1
|
Gao Y, Peng J, Qiao Y, Wang G, Zhan J, Zhang W. Fine mapping and identification of CqMYB62 as the subgynoecy gene in chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:96. [PMID: 40204945 DOI: 10.1007/s00122-025-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
KEY MESSAGE It was hypothesized that Bch08G003160 (CqMYB62), located in the 51.08 Kb region on chromosome 08, might be an important candidate gene for the subgynoecy trait in chieh-qua, based on BSA-seq and linkage mapping approaches. In cucurbit crops, the use of female lines can greatly increase the yield of a single plant and is especially important for the production of hybrid generation seeds, thus being of great interest to breeders. To identify genes regulating sex differentiation in chieh-qua, genetic analysis of the subgynoecy trait was conducted using a chieh-qua F2 population. Initial localization of the locus was done using BSA-seq, followed by fine mapping with a large F2 population (n = 2,741). The locus was ultimately narrowed down to a 51.08 Kb region on Chr08, revealing a single gene Bch08G003160 (CqMYB62) in this region. Further analysis revealed that the presence of two variant loci (SNP_416 and SNP_317) in the coding region resulted in premature termination of the codon and loss of function of the structural domain of the PLN03212 superfamily. Moreover, our research indicated that the subgynoecy trait mediated by CqMYB62 in chieh-qua is potentially regulated by gibberellic acid (GA). Two efficient dCAPS markers were developed to distinguish subgynoecy. In summary, these findings highlight the critical role of CqMYB62 in subgynoecy trait regulation, offering potential implications for chieh-qua breeding programs.
Collapse
Affiliation(s)
- Yin Gao
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiazhu Peng
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China
| | - Yanchun Qiao
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China.
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jianpo Zhan
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China.
| | - Wensheng Zhang
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China.
| |
Collapse
|
2
|
Thilakarathne AS, Liu F, Zou Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1070. [PMID: 40219138 PMCID: PMC11990802 DOI: 10.3390/plants14071070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Plants constantly encounter a wide range of biotic and abiotic stresses that adversely affect their growth, development, and productivity. Phytohormones such as abscisic acid, jasmonic acid, salicylic acid, and ethylene serve as crucial regulators, integrating internal and external signals to mediate stress responses while also coordinating key developmental processes, including seed germination, root and shoot growth, flowering, and senescence. Transcription factors (TFs) such as WRKY, NAC, MYB, and AP2/ERF play complementary roles by orchestrating complex transcriptional reprogramming, modulating stress-responsive genes, and facilitating physiological adaptations. Recent advances have deepened our understanding of hormonal networks and transcription factor families, revealing their intricate crosstalk in shaping plant resilience and development. Additionally, the synthesis, transport, and signaling of these molecules, along with their interactions with stress-responsive pathways, have emerged as critical areas of study. The integration of cutting-edge biotechnological tools, such as CRISPR-mediated gene editing and omics approaches, provides new opportunities to fine-tune these regulatory networks for enhanced crop resilience. By leveraging insights into transcriptional regulation and hormone signaling, these advancements provide a foundation for developing stress-tolerant, high-yielding crop varieties tailored to the challenges of climate change.
Collapse
Affiliation(s)
| | - Fei Liu
- School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
3
|
Rafiq M, Guo M, Shoaib A, Yang J, Fan S, Xiao H, Chen K, Xie Z, Cheng C. Unraveling the Hormonal and Molecular Mechanisms Shaping Fruit Morphology in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:974. [PMID: 40265904 PMCID: PMC11944449 DOI: 10.3390/plants14060974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
The importance of fruit shape studies extends beyond fundamental plant biology, as it holds significant implications for breeding. Understanding the genetic and hormonal regulation of fruit morphology can facilitate targeted breeding strategies to enhance yield, quality, and stress resistance, ultimately contributing to sustainable farming and nutrition security. The diversity in fruit shapes is the result of complex hormone regulation and molecular pathways that affect key traits, including carpel number, fruit length, and weight. Fruit shape is a quality attribute that directly influences consumer preference, marketability and the ease of post-harvest processing. This article focuses on investigations carried out on molecular, genetic and hormonal regulation mechanisms of fruit shape, color, maturation in fruit plants and key genetic pathways such as CLV-WUS and OVATE, as well as their roles in shaping non-climacteric fruits such as strawberries, grapes and raspberries. Plant hormones, especially abscisic acid (ABA) and indole-3-acetic acid (IAA), play a crucial role in enhancing desirable traits such as color and taste, while regulating anthocyanin synthesis and growth time. In addition, the dynamic interactions between auxin, gibberellin, and ethylene are crucial for the ripening process. Jasmonate enhances stress response, brassinosteroids promote ripening and cytokinins promote early fruit development. In addition, this review also studied the fruit morphology of species such as tomatoes and cucumbers, emphasizing the importance of the CLV-WUS pathway, which regulates the number of carpels through genes such as WUSCHEL (WUS), FRUITFULL1 (FUL1), and auxin response factor 14 (ARF14). The weight of fresh fruit is affected by microRNAs such as miRNA156, which emphasizes the importance of post transcriptional regulation. The involvement of transcription factors such as SISHN1, CaOvate, and CISUN25-26-27a further emphasizes the complexity of hormone regulation. Understanding these regulatory mechanisms can enhance our understanding of fruit development and have a profound impact on agricultural practices and crop improvement strategies aimed at meeting the growing global demand for high-quality agricultural products.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Min Guo
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Amna Shoaib
- Department of Plant Pathology, Faculty of Agriculture, University of the Punjab, Lahore 54590, Pakistan
| | - Jiaxin Yang
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Siqing Fan
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Haijing Xiao
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Kai Chen
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Zhaoqi Xie
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Chunsong Cheng
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| |
Collapse
|
4
|
Kiss T, Horváth ÁD, Cseh A, Berki Z, Balla K, Karsai I. Molecular genetic regulation of the vegetative-generative transition in wheat from an environmental perspective. ANNALS OF BOTANY 2025; 135:605-628. [PMID: 39364537 PMCID: PMC11904908 DOI: 10.1093/aob/mcae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The key to the wide geographical distribution of wheat is its high adaptability. One of the most commonly used methods for studying adaptation is investigation of the transition between the vegetative-generative phase and the subsequent intensive stem elongation process. These processes are determined largely by changes in ambient temperature, the diurnal and annual periodicity of daylength, and the composition of the light spectrum. Many genes are involved in the perception of external environmental signals, forming a complex network of interconnections that are then integrated by a few integrator genes. This hierarchical cascade system ensures the precise occurrence of the developmental stages that enable maximum productivity. This review presents the interrelationship of molecular-genetic pathways (Earliness per se, circadian/photoperiod length, vernalization - cold requirement, phytohormonal - gibberellic acid, light perception, ambient temperature perception and ageing - miRNA) responsible for environmental adaptation in wheat. Detailed molecular genetic mapping of wheat adaptability will allow breeders to incorporate new alleles that will create varieties best adapted to local environmental conditions.
Collapse
Affiliation(s)
- Tibor Kiss
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - Ádám D Horváth
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - András Cseh
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Zita Berki
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Krisztina Balla
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Ildikó Karsai
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| |
Collapse
|
5
|
Omena-Garcia RP, Vallarino JG, da Fonseca-Pereira P, Martins AO, Brandão PM, Ribeiro DM, Osorio S, Fernie AR, Araújo WL, Nunes-Nesi A. Reciprocal grafting reveals the role of gibberellins in tomato root-shoot communication. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154444. [PMID: 39986013 DOI: 10.1016/j.jplph.2025.154444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/24/2025]
Abstract
Gibberellins (GAs) serve a multitude of functions in the regulation of processes associated with plant growth and development. The GA demand of an organ can be met through long-range transport from the site of synthesis. To examine the impact of altered GA biosynthesis on metabolism and growth, we performed reciprocal grafts of wild-type (WT; Solanum lycopersicum L.) and mutants exhibiting varying degrees of GA-deficiency (gib lines). The relative growth rate, based on plant height and specific leaf area, of the gib scions demonstrated partial recovery upon grafting to a WT rootstock. In contrast, the WT scion demonstrated recovery of root biomass and the root/shoot ratio in plants with gib rootstocks. Although the majority of free amino acids accumulated and negatively affected root growth of the WT rootstock, while the levels of organic acids and sugars were reduced. Increased levels of sugars and decreased levels of branched-chain amino acids in the roots of gib rootstock suggested that were the main carbon source to sustain the root growth. The multivariate analysis demonstrated growth and metabolism adjustments of the WT rootstock to supply the higher GA demand of the gib scions. In contrast, the WT scion displayed relatively minor metabolic alterations to support high rates of root growth and a reduced GA demand by the gib rootstocks. In this context, the strategic use of grafting between WT plants and GA-deficient mutants offers a viable approach to boosting agricultural productivity and strengthening plant resilience against abiotic stresses, providing an innovative alternative for sustainable crop management under challenging environmental conditions.
Collapse
Affiliation(s)
- Rebeca Patrícia Omena-Garcia
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - José G Vallarino
- Department of Molecular Biology and Biochemistry, Institute of Mediterranean and Subtropical Horticulture 'La Mayora', Universidad de Malaga- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Malaga University, Málaga, Spain
| | - Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Auxiliadora Oliveira Martins
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Pedro Martino Brandão
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Dimas M Ribeiro
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Sonia Osorio
- Department of Molecular Biology and Biochemistry, Institute of Mediterranean and Subtropical Horticulture 'La Mayora', Universidad de Malaga- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Malaga University, Málaga, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Zhou Z, Wang W, Zhao N, Wang M, Zhu J, Yang J, Aierxi A, Kong J. Genome-Wide Characterization of Gibberellin Oxidase Genes ( GbGAoxs) and Illustration of Their Molecular Responses to Exogenous GA 3 in Gossypium barbadense. Int J Mol Sci 2025; 26:1985. [PMID: 40076611 PMCID: PMC11899772 DOI: 10.3390/ijms26051985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
As key enzymes in the gibberellin (GA) biosynthesis pathway, GAoxs function as regulators of bioactive GA levels and plant architecture, yet little is understood about GAoxs in Gossypium. In this study, 78 GAox genes identified in four cotton species were divided into three subgroups: GA2ox, GA3ox, and GA20ox. Syntenic relationships of GAoxs in Gossypium suggested that divergencies in gene function may be attributed to whole-genome duplication during evolution. Cis-acting element analysis suggested that the GbGAox genes might participate in plant growth, development, and hormone responses. Moreover, transcriptome analysis was performed to characterize the molecular response of the exogenous GA3 application. It was found that DEGs (differentially expressed genes) are widely involved in cell division and cell wall modification, in which the most XTH (xyloglucan endotransglucosylase/hydrolase) and GAox genes responded actively to the exogenous GA3 treatment. Some transcription factors and protein kinases cooperated with those GbGAoxs in response to GA3. These findings underlie the biological function of GAox genes and their responses to GA3 in regulating plant growth in Gossypium barbadense.
Collapse
Affiliation(s)
- Zixin Zhou
- Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production, Cotton Research Institute of Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Urumqi 830000, China; (Z.Z.); (W.W.); (N.Z.); (M.W.); (J.Z.); (J.Y.)
| | - Weiran Wang
- Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production, Cotton Research Institute of Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Urumqi 830000, China; (Z.Z.); (W.W.); (N.Z.); (M.W.); (J.Z.); (J.Y.)
| | - Nan Zhao
- Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production, Cotton Research Institute of Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Urumqi 830000, China; (Z.Z.); (W.W.); (N.Z.); (M.W.); (J.Z.); (J.Y.)
| | - Meng Wang
- Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production, Cotton Research Institute of Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Urumqi 830000, China; (Z.Z.); (W.W.); (N.Z.); (M.W.); (J.Z.); (J.Y.)
| | - Jiahui Zhu
- Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production, Cotton Research Institute of Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Urumqi 830000, China; (Z.Z.); (W.W.); (N.Z.); (M.W.); (J.Z.); (J.Y.)
| | - Jing Yang
- Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production, Cotton Research Institute of Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Urumqi 830000, China; (Z.Z.); (W.W.); (N.Z.); (M.W.); (J.Z.); (J.Y.)
| | - Alifu Aierxi
- Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production, Cotton Research Institute of Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Urumqi 830000, China; (Z.Z.); (W.W.); (N.Z.); (M.W.); (J.Z.); (J.Y.)
- National Cotton Engineering Technology Research Center, Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Urumqi 830000, China
| | - Jie Kong
- Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production, Cotton Research Institute of Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Urumqi 830000, China; (Z.Z.); (W.W.); (N.Z.); (M.W.); (J.Z.); (J.Y.)
- National Cotton Engineering Technology Research Center, Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Urumqi 830000, China
| |
Collapse
|
7
|
Zhao H, Sun P, Tong C, Li X, Yang T, Jiang Y, Zhao B, Dong J, Jiang B, Shen J, Li Z. CsIREH1 phosphorylation regulates DELLA protein affecting plant height in cucumber (Cucumis sativus). THE NEW PHYTOLOGIST 2025; 245:1528-1546. [PMID: 39673233 DOI: 10.1111/nph.20309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/11/2024] [Indexed: 12/16/2024]
Abstract
Plant height is a critical agronomic trait that affects crop yield, plant architecture, and environmental adaptability. Gibberellins (GAs) regulate plant height, with DELLA proteins acting as key repressors in the GA signaling pathway by inhibiting GA-induced growth. While DELLA phosphorylation is essential for regulating plant height, the precise mechanisms underlying this process remain incompletely understood. In this study, we identified a cucumber mutant with delayed growth, which exhibited reduced sensitivity to GA treatment. Through bulked segregant analysis (BSA-seq) combined with molecular marker linkage analysis, we successfully identified and cloned the gene responsible for the dwarf phenotype, CsIREH1 (INCOMPLETE ROOT HAIR ELONGATION 1), which encodes an AGC protein kinase. Further research revealed that CsIREH1 interacts with and phosphorylates DELLA proteins, specifically targeting CsGAIP and CsGAI2. We propose that IREH1-dependent phosphorylation of DELLA proteins prevents their excessive accumulation, thereby maintaining normal plant growth. Therefore, investigating the role of IREH1-mediated DELLA phosphorylation provides valuable insights and theoretical foundations for understanding how plants regulate growth mechanisms.
Collapse
Affiliation(s)
- Hongjiao Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Piaoyun Sun
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Can Tong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiangbao Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanxin Jiang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bosi Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junyang Dong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Biao Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Junjun Shen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
8
|
Zuo Z, Zhao H, Fan Y, Zhu Y, Song W, Zhai H, He S, Zhang H, Zhao N, Liu Q, Gao S. Evolutionary analysis of DELLA proteins in sweet potato and related species reveals their roles in development and stress responses. FRONTIERS IN PLANT SCIENCE 2025; 16:1494621. [PMID: 39916778 PMCID: PMC11798988 DOI: 10.3389/fpls.2025.1494621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025]
Abstract
DELLA proteins act as master negative regulators in the gibberellin signaling pathway, which controls numerous aspects of plant growth and development. Despite the pivotal role of DELLA proteins, a comprehensive genome-wide analysis of the DELLA gene family in sweet potato (Ipomoea batatas) and its related species has yet to be conducted. Here, we performed a comparative analysis of this gene family among six Ipomoea species, including Ipomoea batatas, Ipomoea trifida, Ipomoea triloba, Ipomoea nil, Ipomoea cairica, and Ipomoea aquatica. Among the six Ipomoea species, only I. nil contains five DELLA genes, while the remaining species have three DELLA genes each. The DELLA genes were categorized into three distinct subgroups based on the phylogenetic topology in selected Ipomoea species. Comparative analysis of gene structure and protein motifs revealed that members within the same phylogenetic group exhibit comparable exon/intron and motif organization. The cis-regulatory elements of the DELLA gene in selected Ipomoea species contain unique promoter elements, indicating the presence of species-specific regulatory mechanisms. A multitude of shared cis-regulatory elements related to stress responses were identified in the DELLA gene promoters. Furthermore, a syntenic analysis indicates two groups of syntenic DELLA genes have undergone several rearrangements. The results of the duplication analysis indicated that dispersed duplications contribute to the expansion of the DELLA genes. Moreover, the DELLA genes in sweet potato display an expression pattern that tends to control the growth and development of either the aerial or below-ground parts, and they are responsive to a range of hormones and abiotic stresses. Thus, these findings provide insights into the evolutionary history of DELLA genes within the genus Ipomoea and the functions of sweet potato DELLA genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Liu Q, Zhao Y, Yang J, Xiao F, Wang X. Study on the physiological mechanism and transcriptional regulatory network of early fruit development in Gleditsia sinensis Lam. (Fabaceae). BMC PLANT BIOLOGY 2024; 24:1213. [PMID: 39701956 DOI: 10.1186/s12870-024-05895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Gleditsia sinensis Lam. (Fabaceae) is a medicinal legume characterized by its spines and pods, which are rich in saponins, polysaccharides, and various specialized metabolites with potential medicinal and industrial applications. The low fruit set rate in artificially cultivated economic forests significantly impedes its development and utilization. A comprehensive understanding of the cellular events, physiological and biochemical processes, and molecular regulatory mechanisms underlying fruit initiation and early fruit development is essential for enhancing yield. However, such information for G. sinensis remains largely unexplored. RESULTS In this study, we identified that the early fruit development process in G. sinensis can be categorized into three distinct stages: pollination, the critical period of fertilization, and the initial fruit development followed by subsequent growth. The dynamic changes in non-structural carbohydrates and endogenous plant hormones within the ovary were found to play a significant role during fruit set and the early stages of fruit development. Additionally, the high activity of gibberellin, cytokinin, and sucrose-metabolizing enzymes in the ovary was conducive to early fruit development. Furthermore, we generated high-resolution spatiotemporal gene expression profiles in the ovary from the stage of efflorescence to early fruit development. Comparative transcriptomics and weighted gene co-expression network analysis revealed specific genes and gene modules predominant at distinct developmental stages, thereby highlighting unique genetic programming. Overall, we identified the potential regulatory network governing fruit initiation and subsequent development, as well as the sets of candidate genes involved, based on the aforementioned results. CONCLUSIONS The results offer a valuable reference and resource for the application of exogenous substances, such as hormones and sugars, during critical fruit development periods, and for the development of molecular tools aimed at improving yield.
Collapse
Affiliation(s)
- Qiao Liu
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Yang Zhao
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Ju Yang
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Feng Xiao
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Xiurong Wang
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China.
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
10
|
Miura C, Tominaga T, Kaminaka H. Different roles of the phytohormone gibberellin in the wide-spread arbuscular mycorrhiza and in orchid mycorrhiza. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102627. [PMID: 39250880 DOI: 10.1016/j.pbi.2024.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Gibberellin (GA) is a classical plant hormone that regulates many physiological processes, such as plant growth, development, and environmental responses. GA inhibits arbuscular mycorrhizal (AM) symbiosis, the most ancient and widespread type of mycorrhizal symbiosis. Knowledge about mycorrhizal symbioses at the molecular level has been obtained mainly in model plants such as legumes and rice. In contrast, molecular mechanisms in non-model plants are still unclear. Recent studies have revealed the novel roles of GA in mycorrhizal symbioses: its positive effect in Paris-type AM symbiosis in Eustoma grandiflorum and its negative effect on both seed germination and mycorrhizal symbiosis in orchids. This review focuses on the recent data on GA function in AM and orchid mycorrhizal symbioses.
Collapse
Affiliation(s)
- Chihiro Miura
- Faculty of Agriculture, Tottori University, Koyama Minami, Tottori 680-8553, Japan
| | - Takaya Tominaga
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Koyama Minami, Tottori 680-8553, Japan.
| |
Collapse
|
11
|
Gou H, Lu S, Nai G, Ma W, Ren J, Guo L, Chen B, Mao J. The role of gibberellin synthase gene VvGA2ox7 acts as a positive regulator to salt stress in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:1051. [PMID: 39506686 PMCID: PMC11542264 DOI: 10.1186/s12870-024-05708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Soil salinity is an important environmental component affecting plant growth and yield, but high-salinity soils are a major constraint to the development of the grape industry. Previous studies have provided lines of evidence that gibberellins (GAs) play a significant regulatory role in plant responses to salt stress. However, it remains unclear whether GA2ox, a key enzyme that maintains the balance of bioactive gibberellins and intermediates in plants, is involved in the mechanism of salt stress tolerance in grapes. RESULTS In this study, we found that GA2ox7 positively modulates salt stress via its ectopic expression in Arabidopsis thaliana. The GA2ox7 gene cloned from grape was a hydrophilic protein, its CDS length was 1002 bp. Besides, VvGA2ox7 protein contained DIOX_N and 2OG-FeII_Oxy domains and was localized at the nucleus and cytoplasm. Yeast two-hybrid (Y2H) showed VvARCN1, VvB5R, VvRUB2, and VvCAR11 might be potential interaction proteins of VvGA2ox7. Compared with the wild type, overexpression of VvGA2ox7 in Arabidopsis thaliana enhanced antioxidant enzymatic activities and proline, chlorophyll, and ABA contents, and decreased relative electrical conductivity, malondialdehyde, and GA3 contents. Moreover, overexpression of VvGA2ox7 positively regulated the expression of salt stress response genes (KAT1, APX1, LEA, P5CS1, AVP1, CBF1), indicating that the VvGA2ox7 overexpression improved the salt stress tolerance of plants. CONCLUSIONS Taken together, this investigation indicates that VvGA2ox7 may act as a positive regulator in response to salt stress and provide novel insights for a deeper understanding of the role of VvGA2ox7 in grapes.
Collapse
Affiliation(s)
- Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Jiaxuan Ren
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China.
| |
Collapse
|
12
|
Yan Y, Zhu X, Qi H, Wang Y, Zhang H, He J. Rice seed storability: From molecular mechanisms to agricultural practices. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112215. [PMID: 39151802 DOI: 10.1016/j.plantsci.2024.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The storability of rice seeds is crucial for ensuring flexible planting options, agricultural seed security, and global food safety. With the intensification of global climate change and the constant fluctuations in agricultural production conditions, enhancing the storability of rice seeds has become particularly important. Seed storability is a complex quantitative trait regulated by both genetic and environmental factors. This article reviews the main regulatory mechanisms of rice seed storability, including the accumulation of seed storage proteins, late embryogenesis abundant (LEA) proteins, heat shock proteins, sugar signaling, hormonal regulation by gibberellins and abscisic acid, and the role of the ubiquitination pathway. Additionally, this article explores the improvement of storability using wild rice genes, molecular marker-assisted selection, and gene editing techniques such as CRISPR/Cas9 in rice breeding. By providing a comprehensive scientific foundation and practical guidance, this review aims to promote the development of rice varieties with enhanced storability to meet evolving agricultural demands.
Collapse
Affiliation(s)
- Yuntao Yan
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Xiaoya Zhu
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Hui Qi
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China; Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yan Wang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Jiwai He
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China.
| |
Collapse
|
13
|
Peng D, Guo Y, Hu H, Wang X, He S, Gao C, Liu Z, Chen M. Functional characterisation of BnaA02.TOP1α and BnaC02.TOP1α involved in true leaf biomass accumulation in Brassica napus L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1358-1376. [PMID: 39348559 DOI: 10.1111/tpj.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Leaves, as primary photosynthetic organs essential for high crop yield and quality, have attracted significant attention. The functions of DNA topoisomerase 1α (TOP1α) in various biological processes, including leaf development, in Brassica napus remain unknown. Here, four paralogs of BnaTOP1α, namely BnaA01.TOP1α, BnaA02.TOP1α, BnaC01.TOP1α and BnaC02.TOP1α, were identified and cloned in the B. napus inbred line 'K407'. Expression pattern analysis revealed that BnaA02.TOP1α and BnaC02.TOP1α, but not BnaA01.TOP1α and BnaC01.TOP1α, were persistently and highly expressed in B. napus true leaves. Preliminary analysis in Arabidopsis thaliana revealed that BnaA02.TOP1α and BnaC02.TOP1α paralogs, but not BnaA01.TOP1α and BnaC01.TOP1α, performed biological functions. Targeted mutations of four BnaTOP1α paralogs in B. napus using the CRISPR-Cas9 system revealed that BnaA02.TOP1α and BnaC02.TOP1α served as functional paralogs and redundantly promoted true leaf number and size, thereby promoting true leaf biomass accumulation. Moreover, BnaA02.TOP1α modulated the levels of endogenous gibberellins, cytokinins and auxins by indirectly regulating several genes related to their metabolism processes. BnaA02.TOP1α directly activated BnaA03.CCS52A2 and BnaC09.AN3 by facilitating the recruitment of RNA polymerase II and modulating H3K27me3, H3K36me2 and H3K36me3 levels at these loci and indirectly activated the BnaA08.PARL1 expression, thereby positively controlling the true leaf size in B. napus. Additionally, BnaA02.TOP1α indirectly activated the BnaA07.PIN1 expression to positively regulate the true leaf number. These results reveal the important functions of BnaTOP1α and provide insights into the regulatory network controlling true leaf biomass accumulation in B. napus.
Collapse
Affiliation(s)
- Danshuai Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huan Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuangcheng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenhao Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
14
|
Wang Z, Zhang S, Chen B, Xu X. Functional Characterization of the Gibberellin (GA) Receptor ScGID1 in Sugarcane. Int J Mol Sci 2024; 25:10688. [PMID: 39409017 PMCID: PMC11477236 DOI: 10.3390/ijms251910688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Sugarcane smut caused by Sporisorium scitamineum represents the most destructive disease in the sugarcane industry, causing host hormone disruption and producing a black whip-like sorus in the apex of the stalk. In this study, the gibberellin metabolic pathway was found to respond to S. scitamineum infection, and the contents of bioactive gibberellins were significantly reduced in the leaves of diseased plants. The gibberellin receptor gene ScGID1 was identified and significantly downregulated. ScGID1 localized in both the nucleus and cytoplasm and had the highest expression level in the leaves. Eight proteins that interact with ScGID1 were screened out using a yeast two-hybrid assay. Novel DELLA proteins named ScGAI1a and ScGA20ox2, key enzymes in GA biosynthesis, were both found to interact with ScGID1 in a gibberellin-independent manner. Transcription factor trapping with a yeast one-hybrid system identified 50 proteins that interacted with the promoter of ScGID1, among which ScS1FA and ScPLATZ inhibited ScGID1 transcription, while ScGDSL promoted transcription. Overexpression of ScGID1 in transgenic Nicotiana benthamiana plants could increase plant height and promote flowering. These results not only contribute to improving our understanding of the metabolic regulatory network of sugarcane gibberellin but also expand our knowledge of the interaction between sugarcane and pathogens.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
| | - Shujun Zhang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
| | - Baoshan Chen
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Guangxi University, Nanning 530004, China
| | - Xiongbiao Xu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Guangxi University, Nanning 530004, China
| |
Collapse
|
15
|
Shao Z, Chen CY, Qiao H. How chromatin senses plant hormones. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102592. [PMID: 38941723 PMCID: PMC11790310 DOI: 10.1016/j.pbi.2024.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Plant hormones activate receptors, initiating intracellular signaling pathways. Eventually, hormone-specific transcription factors become active in the nucleus, facilitating hormone-induced transcriptional regulation. Chromatin plays a fundamental role in the regulation of transcription, the process by which genetic information encoded in DNA is converted into RNA. The structure of chromatin, a complex of DNA and proteins, directly influences the accessibility of genes to the transcriptional machinery. The different signaling pathways and transcription factors involved in the transmission of information from the receptors to the nucleus have been readily explored, but not so much for the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation, specifically for plant hormone responses. In this review, we will focus on the advancements in understanding how chromatin receives plant hormones, facilitating the changes necessary for fast, robust, and specific transcriptional regulation.
Collapse
Affiliation(s)
- Zhengyao Shao
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX, 78712, USA; Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA
| | - Chia-Yang Chen
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX, 78712, USA; Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX, 78712, USA; Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
16
|
Deng S, Jiang S, Liu B, Zhong T, Liu Q, Liu J, Liu Y, Yin C, Sun C, Xu M. ZmGDIα-hel counters the RBSDV-induced reduction of active gibberellins to alleviate maize rough dwarf virus disease. Nat Commun 2024; 15:7576. [PMID: 39217146 PMCID: PMC11365956 DOI: 10.1038/s41467-024-51726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Maize rough dwarf disease (MRDD) threatens maize production globally. The P7-1 effector of the rice black-streaked dwarf virus (RBSDV) targets maize Rab GDP dissociation inhibitor alpha (ZmGDIα) to cause MRDD. However, P7-1 has difficulty recruiting a ZmGDIα variant with an alternative helitron-derived exon 10 (ZmGDIα-hel), resulting in recessive resistance. Here, we demonstrate that P7-1 can recruit another maize protein, gibberellin 2-oxidase 13 (ZmGA2ox7.3), which also exhibits tighter binding affinity for ZmGDIα than ZmGDIα-hel. The oligomerization of ZmGA2ox7.3 is vital for its function in converting bioactive gibberellins into inactive forms. Moreover, the enzymatic activity of ZmGA2ox7.3 oligomers increases when forming hetero-oligomers with P7-1/ZmGDIα, but decreases when ZmGDIα-hel replaces ZmGDIα. Viral infection significantly promotes ZmGA2ox7.3 expression and oligomerization in ZmGDIα-containing susceptible maize, resulting in reduced bioactive GA1/GA4 levels. This causes an auxin/cytokinin imbalance and ultimately manifests as MRDD syndrome. Conversely, in resistant maize, ZmGDIα-hel counters these virus-induced changes, thereby mitigating MRDD severity.
Collapse
Affiliation(s)
- Suining Deng
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Siqi Jiang
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Baoshen Liu
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, PR China
| | - Tao Zhong
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Qingcai Liu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Jianju Liu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Yuanliang Liu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Can Yin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, PR China
| | - Chen Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, PR China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
17
|
Islam SNU, Kouser S, Hassan P, Asgher M, Shah AA, Khan NA. Gamma-aminobutyric acid interactions with phytohormones and its role in modulating abiotic and biotic stress in plants. STRESS BIOLOGY 2024; 4:36. [PMID: 39158750 PMCID: PMC11333426 DOI: 10.1007/s44154-024-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024]
Abstract
Gamma-aminobutyric acid (GABA), a ubiquitous non-protein 4-carbon amino acid present in both prokaryotic and eukaryotic organisms. It is conventionally recognized as a neurotransmitter in mammals and plays a crucial role in plants. The context of this review centers on the impact of GABA in mitigating abiotic stresses induced by climate change, such as drought, salinity, heat, and heavy metal exposure. Beyond its neurotransmitter role, GABA emerges as a key player in diverse metabolic processes, safeguarding plants against multifaceted abiotic as well as biotic challenges. This comprehensive exploration delves into the GABA biosynthetic pathway, its transport mechanisms, and its intricate interplay with various abiotic stresses. The discussion extends to the nuanced relationship between GABA and phytohormones during abiotic stress acclimation, offering insights into the strategic development of mitigation strategies against these stresses. The delineation of GABA's crosstalk with phytohormones underscores its pivotal role in formulating crucial strategies for abiotic stress alleviation in plants.
Collapse
Affiliation(s)
- Syed Nazar Ul Islam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Shaista Kouser
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Parveena Hassan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India.
| | - Ali Asghar Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
18
|
Li X, Zhang J, Guo X, Qiu L, Chen K, Wang J, Cheng T, Zhang Q, Zheng T. Genome-Wide Analysis of the Gibberellin-Oxidases Family Members in Four Prunus Species and a Functional Analysis of PmGA2ox8 in Plant Height. Int J Mol Sci 2024; 25:8697. [PMID: 39201381 PMCID: PMC11354515 DOI: 10.3390/ijms25168697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gibberellins (GAs), enzymes that play a significant role in plant growth and development, and their levels in plants could be regulated by gibberellin-oxidases (GAoxs). As important fruit trees and ornamental plants, the study of the mechanism of plant architecture formation of the Prunus genus is crucial. Here, 85 GAox genes were identified from P. mume, P. armeniaca, P. salicina, and P. persica, and they were classified into six subgroups. Conserved motif and gene structure analysis showed that GAoxs were conserved in the four Prunus species. Collinearity analysis revealed two fragment replication events of PmGAoxs in the P. mume genome. Promoter cis-elements analysis revealed 24 PmGAoxs contained hormone-responsive elements and development regulatory elements. The expression profile indicated that PmGAoxs have tissue expression specificity, and GA levels during the dormancy stage of flower buds were controlled by certain PmGAoxs. After being treated with IAA or GA3, the transcription level of PmGA2ox8 in stems was significantly increased and showed a differential expression level between upright and weeping stems. GUS activity driven by PmGA2ox8 promoter was detected in roots, stems, leaves, and flower organs of Arabidopsis. PmGA2ox8 overexpression in Arabidopsis leads to dwarfing phenotype, increased number of rosette leaves but decreased leaf area, and delayed flowering. Our results showed that GAoxs were conserved in Prunus species, and PmGA2ox8 played an essential role in regulating plant height.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.L.); (J.Z.); (X.G.); (L.Q.); (K.C.); (J.W.); (T.C.); (Q.Z.)
| |
Collapse
|
19
|
Li HL, Xu RR, Guo XL, Liu YJ, You CX, Han Y, An JP. The MdNAC72-MdABI5 module acts as an interface integrating jasmonic acid and gibberellin signals and undergoes ubiquitination-dependent degradation regulated by MdSINA2 in apple. THE NEW PHYTOLOGIST 2024; 243:997-1016. [PMID: 38849319 DOI: 10.1111/nph.19888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.
Collapse
Affiliation(s)
- Hong-Liang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China
| | - Xin-Long Guo
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Jing Liu
- School of Horticulture, Anhui Agricultural University, He-Fei, 230036, Anhui, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| |
Collapse
|
20
|
Wei H, Chen J, Lu Z, Zhang X, Liu G, Lian B, Chen Y, Zhong F, Yu C, Zhang J. Crape myrtle LiGAoxs displaying activities of gibberellin oxidases respond to branching architecture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108738. [PMID: 38761544 DOI: 10.1016/j.plaphy.2024.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
In the realm of ornamental horticulture, crape myrtle (Lagerstroemia indica) stands out for its aesthetic appeal, attributed largely to its vibrant flowers and distinctive branching architecture. This study embarked on a comprehensive exploration of the gibberellin oxidase (GAox) gene family in crape myrtle, illuminating its pivotal role in regulating GA levels, a key determinant of plant developmental processes. We identified and characterized 36 LiGAox genes, subdivided into GA2ox, GA3ox, GA20ox, and GAox-like subgroups, through genomic analyses. These genes' evolutionary trajectories were delineated, revealing significant gene expansions attributed to segmental duplication events. Functional analyses highlighted the divergent expression patterns of LiGAox genes across different crape myrtle varieties, associating them with variations in flower color and branching architecture. Enzymatic activity assays on selected LiGA2ox enzymes exhibited pronounced GA2 oxidase activity, suggesting a potential regulatory role in GA biosynthesis. Our findings offered a novel insight into the molecular underpinnings of GA-mediated growth and development in L. indica, providing a foundational framework for future genetic enhancements aimed at optimizing ornamental traits.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Zixuan Lu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| |
Collapse
|
21
|
Huang P, Yang J, Ke J, Cai L, Hu Y, Ni J, Li C, Xu ZF, Tang M. Inhibition of flowering by gibberellins in the woody plant Jatropha curcas is restored by overexpression of JcFT. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112100. [PMID: 38679393 DOI: 10.1016/j.plantsci.2024.112100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Jatropha curcas (J. curcas) is a perennial oil-seed plant with vigorous vegetative growth but relatively poor reproductive growth and low seed yield. Gibberellins (GAs) promotes flowering in most annual plants but inhibits flowering in many woody plants, including J. curcas. However, the underlying mechanisms of GA inhibits flowering in perennial woody plants remain unclear. Here, we found that overexpression of the GA biosynthesis gene JcGA20ox1 inhibits flowering in J. curcas and in J. curcas × J. integerrima hybrids. Consistent with this finding, overexpression of the GA catabolic gene JcGA2ox6 promotes flowering in J. curcas. qRTPCR revealed that inhibits floral transition by overexpressing JcGA20ox1 resulted from a decrease in the expression of JcFT and other flowering-related genes, which was restored by overexpressing JcFT in J. curcas. Overexpression of JcGA20ox1 or JcGA2ox6 reduced seed yield, but overexpression of JcFT significantly increased seed yield. Furthermore, hybridization experiments showed that the reduction in seed yield caused by overexpression of JcGA20ox1 or JcGA2ox6 was partially restored by the overexpression of JcFT. In addition, JcGA20ox1, JcGA2ox6 and JcFT were also found to be involved in the regulation of seed oil content and endosperm development. In conclusion, our study revealed that the inhibitory effect of GA on flowering is mediated through JcFT and demonstrated the effects of JcGA20ox1, JcGA2ox6 and JcFT on agronomic traits in J. curcas. This study also indicates the potential value of GA metabolism genes and JcFT in the breeding of new varieties of woody oil-seed plants.
Collapse
Affiliation(s)
- Ping Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Jiapeng Ke
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Li Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Yingxiong Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Jun Ni
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Chaoqiong Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China.
| | - Mingyong Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China.
| |
Collapse
|
22
|
Zhou B, Sheng Q, Yao X, Li T, Lu L. Overexpression of CsBRC, an F-box gene from Camellia sinensis, increased the plant branching in tobacco and rice. PLANT DIRECT 2024; 8:e618. [PMID: 38962172 PMCID: PMC11220506 DOI: 10.1002/pld3.618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Tea plant (Camellia sinensis [L.]) is one of the most important crops in China, and tea branch is an important agronomic trait that determines the yield of tea plant. In previous work focused on GWAS that detecting GWAS signals related to plant architecture through whole genome re-sequencing of ancient tea plants, a gene locus TEA 029928 significantly related to plant type was found. Sequence alignment results showed that this gene belonged to the F-box family. We named it CsBRC. CsBRC-GFP fusion proteins were mainly localized in the plasma membrane. By comparing the phenotypes of CsBRC transgenic tobacco and WT tobacco, it was found that the number of branches of transgenic tobacco was significantly higher than that of wild-type tobacco. Through RNA-seq analysis, it was found that CsBRC affects the branching development of plants by regulating the expression of genes related to brassinosteroid synthesis pathway in plants. In addition, overexpression of CsBRC in rice could increase tiller number, grain length and width, and 1,000-grain weight.
Collapse
Affiliation(s)
- Bokun Zhou
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life ScienceGuizhou UniversityGuiyangChina
| | - Qi Sheng
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life ScienceGuizhou UniversityGuiyangChina
| | - Xinzhuan Yao
- College of Tea Science, Institute of Plant Health and MedicineGuizhou UniversityGuiyangChina
| | - Tong Li
- College of Tea Science, Institute of Plant Health and MedicineGuizhou UniversityGuiyangChina
| | - Litang Lu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life ScienceGuizhou UniversityGuiyangChina
- College of Tea Science, Institute of Plant Health and MedicineGuizhou UniversityGuiyangChina
| |
Collapse
|
23
|
Lohmaneeratana K, Leetanasaksakul K, Thamchaipenet A. Transcriptomic Profiling of Sugarcane White Leaf (SCWL) Canes during Maturation Phase. PLANTS (BASEL, SWITZERLAND) 2024; 13:1551. [PMID: 38891358 PMCID: PMC11174868 DOI: 10.3390/plants13111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Sugarcane white leaf (SCWL) disease, caused by Candidatus Phytoplasma sacchari, results in the most damage to sugarcane plantations. Some SCWL canes can grow unnoticed through the maturation phase, subsequently resulting in an overall low sugar yield, or they can be used accidentally as seed canes. In this work, 12-month-old SCWL and asymptomatic canes growing in the same field were investigated. An abundance of phytoplasma in SCWL canes affected growth and sugar content as well as alterations of transcriptomic profiles corresponding to several pathways that responded to the infection. Suppression of photosynthesis, porphyrin and chlorophyll metabolism, coupled with an increase in the expression of chlorophyllase, contributed to the reduction in chlorophyll levels and photosynthesis. Blockage of sucrose transport plausibly occurred due to the expression of sugar transporters in leaves but suppression in stalks, resulting in low sugar content in canes. Increased expression of genes associated with MAPK cascades, plant hormone signaling transduction, callose plug formation, the phenylpropanoid pathway, and calcium cascades positively promoted defense mechanisms against phytoplasma colonization by an accumulation of lignin and calcium in response to plant immunity. Significant downregulation of CPK plausibly results in a reduction in antioxidant enzymes and likely facilitates pathogen invasion, while expression of sesquiterpene biosynthesis possibly attracts the insect vectors for transmission, thereby enabling the spread of phytoplasma. Moreover, downregulation of flavonoid biosynthesis potentially intensifies the symptoms of SCWL upon challenge by phytoplasma. These SCWL sugarcane transcriptomic profiles describe the first comprehensive sugarcane-phytoplasma interaction during the harvesting stage. Understanding molecular mechanisms will allow for sustainable management and the prevention of SCWL disease-a crucial benefit to the sugar industry.
Collapse
Affiliation(s)
- Karan Lohmaneeratana
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Kantinan Leetanasaksakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
24
|
Ahmad S, Lu C, Gao J, Wei Y, Xie Q, Jin J, Zhu G, Yang F. Integrated proteomic, transcriptomic, and metabolomic profiling reveals that the gibberellin-abscisic acid hub runs flower development in the Chinese orchid Cymbidium sinense. HORTICULTURE RESEARCH 2024; 11:uhae073. [PMID: 38738212 PMCID: PMC11088716 DOI: 10.1093/hr/uhae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/01/2024] [Indexed: 05/14/2024]
Abstract
The seasonal flowering Chinese Cymbidium produce an axillary floral meristem and require a dormancy period during cold conditions for flower development. However, the bud activation mechanism remains elusive. This study evaluates the multi-omics across six stages of flower development, along with functional analysis of core genes to decipher the innate mechanism of floral bud initiation and outgrowth in the Chinese orchid Cymbidium sinense. Transcriptome and proteome analyses identified 10 modules with essential roles in floral bud dormancy and activation. Gene clusters in the early stages of flower development were mainly related to flowering time regulation and meristem determination, while the late stages were correlated with hormone signaling pathways. The metabolome identified 69 potential hormones in which gibberellin (GA) and abscisic acid (ABA) were the main regulatory hubs, and GA4 and GA53 exhibited a reciprocal loop. Extraneous GA application caused rapid elongation of flower buds and promoted the expression of flower development genes. Contrarily, exogenous ABA application extended the dormancy process and ABA inhibitors induced dormancy release. Moreover, CsAPETALA1 (CsAP1) was identified as the potential target of ABA for floral bud activation. Transformation of CsAP1 in Arabidopsis and its transient overexpression in C. sinense protoplasts not only affected flowering time and floral organ morphogenesis in Arabidopsis but also orchestrated the expression of flowering and hormone regulatory genes. The presence of ABA response elements in the CsAP1 promoter, rapid downregulation of CsAP1 after exogenous ABA application, and the activation of the floral bud after ABA inhibitor treatment suggest that ABA can control bud outgrowth through CsAP1.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| |
Collapse
|
25
|
Wei H, Chen J, Zhang X, Lu Z, Liu G, Lian B, Yu C, Chen Y, Zhong F, Zhang J. Characterization, expression pattern, and function analysis of gibberellin oxidases in Salix matsudana. Int J Biol Macromol 2024; 266:131095. [PMID: 38537859 DOI: 10.1016/j.ijbiomac.2024.131095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
Gibberellin oxidases (GAoxs) identified from many species play indispensable roles in GA biosynthesis and GA signal transduction. However, there has been limited research conducted on the GAox family of Salix matsudana, a tetraploid ornamental tree species. Here, 54 GAox genes were identified from S. matsudana and renamed as SmGA20ox1-22, SmGA2ox1-24, SmGA3ox1-6, and SmGAox-like1/2. Gene structure and conserved motif analysis showed that SmGA3ox members possess the 1 intron and other SmGAoxs contain 2-3 introns, and motif 1/2/7 universally present in all SmGAoxs. A total of 69 gene pairs were identified from SmGAox family members, and the Ka/Ks values indicated the SmGAoxs experience the purifying selection. The intra species collinearity analysis implied S. matsudana, S. purpurea, and Populus trichocarpa have the close genetic relationship. The GO analysis suggested SmGAoxs are dominantly involved in GA metabolic process, ion binding, and oxidoreductase activity. RNA-sequencing demonstrated that some SmGAoxs may play an essential role in salt and submergence stresses. In addition, the SmGA20ox13/21 displayed the dominant vitality of GA20 oxidase, but the SmGA20ox13/21 still possessed low activities of GA2 and GA3 oxidases. This study can contribute to reveal the regulatory mechanism of salt and submergence tolerance in willow.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Zixuan Lu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| |
Collapse
|
26
|
Huang X, Liu L, Qiang X, Meng Y, Li Z, Huang F. Integrative Metabolomic and Transcriptomic Analysis Elucidates That the Mechanism of Phytohormones Regulates Floral Bud Development in Alfalfa. PLANTS (BASEL, SWITZERLAND) 2024; 13:1078. [PMID: 38674487 PMCID: PMC11053841 DOI: 10.3390/plants13081078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Floral bud growth influences seed yield and quality; however, the molecular mechanism underlying the development of floral buds in alfalfa (Medicago sativa) is still unclear. Here, we comprehensively analyzed the transcriptome and targeted metabolome across the early, mid, and late bud developmental stages (D1, D2, and D3) in alfalfa. The metabolomic results revealed that gibberellin (GA), auxin (IAA), cytokinin (CK), and jasmonic acid (JA) might play an essential role in the developmental stages of floral bud in alfalfa. Moreover, we identified some key genes associated with GA, IAA, CK, and JA biosynthesis, including CPS, KS, GA20ox, GA3ox, GA2ox, YUCCA6, amid, ALDH, IPT, CYP735A, LOX, AOC, OPR, MFP2, and JMT. Additionally, many candidate genes were detected in the GA, IAA, CK, and JA signaling pathways, including GID1, DELLA, TF, AUX1, AUX/IAA, ARF, GH3, SAUR, AHP, B-ARR, A-ARR, JAR1, JAZ, and MYC2. Furthermore, some TFs related to flower growth were screened in three groups, such as AP2/ERF-ERF, MYB, MADS-M-type, bHLH, NAC, WRKY, HSF, and LFY. The findings of this study revealed the potential mechanism of floral bud differentiation and development in alfalfa and established a theoretical foundation for improving the seed yield of alfalfa.
Collapse
Affiliation(s)
| | - Lei Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China; (X.H.); (Y.M.); (Z.L.); (F.H.)
| | - Xiaojing Qiang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China; (X.H.); (Y.M.); (Z.L.); (F.H.)
| | | | | | | |
Collapse
|
27
|
Song Q, Kong L, Yang J, Lin M, Zhang Y, Yang X, Wang X, Zhao Z, Zhang M, Pan J, Zhu S, Jiao B, Xu C, Luo K. The transcription factor PtoMYB142 enhances drought tolerance in Populus tomentosa by regulating gibberellin catabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:42-57. [PMID: 38112614 DOI: 10.1111/tpj.16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Drought stress caused by global warming has resulted in significant tree mortality, driving the evolution of water conservation strategies in trees. Although phytohormones have been implicated in morphological adaptations to water deficits, the molecular mechanisms underlying these processes in woody plants remain unclear. Here, we report that overexpression of PtoMYB142 in Populus tomentosa results in a dwarfism phenotype with reduced leaf cell size, vessel lumen area, and vessel density in the stem xylem, leading to significantly enhanced drought resistance. We found that PtoMYB142 modulates gibberellin catabolism in response to drought stress by binding directly to the promoter of PtoGA2ox4, a GA2-oxidase gene induced under drought stress. Conversely, knockout of PtoMYB142 by the CRISPR/Cas9 system reduced drought resistance. Our results show that the reduced leaf size and vessel area, as well as the increased vessel density, improve leaf relative water content and stem water potential under drought stress. Furthermore, exogenous GA3 application rescued GA-deficient phenotypes in PtoMYB142-overexpressing plants and reversed their drought resistance. By suppressing the expression of PtoGA2ox4, the manifestation of GA-deficient characteristics, as well as the conferred resistance to drought in PtoMYB142-overexpressing poplars, was impeded. Our study provides insights into the molecular mechanisms underlying tree drought resistance, potentially offering novel transgenic strategies to enhance tree resistance to drought.
Collapse
Affiliation(s)
- Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiarui Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Minghui Lin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqian Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xuerui Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaojing Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhengjie Zhao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Meng Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiarui Pan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shunqin Zhu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Bo Jiao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Plant Genetic Engineering Center of Heibei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
28
|
Guo G, Liu L, Shen T, Wang H, Zhang S, Sun Y, Xiong G, Tang X, Zhu L, Jia B. Genome-wide identification of GA2ox genes family and analysis of PbrGA2ox1-mediated enhanced chlorophyll accumulation by promoting chloroplast development in pear. BMC PLANT BIOLOGY 2024; 24:166. [PMID: 38433195 PMCID: PMC10910807 DOI: 10.1186/s12870-024-04842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Chlorophyll (Chl) is an agronomic trait associated with photosynthesis and yield. Gibberellin 2-oxidases (GA2oxs) have previously been shown to be involved in Chl accumulation. However, whether and how the PbrGA2ox proteins (PbrGA2oxs) mediate Chl accumulation in pear (Pyrus spp.) is scarce. RESULTS Here, we aimed to elucidate the role of the pear GA2ox gene family in Chl accumulation and the related underlying mechanisms. We isolated 13 PbrGA2ox genes (PbrGA2oxs) from the pear database and identified PbrGA2ox1 as a potential regulator of Chl accumulation. We found that transiently overexpressing PbrGA2ox1 in chlorotic pear leaves led to Chl accumulation, and PbrGA2ox1 silencing in normal pear leaves led to Chl degradation, as evident by the regreening and chlorosis phenomenon, respectively. Meanwhile, PbrGA2ox1-overexpressing (OE) tobacco plants discernably exhibited Chl built-up, as evidenced by significantly higher Pn and Fv/Fm. In addition, RNA sequencing (RNA-seq), physiological and biochemical investigations revealed an increase in abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA) concentrations and signaling pathways; a marked elevation in reducing and soluble sugar contents; and a marginal decline in the starch and sucrose levels in OE plants. Interestingly, PbrGA2ox1 overexpression did not prominently affect Chl synthesis. However, it indeed facilitated chloroplast development by increasing chloroplast number per cell and compacting the thylakoid granum stacks. These findings might jointly contribute to Chl accumulation in OE plants. CONCLUSION Overall, our results suggested that GA2oxs accelerate Chl accumulation by stimulating chloroplast development and proved the potential of PbrGA2ox1 as a candidate gene for genetically breeding biofortified pear plants with a higher yield.
Collapse
Affiliation(s)
- Guoling Guo
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lun Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Taijing Shen
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Haozhe Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shuqin Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yu Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guoyu Xiong
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaomei Tang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Liwu Zhu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Bing Jia
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
29
|
Braat J, Havaux M. The SIAMESE family of cell-cycle inhibitors in the response of plants to environmental stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1362460. [PMID: 38434440 PMCID: PMC10904545 DOI: 10.3389/fpls.2024.1362460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
Environmental abiotic constraints are known to reduce plant growth. This effect is largely due to the inhibition of cell division in the leaf and root meristems caused by perturbations of the cell cycle machinery. Progression of the cell cycle is regulated by CDK kinases whose phosphorylation activities are dependent on cyclin proteins. Recent results have emphasized the role of inhibitors of the cyclin-CDK complexes in the impairment of the cell cycle and the resulting growth inhibition under environmental constraints. Those cyclin-CDK inhibitors (CKIs) include the KRP and SIAMESE families of proteins. This review presents the current knowledge on how CKIs respond to environmental changes and on the role played by one subclass of CKIs, the SIAMESE RELATED proteins (SMRs), in the tolerance of plants to abiotic stresses. The SMRs could play a central role in adjusting the balance between growth and stress defenses in plants exposed to environmental stresses.
Collapse
Affiliation(s)
| | - Michel Havaux
- Aix Marseille University, CEA, CNRS UMR7265, Bioscience and Biotechnology Institute of Aix Marseille, Saint-Paul-lez-Durance, France
| |
Collapse
|
30
|
Min WK, Kwon DH, Song JT, Seo HS. Arabidopsis retromer subunit AtVPS29 is involved in SLY1-mediated gibberellin signaling. PLANT CELL REPORTS 2024; 43:53. [PMID: 38315261 PMCID: PMC10844355 DOI: 10.1007/s00299-024-03144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE Retromer protein AtVPS29 upregulates the SLY1 protein and downregulates the RGA protein, positively stimulating the development of the root meristematic zone, which indicates an important role of AtVPS29 in gibberellin signaling. In plants, the large retromer complex is known to play roles in multiple development processes, including cell polarity, programmed cell death, and root hair growth in Arabidopsis. However, many of its roles in plant development remain unknown. Here, we show that Arabidopsis trimeric retromer protein AtVPS29 (vacuolar protein sorting 29) modulates gibberellin signaling. The SLEEPY1 (SLY1) protein, known as a positive regulator of gibberellic acid (GA) signaling, exhibited lower abundance in vps29-3 mutants compared to wild-type (WT) plants. Conversely, the DELLA repressor protein, targeted by the E3 ubiquitin ligase SCF (Skp, Cullin, F-box) complex and acting as a negative regulator of GA signaling, showed increased abundance in vps29-3 mutants compared to WT. The vps29-3 mutants exhibited decreased sensitivity to exogenous GA supply in contrast to WT, despite an upregulation in the expression of GA receptor genes within the vps29-3 mutants. In addition, the expression of the GA synthesis genes was downregulated in vps29-3 mutants, implying that the loss of AtVPS29 causes the downregulation of GA synthesis and signaling. Furthermore, vps29-3 mutants exhibited a reduced meristematic zone accompanied by a decreased cell number. Together, these data indicate that AtVPS29 positively regulates SLY1-mediated GA signaling and plant growth.
Collapse
Affiliation(s)
- Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Gwanakro 200, Gwanak-Gu, Seoul, 08826, Korea
| | - Dae Hwan Kwon
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Gwanakro 200, Gwanak-Gu, Seoul, 08826, Korea
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Gwanakro 200, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
31
|
Sui D, Wang B, El-Kassaby YA, Wang L. Integration of Physiological, Transcriptomic, and Metabolomic Analyses Reveal Molecular Mechanisms of Salt Stress in Maclura tricuspidata. PLANTS (BASEL, SWITZERLAND) 2024; 13:397. [PMID: 38337930 PMCID: PMC10857159 DOI: 10.3390/plants13030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Salt stress is a universal abiotic stress that severely affects plant growth and development. Understanding the mechanisms of Maclura tricuspidate's adaptation to salt stress is crucial for developing salt-tolerant plant varieties. This article discusses the integration of physiology, transcriptome, and metabolome to investigate the mechanism of salt adaptation in M. tricuspidata under salt stress conditions. Overall, the antioxidant enzyme system (SOD and POD) of M. tricuspidata exhibited higher activities compared with the control, while the content of soluble sugar and concentrations of chlorophyll a and b were maintained during salt stress. KEGG analysis revealed that deferentially expressed genes were primarily involved in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, alkaloids, and MAPK signaling pathways. Differential metabolites were enriched in amino acid metabolism, the biosynthesis of plant hormones, butanoate, and 2-oxocarboxylic acid metabolism. Interestingly, glycine, serine, and threonine metabolism were found to be important both in the metabolome and transcriptome-metabolome correlation analyses, suggesting their essential role in enhancing the salt tolerance of M. tricuspidata. Collectively, our study not only revealed the molecular mechanism of salt tolerance in M. tricuspidata, but also provided a new perspective for future salt-tolerant breeding and improvement in salt land for this species.
Collapse
Affiliation(s)
- Dezong Sui
- Jiangsu Academy of Forestry, Nanjing 211153, China; (D.S.); (B.W.)
| | - Baosong Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (D.S.); (B.W.)
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T IZ4, Canada;
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (D.S.); (B.W.)
| |
Collapse
|
32
|
Liaqat S, Ali Z, Saddique MAB, Ikram RM, Ali I. Comparative transcript abundance of gibberellin oxidases genes in two barley ( Hordeum vulgare) genotypes with contrasting lodging resistance under different regimes of water deficit. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23246. [PMID: 38252957 DOI: 10.1071/fp23246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Barley (Hordeum vulgare ) is the world's fourth most important cereal crop, and is particularly well adapted to harsh environments. However, lodging is a major productivity constraint causing 13-65% yield losses. Gibberellic acid (GA) homeostatic genes such as HvGA20ox, HvGA3ox and HvGA2ox are responsible for changes in plant phenotype for height and internodal length that contribute towards lodging resistance. This study explored the expression of different HvGAox transcripts in two contrasting barley genotypes (5-GSBON-18, lodging resistant; and 5-GSBON-70, lodging sensitive), which were sown both under controlled (hydroponic, completely randomised factorial design) and field conditions (split-plot, completely randomised block design) with two irrigation treatments (normal with three irrigation events; and water deficit with one irrigation event). In the hydroponic experiment, expression analysis was performed on seedlings at 0, ¾, 1½, 3 and 6h after application of treatment. In the field experiment, leaf, shoot nodes and internodes were sampled. Downregulation of HvGA20ox.1 transcript and 2-fold upregulation of HvGA2ox.2 transcript were observed in 5-GSBON-18 under water deficit conditions. This genotype also showed a significant reduction in plant height (18-20%), lodging (<10%), and increased grain yield (15-18%) under stress. Utilisation of these transcripts in barley breeding has the potential to reduce plant height, lodging and increased grain yield.
Collapse
Affiliation(s)
- Shoaib Liaqat
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan; and Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan; and Programs and Projects Department, Islamic Organization for Food Security, Astana, Kazakhstan
| | | | - Rao Muhammad Ikram
- Department of Agronomy, MNS University of Agriculture, Multan 60000, Pakistan
| | - Imtiaz Ali
- Regional Agricultural Research Institute, Bahawalpur 63100, Pakistan
| |
Collapse
|
33
|
Okamoto K, Inoue T, Nagano T, Miyazaki S, Takahashi I, Asami T, Okada K, Okada K, Nakajima M. Chemical screening of inhibitors specific for MdDOX-Co that cause an apple columnar tree-shape. Biosci Biotechnol Biochem 2023; 88:63-69. [PMID: 37791963 DOI: 10.1093/bbb/zbad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
MdDOX-Co, the ectopic expression of which is considered to cause the apple columnar tree shape, belongs to the 2-oxoglutarate-dependent dioxygenase (2ODD) family. It adds a hydroxyl group to position 12 of gibberellins (GAs). However, the 2ODD enzymes related to GA biosynthesis and catabolism are phylogenetically distinct from MdDOX-Co. Thus, it is possible that substrates other than GAs exist in MdDOX-Co. To identify the previously unidentified substrate(s) of MdDOX-Co, we searched for MdDOX-Co-specific inhibitors. Chemical screening using gas chromatography-mass spectrometry was performed to investigate the effects of 2400 compounds that inhibited the catalytic reaction of MdDOX-Co, but not the catabolic reaction of GA 2-oxidase, an enzyme involved in GA catabolism. By applying two positive compounds in Arabidopsis, a chemical 3-((2-chloro-6-fluorobenzyl)thio)-5,7-dimethyl-5H-pyrazolo[3,4-e][1,4,2]dithiazine-1,1-dioxide designated as TPDD that did not inhibit GA biosynthesis was selected. The structure-activity relationships among the TPDD analogs were also obtained.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taiki Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsunesato Nagano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sho Miyazaki
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ikuo Takahashi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuma Okada
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Groffen T, Kuijper N, Oden S, Willems T, Bervoets L, Prinsen E. Growth Hormones in Broad Bean ( Vicia faba L.) and Radish ( Raphanus raphanistrum subsp. sativus L.) Are Associated with Accumulated Concentrations of Perfluoroalkyl Substances. TOXICS 2023; 11:922. [PMID: 37999574 PMCID: PMC10674852 DOI: 10.3390/toxics11110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
In this study, we grew radish (Raphanus raphanistrum subsp. sativus L.) and broad beans (Vicia faba L.) in a greenhouse on soils spiked with a mixture of 15 per- and polyfluoroalkyl substances (PFASs) and investigated the association between accumulated ∑PFAS concentrations, growth, and hormone levels. Short-chained PFASs dominated aboveground tissues, whereas long-chained PFASs were most abundant in the plant roots. Our results showed that the presence or absence of exodermal Casparian strips, as well as the hydrophobicity and anion exchange capacities of PFASs, could explain the translocation of PFASs within plants. Significant associations found between accumulated PFAS concentrations and levels of gibberellins (GA1 and GA15), methionine, and indole-3-acetic acid (IAA) imply potential effects of PFASs on plant development and growth. This study provides the first evidence of associations between PFAS accumulation in plants and growth hormone levels, possibly leading to growth reduction of the apical dome and effects on the cell cycle in pericycle cells and methionine metabolism in plants.
Collapse
Affiliation(s)
- Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (N.K.); (L.B.)
| | - Niels Kuijper
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (N.K.); (L.B.)
| | - Sevgi Oden
- Integrated Molecular Plant Physiology Research (IMPRes), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (S.O.); (T.W.); (E.P.)
| | - Tim Willems
- Integrated Molecular Plant Physiology Research (IMPRes), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (S.O.); (T.W.); (E.P.)
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (N.K.); (L.B.)
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research (IMPRes), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (S.O.); (T.W.); (E.P.)
| |
Collapse
|
35
|
Yuan G, Lian Y, Wang J, Yong T, Gao H, Wu H, Yang T, Wang C. AtHSPR functions in gibberellin-mediated primary root growth by interacting with KNAT5 and OFP1 in Arabidopsis. PLANT CELL REPORTS 2023; 42:1629-1649. [PMID: 37597006 DOI: 10.1007/s00299-023-03057-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
KEY MESSAGE AtHSPR forms a complex with KNAT5 and OFP1 to regulate primary root growth through GA-mediated root meristem activity. KNAT5-OFP1 functions as a negative regulator of AtHSPR in response to GA. Plant root growth is modulated by gibberellic acid (GA) signaling and depends on root meristem maintenance. ARABIDOPSIS THALIANA HEAT SHOCK PROTEIN-RELATED (AtHSPR) is a vital regulator of flowering time and salt stress tolerance. However, little is known about the role of AtHSPR in the regulation of primary root growth. Here, we report that athspr mutant exhibits a shorter primary root compared to wild type and that AtHSPR interacts with KNOTTED1-LIKE HOMEOBOX GENE 5 (KNAT5) and OVATE FAMILY PROTEIN 1 (OFP1). Genetic analysis showed that overexpression of KNAT5 or OFP1 caused a defect in primary root growth similar to that of the athspr mutant, but knockout of KNAT5 or OFP1 rescued the short root phenotype in the athspr mutant by altering root meristem activity. Further investigation revealed that KNAT5 interacts with OFP1 and that AtHSPR weakens the inhibition of GIBBERELLIN 20-OXIDASE 1 (GA20ox1) expression by the KNAT5-OFP1 complex. Moreover, root meristem cell proliferation and root elongation in 35S::KNAT5athspr and 35S::OFP1athspr seedlings were hypersensitive to GA3 treatment compared to the athspr mutant. Together, our results demonstrate that the AtHSPR-KNAT5-OFP1 module regulates root growth and development by impacting the expression of GA biosynthetic gene GA20ox1, which could be a way for plants to achieve plasticity in response to the environment.
Collapse
Affiliation(s)
- Guoqiang Yuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuke Lian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Junmei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Taibi Yong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huanhuan Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haijun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chongying Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
36
|
Lawrence-Paul EH, Poethig RS, Lasky JR. Vegetative phase change causes age-dependent changes in phenotypic plasticity. THE NEW PHYTOLOGIST 2023; 240:613-625. [PMID: 37571856 PMCID: PMC10551844 DOI: 10.1111/nph.19174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023]
Abstract
Phenotypic plasticity allows organisms to optimize traits for their environment. As organisms age, they experience diverse environments that benefit from varying degrees of phenotypic plasticity. Developmental transitions can control these age-dependent changes in plasticity, and as such, the timing of these transitions can determine when plasticity changes in an organism. Here, we investigate how the transition from juvenile-to adult-vegetative development known as vegetative phase change (VPC) contributes to age-dependent changes in phenotypic plasticity and how the timing of this transition responds to environment using both natural accessions and mutant lines in the model plant Arabidopsis thaliana. We found that the adult phase of vegetative development has greater plasticity in leaf morphology than the juvenile phase and confirmed that this difference in plasticity is caused by VPC using mutant lines. Furthermore, we found that the timing of VPC, and therefore the time when increased plasticity is acquired, varies significantly across genotypes and environments. The consistent age-dependent changes in plasticity caused by VPC suggest that VPC may be adaptive. This genetic and environmental variation in the timing of VPC indicates the potential for population-level adaptive evolution of VPC.
Collapse
Affiliation(s)
- Erica H. Lawrence-Paul
- Pennsylvania State University, Department of Biology, University Park, PA 16802
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104
| | - R. Scott Poethig
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104
| | - Jesse R. Lasky
- Pennsylvania State University, Department of Biology, University Park, PA 16802
| |
Collapse
|
37
|
Chandnani R, Qin T, Ye H, Hu H, Panjvani K, Tokizawa M, Macias JM, Medina AA, Bernardino K, Pradier PL, Banik P, Mooney A, V Magalhaes J, T Nguyen H, Kochian LV. Application of an Improved 2-Dimensional High-Throughput Soybean Root Phenotyping Platform to Identify Novel Genetic Variants Regulating Root Architecture Traits. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0097. [PMID: 37780968 PMCID: PMC10538525 DOI: 10.34133/plantphenomics.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Nutrient-efficient root system architecture (RSA) is becoming an important breeding objective for generating crop varieties with improved nutrient and water acquisition efficiency. Genetic variants shaping soybean RSA is key in improving nutrient and water acquisition. Here, we report on the use of an improved 2-dimensional high-throughput root phenotyping platform that minimizes background noise by imaging pouch-grown root systems submerged in water. We also developed a background image cleaning Python pipeline that computationally removes images of small pieces of debris and filter paper fibers, which can be erroneously quantified as root tips. This platform was used to phenotype root traits in 286 soybean lines genotyped with 5.4 million single-nucleotide polymorphisms. There was a substantially higher correlation in manually counted number of root tips with computationally quantified root tips (95% correlation), when the background was cleaned of nonroot materials compared to root images without the background corrected (79%). Improvements in our RSA phenotyping pipeline significantly reduced overestimation of the root traits influenced by the number of root tips. Genome-wide association studies conducted on the root phenotypic data and quantitative gene expression analysis of candidate genes resulted in the identification of 3 putative positive regulators of root system depth, total root length and surface area, and root system volume and surface area of thicker roots (DOF1-like zinc finger transcription factor, protein of unknown function, and C2H2 zinc finger protein). We also identified a putative negative regulator (gibberellin 20 oxidase 3) of the total number of lateral roots.
Collapse
Affiliation(s)
- Rahul Chandnani
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
- NRGene Canada, 110 Research Dr Suite 101, Saskatoon, SK, Canada
| | - Tongfei Qin
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Heng Ye
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Haifei Hu
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong, China
| | - Karim Panjvani
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mutsutomo Tokizawa
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Javier Mora Macias
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alma Armenta Medina
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Pierre-Luc Pradier
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Pankaj Banik
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ashlyn Mooney
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Henry T Nguyen
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211, USA
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
38
|
Cai G, Cao Y, Tian M, Mo H, Chen X, Li Z, Ji Q, He K, Du G, Yang H. Characterization of the transcriptional responses of Armillaria gallica 012m to GA3. Arch Microbiol 2023; 205:308. [PMID: 37594611 DOI: 10.1007/s00203-023-03621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/19/2023]
Abstract
Gastrodia elata needs to establish a symbiotic relationship with Armillaria strains to obtain nutrients and energy. However, the signaling cross talk between G. elata and Armillaria strains is still unclear. During our experiment, we found that the vegetative mycelium of Armillaria gallica 012m grew significantly better in the media containing gibberellic acid (GA3) than the blank control group (BK). To explore the response mechanism, we performed an RNA-sequencing experiment to profile the transcriptome changes of A. gallica 012m cultured in the medium with exogenous GA3. The transcriptome-guided differential expression genes (DEGs) analysis of GA3 and BK showed that a total of 1309 genes were differentially expressed, including 361 upregulated genes and 948 downregulated genes. Some of those DEGs correlated with the biological process, including positive regulation of chromosome segregation, mitotic metaphase/anaphase transition, attachment of mitotic spindle microtubules to kinetochore, mitotic cytokinesis, and nuclear division. These analyses explained that GA3 actively promoted the growth of A. gallica to some extent. Further analysis of protein domain features showed that the deduced polypeptide contained 41 candidate genes of GA receptor, and 27 of them were expressed in our samples. We speculate that GA receptors exist in A. gallica 012m. Comparative studies of proteins showed that the postulated GA receptor domains of A. gallica 012m have a higher homologous correlation with fungi than others based on cluster analysis.
Collapse
Affiliation(s)
- Guolei Cai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Yapu Cao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Menghua Tian
- Zhaotong Tianma Research Institute, Zhaotong, Yunnan, China
| | - Haiying Mo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Xin Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Zhihao Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Qiaolin Ji
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Kaixiang He
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Gang Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China.
| | - Haiying Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China.
| |
Collapse
|
39
|
Bai Y, Xie Y, Cai M, Jiang J, Wu C, Zheng H, Gao J. GA20ox Family Genes Mediate Gibberellin and Auxin Crosstalk in Moso bamboo ( Phyllostachys edulis). PLANTS (BASEL, SWITZERLAND) 2023; 12:2842. [PMID: 37570996 PMCID: PMC10421110 DOI: 10.3390/plants12152842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Moso bamboo (Phyllostachys edulis) is one of the fastest growing plants. Gibberellin (GA) is a key phytohormone regulating growth, but there are few studies on the growth of Moso bamboo regulated by GA. The gibberellin 20 oxidase (GA20ox) gene family was targeted in this study. Chromosomal distribution and collinearity analysis identified 10 GA20ox genes evenly distributed on chromosomes, and the family genes were relatively conservative in evolution. The genetic relationship of GA20ox genes had been confirmed to be closest in different genera of plants in a phylogenetic and selective pressure analysis between Moso bamboo and rice. About 1/3 GA20ox genes experienced positive selective pressure with segmental duplication being the main driver of gene family expansion. Analysis of expression patterns revealed that only six PheGA20ox genes were expressed in different organs of shoot development and flowers, that there was redundancy in gene function. Underground organs were not the main site of GA synthesis in Moso bamboo, and floral organs are involved in the GA biosynthesis process. The auxin signaling factor PheARF47 was located upstream of PheGA20ox3 and PheGA20ox6 genes, where PheARF47 regulated PheGA20ox3 through cis-P box elements and cis-AuxRR elements, based on the result that promoter analysis combined with yeast one-hybrid and dual luciferase detection analysis identified. Overall, we identified the evolutionary pattern of PheGA20ox genes in Moso bamboo and the possible major synthesis sites of GA, screened for key genes in the crosstalk between auxin and GA, and laid the foundation for further exploration of the synergistic regulation of growth by GA and auxin in Moso bamboo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (Y.B.); (Y.X.); (M.C.); (J.J.); (C.W.); (H.Z.)
| |
Collapse
|
40
|
Liu S, Wang X, Peng L. Comparative Transcriptomic Analysis of the Metabolism of Betalains and Flavonoids in Red Amaranth Hypocotyl under Blue Light and Dark Conditions. Molecules 2023; 28:5627. [PMID: 37570597 PMCID: PMC10420052 DOI: 10.3390/molecules28155627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Amaranth plants contain abundant betalains and flavonoids. Anthocyanins are important flavonoids; however, they cannot coexist in the same plant with betalains. Blue light influences metabolite synthesis and hypocotyl elongation; accordingly, analyses of its effects on betalain and flavonoid biosynthesis in Amaranthus tricolor may provide insight into the distribution of these plant pigments. We analyzed the betalain and flavonoid content and transcriptome profiles in amaranth hypocotyls under blue light and dark conditions. Furthermore, we analyzed the expression patterns of key genes related to betalains and flavonoids. Amaranth hypocotyls were shorter and redder and showed higher betalain and flavonoid content under blue light than in dark conditions. Key genes involved in the synthesis of betalains and flavonoids were upregulated under blue light. The gene encoding DELLA was also upregulated. These results suggest that blue light favors the synthesis of both betalains and flavonoids via the suppression of bioactive gibberellin and the promotion of DELLA protein accumulation, which also suppresses hypocotyl elongation. The metabolite profiles differed between plants under blue light and dark conditions. These findings improve our understanding of the environmental cues and molecular mechanisms underlying pigment variation in Amaranthus.
Collapse
Affiliation(s)
- Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiao Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Liyun Peng
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China;
| |
Collapse
|
41
|
Zhou Y, Zhao C, Du T, Li A, Qin Z, Zhang L, Dong S, Wang Q, Hou F. Overexpression of 9- cis-Epoxycarotenoid Dioxygenase Gene, IbNCED1, Negatively Regulates Plant Height in Transgenic Sweet Potato. Int J Mol Sci 2023; 24:10421. [PMID: 37445599 DOI: 10.3390/ijms241310421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Plant height is one of the key agronomic traits for improving the yield of sweet potato. Phytohormones, especially gibberellins (GAs), are crucial to regulate plant height. The enzyme 9-cis-epoxycarotenoid dioxygenase (NCED) is the key enzyme for abscisic acid (ABA) biosynthesis signalling in higher plants. However, its role in regulating plant height has not been reported to date. Here, we cloned a new NCED gene, IbNCED1, from the sweet potato cultivar Jishu26. This gene encoded the 587-amino acid polypeptide containing an NCED superfamily domain. The expression level of IbNCED1 was highest in the stem and the old tissues in the in vitro-grown and field-grown Jishu26, respectively. The expression of IbNCED1 was induced by ABA and GA3. Overexpression of IbNCED1 promoted the accumulation of ABA and inhibited the content of active GA3 and plant height and affected the expression levels of genes involved in the GA metabolic pathway. Exogenous application of GA3 could rescue the dwarf phenotype. In conclusion, we suggest that IbNCED1 regulates plant height and development by controlling the ABA and GA signalling pathways in transgenic sweet potato.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chunling Zhao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Taifeng Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Aixian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liming Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shunxu Dong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
42
|
Liang B, Cao J, Wang R, Fan C, Wang W, Hu X, He R, Tai F. ZmCIPK32 positively regulates germination of stressed seeds via gibberellin signal. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107716. [PMID: 37116226 DOI: 10.1016/j.plaphy.2023.107716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
Calcineurin B-like proteins (CBLs) as specific calcium sensors that interact with CBL-interacting protein kinases (CIPKs) play a key role in the regulation of plant development and abiotic stress tolerance. In this study, we isolated and characterized the CIPK32 gene from Zea mays. ZmCIPK32 showed that it comprised 440 amino acids and a conserved NAF motif responsible for the interaction with CBLs localized in the cytoplasm and cell membrane. The interaction of ZmCIPK32 with ZmCBL1 and ZmCBL9 demonstrated using yeast two-hybrid system and bimolecular fluorescence complementation assay required the presence of the NAF domain. Overexpression of ZmCIPK32 promoted early germination in transgenic Arabidopsis seeds relative to that observed in wild-type (WT) plants under mannitol treatment. In addition, ZmCIPK32-overexpressing plants were insensitive to treatments with exogenous abscisic acid and paclobutrazol (PBZ) at seed germination and early seedling stages. Expression levels of the key genes GA20ox and GA3ox involved in the synthesis of gibberellin (GA) were increased, whereas expression levels of genes involved in the conversion of active GA to inactive forms and GA signaling were reduced in ZmCIPK32-overexpressing plants relative to those in WT plants under mannitol and PBZ treatments. Furthermore, overexpression of ZmCIPK32 increased GA level but decreased abscisic acid level in transgenic lines compared to the respective levels in WT plants under PBZ or mannitol treatments. Our results suggest that ZmCIPK32 positively regulates seed germination under stressed conditions by modulating GA signals.
Collapse
Affiliation(s)
- Benshuai Liang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiahui Cao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruilin Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chenjie Fan
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
43
|
Nelson SK, Kanno Y, Seo M, Steber CM. Seed dormancy loss from dry after-ripening is associated with increasing gibberellin hormone levels in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1145414. [PMID: 37275251 PMCID: PMC10232786 DOI: 10.3389/fpls.2023.1145414] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023]
Abstract
Introduction The seeds of many plants are dormant and unable to germinate at maturity, but gain the ability to germinate through after-ripening during dry storage. The hormone abscisic acid (ABA) stimulates seed dormancy, whereas gibberellin A (GA) stimulates dormancy loss and germination. Methods To determine whether dry after-ripening alters the potential to accumulate ABA and GA, hormone levels were measured during an after-ripening time course in dry and imbibing ungerminated seeds of wildtype Landsberg erecta (Ler) and of the highly dormant GA-insensitive mutant sleepy1-2 (sly1-2). Results The elevated sly1-2 dormancy was associated with lower rather than higher ABA levels. Ler germination increased with 2-4 weeks of after-ripening whereas sly1-2 required 21 months to after-ripen. Increasing germination capacity with after-ripening was associated with increasing GA4 levels in imbibing sly1-2 and wild-type Ler seeds. During the same 12 hr imbibition period, after-ripening also resulted in increased ABA levels. Discussion The decreased ABA levels with after-ripening in other studies occurred later in imbibition, just before germination. This suggests a model where GA acts first, stimulating germination before ABA levels decline, and ABA acts as the final checkpoint preventing germination until processes essential to survival, like DNA repair and activation of respiration, are completed. Overexpression of the GA receptor GID1b (GA INSENSITIVE DWARF1b) was associated with increased germination of sly1-2 but decreased germination of wildtype Ler. This reduction of Ler germination was not associated with increased ABA levels. Apparently, GID1b is a positive regulator of germination in one context, but a negative regulator in the other.
Collapse
Affiliation(s)
- Sven K. Nelson
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Plant and Data Science, Heliponix, LLC, Evansville, IN, United States
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Camille M. Steber
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, United States
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| |
Collapse
|
44
|
Sun F, Ye W, Li S, Wang Z, Xie K, Wang W, Zhang C, Xi Y. Analysis of morphological traits and regulatory mechanism of a semi-dwarf, albino, and blue grain wheat line. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:35. [PMID: 37312751 PMCID: PMC10248668 DOI: 10.1007/s11032-023-01379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 06/15/2023]
Abstract
The plant height and leaf color are important traits in crops since they contribute to the production of grains and biomass. Progress has been made in mapping the genes that regulate plant height and leaf color in wheat (Triticum aestivum L.) and other crops. Wheat line DW-B (dwarfing, white leaves, and blue grains) with semi-dwarfing and albinism at the tillering stage and re-greening at the jointing stage was created using Lango and Indian Blue Grain. Transcriptomic analyses of the three wheat lines at the early jointing stages indicated that the genes of gibberellin (GA) signaling pathway and chlorophyll (Chl) biosynthesis were expressed differently in DW-B and its parents. Furthermore, the response to GA and Chl contents differed between DW-B and its parents. The dwarfing and albinism in DW-B were owing to defects in the GA signaling pathway and abnormal chloroplast development. This study can improve understanding of the regulation of plant height and leaf color. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01379-z.
Collapse
Affiliation(s)
- Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wenjie Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Song Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhulin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Kunliang Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
45
|
Mäkilä R, Wybouw B, Smetana O, Vainio L, Solé-Gil A, Lyu M, Ye L, Wang X, Siligato R, Jenness MK, Murphy AS, Mähönen AP. Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. NATURE PLANTS 2023; 9:631-644. [PMID: 36997686 PMCID: PMC10119023 DOI: 10.1038/s41477-023-01360-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Vascular cambium contains bifacial stem cells, which produce secondary xylem to one side and secondary phloem to the other. However, how these fate decisions are regulated is unknown. Here we show that the positioning of an auxin signalling maximum within the cambium determines the fate of stem cell daughters. The position is modulated by gibberellin-regulated, PIN1-dependent polar auxin transport. Gibberellin treatment broadens auxin maximum from the xylem side of the cambium towards the phloem. As a result, xylem-side stem cell daughter preferentially differentiates into xylem, while phloem-side daughter retains stem cell identity. Occasionally, this broadening leads to direct specification of both daughters as xylem, and consequently, adjacent phloem-identity cell reverts to being stem cell. Conversely, reduced gibberellin levels favour specification of phloem-side stem cell daughter as phloem. Together, our data provide a mechanism by which gibberellin regulates the ratio of xylem and phloem production.
Collapse
Affiliation(s)
- Riikka Mäkilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ondřej Smetana
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Leo Vainio
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna Solé-Gil
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Munan Lyu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lingling Ye
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riccardo Siligato
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- European Commission, Joint Research Centre, Geel, Belgium
| | - Mark K Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
46
|
Luo J, Tang Y, Chu Z, Peng Y, Chen J, Yu H, Shi C, Jafar J, Chen R, Tang Y, Lu Y, Ye Z, Li Y, Ouyang B. SlZF3 regulates tomato plant height by directly repressing SlGA20ox4 in the gibberellic acid biosynthesis pathway. HORTICULTURE RESEARCH 2023; 10:uhad025. [PMID: 37090098 PMCID: PMC10116951 DOI: 10.1093/hr/uhad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Plant height is an important target trait for crop genetic improvement. Our previous work has identified a salt-tolerant C2H2 zinc finger, SlZF3, and its overexpression lines also showed a semi-dwarf phenotype, but the molecular mechanism remains to be elucidated. Here, we characterized the dwarf phenotype in detail. The dwarfism is caused by a decrease in stem internode cell elongation and deficiency of bioactive gibberellic acids (GAs), and can be rescued by exogenous GA3 treatment. Gene expression assays detected reduced expression of genes in the GA biosynthesis pathway of the overexpression lines, including SlGA20ox4. Several protein-DNA interaction methods confirmed that SlZF3 can directly bind to the SlGA20ox4 promoter and inhibit its expression, and the interaction can also occur for SlKS and SlKO. Overexpression of SlGA20ox4 in the SlZF3-overexpressing line can recover the dwarf phenotype. Therefore, SlZF3 regulates plant height by directly repressing genes in the tomato GA biosynthesis pathway.
Collapse
Affiliation(s)
- Jinying Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunfei Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuannan Chu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyang Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jahanzeb Jafar
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- Corresponding authors. E-mail: ;
| | | |
Collapse
|
47
|
Qiu Q, Tian X, Wu G, Wu J, Fan X, Yuan D. Comparative analysis of the transcriptome during single-seed formation of Castanea henryi: regulation of starch metabolism and endogenous hormones. BMC PLANT BIOLOGY 2023; 23:90. [PMID: 36782110 PMCID: PMC9926639 DOI: 10.1186/s12870-023-04102-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In seed plants, the ovule is the precursor to the seed. The process of ovule development and differentiation is regulated by multiple factors, including starch metabolism and endogenous hormones. Castanea henryi produces nuts with high nutritional value. However, the high proportion of empty buds restricts the commercial use of the tree. Previous studies have shown that the empty bud phenotype is closely related to ovule abortion. If none of the ovules in the ovary expand rapidly and develop in 7-8 weeks after pollination, an empty bud will form. Therefore, we studied the development and molecular mechanisms underlying single seed formation in C. henryi. RESULTS We found that 49 days after pollination (DAP) is a critical period for the formation of fertile and abortive ovules. The morphology and starch distribution of the fertile and abortive ovules differed significantly at 49 DAP. The fertile ovules were smooth and round in appearance, with a large amount of starch. In contrast, abortive ovules were smaller with only a small amount of starch. The embryo sac of the abortive ovule proceeded to develop abnormally, and the entire ovule lacked starch. We identified 37 candidate genes involved in metabolism with potential roles in the regulation of starch levels. Three ADP-glucose pyrophosphorylase (AGPase) genes, one granule-bound starch synthase (GBSS) gene, and two beta-amylase genes could affect starch accumulation. The levels of auxin, cytokinins, gibberellins, and jasmonic acid in fertile ovules were higher than those in abortive ovules. In addition, the levels of endogenous abscisic acid and salicylic acid in abortive ovules were higher than those in fertile ovules of the same age, consistent with the expression patterns of genes related to the synthesis of abscisic and salicylic acid and signal transduction. We identified and mapped the differentially expressed genes associated with hormone synthesis and signal transduction. CONCLUSIONS These results improve our general understanding of the molecular mechanisms underlying single seed development in C. henryi and the phenomenon of empty buds, providing directions for future research.
Collapse
Affiliation(s)
- Qi Qiu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
- Key Lab of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, China
| | | | - Guolong Wu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
- Key Lab of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Juntao Wu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
- Key Lab of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoming Fan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China.
- Key Lab of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China.
- Key Lab of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
48
|
Li Q, Gao Y, Wang K, Feng J, Sun S, Lu X, Liu Z, Zhao D, Li L, Wang D. Transcriptome Analysis of the Effects of Grafting Interstocks on Apple Rootstocks and Scions. Int J Mol Sci 2023; 24:807. [PMID: 36614250 PMCID: PMC9821396 DOI: 10.3390/ijms24010807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Apples are a major horticultural crop worldwide. Grafting techniques are widely utilized in apple production to keep the varieties pure. Interstocks are frequently used in Northern China to achieve intensive apple dwarfing cultivation. High-throughput sequencing was used to investigate differentially expressed genes in the phloem tissues of two different xenograft systems, M ('Gala'/'Mac 9'/Malus baccata (L.) Borkh.) and B ('Gala'/Malus baccata (L.) Borkh.). The results showed that dwarfing interstocks could significantly reduce the height and diameters of apple trees while have few effects on the growth of annual branches. The interstocks were found to regulate the expression of genes related to hormone metabolism and tree body control (GH3.9, PIN1, CKI1, ARP1, GA2ox1 and GA20ox1), these effects may attribute the dwarf characters for apple trees with interstocks. Besides, the interstocks reduce photosynthesis-related genes (MADH-ME4 and GAPC), promote carbon (C) metabolism gene expression (AATP1, GDH and PFK3), promote the expression of nitrogen (N)-metabolism-related genes (NRT2.7, NADH and GDH) in rootstocks, and improve the expression of genes related to secondary metabolism in scions (DX5, FPS1, TPS21 and SRG1). We also concluded that the interstocks acquired early blooming traits due to promotion of the expression of flowering genes in the scion (MOF1, FTIP7, AGL12 and AGL24). This study is a valuable resource regarding the molecular mechanisms of dwarf interstocks' influence on various biological processes and transplantation systems in both scions and rootstocks.
Collapse
Affiliation(s)
- Qingshan Li
- Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 98 Xinghai South Street, Xingcheng 125100, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China
| | - Yuan Gao
- Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 98 Xinghai South Street, Xingcheng 125100, China
| | - Kun Wang
- Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 98 Xinghai South Street, Xingcheng 125100, China
| | - Jianrong Feng
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China
| | - Simiao Sun
- Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 98 Xinghai South Street, Xingcheng 125100, China
| | - Xiang Lu
- Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 98 Xinghai South Street, Xingcheng 125100, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China
| | - Zhao Liu
- Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 98 Xinghai South Street, Xingcheng 125100, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Horticulture, Agricultural College of Shihezi University, Shihezi 832003, China
| | - Deying Zhao
- Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 98 Xinghai South Street, Xingcheng 125100, China
| | - Lianwen Li
- Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 98 Xinghai South Street, Xingcheng 125100, China
| | - Dajiang Wang
- Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 98 Xinghai South Street, Xingcheng 125100, China
| |
Collapse
|
49
|
Zhao Z, Zhang Y, Shi M, Liu Z, Xu Y, Luo Z, Yuan S, Tu T, Sun Z, Zhang D, Barrett SCH. Genomic evidence supports the genetic convergence of a supergene controlling the distylous floral syndrome. THE NEW PHYTOLOGIST 2023; 237:601-614. [PMID: 36239093 DOI: 10.1111/nph.18540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Heterostyly, a plant sexual polymorphism controlled by the S-locus supergene, has evolved numerous times among angiosperm lineages and represents a classic example of convergent evolution in form and function. Determining whether underlying molecular convergence occurs could provide insights on constraints to floral evolution. Here, we investigated S-locus genes in distylous Gelsemium (Gelsemiaceae) to determine whether there is evidence of molecular convergence with unrelated distylous species. We used several approaches, including anatomical measurements of sex-organ development and transcriptome and whole-genome sequencing, to identify components of the S-locus supergene. We also performed evolutionary analysis with candidate S-locus genes and compared them with those reported in Primula and Turnera. The candidate S-locus supergene of Gelsemium contained four genes, of which three appear to have originated from gene duplication events within Gelsemiaceae. The style-length genes GeCYP in Gelsemium and CYP734A50 in Primula likely arose from duplication of the same gene, CYP734A1. Three out of four S-locus genes in Gelsemium elegans were hemizygous, as previously reported in Primula and Turnera. We provide genomic evidence on the genetic convergence of the supergene underlying distyly among distantly related angiosperm lineages and help to illuminate the genetic architecture involved in the evolution of heterostyly.
Collapse
Affiliation(s)
- Zhongtao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou, 34100, China
| | - Yu Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhaoying Liu
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Yuanqing Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhonglai Luo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhiliang Sun
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou, 34100, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
50
|
Zhang T, Wang J, Luo R, Man J, Long Q, Xu N. OsHLS1 regulates plant height and development by controlling active gibberellin accumulation in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111508. [PMID: 36283578 DOI: 10.1016/j.plantsci.2022.111508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, we identified a gene related to plant height, leaf, and premature senescence in rice, and named it OsHLS1. Through bioinformatics analysis, it was found that this gene belongs to a new gene family-HLS family, and this gene family exists widely in higher plants. Expression of OsHLS1 was significantly brought about by gibberellin (GA). Subcellular localization showed that OsHLS1 was located in the nucleus. oshls1-3 displayed a GA-deficient phenotype, with dwarf plants. In addition, oshls1-3 also showed premature senescence, shorter and narrower leaves, and pollen abortion. Exogenous GA3 can restore the plant height of oshls1-3. Histomorphological analysis showed that the gene affected the progress of internode cells in the first and third nodes under the rice panicle. Through the verification of the homologous gene AT4G25690 in Arabidopsis, it was found that the mutant at4g25690 lines also showed plant dwarfing, premature senescence, and shortening and narrowing of leaves and pollen abortion. OsHLS1 affected the expression levels of genes involved in the GA metabolic pathway and affected the content of active GA, thereby regulating plant height development in rice. In conclusion, we suggest that OsHLS1 regulates plant height and development by controlling the accumulation of active gibberellins in rice.
Collapse
Affiliation(s)
- Tonghua Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Jiafu Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Rui Luo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Jianmin Man
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qing Long
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ning Xu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|