Radzików, Poland
| | - Ireneusz Ślesak
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland; The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-001 Cracow, Poland
| | - Joanna Dąbrowska-Bronk
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland.
| |
Collapse
|
38
|
Wang D, Zhang L, Hu J, Gao D, Liu X, Sha Y. Comparative genomic analysis of the Lipase3 gene family in five plant species reveals distinct evolutionary origins. Genetica 2018; 146:179-185. [PMID: 29468429 DOI: 10.1007/s10709-018-0010-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/30/2018] [Indexed: 11/26/2022]
Abstract
Lipases are physiologically important and ubiquitous enzymes that share a conserved domain and are classified into eight different families based on their amino acid sequences and fundamental biological properties. The Lipase3 family of lipases was reported to possess a canonical fold typical of α/β hydrolases and a typical catalytic triad, suggesting a distinct evolutionary origin for this family. Genes in the Lipase3 family do not have the same functions, but maintain the conserved Lipase3 domain. There have been extensive studies of Lipase3 structures and functions, but little is known about their evolutionary histories. In this study, all lipases within five plant species were identified, and their phylogenetic relationships and genetic properties were analyzed and used to group them into distinct evolutionary families. Each identified lipase family contained at least one dicot and monocot Lipase3 protein, indicating that the gene family was established before the split of dicots and monocots. Similar intron/exon numbers and predicted protein sequence lengths were found within individual groups. Twenty-four tandem Lipase3 gene duplications were identified, implying that the distinctive function of Lipase3 genes appears to be a consequence of translocation and neofunctionalization after gene duplication. The functional genes EDS1, PAD4, and SAG101 that are reportedly involved in pathogen response were all located in the same group. The nucleotide diversity (Dxy) and the ratio of nonsynonymous to synonymous nucleotide substitutions rates (Ka/Ks) of the three genes were significantly greater than the average across the genomes. We further observed evidence for selection maintaining diversity on three genes in the Toll-Interleukin-1 receptor type of nucleotide binding/leucine-rich repeat immune receptor (TIR-NBS LRR) immunity-response signaling pathway, indicating that they could be vulnerable to pathogen effectors.
Collapse
Affiliation(s)
- Dan Wang
- School of Medical Information of Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin Zhang
- School of Nursing of Xuzhou Medical University, Research Center for Neurobiology of Xuzhou Medical University, Xuzhou, 221004, China
| | - JunFeng Hu
- School of Medical Information of Xuzhou Medical University, Xuzhou, 221004, China
| | - Dianshuai Gao
- Research Center for Neurobiology of Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin Liu
- School of Medical Information of Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan Sha
- School of Medical Information of Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
39
|
Bresson J, Bieker S, Riester L, Doll J, Zentgraf U. A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:769-786. [PMID: 28992225 DOI: 10.1093/jxb/erx246] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Leaf senescence is not a chaotic breakdown but a dynamic process following a precise timetable. It enables plants to economize with their resources and control their own viability and integrity. The onset as well as the progression of leaf senescence are co-ordinated by a complex genetic network that continuously integrates developmental and environmental signals such as biotic and abiotic stresses. Therefore, studying senescence requires an integrative and multi-scale analysis of the dynamic changes occurring in plant physiology and metabolism. In addition to providing an automated and standardized method to quantify leaf senescence at the macroscopic scale, we also propose an analytic framework to investigate senescence at physiological, biochemical, and molecular levels throughout the plant life cycle. We have developed protocols and suggested methods for studying different key processes involved in senescence, including photosynthetic capacities, membrane degradation, redox status, and genetic regulation. All methods presented in this review were conducted on Arabidopsis thaliana Columbia-0 and results are compared with senescence-related mutants. This guideline includes experimental design, protocols, recommendations, and the automated tools for leaf senescence analyses that could also be applied to other species.
Collapse
Affiliation(s)
- Justine Bresson
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Stefan Bieker
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Lena Riester
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Jasmin Doll
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Ulrike Zentgraf
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| |
Collapse
|
40
|
Balic I, Vizoso P, Nilo-Poyanco R, Sanhueza D, Olmedo P, Sepúlveda P, Arriagada C, Defilippi BG, Meneses C, Campos-Vargas R. Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless. PLoS One 2018; 13:e0190087. [PMID: 29320527 PMCID: PMC5761854 DOI: 10.1371/journal.pone.0190087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 12/07/2017] [Indexed: 11/18/2022] Open
Abstract
Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening.
Collapse
Affiliation(s)
- Iván Balic
- Universidad Andrés Bello, Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Santiago, Chile
- Universidad de Los Lagos, Departamento de Acuicultura y Recursos Agroalimentarios, Osorno, Chile
| | - Paula Vizoso
- Center of Plant Propagation and Conservation (CEPROVEG), Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | | | - Dayan Sanhueza
- Universidad Andrés Bello, Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Santiago, Chile
| | - Patricio Olmedo
- Universidad Andrés Bello, Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Santiago, Chile
| | - Pablo Sepúlveda
- Universidad Andrés Bello, Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Santiago, Chile
| | - Cesar Arriagada
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | - Bruno G. Defilippi
- Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Claudio Meneses
- Universidad Andrés Bello, Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Reinaldo Campos-Vargas
- Universidad Andrés Bello, Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Santiago, Chile
| |
Collapse
|
41
|
Abstract
As a representative form of plant senescence, leaf senescence has received the most attention during the last two decades. In this chapter we summarize the initiation of leaf senescence by various internal and external signals, the progression of senescence including switches in gene expression, as well as changes at the biochemical and cellular levels during leaf senescence. Impacts of leaf senescence in agriculture and genetic approaches that have been used in manipulating leaf senescence of crop plants are discussed.
Collapse
Affiliation(s)
- Akhtar Ali
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China.,Nuclear Institute for Food and Agriculture, Peshawar, Pakistan
| | - Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China.
| |
Collapse
|
42
|
Ren T, Wang J, Zhao M, Gong X, Wang S, Wang G, Zhou C. Involvement of NAC transcription factor SiNAC1 in a positive feedback loop via ABA biosynthesis and leaf senescence in foxtail millet. PLANTA 2018; 247:53-68. [PMID: 28871431 DOI: 10.1007/s00425-017-2770-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/29/2017] [Indexed: 05/18/2023]
Abstract
The foxtail millet NAC transcription factor NAC1, an ortholog of Arabidopsis NAP, is induced by ABA and senescence and accelerates leaf senescence by promoting ABA biosynthesis. Leaf senescence, a unique developmental stage involving macromolecule degradation and nutrient remobilization, is finely tuned and tightly controlled by different gene families. NO APICAL MERISTEM, ARABIDOPSIS ATAF1, and CUP-SHAPED COTYLEDON (NAC) transcription factors have been demonstrated to be involved in the modulation of leaf senescence in many land plant species. Foxtail millet (Setaria italica L.), an important food and fodder crop, has been studied for its strong stress tolerance and potential to be a biofuel model plant. However, the functional roles of senescence-associated NACs in foxtail millet are still unknown. In this study, we characterized a nuclear localized NAC transcription factor, SiNAC1, which is induced by senescence and concentrated in senescent leaves in foxtail millet. SiNAC1 also positively responds to abscisic acid (ABA) treatment in foxtail millet. Moreover, SiNAC1 promotes the natural and dark-induced leaf senescence by an ABA-dependent manner in Arabidopsis thaliana. NCED2 and NCED3 are elevated by SiNAC1 overexpression, which subsequently promotes ABA biosynthesis in Arabidopsis. Finally, as a homolog of AtNAP, SiNAC1 can partially rescue the delayed leaf senescence phenotype in atnap mutants. Overall, our results demonstrate that SiNAC1 functions as a positive regulator of leaf senescence and is involved in a positive feedback loop via ABA biosynthesis and leaf senescence.
Collapse
Affiliation(s)
- Tingting Ren
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiawei Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Mingming Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoming Gong
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shuxia Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Geng Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Chunjiang Zhou
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
43
|
Li W, Li X, Chao J, Zhang Z, Wang W, Guo Y. NAC Family Transcription Factors in Tobacco and Their Potential Role in Regulating Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2018; 9:1900. [PMID: 30622549 PMCID: PMC6308388 DOI: 10.3389/fpls.2018.01900] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/07/2018] [Indexed: 05/20/2023]
Abstract
The NAC family is one of the largest families of plant-specific transcription factors (TFs) and NAC proteins play important regulatory roles in a variety of developmental and stress response processes in plants. Members of the NAC family TFs have been shown to be important regulators of leaf senescence in a number of plant species. Here we report the identification of the NAC family in tobacco (Nicotiana tabacum) and characterization of the potential role of some of the tobacco NAC TFs in regulating leaf senescence. A total of 154 NAC genes (NtNACs) were identified and clustered together with the Arabidopsis NAC family into fifteen groups (a-o). Transcriptome data analysis followed by qRT-PCR validation showed that the majority of the senescence-up-regulated NtNACs fall into subgroups NAC-b and f. A number of known senescence regulators from Arabidopsis also belong to these two subgroups. Among these senescence-up-regulated NtNACs, NtNAC080, a close homolog of AtNAP, is a positive regulator of leaf senescence. Overexpression of NtNAC080 caused early senescence in Arabidopsis leaves and NtNAC080 mutation induced by Cas9/gRNA in tobacco led to delayed leaf senescence.
Collapse
|
44
|
Zhang Y, Zhao L, Zhao J, Li Y, Wang J, Guo R, Gan S, Liu CJ, Zhang K. S5H/DMR6 Encodes a Salicylic Acid 5-Hydroxylase That Fine-Tunes Salicylic Acid Homeostasis. PLANT PHYSIOLOGY 2017; 175:1082-1093. [PMID: 28899963 PMCID: PMC5664462 DOI: 10.1104/pp.17.00695] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/08/2017] [Indexed: 05/18/2023]
Abstract
The phytohormone salicylic acid (SA) plays essential roles in biotic and abiotic responses, plant development, and leaf senescence. 2,5-Dihydroxybenzoic acid (2,5-DHBA or gentisic acid) is one of the most commonly occurring aromatic acids in green plants and is assumed to be generated from SA, but the enzymes involved in its production remain obscure. DMR6 (Downy Mildew Resistant6; At5g24530) has been proven essential in plant immunity of Arabidopsis (Arabidopsis thaliana), but its biochemical properties are not well understood. Here, we report the discovery and functional characterization of DMR6 as a salicylic acid 5-hydroxylase (S5H) that catalyzes the formation of 2,5-DHBA by hydroxylating SA at the C5 position of its phenyl ring in Arabidopsis. S5H/DMR6 specifically converts SA to 2,5-DHBA in vitro and displays higher catalytic efficiency (Kcat/Km = 4.96 × 104 m-1 s-1) than the previously reported S3H (Kcat/Km = 6.09 × 103 m-1 s-1) for SA. Interestingly, S5H/DMR6 displays a substrate inhibition property that may enable automatic control of its enzyme activities. The s5h mutant and s5hs3h double mutant overaccumulate SA and display phenotypes such as a smaller growth size, early senescence, and a loss of susceptibility to Pseudomonas syringae pv tomato DC3000. S5H/DMR6 is sensitively induced by SA/pathogen treatment and is expressed widely from young seedlings to senescing plants, whereas S3H is more specifically expressed at the mature and senescing stages. Collectively, our results disclose the identity of the enzyme required for 2,5-DHBA formation and reveal a mechanism by which plants fine-tune SA homeostasis by mediating SA 5-hydroxylation.
Collapse
Affiliation(s)
- Yanjun Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Li Zhao
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jiangzhe Zhao
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yujia Li
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jinbin Wang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Rong Guo
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Susheng Gan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Chang-Jun Liu
- Department of Biosciences, Brookhaven National Laboratory, Upton, New York 11973
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
45
|
Li W, Zhang H, Li X, Zhang F, Liu C, Du Y, Gao X, Zhang Z, Zhang X, Hou Z, Zhou H, Sheng X, Wang G, Guo Y. Intergrative metabolomic and transcriptomic analyses unveil nutrient remobilization events in leaf senescence of tobacco. Sci Rep 2017; 7:12126. [PMID: 28935979 PMCID: PMC5608745 DOI: 10.1038/s41598-017-11615-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/25/2017] [Indexed: 11/27/2022] Open
Abstract
Leaf senescence in plants is a coordinated process that involves remobilization of nutrients from senescing leaves to sink tissues. The molecular events associated with nutrient remobilization are however not well understood. In this study the tobacco system with a source-sink relationship between different leaf positions was used in analyzing the spatiotemporal changes of 76 metabolites from leaves at 3 different stalk positions and 8 developmental stages. The metabolomic data was then compared with RNA-seq data from the same samples to analyze the activities of the metabolic pathways that are important for nutrient remobilization. Integrative analyses on metabolites accumulation and expression changes of enzyme-encoding genes in corresponding metabolic pathways indicated a significant up-regulation of the tricarboxylic acid cycle and related metabolism of sugars, amino acids and fatty acids, suggesting the importance of energy metabolism during leaf senescence. Other changes of the metabolism during tobacco leaf senescence include increased activities of the GS/GOGAT cycle which is responsible for nitrogen recycling, and increased accumulation of nicotine. The results also suggested that a number of compounds seemed to be transported from senescing leaves at lower positions to sink leaves at upper positions. Some of these metabolites could play a role in nutrient remobilization.
Collapse
Affiliation(s)
- Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Hailiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Fengxia Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Cheng Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Yongmei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Xiaobing Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Zhihui Hou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Hui Zhou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Xiaofei Sheng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Guodong Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China.
| |
Collapse
|
46
|
Yıldırım K, Kaya Z. Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:183-199. [PMID: 28376411 DOI: 10.1016/j.plaphy.2017.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 05/01/2023]
Abstract
Drought is the major environmental problem limiting the productivity and survival of plant species. Here, previously identified three black poplar genotypes having contrasting response to drought were subjected to gradual soil water depletion in a pot trial to identify their physiological, morphological and antioxidation related adaptations. We also performed a microarray based transcriptome analyses on the leaves of genotypes by using Affymetrix poplar Genome Array containing 56,000 transcripts. Phenotypic analyses of each genotype confirmed their differential adaptations to drought that could be classified as drought escape, avoidance and tolerance. Comparative transcriptomic analysis indicated highly divergent gene expression patterns among the genotypes in response to drought and post drought re-watering (PDR). We identified 10641, 3824 and 9411 transcripts exclusively regulated in drought escape, avoidance and tolerant genotypes, respectively. The key genes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein folding, redox homeostasis, secondary metabolic process and cell wall component biogenesis, were affected by drought stresses in the leaves of these genotypes. Transcript isoforms showed increased expression specificity in the genes coding for bark storage proteins and small heat shock proteins in drought tolerant genotype. On the other hand, drought-avoiding genotype specifically induced the transcripts annotated to the genes functional in secondary metabolite production that linked to enhanced leaf water content and growth performance under drought stress. Transcriptome profiling of drought escape genotype indicated specific regulation of the genes functional in programmed cell death and leaf senescence. Specific upregulation of GTP cyclohydrolase II and transcription factors (WRKY and ERFs) in only this genotype were associated to ROS dependent signalling pathways and gene regulation network responsible in induction of many degrading enzymes acting on cell wall carbohydrates, fatty acids and proteins under drought stress. Our findings provide new insights into the transcriptome dynamics and components of regulatory network associated with drought adaptation strategies.
Collapse
Affiliation(s)
- Kubilay Yıldırım
- Department of Bioengineering, Gaziosmanpasa University, 60100 Tokat, Turkey; Department of Biological Sciences, Middle East Technical University, 06531 Ankara, Turkey
| | - Zeki Kaya
- Department of Biological Sciences, Middle East Technical University, 06531 Ankara, Turkey.
| |
Collapse
|
47
|
Wu XY, Hu WJ, Luo H, Xia Y, Zhao Y, Wang LD, Zhang LM, Luo JC, Jing HC. Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor). PLANT MOLECULAR BIOLOGY 2016; 92:555-580. [PMID: 27586543 DOI: 10.1007/s11103-016-0532-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/19/2016] [Indexed: 05/04/2023]
Abstract
This piece of the submission is being sent via mail. Leaf senescence is essential for the nutrient economy of crops and is executed by so-called senescence-associated genes (SAGs). Here we explored the monocot C4 model crop Sorghum bicolor for a holistic picture of SAG profiles by RNA-seq. Leaf samples were collected at four stages during developmental senescence, and in total, 3396 SAGs were identified, predominantly enriched in GO categories of metabolic processes and catalytic activities. These genes were enriched in 13 KEGG pathways, wherein flavonoid and phenylpropanoid biosynthesis and phenylalanine metabolism were overrepresented. Seven regions on Chromosomes 1, 4, 5 and 7 contained SAG 'hotspots' of duplicated genes or members of cupin superfamily involved in manganese ion binding and nutrient reservoir activity. Forty-eight expression clusters were identified, and the candidate orthologues of the known important senescence transcription factors such as ORE1, EIN3 and WRKY53 showed "SAG" expression patterns, implicating their possible roles in regulating sorghum leaf senescence. Comparison of developmental senescence with salt- and dark- induced senescence allowed for the identification of 507 common SAGs, 1996 developmental specific SAGs as well as 176 potential markers for monitoring senescence in sorghum. Taken together, these data provide valuable resources for comparative genomics analyses of leaf senescence and potential targets for the manipulation of genetic improvement of Sorghum bicolor.
Collapse
Affiliation(s)
- Xiao-Yuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wei-Juan Hu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Yan Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Yi Zhao
- College of Life Sciences and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, People's Republic of China
| | - Li-Dong Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Li-Min Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Jing-Chu Luo
- College of Life Sciences and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, People's Republic of China.
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- Inner Mongolia Research Centre for Practaculture, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
48
|
Xu C, Shanklin J. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:179-206. [PMID: 26845499 DOI: 10.1146/annurev-arplant-043015-111641] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| |
Collapse
|
49
|
Pečenková T, Sabol P, Kulich I, Ortmannová J, Žárský V. Constitutive Negative Regulation of R Proteins in Arabidopsis also via Autophagy Related Pathway? FRONTIERS IN PLANT SCIENCE 2016; 7:260. [PMID: 26973696 PMCID: PMC4777726 DOI: 10.3389/fpls.2016.00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/18/2016] [Indexed: 05/29/2023]
Abstract
Even though resistance (R) genes are among the most studied components of the plant immunity, there remain still a lot of aspects to be explained about the regulation of their function. Many gain-of-function mutants of R genes and loss-of-function of their regulators often demonstrate up-regulated defense responses in combination with dwarf stature and/or spontaneous leaf lesions formation. For most of these mutants, phenotypes are a consequence of an ectopic activation of R genes. Based on the compilation and comparison of published results in this field, we have concluded that the constitutively activated defense phenotypes recurrently arise by disruption of tight, constitutive and multilevel negative control of some of R proteins that might involve also their targeting to the autophagy pathway. This mode of R protein regulation is supported also by protein-protein interactions listed in available databases, as well as in silico search for autophagy machinery interacting motifs. The suggested model could resolve some explanatory discrepancies found in the studies of the immunity responses of autophagy mutants.
Collapse
Affiliation(s)
- Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Peter Sabol
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Ivan Kulich
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Jitka Ortmannová
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
50
|
Song Y, Xiang F, Zhang G, Miao Y, Miao C, Song CP. Abscisic Acid as an Internal Integrator of Multiple Physiological Processes Modulates Leaf Senescence Onset in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:181. [PMID: 26925086 PMCID: PMC4759271 DOI: 10.3389/fpls.2016.00181] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/02/2016] [Indexed: 05/08/2023]
Abstract
Many studies have shown that exogenous abscisic acid (ABA) promotes leaf abscission and senescence. However, owing to a lack of genetic evidence, ABA function in plant senescence has not been clearly defined. Here, two-leaf early-senescence mutants (eas) that were screened by chlorophyll fluorescence imaging and named eas1-1 and eas1-2 showed high photosynthetic capacity in the early stage of plant growth compared with the wild type. Gene mapping showed that eas1-1 and eas1-2 are two novel ABA2 allelic mutants. Under unstressed conditions, the eas1 mutations caused plant dwarf, early germination, larger stomatal apertures, and early leaf senescence compared with those of the wild type. Flow cytometry assays showed that the cell apoptosis rate in eas1 mutant leaves was higher than that of the wild type after day 30. A significant increase in the transcript levels of several senescence-associated genes, especially SAG12, was observed in eas1 mutant plants in the early stage of plant growth. More importantly, ABA-activated calcium channel activity in plasma membrane and induced the increase of cytoplasmic calcium concentration in guard cells are suppressed due to the mutation of EAS1. In contrast, the eas1 mutants lost chlorophyll and ion leakage significant faster than in the wild type under treatment with calcium channel blocker. Hence, our results indicate that endogenous ABA level is an important factor controlling the onset of leaf senescence through Ca(2+) signaling.
Collapse
Affiliation(s)
- Yuwei Song
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan UniversityKaifeng, China
- Department of Life Science and Technology, School of Life Science and Technology, Nanyang Normal UniversityNanyang, China
| | - Fuyou Xiang
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan UniversityKaifeng, China
| | - Guozeng Zhang
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan UniversityKaifeng, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan UniversityKaifeng, China
| | - Chen Miao
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan UniversityKaifeng, China
| | - Chun-Peng Song
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan UniversityKaifeng, China
- *Correspondence: Chun-Peng Song
| |
Collapse
|