1
|
Wang X, Huo Z, Ma L, Ou S, Guo M. The salt and ABA inducible transcription factor gene, SlAITR3, negatively regulates tomato salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109735. [PMID: 40048942 DOI: 10.1016/j.plaphy.2025.109735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 05/07/2025]
Abstract
It was of great significance for genetic improvement of salt-tolerant crops and increasing the yield of saline-alkali land to excavate salt stress response genes and clarify their molecular mechanism of regulating salt tolerance. Plant-specific transcription factor (TF) ABA-induced transcription repressors (AITRs) played important roles in salt stress. Nevertheless, the underlying mechanisms of how tomato AITRs (SlAITRs) regulate salt stress remain to be elucidated. In this study, we systematically described the characteristics of tomato SlAITR3 and its function in regulating salt tolerance. SlAITR3 was a transcriptional repressor located in nucleus, and SlAITR3 gene was induced by salt stress and abscisic acid (ABA). Tomato SlAITR3 silencing and knockout improved the salt tolerance. Compared with wide-type (WT) plants, the Na+/K+ ratio, cell membrane permeability and reactive oxygen species (ROS) were lower in SlAITR3 silencing or knockout mutants under salt stress conditions, while the antioxidant enzyme activities were higher. Conversely, the SlAITR3-overexpressing tomato plants showed sensitivity to salt stress. RNA-seq analysis suggested that SlAITR3 might function by regulating stress response genes, especially key genes involved in ion homeostasis and ROS metabolism. In summary, the nuclear localization TF SlAITR3 protein negatively regulated tomato salt tolerance. Our results provided a potential target and a new theoretical reference for the genetic improvement of tomato salt tolerance by biotechnology.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China
| | - Zechun Huo
- College of Landscape Architecture, Shangqiu University, Shangqiu, 476000, China
| | - Li Ma
- School of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China
| | - Siying Ou
- School of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China
| | - Meng Guo
- School of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, 750021, China; Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, 750021, China; Ningxia Facility Horticulture (Ningxia University) Technology Innovation Center, Yinchuan, 750021, China.
| |
Collapse
|
2
|
Zhan J, Zhang X, Wang Y, Zhao H, Chu Y, Wang P, Chen Y, Wei X, Qin W, Liu M, Kong J, Li F, Ge X. The GhWL1-GhH1-GhGA2OX1 Transcriptional Module Regulates Cotton Leaf Morphology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410783. [PMID: 40305707 DOI: 10.1002/advs.202410783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/10/2025] [Indexed: 05/02/2025]
Abstract
Leaf morphology critically influences photosynthetic efficiency, directly affecting crop yield and quality. In this study, a T-DNA insertion mutant (wl-D), characterized by a wrinkled-leaf phenotype, is identified. Genetic analysis reveals that this phenotype is governed by a single dominant gene, WRINKLED-LEAF 1 (GhWL1), which is highly expressed in wl-D compared to the wild type (WT). Overexpression of GhWL1 in WT caused curling at leaf edges, while suppression of GhWL1 in wl-D restored normal leaf morphology, validating its functional role. Further analysis demonstrated that GhWL1 interacts with GhH1, a protein with a KNOX1 structural domain, to regulate leaf development. Overexpression of GhH1 in WT results in a leaf shrinkage phenotype similar to wl-D, whereas suppressing GhH1 in wl-D restored normal leaf morphology, indicating that GhH1 acts downstream of GhWL1. The GhWL1-GhH1 complex directly binds to the promoter of GhGA2OX1 (gibberellin 2-beta-dioxygenase 1), positively regulating its expression. Overexpression of GhGA2OX1 in WT mimicked the leaf shrinkage phenotype observed in plants overexpressing GhH1. These findings establish the GhWL1-GhH1-GhGA2OX1 module as a critical pathway in regulating leaf development, offering valuable insights into the genetic and hormonal networks controlling leaf morphological diversity.
Collapse
Affiliation(s)
- Jingjing Zhan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoshuang Zhang
- College of Plant Science and Technology of Huazhong Agricultural University, Wuhan, 430000, China
| | - Ye Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hang Zhao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- College of Life Sciences, Qufu Normal University, Qufu, 273100, China
| | - Yu Chu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Peng Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanli Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xi Wei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqiang Qin
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Menghan Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
| | - Fuguang Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
3
|
Xian F, Liu S, Huang J, Xie B, Zhu L, Zhang Q, Lv C, Xu Y, Zhang X, Hu J. The OsIAA3-OsARF16-OsBUL1 auxin signaling module regulates grain size in rice. PLANT PHYSIOLOGY 2025; 197:kiaf122. [PMID: 40156155 DOI: 10.1093/plphys/kiaf122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 04/01/2025]
Abstract
Auxin plays an important role in various aspects of plant growth and development. However, the molecular mechanism underlying the control of grain size via auxin signaling pathways remains obscure. Here, we report that AUXIN/INDOLE-3-ACETIC ACID protein 3 (OsIAA3) positively regulates rice (Oryza sativa) grain size by promoting the cell expansion and proliferation of spikelet hulls. OsIAA3 interacted with 11 AUXIN RESPONSE FACTORS (ARFs), among which the interaction with OsARF16 was the strongest. The osarf16 knockout mutant showed smaller grains with decreased grain length, grain width, grain thickness, and 1,000-grain weight. Meanwhile, transgenic plants overexpressing OsARF16 produced noticeably larger grains with increased grain length and 1,000-grain weight. O. sativa BRASSINOSTEROID UPREGULATED 1-LIKE (OsBUL1), which encodes an atypical bHLH protein that positively regulates grain size by promoting cell expansion, is a direct target gene of OsARF16. The interaction between OsIAA3 and OsARF16 repressed the transcriptional activation of OsARF16 on OsBUL1. Our study reveals an OsIAA3-OsARF16-OsBUL1 module that regulates grain size, refining the molecular mechanism of the auxin signaling pathway involved in grain size control.
Collapse
Affiliation(s)
- Fengjun Xian
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Shuya Liu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jishuai Huang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Bin Xie
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lin Zhu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Qiannan Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210016, China
| | - Chen Lv
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yimeng Xu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xinrong Zhang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
4
|
Fu Y, Liu Y, Chen Y, Xiao J, Xie Y, Miao Y, Xu Z, Zhang N, Xun W, Xuan W, Shen Q, Zhang R. A rhizobacterium-secreted protein induces lateral root development through the IAA34-PUCHI pathway. Cell Rep 2025; 44:115414. [PMID: 40073017 DOI: 10.1016/j.celrep.2025.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 12/09/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Lateral roots (LRs) can continuously forage water and nutrients from soil. In Arabidopsis thaliana, LR development depends on a canonical auxin signaling pathway involving the core transcription factors INDOLE-3-ACETIC ACIDs (IAAs) and AUXIN RESPONSE FACTORs (ARFs). In this study, we identified a protein, bacillolysin, secreted by the beneficial rhizobacterium Bacillus velezensis SQR9, that is able to stimulate LR formation of Arabidopsis. The receptor protein kinase C-TERMINALLY ENCODED PEPTIDE RECEPTOR2 (CEPR2) interacts with bacillolysin and plays a critical role in LR development. In the bacillolysin-regulated signaling pathway, the transcriptional repressor IAA34 interacts with PUCHI to activate downstream LATERAL ORGAN BOUNDARIES-DOMAIN33 (LBD33) expression, consequently inducing LR development. This study reveals interkingdom communication via a protein that mediates a novel pathway to induce LR development.
Collapse
Affiliation(s)
- Yansong Fu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Chen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintao Xiao
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanming Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Youzhi Miao
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Weibing Xun
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Liu X, Cheng L, Cai Y, Liu Y, Yan X, Liu J, Li R, Ge S, Wang S, Liu X, Meng S, Qi M, Jiang CZ, Li T, Xu T. A KNOTTED1-LIKE HOMEOBOX PROTEIN1-interacting transcription factor SlGATA6 maintains the auxin-response gradient to inhibit abscission. SCIENCE ADVANCES 2025; 11:eadt1891. [PMID: 40106541 PMCID: PMC11922032 DOI: 10.1126/sciadv.adt1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
The KNOTTED1-LIKE HOMEOBOX PROTEIN1 (SlKD1) is a master abscission regulator in tomato (Solanum lycopersicum). Here, we identified an SlKD1-interacting transcription factor GATA transcription factor 6 (SlGATA6), which is required for maintaining the auxin-response gradient and preventing abscission. SlGATA6 up-regulates the expression of SlLAX2 and SlIAA3. The AUXIN RESISTANT/LIKE AUXIN RESISTANT (AUX/LAX) proteins SlLAX2-dependent asymmetric auxin distribution causes differential accumulation of Auxin/Indole-3-Acetic Acid 3 (SlIAA3) and its homolog SlIAA32 across different abscission zone cells. It is also required for SUMOylation of AUXIN RESPONSE FACTOR 2a (SlARF2a), a key suppressor of auxin signaling and abscission initiator. Moreover, SlIAA3 and SlIAA32 depress SUMOylated SlARF2a, thus suppressing SlARF2a function. The interaction between SlKD1 and SlGATA6 suppresses SlGATA6 binding to the promoters of SlLAX2 and SlIAA3, thereby disrupting the auxin-response gradient and triggering abscission. This regulatory mechanism is conserved under low light-induced abscission in diverse Solanaceae plants. Our findings reveal a critical role of SlKD1 in modulating the auxin-response gradient and abscission initiation.
Collapse
Affiliation(s)
- Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Xuemei Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiayun Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Xingan Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture Agricultural Research Service, Davis, CA 95616, USA
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
6
|
Cai Y, Yang W, Yue J, Chen J, Xing J, Yang X, Ye D, Tang C, Liu H. Isolation and Functional Characterization of the MADS-Box Gene AGAMOUS-LIKE 24 in Rubber Dandelion ( Taraxacum kok-saghyz Rodin). Int J Mol Sci 2025; 26:2271. [PMID: 40076890 PMCID: PMC11901092 DOI: 10.3390/ijms26052271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Rubber dandelion (Taraxacum kok-saghyz Rodin, TKS), also referred to as Russian dandelion, is one of the most promising natural rubber (NR)-producing plants that produce high-quality NR comparable to that from the Pará rubber tree (Hevea brasiliensis, Hb), currently the only commercial source. It needs further breeding to improve the agricultural traits. However, little has been known about the genetic mechanisms underlying the regulation of floral induction and flower development in TKS, an important trait that remains to be improved for commercial production. The MADS-box gene AGAMOUS-LIKE 24 (AGL24) plays important roles in floral induction and flower development. As the first step in understanding its roles in TKS, this study isolated and characterized the AGL24-homologous gene TkAGL24 in TKS. The TkAGL24 gene had a 705 bp coding sequence (CDS) that encoded a protein of 234 amino acids containing the conserved classic MADS-box type II domain and K-box domain, sharing 55.32% protein sequence identity with the AtAGL24 protein from Arabidopsis. TkAGL24 was highly expressed in leaf, latex, root, and peduncle but rarely or not in mature flower. The TkAGL24 protein was located in the nucleus and cytoplasm and did not have transcription activation activity in yeast cells. The overexpression of TkAGL24 in Arabidopsis could promote flowering and cause the abnormal development of flowers, similar to other AGL24-homologous genes from other species. Furthermore, the overexpression of TkAGL24 in TKS also affected the development of ligulate flowers. These results suggested that the cloned TkAGL24 gene is functional and may play important roles in floral induction and flower development in TKS, providing an insight into the possibility for the further studies of its roles and application to breeding.
Collapse
Affiliation(s)
- Yijiao Cai
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Wei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Jin Yue
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Jiaqi Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Jianfeng Xing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Xue Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - De Ye
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Chaorong Tang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Hui Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Fu Y, Wang J, Su Z, Chen Q, Li J, Zhao J, Xuan W, Miao Y, Zhang J, Zhang R. Sinomonas gamaensis NEAU-HV1 remodels the IAA14-ARF7/19 interaction to promote plant growth. THE NEW PHYTOLOGIST 2025; 245:2016-2037. [PMID: 39722601 DOI: 10.1111/nph.20370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear. By using soil systems, we studied the growth-promoting effects of Sinomonas gamaensis NEAU-HV1 on various plants. Through a combination of phenotypic analyses and microscopic observations, the effects of NEAU-HV1 on root development were evaluated. We subsequently conducted molecular and genetic experiments to reveal the mechanism promoting lateral root (LR) development. We demonstrated that NEAU-HV1 significantly promoted the growth of lettuce, wheat, maize, peanut and Arabidopsis. This effect was associated with multiple beneficial traits, including phosphate solubilization, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase production and survival ability in the rhizosphere and within the inner tissue of roots. In addition, NEAU-HV1 could secrete metabolites to promote LR development by affecting auxin transport and signaling. Importantly, we found that the influence of auxin signaling may be attributed to the remodeling interaction between SOLITARY-ROOT (SLR)/IAA14 and ARF7/19, occurring independently of the auxin receptor TIR1/AFB2. Our results indicate that NEAU-HV1-induced LR formation is dependent on direct remodeling interactions between transcription factors, providing novel insights into plant-microbe interactions.
Collapse
Affiliation(s)
- Yansong Fu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Juexuan Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziwei Su
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Qinyuan Chen
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxin Li
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Youzhi Miao
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Ruifu Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Lorenzo-Manzanarez JL, Enríquez-Valencia AJ, Olivares-García CA, Ibarra-Laclette E, Velázquez-López O, Ruiz-May E, Loyola-Vargas VM, Kú-González AF, Arteaga-Vázquez MA, Mata-Rosas M. Genome-wide analysis of ARF gene family and miR160 in avocado (Persea americana Mill.) and their roles in somatic embryogenesis from zygotic embryos. PLANTA 2025; 261:61. [PMID: 39955690 DOI: 10.1007/s00425-025-04641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
MAIN CONCLUSION The genome-wide analysis revealed that miRNA160 and PaARFs are involved in avocado somatic embryogenesis and play a role in the low efficiency of embryo induction and the ineffective conversion of embryos into plants. The auxin response transcription factors (ARFs) play a role in signaling the auxin phytohormone Indole-3-acetic Acid (IAA) and are involved in plant growth, development, abiotic stress responses and somatic embryogenesis (SE). In the Lauraceae family, particularly in avocado (Persea americana Mill.), propagation via SE remains challenging due to the low efficiency of embryo induction and ineffective conversion of embryos into plants. This study investigates the phylogenetic relationships and evolutionary history of avocado ARFs (PaARFs). This multigenic family consists of at least 20 members that evolved from a now-extinct common ancestor shared by bryophytes and angiosperms. The expression profile of these genes was analyzed in immature zygotic embryos and three SE stages: early globular, late globular and white-opaque. Additionally, we identified six genes that contributed to the formation of a 100% identical single mature miRNA, the miR160. Almost all PaARF genes were upregulated during the embryo-induction stage, while genes such as PaARF1a, PaARF1c, PaARF2a, PaARF2b, and PaARF17 were downregulated at the white-opaque stage. We observed that the expression of miRNA160 differed significantly between the zygotic embryos and the three subsequent development stages. Additionally, free IAA distributions were highly concentrated in immature zygotic embryos. Our results suggest that miR160 and PaARF-mediated auxin signaling play a role in avocado SE, potentially contributing to the low efficiency of SE. This study is the first report on the ARF gene family in avocado. Our findings provide a valuable reference for comparative and functional analyses of ARFs in the context of avocado somatic embryogenesis.
Collapse
Affiliation(s)
- J L Lorenzo-Manzanarez
- Red Manejo Biotecnológico de Recursos, Instituto de Ecología A.C., 91073, Xalapa, Mexico
| | - A J Enríquez-Valencia
- Red Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91073, Xalapa, Mexico
| | - C A Olivares-García
- Red Manejo Biotecnológico de Recursos, Instituto de Ecología A.C., 91073, Xalapa, Mexico
| | - E Ibarra-Laclette
- Red Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91073, Xalapa, Mexico
| | - O Velázquez-López
- Red Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91073, Xalapa, Mexico
| | - E Ruiz-May
- Red Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91073, Xalapa, Mexico
| | - V M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - A F Kú-González
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - M A Arteaga-Vázquez
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, 91090, Xalapa, Veracruz, Mexico
| | - M Mata-Rosas
- Red Manejo Biotecnológico de Recursos, Instituto de Ecología A.C., 91073, Xalapa, Mexico.
| |
Collapse
|
9
|
Cavalleri A, Astori C, Truskina J, Cucinotta M, Farcot E, Chrysanthou E, Xu X, Muino JM, Kaufmann K, Kater MM, Vernoux T, Weijers D, Bennett MJ, Bhosale R, Bishopp A, Colombo L. Auxin-dependent post-translational regulation of MONOPTEROS in the Arabidopsis root. Cell Rep 2024; 43:115083. [PMID: 39675001 DOI: 10.1016/j.celrep.2024.115083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Auxin plays a pivotal role in plant development by activating AUXIN RESPONSE FACTORs (ARFs). Under low auxin levels, ARF activity is inhibited by interacting with Aux/IAAs. Aux/IAAs are degraded when the cellular auxin concentration increases, causing the release of ARF inhibition. Here, we show that levels of the ARF5/MONOPTEROS (MP) protein are regulated in a cell-type-specific and isoform-dependent manner. We find that the stability of MP isoforms is differentially controlled depending on the auxin level. The canonical MP isoform is degraded by the proteasome in root tissues with low auxin levels. While auxin sharpens the MP localization domain in roots, it does not do so in ovules or embryos. Our research highlights a mechanism for providing spatial control of auxin signaling capacity. Together with recent advances in understanding the tissue-specific expression and post-transcriptional modification of auxin signaling components, these results provide insights into understanding how auxin can elicit so many distinct responses.
Collapse
Affiliation(s)
- Alex Cavalleri
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Chiara Astori
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Jekaterina Truskina
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Mara Cucinotta
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Etienne Farcot
- School of Mathematical Sciences, University of Nottingham, NG7 2RD Nottingham, UK
| | - Elina Chrysanthou
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Xiaocai Xu
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Jose M Muino
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Martin M Kater
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6700 ET Wageningen, the Netherlands
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Rahul Bhosale
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Anthony Bishopp
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Lucia Colombo
- Departiment of BioScience, University of Milan, 20133 Milano, Italy.
| |
Collapse
|
10
|
Wang W, Wang X, Liu X, Wang Y, Li Y, Hussain S, Jing X, Chen S, Wang S. AtAUEs, a Small Family of ABA Up-Regulated EAR Motif-Containing Proteins Regulate ABA Responses in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3282. [PMID: 39683075 DOI: 10.3390/plants13233282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The abscisic acid (ABA) signaling pathway is crucial for regulating downstream ABA-responsive genes, which influence plant responses to ABA and abiotic stresses. However, many ABA-responsive genes remain poorly characterized. This study reports on the identification and characterization of ABA up-regulated EAR motif-containing proteins (AtAUEs), a novel family of EAR motif-containing proteins in Arabidopsis thaliana. From a previous transcriptome dataset, AtAUEs were identified as a family of unknown-function ABA-response genes with only five members, and the up-regulation of AtAUEs by ABA was further confirmed by quantitative RT-PCR (qRT PCR). All AtAUEs contain at least one LxLxL EAR motif and can repress reporter gene expression in Arabidopsis protoplasts. We generated CRISPR/Cas9 gene-edited ataue1, ataue2 and ataue3 single, ataue1 ataue2 (ataue12) double, and ataue1 ataue2 ataue3 (ataue123) triple mutants, as well as transgenic plants overexpressing AtAUE1, and examined their ABA sensitivity. We found that the single and double mutants displayed wild-type responses to ABA treatment, while the ataue123 triple mutants showed increased sensitivity in seed germination and cotyledon greening assays but decreased sensitivity to ABA treatment in root elongation assays. Conversely, the 35S:AtAUE1 showed decreased sensitivity in seed germination and cotyledon greening assays but increased sensitivity to ABA treatment in root elongation assays. The qRT PCR results show that the expression level of ABI5 was increased in the ataue123 mutants and decreased in the 35S:AtAUE1 plants. These findings suggest that AtAUEs function redundantly to regulate ABA responses in Arabidopsis, likely by modulating the expression of key regulatory genes in ABA-signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Xutong Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Xiaoyu Liu
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Yating Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Saddam Hussain
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Xiaoxiao Jing
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Siyu Chen
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
11
|
Iqbal MZ, Liang Y, Anwar M, Fatima A, Hassan MJ, Ali A, Tang Q, Peng Y. Overexpression of Auxin/Indole-3-Acetic Acid Gene TrIAA27 Enhances Biomass, Drought, and Salt Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2684. [PMID: 39409554 PMCID: PMC11478388 DOI: 10.3390/plants13192684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 10/20/2024]
Abstract
White clover (Trifolium repens L.) is an important forage and aesthetic plant species, but it is susceptible to drought and heat stress. The phytohormone auxin regulates several aspects of plant development and alleviates the effects of drought stress in plants, including white clover, by involving auxin/indole acetic acid (Aux/IAA) family genes. However, Aux/IAA genes and the underlying mechanism of auxin-mediated drought response remain elusive in white clover. To extend our understanding of the multiple functions of Aux/IAAs, the current study described the characterization of a member of the Aux/IAA family TrIAA27 of white clover. TrIAA27 protein had conserved the Aux/IAA family domain and shared high sequence similarity with the IAA27 gene of a closely related species and Arabidopsis. Expression of TrIAA27 was upregulated in response to heavy metal, drought, salt, NO, Ca2+, H2O2, Spm, ABA, and IAA treatments, while downregulated under cold stress in the roots and leaves of white clover. TrIAA27 protein was localized in the nucleus. Constitutive overexpression of TrIAA27 in Arabidopsis thaliana led to enhanced hypocotyl length, root length, plant height, leaf length and width, and fresh and dry weights under optimal and stress conditions. There was Improved photosynthesis activity, chlorophyll content, survival rate, relative water content, endogenous catalase (CAT), and peroxidase (POD) concentration with a significantly lower electrolyte leakage percentage, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) concentration in overexpression lines compared to wild-type Arabidopsis under drought and salt stress conditions. Exposure to stress conditions resulted in relatively weaker roots and above-ground plant growth inhibition, enhanced endogenous levels of major antioxidant enzymes, which correlated well with lower lipid peroxidation, lower levels of reactive oxygen species, and reduced cell death in overexpression lines. The data of the current study demonstrated that TrIAA27 is involved in positively regulating plant growth and development and could be considered a potential target gene for further use, including the breeding of white clover for higher biomass with improved root architecture and tolerance to abiotic stress.
Collapse
Affiliation(s)
- Muhammad Zafar Iqbal
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China
| | - Yuzhou Liang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Muhammad Anwar
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Akash Fatima
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| |
Collapse
|
12
|
Cho HT, Lee M, Choi HS, Maeng KH, Lee K, Lee HY, Ganguly A, Park H, Ho CH. A dose-dependent bimodal switch by homologous Aux/IAA transcriptional repressors. MOLECULAR PLANT 2024; 17:1407-1422. [PMID: 39095993 DOI: 10.1016/j.molp.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Combinatorial interactions between different regulators diversify and enrich the chance of transcriptional regulation in eukaryotic cells. However, a dose-dependent functional switch of homologous transcriptional repressors has rarely been reported. Here, we show that SHY2, an auxin/indole-3-acetic acid (Aux/IAA) repressor, exhibits a dose-dependent bimodal role in auxin-sensitive root-hair growth and gene transcription in Arabidopsis, whereas other Aux/IAA homologs consistently repress the auxin responses. The co-repressor (TOPLESS [TPL])-binding affinity of a bimodal Aux/IAA was lower than that of a consistently repressing Aux/IAA. The switch of a single amino acid residue in the TPL-binding motif between the bimodal form and the consistently repressing form switched their TPL-binding affinity and transcriptional and biological roles in auxin responses. Based on these data, we propose a model whereby competition between homologous repressors with different co-repressor-binding affinities could generate a bimodal output at the transcriptional and developmental levels.
Collapse
Affiliation(s)
- Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
| | - Minsu Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hee-Seung Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kwang-Ho Maeng
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kyeonghoon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ha-Yeon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Anindya Ganguly
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hoonyoung Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| | - Chang-Hoi Ho
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea; Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul, Korea
| |
Collapse
|
13
|
Du Q, Yuan B, Thapa Chhetri G, Wang T, Qi L, Wang H. A transcriptional repressor HVA regulates vascular bundle formation through auxin transport in Arabidopsis stem. THE NEW PHYTOLOGIST 2024; 243:1681-1697. [PMID: 39014537 DOI: 10.1111/nph.19970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Vascular bundles transport water and photosynthate to all organs, and increased bundle number contributes to crop lodging resistance. However, the regulation of vascular bundle formation is poorly understood in the Arabidopsis stem. We report a novel semi-dominant mutant with high vascular activity, hva-d, showing increased vascular bundle number and enhanced cambium proliferation in the stem. The activation of a C2H2 zinc finger transcription factor, AT5G27880/HVA, is responsible for the hva-d phenotype. Genetic, biochemical, and fluorescent microscopic analyses were used to dissect the functions of HVA. HVA functions as a repressor and interacts with TOPLESS via the conserved Ethylene-responsive element binding factor-associated Amphiphilic Repression motif. In contrast to the HVA activation line, knockout of HVA function with a CRISPR-Cas9 approach or expression of HVA fused with an activation domain VP16 (HVA-VP16) resulted in fewer vascular bundles. Further, HVA directly regulates the expression of the auxin transport efflux facilitator PIN1, as a result affecting auxin accumulation. Genetics analysis demonstrated that PIN1 is epistatic to HVA in controlling bundle number. This research identifies HVA as a positive regulator of vascular initiation through negatively modulating auxin transport and sheds new light on the mechanism of bundle formation in the stem.
Collapse
Affiliation(s)
- Qian Du
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Bingjian Yuan
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Gaurav Thapa Chhetri
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Tong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Liying Qi
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
- Institute for System Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
14
|
Imani Asl E, Soorni A, Mehrabi R. Genome-wide characterization, functional analysis, and expression profiling of the Aux/IAA gene family in spinach. BMC Genomics 2024; 25:567. [PMID: 38840073 PMCID: PMC11155116 DOI: 10.1186/s12864-024-10467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The auxin/indole-3-acetic acid (Aux/IAA) gene family is a crucial element of the auxin signaling pathway, significantly influencing plant growth and development. Hence, we conducted a comprehensive investigation of Aux/IAAs gene family using the Sp75 and Monoe-Viroflay genomes in spinach. RESULTS A total of 24 definitive Aux/IAA genes were identified, exhibiting diverse attributes in terms of amino acid length, molecular weight, and isoelectric points. This diversity underscores potential specific roles within the family, such as growth regulation and stress response. Structural analysis revealed significant variations in gene length and molecular weight. These variations indicate distinct roles within the Aux/IAA gene family. Chromosomal distribution analysis exhibited a dispersed pattern, with chromosomes 4 and 1 hosting the highest and lowest numbers of Aux/IAA genes, respectively. Phylogenetic analysis grouped the identified genes into distinct clades, revealing potential evolutionary relationships. Notably, the phylogenetic tree highlighted specific gene clusters suggesting shared genetic ancestry and potential functional synergies within spinach. Expression analysis under NAA treatment unveiled gene-specific and time-dependent responses, with certain genes exhibiting distinct temporal expression patterns. Specifically, SpoIAA5 displayed a substantial increase at 2 h post-NAA treatment, while SpoIAA7 and SpoIAA9 demonstrated continuous rises, peaking at the 4-hour time point. CONCLUSIONS These observations indicate a complex interplay of gene-specific and temporal regulation in response to auxin. Moreover, the comparison with other plant species emphasized both shared characteristics and unique features in Aux/IAA gene numbers, providing insights into the evolutionary dynamics of this gene family. This comprehensive characterization of Aux/IAA genes in spinach not only establishes the foundation for understanding their specific functions in spinach development but also provides a valuable resource for experimental validation and further exploration of their roles in the intricate network of auxin signaling pathways.
Collapse
Affiliation(s)
- Erfan Imani Asl
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Rahim Mehrabi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
15
|
Bellino C, Herrera FE, Rodrigues D, Garay AS, Huck SV, Reinheimer R. Molecular Evolution of RAMOSA1 (RA1) in Land Plants. Biomolecules 2024; 14:550. [PMID: 38785957 PMCID: PMC11117814 DOI: 10.3390/biom14050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
RAMOSA1 (RA1) is a Cys2-His2-type (C2H2) zinc finger transcription factor that controls plant meristem fate and identity and has played an important role in maize domestication. Despite its importance, the origin of RA1 is unknown, and the evolution in plants is only partially understood. In this paper, we present a well-resolved phylogeny based on 73 amino acid sequences from 48 embryophyte species. The recovered tree topology indicates that, during grass evolution, RA1 arose from two consecutive SUPERMAN duplications, resulting in three distinct grass sequence lineages: RA1-like A, RA1-like B, and RA1; however, most of these copies have unknown functions. Our findings indicate that RA1 and RA1-like play roles in the nucleus despite lacking a traditional nuclear localization signal. Here, we report that copies diversified their coding region and, with it, their protein structure, suggesting different patterns of DNA binding and protein-protein interaction. In addition, each of the retained copies diversified regulatory elements along their promoter regions, indicating differences in their upstream regulation. Taken together, the evidence indicates that the RA1 and RA1-like gene families in grasses underwent subfunctionalization and neofunctionalization enabled by gene duplication.
Collapse
Affiliation(s)
- Carolina Bellino
- Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe S3000, Argentina;
| | - Fernando E. Herrera
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe S3000, Argentina; (F.E.H.); (D.R.)
| | - Daniel Rodrigues
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe S3000, Argentina; (F.E.H.); (D.R.)
| | - A. Sergio Garay
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe S3000, Argentina;
| | - Sofía V. Huck
- Fellow of Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe S3000, Argentina;
| | - Renata Reinheimer
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, FCA, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe S3000, Argentina
| |
Collapse
|
16
|
Qi T, Yang W, Hassan MJ, Liu J, Yang Y, Zhou Q, Li H, Peng Y. Genome-wide identification of Aux/IAA gene family in white clover (Trifolium repens L.) and functional verification of TrIAA18 under different abiotic stress. BMC PLANT BIOLOGY 2024; 24:346. [PMID: 38684940 PMCID: PMC11057079 DOI: 10.1186/s12870-024-05034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND White clover (Trifolium repens L.) is an excellent leguminous cool-season forage with a high protein content and strong nitrogen-fixing ability. Despite these advantages, its growth and development are markedly sensitive to environmental factors. Indole-3-acetic acid (IAA) is the major growth hormone in plants, regulating plant growth, development, and response to adversity. Nevertheless, the specific regulatory functions of Aux/IAA genes in response to abiotic stresses in white clover remain largely unexplored. RESULTS In this study, we identified 47 Aux/IAA genes in the white clover genome, which were categorized into five groups based on phylogenetic analysis. The TrIAAs promoter region co-existed with different cis-regulatory elements involved in developmental and hormonal regulation, and stress responses, which may be closely related to their diverse regulatory roles. Collinearity analysis showed that the amplification of the TrIAA gene family was mainly carried out by segmental duplication. White clover Aux/IAA genes showed different expression patterns in different tissues and under different stress treatments. In addition, we performed a yeast two-hybrid analysis to investigate the interaction between white clover Aux/IAA and ARF proteins. Heterologous expression indicated that TrIAA18 could enhance stress tolerance in both yeast and transgenic Arabidopsis thaliana. CONCLUSION These findings provide new scientific insights into the molecular mechanisms of growth hormone signaling in white clover and its functional characteristics in response to environmental stress.
Collapse
Affiliation(s)
- Tiangang Qi
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weiqiang Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiefang Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujiao Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinyu Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hang Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
17
|
Zhang J, Li S, Gao X, Liu Y, Fu B. Genome-wide identification and expression pattern analysis of the Aux/IAA (auxin/indole-3-acetic acid) gene family in alfalfa (Medicago sativa) and the potential functions under drought stress. BMC Genomics 2024; 25:382. [PMID: 38637768 PMCID: PMC11025244 DOI: 10.1186/s12864-024-10313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Auxin/induced-3-acetic acid (Aux/IAA) is an important plant hormone that affects plant growth and resistance to abiotic stresses. Drought stress is a vital factor in reducing plant biomass yield and production quality. Alfalfa (Medicago sativa L.) is the most widely planted leguminous forage and one of the most economically valuable crops in the world. Aux/IAA is one of the early responsive gene families of auxin, playing a crucial role in response to drought stress. However, the characteristics of the Aux/IAA gene family in alfalfa and its potential function in response to drought stress are still unknown. RESULT A total of 41 Aux/IAA gene members were identified in alfalfa genome. The physicochemical, peptide structure, secondary and tertiary structure analysis of proteins encoded by these genes revealed functional diversity of the MsIAA gene. A phylogenetic analysis classified the MsIAA genes into I-X classes in two subgroups. And according to the gene domain structure, these genes were classified into typical MsIAA and atypical MsIAA. Gene structure analysis showed that the MsIAA genes contained 1-4 related motifs, and except for the third chromosome without MsIAAs, they were all located on 7 chromosomes. The gene duplication analysis revealed that segmental duplication and tandem duplication greatly affected the amplification of the MsIAA genes. Analysis of the Ka/Ks ratio of duplicated MsAux/IAA genes suggested purification selection pressure was high and functional differences were limited. In addition, identification and classification of promoter cis-elements elucidated that MsIAA genes contained numerous elements associated to phytohormone response and abiotic stress response. The prediction protein-protein interaction network showed that there was a complex interaction between the MsAux/IAA genes. Gene expression profiles were tissue-specific, and MsAux/IAA had a broad response to both common abiotic stress (ABA, salt, drought and cold) and heavy metal stress (Al and Pb). Furthermore, the expression patterns analysis of 41 Aux/IAA genes by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that Aux/IAA genes can act as positive or negative factors to regulate the drought resistance in alfalfa. CONCLUSION This study provides useful information for the alfalfa auxin signaling gene families and candidate evidence for further investigation on the role of Aux/IAA under drought stress. Future studies could further elucidate the functional mechanism of the MsIAA genes response to drought stress.
Collapse
Affiliation(s)
- Jinqing Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
| | - Shuxia Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Xixia District, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, 750021, China
| | - Xueqin Gao
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Xixia District, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, 750021, China
| | - Yaling Liu
- Inner Mongolia Pratacultural Technology Innovation Center Co, Ltd, Hohhot, 010000, China
| | - BingZhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China.
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Xixia District, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, 750021, China.
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, 750021, China.
| |
Collapse
|
18
|
Yu X, Hu K, Geng X, Cao L, Zhou T, Lin X, Liu H, Chen J, Luo C, Qu S. The Mh-miR393a-TIR1 module regulates Alternaria alternata resistance of Malus hupehensis mainly by modulating the auxin signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112008. [PMID: 38307352 DOI: 10.1016/j.plantsci.2024.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
miRNAs govern gene expression and regulate plant defense. Alternaria alternata is a destructive fungal pathogen that damages apple. The wild apple germplasm Malus hupehensis is highly resistant to leaf spot disease caused by this fungus. Herein, we elucidated the regulatory and functional role of miR393a in apple resistance against A. alternata by targeting Transport Inhibitor Response 1. Mature miR393 accumulation in infected M. hupehensis increased owing to the transcriptional activation of MIR393a, determined to be a positive regulator of A. alternata resistance to either 'Orin' calli or 'Gala' leaves. 5' RLM-RACE and co-transformation assays showed that the target of miR393a was MhTIR1, a gene encoding a putative F-box auxin receptor that compromised apple immunity. RNA-seq analysis of transgenic calli revealed that MhTIR1 upregulated auxin signaling gene transcript levels and influenced phytohormone pathways and plant-pathogen interactions. miR393a compromised the sensitivity of several auxin-signaling genes to A. alternata infection, whereas MhTIR1 had the opposite effect. Using exogenous indole-3-acetic acid or the auxin synthesis inhibitor L-AOPP, we clarified that auxin enhances apple susceptibility to this pathogen. miR393a promotes SA biosynthesis and impedes pathogen-triggered ROS bursts by repressing TIR1-mediated auxin signaling. We uncovered the mechanism underlying the miR393a-TIR1 module, which interferes with apple defense against A. alternata by modulating the auxin signaling pathway.
Collapse
Affiliation(s)
- Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Kaixu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaoyue Geng
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, PR China
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tingting Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xinxin Lin
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hongcheng Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jingrui Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Changguo Luo
- Institute of Fruit Science, Guizhou Academy of Agricultural Science, Guiyang, Guizhou 550006, PR China.
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
19
|
Lian C, Lan J, Ma R, Li J, Zhang F, Zhang B, Liu X, Chen S. Genome-Wide Analysis of Aux/IAA Gene Family in Artemisia argyi: Identification, Phylogenetic Analysis, and Determination of Response to Various Phytohormones. PLANTS (BASEL, SWITZERLAND) 2024; 13:564. [PMID: 38475411 PMCID: PMC10934841 DOI: 10.3390/plants13050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Artemisia argyi is a traditional herbal medicine plant, and its folium artemisia argyi is widely in demand due to moxibustion applications globally. The Auxin/indole-3-acetic acid (Aux/IAA, or IAA) gene family has critical roles in the primary auxin-response process, with extensive involvement in plant development and stresses, controlling various essential traits of plants. However, the systematic investigation of the Aux/IAA gene family in A. argyi remains limited. In this study, a total of 61 Aux/IAA genes were comprehensively identified and characterized. Gene structural analysis indicated that 46 Aux/IAA proteins contain the four typical domains, and 15 Aux/IAA proteins belong to non-canonical IAA proteins. Collinear prediction and phylogenetic relationship analyses suggested that Aux/IAA proteins were grouped into 13 distinct categories, and most Aux/IAA genes might experience gene loss during the tandem duplication process. Promoter cis-element investigation indicated that Aux/IAA promoters contain a variety of plant hormone response and stress response cis-elements. Protein interaction prediction analysis demonstrated that AaIAA26/29/7/34 proteins are possibly core members of the Aux/IAA family interaction. Expression analysis in roots and leaves via RNA-seq data indicated that the expression of some AaIAAs exhibited tissue-specific expression patterns, and some AaIAAs were involved in the regulation of salt and saline-alkali stresses. In addition, RT-qPCR results indicated that AaIAA genes have differential responses to auxin, with complex response patterns in response to other hormones, indicating that Aux/IAA may play a role in connecting auxin and other hormone signaling pathways. Overall, these findings shed more light on AaIAA genes and offer critical foundational knowledge toward the elucidation of their function during plant growth, stress response, and hormone networking of Aux/IAA family genes in A. argyi.
Collapse
Affiliation(s)
- Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Jinxu Lan
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Jingjing Li
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Fei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Bao Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Xiuyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| |
Collapse
|
20
|
Fan J, Deng M, Li B, Fan G. Genome-Wide Identification of the Paulownia fortunei Aux/IAA Gene Family and Its Response to Witches' Broom Caused by Phytoplasma. Int J Mol Sci 2024; 25:2260. [PMID: 38396939 PMCID: PMC10889751 DOI: 10.3390/ijms25042260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
The typical symptom of Paulownia witches' broom (PaWB), caused by phytoplasma infection, is excessive branching, which is mainly triggered by auxin metabolism disorder. Aux/IAA is the early auxin-responsive gene that participates in regulating plant morphogenesis such as apical dominance, stem elongation, lateral branch development, and lateral root formation. However, no studies have investigated the response of the Aux/IAA gene family to phytoplasma infection in Paulownia fortunei. In this study, a total of 62 Aux/IAA genes were found in the genome. Phylogenetic analysis showed that PfAux/IAA genes could be divided into eight subgroups, which were formed by tandem duplication and fragment replication. Most of them had a simple gene structure, and several members lacked one or two conserved domains. By combining the expression of PfAux/IAA genes under phytoplasma stress and SA-treated phytoplasma-infected seedlings, we found that PfAux/IAA13/33/45 may play a vital role in the occurrence of PaWB. Functional analysis based on homologous relationships showed a strong correlation between PfAux/IAA45 and branching. Protein-protein interaction prediction showed that PfARF might be the binding partner of PfAux/IAA, and the yeast two-hybrid assay and bimolecular fluorescent complementary assay confirmed the interaction of PfAux/IAA45 and PfARF13. This study provides a theoretical basis for further understanding the function of the PfAux/IAA gene family and exploring the regulatory mechanism of branching symptoms caused by PaWB.
Collapse
Affiliation(s)
- Jiaming Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Minjie Deng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingbing Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
21
|
Singh CM, Purwar S, Singh AK, Singh BK, Kumar M, Kumar H, Pratap A, Mishra AK, Baek KH. Analysis of Auxin-Encoding Gene Family in Vigna radiata and It's Cross-Species Expression Modulating Waterlogging Tolerance in Wild Vigna umbellata. PLANTS (BASEL, SWITZERLAND) 2023; 12:3858. [PMID: 38005755 PMCID: PMC10674698 DOI: 10.3390/plants12223858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Mungbean is known to be susceptible to waterlogging (WL) stress. Some of the wild species have the potential to tolerate this through various physiological and molecular mechanisms. Auxin Response Factor (ARF) and Auxin/Indole Acetic Acid (AUX/IAA), an early responsive gene family, has multiple functions in growth, development, and stress tolerance. Here, we report the first comprehensive analysis of the ARF and AUX/IAA gene family in mungbean. A total of 26 ARF and 19 AUX/IAA genes were identified from the mungbean genome. The ARF and AUX/IAA candidates were clearly grouped into two major clades. Further, the subgrouping within the major clades indicated the presence of significant diversity. The gene structure, motif analysis, and protein characterization provided the clue for further fundamental research. Out of the10 selected candidate genes, VrARF-5, VrARF-11, VrARF-25, and VrAUX/IAA-9 were found to significantly multiple-fold gene expression in the hypocotyl region of WL-tolerant wild relatives (PRR 2008-2) provides new insight into a role in the induction of lateral root formation under WL stress. The analysis provides an insight into the structural diversity of ARF and AUX/IAA genes in mungbean. These results increase our understanding of ARF and AUX/IAA genes and therefore offer robust information for functional investigations, which can be taken up in the future and will form a foundation for improving tolerance against waterlogging stress.
Collapse
Affiliation(s)
- Chandra Mohan Singh
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda 210 001, India; (C.M.S.); (M.K.); (H.K.)
| | - Shalini Purwar
- Department of Basic and Social Sciences, Banda University of Agriculture and Technology, Banda 210 001, India;
| | - Akhilesh Kumar Singh
- Department of Plant Protection, Banda University of Agriculture and Technology, Banda 210 001, India;
| | - Bhupendra Kumar Singh
- Department of Entomology, Banda University of Agriculture and Technology, Banda 210 001, India;
| | - Mukul Kumar
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda 210 001, India; (C.M.S.); (M.K.); (H.K.)
| | - Hitesh Kumar
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda 210 001, India; (C.M.S.); (M.K.); (H.K.)
| | - Aditya Pratap
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research, Kanpur 208 024, India;
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
22
|
Hakim S, Imran A, Hussain MS, Mirza MS. RNA-Seq analysis of mung bean (Vigna radiata L.) roots shows differential gene expression and predicts regulatory pathways responding to taxonomically different rhizobia. Microbiol Res 2023; 275:127451. [PMID: 37478540 DOI: 10.1016/j.micres.2023.127451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Symbiotic interaction among legume and rhizobia is a complex phenomenon which results in the formation of nitrogen-fixing nodules. Mung bean is promiscuous host however expression profile of this important legume plant in response to rhizobial infection was particularly lacking and urgently needed. We have demonstrated the pattern of gene expression of mung bean roots inoculated with two symbionts Bradyrhizobium yuanmingense Vr50 and Sinorhizobium (Ensifer) aridi Vr33 and non-inoculated control (CK). The RNA-Seq data analyzed at two growth stages i.e., 1-3 h and 10-16 days post inoculation revealed significantly higher number of differentially expressed genes (DEGs) at nodulation stage. The DEGs encoding receptor kinases identified at early stage might be involved in perception of Nod factors produced by different rhizobia. At nodulation stage important genes involved in plant hormone signal transduction, nitrogen and sulfur metabolism were identified. KEGG pathway enrichment analysis showed that metabolic pathways were most prominent in both groups (Group 1: Vr33 vs CK; Group 2: Vr50 vs CK), followed by biosynthesis of secondary metabolites, plant hormone signal transduction and biosynthesis of amino acids. Furthermore, DEGs involved in cell communication and plant hormone signal transduction were found to be different among two symbiotic systems while DEGs involved in carbon, nitrogen and sulfur metabolism were similar but their expression varied in response to two rhizobial strains. This study provides the first insight into the mechanisms underlying interactions of mung bean host with two taxonomically different symbionts (Bradyrhizobium and Sinorhizobium) and the candidate genes for better understanding the mechanisms of symbiotic host-specificity.
Collapse
Affiliation(s)
- Sughra Hakim
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan
| | | | - M Sajjad Mirza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan.
| |
Collapse
|
23
|
Yang H, Zhang Y, Liu Y, Jian S, Deng S. A novel ABA-induced transcript factor from Millettia pinnata, MpAITR1, enhances salt and drought tolerance through ABA signaling in transgenic Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154060. [PMID: 37542942 DOI: 10.1016/j.jplph.2023.154060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Abiotic stress, such as salt and drought stress, seriously limits plant growth and crop yield. Abscisic acid (ABA) is essential in regulating plant responses to abiotic stress via signal perception, transduction, and transcriptional regulation. Pongamia (Millettia pinnata) is a kind of semi-mangrove plant with strong stress tolerance and can grow in fresh and sea water. However, the molecular mechanism of the ABA signaling pathway mediating the environmental tolerance of Pongamia is still scarce so far. AITR (ABA-Induced Transcription Repressor) was a recently identified small conserved family of transcription factor in angiosperms, which played controversial roles in response to abiotic stresses in different species. Here, we identified an ABA-induced gene, MpAITR1, which encoded a nucleus localization transcriptional factor in Pongamia. MpAITR1 was highly induced by ABA and salt treatments in roots and leaves. Heterologous expression of MpAITR1 in Arabidopsis increased sensitivity to ABA, moreover, enhanced tolerance to salt and drought stress. The expression levels of some ABA-responsive and stress-responsive genes were altered in transgenic plants compared to wild-type plants under the ABA, salt, and drought stress, which was consistent with the stress-tolerant phenotype of transgenic plants. These results reveal that MpAITR1 positively modulates ABA signaling pathways and enhances the tolerance to salt and drought stress by regulating downstream target genes. Taken together, MpAITR1 from the semi-mangrove plant Pongamia serves as a potential candidate for stress-tolerant crop breeding.
Collapse
Affiliation(s)
- Heng Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yujuan Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuguang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Costal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shulin Deng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
24
|
Li Y, Wang W, Zhang N, Cheng Y, Hussain S, Wang Y, Tian H, Hussain H, Lin R, Yuan Y, Wang C, Wang T, Wang S. Antagonistic Regulation of ABA Responses by Duplicated Tandemly Repeated DUF538 Protein Genes in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2989. [PMID: 37631202 PMCID: PMC10459309 DOI: 10.3390/plants12162989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The plant hormone ABA (abscisic acid) regulates plant responses to abiotic stresses by regulating the expression of ABA response genes. However, the functions of a large portion of ABA response genes have remained unclear. We report in this study the identification of ASDs (ABA-inducible signal peptide-containing DUF538 proteins), a subgroup of DUF538 proteins with a signal peptide, as the regulators of plant responses to ABA in Arabidopsis. ASDs are encoded by four closely related DUF538 genes, with ASD1/ASD2 and ASD3/ASD4 being two pairs of duplicated tandemly repeated genes. The quantitative RT-PCR (qRT-PCR) results showed that the expression levels of ASDs increased significantly in response to ABA as well as NaCl and mannitol treatments, with the exception that the expression level of ASD2 remained largely unchanged in response to NaCl treatment. The results of Arabidopsis protoplast transient transfection assays showed that ASDs were localized on the plasma membrane and in the cytosol and nucleus. When recruited to the promoter of the reporter gene via a fused GD domain, ASDs were able to slightly repress the expression of the co-transfected reporter gene. Seed germination and cotyledon greening assays showed that ABA sensitivity was increased in the transgenic plants that were over-expressing ASD1 or ASD3 but decreased in the transgenic plants that were over-expressing ASD2 or ASD4. On the other hand, ABA sensitivity was increased in the CRISPR/Cas9 gene-edited asd2 single mutants but decreased in the asd3 single mutants. A transcriptome analysis showed that differentially expressed genes in the 35S:ASD2 transgenic plant seedlings were enriched in several different processes, including in plant growth and development, the secondary metabolism, and plant hormone signaling. In summary, our results show that ASDs are ABA response genes and that ASDs are involved in the regulation of plant responses to ABA in Arabidopsis; however, ASD1/ASD3 and ASD2/ASD4 have opposite functions.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Saddam Hussain
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Yuan Yuan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Chen Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| |
Collapse
|
25
|
Jang MJ, Hong WJ, Park YS, Jung KH, Kim S. Genomic basis of multiphase evolution driving divergent selection of zinc-finger homeodomain genes. Nucleic Acids Res 2023; 51:7424-7437. [PMID: 37394281 PMCID: PMC10415114 DOI: 10.1093/nar/gkad489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Gene families divergently evolve and become adapted as different genes with specific structures and functions in living organisms. We performed comprehensive structural and functional analyses of Zinc-finger homeodomain genes (ZF-HDs), including Mini zinc-finger genes (MIFs) and Zinc-finger with homeodomain genes (ZHDs), displaying competitive functions each other. Intensive annotation updates for 90 plant genomes verified that most MIFs (MIF-Is) exhibited distinct motif compositions from ZHDs, although some MIFs (MIF-Zs) contained ZHD-specific motifs. Phylogenetic analyses suggested that MIF-Zs and ZHDs originated from the same ancestral gene, whereas MIF-Is emerged from a distinct progenitor. We used a gene-editing system to identify a novel function of MIF-Is in rice: regulating the surface material patterns in anthers and pollen through transcriptional regulation by interacting ZHDs. Kingdom-wide investigations determined that (i) ancestral MIFs diverged into MIF-Is and MIF-Zs in the last universal common ancestor, (ii) integration of HD into the C-terminal of MIF-Zs created ZHDs after emergence of green plants and (iii) MIF-Is and ZHDs subsequently expanded independently into specific plant lineages, with additional formation of MIF-Zs from ZHDs. Our comprehensive analysis provides genomic evidence for multiphase evolution driving divergent selection of ZF-HDs.
Collapse
Affiliation(s)
- Min-Jeong Jang
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Young-Soo Park
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
26
|
Chen LN, Dou PT, Chen YK, Yang HQ. Mutant IAA21 genes from Dendrocalamus sinicus Chia et J. L. Sun inhibit stem and root growth in transgenic tobacco by interacting with ARF5. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107827. [PMID: 37329689 DOI: 10.1016/j.plaphy.2023.107827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Woody bamboos are important resource of industrial fibres. Auxin signaling plays a key role in multiple plant developmental processes, as yet the role of auxin/indole acetic acid (Aux/IAA) in culm development of woody bamboos has not been previously characterized. Dendrocalamus sinicus Chia et J. L. Sun is the largest woody bamboo documented in the world. Here, we identified two alleles of DsIAA21 gene (sIAA21 and bIAA21) from the straight- and bent-culm variants of D. sinicus, respectively, and studied how the domains I, i, and II of DsIAA21 affect the gene transcriptional repression. The results showed that bIAA21 expression was rapidly induced by exogenous auxin in D. sinicus. In transgenic tobacco, sIAA21 and bIAA21 mutated in domains i, and II significantly regulated plant architecture and root development. Stem cross sections revealed that parenchyma cells were smaller in transgenic plants than that in wild type plants. Domain i mutation changed the leucine and proline at position 45 to proline and leucine (siaa21L45P and biaa21P45L) strongly repressed cell expansion and root elongation by reducing the gravitropic response. Substitution of isoleucine with valine in domain II of the full length DsIAA21 resulted in dwarf stature in transgenic tobacco plants. Furthermore, the DsIAA21 interacted with auxin response factor 5 (ARF5) in transgenic tobacco plants, suggesting that DsIAA21 might inhibit stem and root elongation via interacting with ARF5. Taken together, our data indicated that DsIAA21 was a negative regulator of plant development and suggested that amino acid differences in domain i of sIAA21 versus bIAA21 affected their response to auxin, and might play a key role in the formation of the bent culm variant in D. sinicus. Our results not only shed a light on the morphogenetic mechanism in D. sinicus, but also provided new insights into versatile function of Aux/IAAs in plants.
Collapse
Affiliation(s)
- Ling-Na Chen
- College of Life Science, Xinjiang Normal University, Xinyi Road, Shayibake District, Urumqi, 830054, PR China; Institute of Highland Forest Science, Chinese Academy of Forestry, Bailongsi, Panlong District, Kunming, 650233, PR China
| | - Pei-Tong Dou
- Institute of Highland Forest Science, Chinese Academy of Forestry, Bailongsi, Panlong District, Kunming, 650233, PR China
| | - Yong-Kun Chen
- College of Life Science, Xinjiang Normal University, Xinyi Road, Shayibake District, Urumqi, 830054, PR China; Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Xinyi Road, Shayibake District, Urumqi, 830054, PR China
| | - Han-Qi Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Bailongsi, Panlong District, Kunming, 650233, PR China.
| |
Collapse
|
27
|
Santoro DF, Puglisi I, Sicilia A, Baglieri A, La Bella E, Lo Piero AR. Transcriptomic profile of lettuce seedlings ( Lactuca sativa) response to microalgae extracts used as biostimulant agents. AOB PLANTS 2023; 15:plad043. [PMID: 37434759 PMCID: PMC10332502 DOI: 10.1093/aobpla/plad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023]
Abstract
To reduce the use of chemical fertilizers and maximize agricultural yields, the use of microalgae extracts as biostimulants has recently attracted significant attention due to their favourable impact on both plant growth and their ability to induce tolerance towards environmental stressors. Lettuce (Lactuca sativa) is one of the most important fresh vegetables that often requires applications of chemical fertilizers to increase quality and productivity. Accordingly, the purpose of this study was to analyse the transcriptome reprogramming of lettuce (L. sativa) seedlings in response to either Chlorella vulgaris or Scenedesmus quadricauda extracts by applying an RNAseq approach. Differential gene expression analysis revealed that the core gene set that responded to microalgal treatments in a species-independent manner includes 1330 clusters, 1184 of which were down-regulated and 146 up-regulated, clearly suggesting that the repression of gene expression is the main effect of algal treatments. The deregulation of 7197 transcripts in the C. vulgaris treated seedlings compared to control samples (LsCv vs. LsCK) and 7118 transcripts in the S. quadricauda treated seedlings compared to control samples (LsSq vs. LsCK) were counted. Although the number of deregulated genes turned out to be similar between the algal treatments, the level of deregulation was higher in LsCv versus LsCK than in LsSq versus LsCK. In addition, 2439 deregulated transcripts were observed in the C. vulgaris treated seedlings compared to S. quadricauda treated samples (LsCv vs. LsSq comparison) suggesting that a specific transcriptomic profile was induced by the single algal extracts. 'Plant hormone signal transduction' category includes a very elevated number of DEGs, many of them specifically indicating that C. vulgaris actives both genes involved in the auxin biosynthesis and transduction pathways, whereas S. quadricauda up-regulates genes implicated in the cytokinin biosynthesis pathway. Finally, algal treatments induced the deregulation of genes encoding small hormone-like molecules that are known to act alone or by interacting with major plant hormones. In conclusion, this study offers the groundwork to draw up a list of putative gene targets with the aim of lettuce genetic improvement that will allow a limited or even null use of synthetic fertilizers and pesticides in the management of this crop.
Collapse
Affiliation(s)
- Danilo F Santoro
- Department of Agriculture, Food and Environment, University of Catania, via Santa Sofia 98, 95123 Catania, Italy
| | - Ivana Puglisi
- Department of Agriculture, Food and Environment, University of Catania, via Santa Sofia 98, 95123 Catania, Italy
| | - Angelo Sicilia
- Department of Agriculture, Food and Environment, University of Catania, via Santa Sofia 98, 95123 Catania, Italy
| | - Andrea Baglieri
- Department of Agriculture, Food and Environment, University of Catania, via Santa Sofia 98, 95123 Catania, Italy
| | - Emanuele La Bella
- Department of Agriculture, Food and Environment, University of Catania, via Santa Sofia 98, 95123 Catania, Italy
| | | |
Collapse
|
28
|
Wang Y, Wang W, Jia Q, Tian H, Wang X, Li Y, Hussain S, Hussain H, Wang T, Wang S. BIC2, a Cryptochrome Function Inhibitor, Is Involved in the Regulation of ABA Responses in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112220. [PMID: 37299199 DOI: 10.3390/plants12112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
The plant hormone ABA (abscisic acid) is able to regulate plant responses to abiotic stresses via regulating the expression of ABA response genes. BIC1 (Blue-light Inhibitor of Cryptochromes 1) and BIC2 have been identified as the inhibitors of plant cryptochrome functions, and are involved in the regulation of plant development and metabolism in Arabidopsis . In this study, we report the identification of BIC2 as a regulator of ABA responses in Arabidopsis . RT-PCR (Reverse Transcription-Polymerase Chain Reaction) results show that the expression level of BIC1 remained largely unchanged, but that of BIC2 increased significantly in response to ABA treatment. Transfection assays in Arabidopsis protoplasts show that both BIC1 and BIC2 were mainly localized in the nucleus, and were able to activate the expression of the co-transfected reporter gene. Results in seed germination and seedling greening assays show that ABA sensitivity was increased in the transgenic plants overexpressing BIC2, but increased slightly, if any, in the transgenic plants overexpressing BIC1. ABA sensitivity was also increased in the bic2 single mutants in seedling greening assays, but no further increase was observed in the bic1 bic2 double mutants. On the other hand, in root elongation assays, ABA sensitivity was decreased in the transgenic plants overexpressing BIC2, as well as the bic2 single mutants, but no further decrease was observed in the bic1 bic2 double mutants. By using qRT-PCR (quantitative RT-PCR), we further examined how BIC2 may regulate ABA responses in Arabidopsis , and found that inhibition of ABA on the expression of the ABA receptor genes PYL4 (PYR1-Like 4) and PYL5 were decreased, but promotion of ABA on the expression of the protein kinase gene SnRK2.6 (SNF1-Related Protein Kinases 2.6) was enhanced in both the bic1 bic2 double mutants and 35S:BIC2 overexpression transgenic plants. Taken together, our results suggest that BIC2 regulates ABA responses in Arabidopsis possibly by affecting the expression of ABA signaling key regulator genes.
Collapse
Affiliation(s)
- Yating Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Qiming Jia
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Xutong Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
29
|
Xie C, Li C, Wang F, Zhang F, Liu J, Wang J, Zhang X, Kong X, Ding Z. NAC1 regulates root ground tissue maturation by coordinating with the SCR/SHR-CYCD6;1 module in Arabidopsis. MOLECULAR PLANT 2023; 16:709-725. [PMID: 36809880 DOI: 10.1016/j.molp.2023.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/04/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Precise spatiotemporal control of the timing and extent of asymmetric cell divisions (ACDs) is essential for plant development. In the Arabidopsis root, ground tissue maturation involves an additional ACD of the endodermis that maintains the inner cell layer as the endodermis and generates the middle cortex to the outside. Through regulation of the cell cycle regulator CYCLIND6;1 (CYCD6;1), the transcription factors SCARECROW (SCR) and SHORT-ROOT (SHR) play critical roles in this process. In the present study, we found that loss of function of NAC1, a NAC transcription factor family gene, causes markedly increased periclinal cell divisions in the root endodermis. Importantly, NAC1 directly represses the transcription of CYCD6;1 by recruiting the co-repressor TOPLESS (TPL), creating a fine-tuned mechanism to maintain proper root ground tissue patterning by limiting production of middle cortex cells. Biochemical and genetic analyses further showed that NAC1 physically interacts with SCR and SHR to restrict excessive periclinal cell divisions in the endodermis during root middle cortex formation. Although NAC1-TPL is recruited to the CYCD6;1 promoter and represses its transcription in an SCR-dependent manner, NAC1 and SHR antagonize each other to regulate the expression of CYCD6;1. Collectively, our study provides mechanistic insights into how the NAC1-TPL module integrates with the master transcriptional regulators SCR and SHR to control root ground tissue patterning by fine-tuning spatiotemporal expression of CYCD6;1 in Arabidopsis.
Collapse
Affiliation(s)
- Chuantian Xie
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Fengxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiansheng Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
30
|
Nakagami S, Aoyama T, Sato Y, Kajiwara T, Ishida T, Sawa S. CLE3 and its homologs share overlapping functions in the modulation of lateral root formation through CLV1 and BAM1 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1176-1191. [PMID: 36628476 DOI: 10.1111/tpj.16103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Lateral roots are important for a wide range of processes, including uptake of water and nutrients. The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-RELATED (CLE) 1 ~ 7 peptide family and their cognate receptor CLV1 have been shown to negatively regulate lateral root formation under low-nitrate conditions. However, little is known about how CLE signaling regulates lateral root formation. A persistent obstacle in CLE peptide research is their functional redundancies, which makes functional analyses difficult. To address this problem, we generate the cle1 ~ 7 septuple mutant (cle1 ~ 7-cr1, cr stands for mutant allele generated with CRISPR/Cas9). cle1 ~ 7-cr1 exhibits longer lateral roots under normal conditions. Specifically, in cle1 ~ 7-cr1, the lateral root density is increased, and lateral root primordia initiation is found to be accelerated. Further analysis shows that cle3 single mutant exhibits slightly longer lateral roots. On the other hand, plants that overexpress CLE2 and CLE3 exhibit decreased lateral root lengths. To explore cognate receptor(s) of CLE2 and CLE3, we analyze lateral root lengths in clv1 barely any meristem 1(bam1) double mutant. Mutating both the CLV1 and BAM1 causes longer lateral roots, but not in each single mutant. In addition, genetic analysis reveals that CLV1 and BAM1 are epistatic to CLE2 and CLE3. Furthermore, gene expression analysis shows that the LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) genes, which promote lateral root formation, are upregulated in cle1 ~ 7-cr1 and clv1 bam1. We therefore propose that CLE2 and CLE3 peptides are perceived by CLV1 and BAM1 to mediate lateral root formation through LBDs regulation.
Collapse
Affiliation(s)
- Satoru Nakagami
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Tsuyoshi Aoyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Taiki Kajiwara
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
- International Research Center for Agriculture and Environmental Biology, Kumamoto University, Kumamoto, 860-8555, Japan
| |
Collapse
|
31
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
32
|
Strable J, Unger-Wallace E, Aragón Raygoza A, Briggs S, Vollbrecht E. Interspecies transfer of RAMOSA1 orthologs and promoter cis sequences impacts maize inflorescence architecture. PLANT PHYSIOLOGY 2023; 191:1084-1101. [PMID: 36508348 PMCID: PMC9922432 DOI: 10.1093/plphys/kiac559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/26/2022] [Indexed: 06/18/2023]
Abstract
Grass inflorescences support floral structures that each bear a single grain, where variation in branch architecture directly impacts yield. The maize (Zea mays) RAMOSA1 (ZmRA1) transcription factor acts as a key regulator of inflorescence development by imposing branch meristem determinacy. Here, we show RA1 transcripts accumulate in boundary domains adjacent to spikelet meristems in sorghum (Sorghum bicolor, Sb) and green millet (Setaria viridis, Sv) inflorescences similar as in the developing maize tassel and ear. To evaluate the functional conservation of syntenic RA1 orthologs and promoter cis sequences in maize, sorghum, and setaria, we utilized interspecies gene transfer and assayed genetic complementation in a common inbred background by quantifying recovery of normal branching in highly ramified ra1-R mutants. A ZmRA1 transgene that includes endogenous upstream and downstream flanking sequences recovered normal tassel and ear branching in ra1-R. Interspecies expression of two transgene variants of the SbRA1 locus, modeled as the entire endogenous tandem duplication or just the nonframeshifted downstream copy, complemented ra1-R branching defects and induced unusual fasciation and branch patterns. The SvRA1 locus lacks conserved, upstream noncoding cis sequences found in maize and sorghum; interspecies expression of a SvRA1 transgene did not or only partially recovered normal inflorescence forms. Driving expression of the SvRA1 coding region by the ZmRA1 upstream region, however, recovered normal inflorescence morphology in ra1-R. These data leveraging interspecies gene transfer suggest that cis-encoded temporal regulation of RA1 expression is a key factor in modulating branch meristem determinacy that ultimately impacts grass inflorescence architecture.
Collapse
|
33
|
Lend Me Your EARs: A Systematic Review of the Broad Functions of EAR Motif-Containing Transcriptional Repressors in Plants. Genes (Basel) 2023; 14:genes14020270. [PMID: 36833197 PMCID: PMC9956375 DOI: 10.3390/genes14020270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif, defined by the consensus sequence patterns LxLxL or DLNx(x)P, is found in a diverse range of plant species. It is the most predominant form of active transcriptional repression motif identified so far in plants. Despite its small size (5 to 6 amino acids), the EAR motif is primarily involved in the negative regulation of developmental, physiological and metabolic functions in response to abiotic and biotic stresses. Through an extensive literature review, we identified 119 genes belonging to 23 different plant species that contain an EAR motif and function as negative regulators of gene expression in various biological processes, including plant growth and morphology, metabolism and homeostasis, abiotic stress response, biotic stress response, hormonal pathways and signalling, fertility, and ripening. Positive gene regulation and transcriptional activation are studied extensively, but there remains much more to be discovered about negative gene regulation and the role it plays in plant development, health, and reproduction. This review aims to fill the knowledge gap and provide insights into the role that the EAR motif plays in negative gene regulation, and provoke further research on other protein motifs specific to repressors.
Collapse
|
34
|
Wang Z, Ma L, Liu P, Luo Z, Li Z, Wu M, Xu X, Pu W, Huang P, Yang J. Transcription factor NtWRKY33a modulates the biosynthesis of polyphenols by targeting NtMYB4 and NtHCT genes in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111522. [PMID: 36332766 DOI: 10.1016/j.plantsci.2022.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
There are abundant polyphenols in tobacco leaves mainly including chlorogenic acid (CGA), rutin, and scopoletin, which not only influence plant growth, development, and environmental adaptation, but also have a great impact on the industrial utilization of tobacco leaves. Few transcription factors regulating the biosynthesis of polyphenols have been identified in tobacco so far. In this study, two NtWRKY33 genes were identified from N. tabacum genome. NtWRKY33a showed higher transcriptional activity than NtWRKY33b, and encoded a nuclear localized protein. Overexpression and knock-out of NtWRKY33a gene revealed that NtWRKY33a inhibited the accumulation of rutin, scopoletin, and total polyphenols, but meanwhile promoted the biosynthesis of CGA. Chromatin immunoprecipitation and Dual-Luc assays indicated that NtWRKY33a could directly bind to the promoters of NtMYB4 and NtHCT, and thus induced the transcription of these two genes. The contents of polyphenols in ntwrky33a, ntmy4, and ntwrky33a/ntmyb4 mutants further confirmed that the repression of NtWRKY33a on the biosynthesis of rutin, scopoletin, and total polyphenols depends on the activity of NtMYB4. Moreover, the promotion of NtHCT by NtWRKY33a modulates the distribution of metabolism flux into the synthesis of CGA. Ectopic expression of NtWRKY33a inhibit the expression of NtSAUR14, NtSAUR59, NtSAUR66, NtIAA4, NtIAA17, and NtIAA19 genes, indicating that NtWRKY33a might be involved in the regulation of plant auxin response. Our study revealed new functions of NtWRKY33a in regulating the synthesis of polyphenols, and provided a promising target for manipulating polyphenols contents in tobacco.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Lanxin Ma
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Pingjun Huang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China.
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| |
Collapse
|
35
|
CRISPR/Cas9 Gene Editing of NtAITRs, a Family of Transcription Repressor Genes, Leads to Enhanced Drought Tolerance in Tobacco. Int J Mol Sci 2022; 23:ijms232315268. [PMID: 36499605 PMCID: PMC9737578 DOI: 10.3390/ijms232315268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Tobacco is a cash crop throughout the world, and its growth and development are affected by abiotic stresses including drought stress; therefore, drought-tolerant breeding may help to improve tobacco yield and quality under drought stress conditions. Considering that the plant hormone ABA (abscisic acid) is able to regulate plant responses to abiotic stresses via activating ABA response genes, the characterization of ABA response genes may enable the identification of genes that can be used for molecular breeding to improve drought tolerance in tobacco. We report here the identification of NtAITRs (Nicotiana tabacum ABA-induced transcription repressors) as a family of novel regulators of drought tolerance in tobacco. Bioinformatics analysis shows that there are a total of eight NtAITR genes in tobacco, and all the NtAITRs have a partially conserved LxLxL motif at their C-terminus. RT-PCR results show that the expression levels of at least some NtAITRs were increased in response to ABA and drought treatments, and NtAITRs, when recruited to the Gal4 promoter via a fused GD (Gal4 DNA-binding domain), were able to repress transcription activator LD-VP activated expression of the LexA-Gal4-GUS reporter gene. Roles of NtAITRs in regulating drought tolerance in tobacco were analyzed by generating CRISPR/Cas9 gene-edited mutants. A total of three Cas9-free ntaitr12356 quintuple mutants were obtained, and drought treatment assays show that drought tolerance was increased in the ntaitr12356 quintuple mutants. On the other hand, results of seed germination and seedling greening assays show that ABA sensitivity was increased in the ntaitr12356 quintuple mutants, and the expression levels of some ABA signaling key regulator genes were altered in the ntaitr12356-c3 mutant. Taken together, our results suggest that NtAITRs are ABA-responsive genes, and that NtAITRs function as transcription repressors and negatively regulate drought tolerance in tobacco, possibly by affecting plant ABA response via affecting the expression of ABA signaling key regulator genes.
Collapse
|
36
|
Hussain S, Cheng Y, Li Y, Wang W, Tian H, Zhang N, Wang Y, Yuan Y, Hussain H, Lin R, Wang C, Wang T, Wang S. AtbZIP62 Acts as a Transcription Repressor to Positively Regulate ABA Responses in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3037. [PMID: 36432766 PMCID: PMC9699195 DOI: 10.3390/plants11223037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The basic region/leucine zipper (bZIP) transcription factor AtbZIP62 is involved in the regulation of plant responses to abiotic stresses, including drought and salinity stresses, NO3 transport, and basal defense in Arabidopsis. It is unclear if it plays a role in regulating plant responses to abscisic acid (ABA), a phytohormone that can regulate plant abiotic stress responses via regulating downstream ABA-responsive genes. Using RT-PCR analysis, we found that the expression level of AtbZIP62 was increased in response to exogenously applied ABA. Protoplast transfection assays show that AtbZIP62 is predominantly localized in the nucleus and functions as a transcription repressor. To examine the roles of AtbZIP62 in regulating ABA responses, we generated transgenic Arabidopsis plants overexpressing AtbZIP62 and created gene-edited atbzip62 mutants using CRISPR/Cas9. We found that in both ABA-regulated seed germination and cotyledon greening assays, the 35S:AtbZIP62 transgenic plants were hypersensitive, whereas atbzip62 mutants were hyposensitive to ABA. To examine the functional mechanisms of AtbZIP62 in regulating ABA responses, we generated Arabidopsis transgenic plants overexpressing 35S:AtbZIP62-GR, and performed transcriptome analysis to identify differentially expressed genes (DEGs) in the presence and absence of DEX, and found that DEGs are highly enriched in processes including response to abiotic stresses and response to ABA. Quantitative RT-PCR results further show that AtbZIP62 may regulate the expression of several ABA-responsive genes, including USP, ABF2, and SnRK2.7. In summary, our results show that AtbZIP62 is an ABA-responsive gene, and AtbZIP62 acts as a transcription repressor to positively regulate ABA responses in Arabidopsis.
Collapse
Affiliation(s)
- Saddam Hussain
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yuan Yuan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Chen Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
37
|
Zhou Y, Ma B, Tao JJ, Yin CC, Hu Y, Huang YH, Wei W, Xin PY, Chu JF, Zhang WK, Chen SY, Zhang JS. Rice EIL1 interacts with OsIAAs to regulate auxin biosynthesis mediated by the tryptophan aminotransferase MHZ10/OsTAR2 during root ethylene responses. THE PLANT CELL 2022; 34:4366-4387. [PMID: 35972379 PMCID: PMC9614475 DOI: 10.1093/plcell/koac250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 05/11/2023]
Abstract
Ethylene plays essential roles in adaptive growth of rice (Oryza sativa). Understanding of the crosstalk between ethylene and auxin (Aux) is limited in rice. Here, from an analysis of the root-specific ethylene-insensitive rice mutant mao hu zi 10 (mhz10), we identified the tryptophan aminotransferase (TAR) MHZ10/OsTAR2, which catalyzes the key step in indole-3-pyruvic acid-dependent Aux biosynthesis. Genetically, OsTAR2 acts downstream of ethylene signaling in root ethylene responses. ETHYLENE INSENSITIVE3 like1 (OsEIL1) directly activated OsTAR2 expression. Surprisingly, ethylene induction of OsTAR2 expression still required the Aux pathway. We also show that Os indole-3-acetic acid (IAA)1/9 and OsIAA21/31 physically interact with OsEIL1 and show promotive and repressive effects on OsEIL1-activated OsTAR2 promoter activity, respectively. These effects likely depend on their EAR motif-mediated histone acetylation/deacetylation modification. The special promoting activity of OsIAA1/9 on OsEIL1 may require both the EAR motifs and the flanking sequences for recruitment of histone acetyltransferase. The repressors OsIAA21/31 exhibit earlier degradation upon ethylene treatment than the activators OsIAA1/9 in a TIR1/AFB-dependent manner, allowing OsEIL1 activation by activators OsIAA1/9 for OsTAR2 expression and signal amplification. This study reveals a positive feedback regulation of ethylene signaling by Aux biosynthesis and highlights the crosstalk between ethylene and Aux pathways at a previously underappreciated level for root growth regulation in rice.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Hua Huang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei-Yong Xin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Fang Chu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Wang X, Wang W, Chen S, Lian Y, Wang S. Tropaeolum majus R2R3 MYB Transcription Factor TmPAP2 Functions as a Positive Regulator of Anthocyanin Biosynthesis. Int J Mol Sci 2022; 23:12395. [PMID: 36293253 PMCID: PMC9604057 DOI: 10.3390/ijms232012395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Anthocyanins are an important group of water-soluble and non-toxic natural pigments with antioxidant and anti-inflammatory properties that can be found in flowers, vegetables, and fruits. Anthocyanin biosynthesis is regulated by several different types of transcription factors, including the WD40-repeat protein Transparent Testa Glabra 1 (TTG1), the bHLH transcription factor Transparent Testa 8 (TT8), Glabra3 (GL3), Enhancer of GL3 (EGL3), and the R2R3 MYB transcription factor Production of Anthocyanin Pigment 1 (PAP1), PAP2, MYB113, and MYB114, which are able to form MYB-bHLH-WD40 (MBW) complexes to regulate the expression of late biosynthesis genes (LBGs) in the anthocyanin biosynthesis pathway. Nasturtium (Tropaeolum majus) is an edible flower plant that offers many health benefits, as it contains numerous medicinally important ingredients, including anthocyanins. By a comparative examination of the possible anthocyanin biosynthesis regulator genes in nasturtium varieties with different anthocyanin contents, we found that TmPAP2, an R2R3 MYB transcription factor gene, is highly expressed in "Empress of India", a nasturtium variety with high anthocyanin content, while the expression of TmPAP2 in Arabidopsis led to the overproduction of anthocyanins. Protoplast transfection shows that TmPAP2 functions as a transcription activator; consistent with this finding, some of the biosynthesis genes in the general phenylpropanoid pathway and anthocyanin biosynthesis pathway were highly expressed in "Empress of India" and the 35S:TmPAP2 transgenic Arabidopsis plants. However, protoplast transfection indicates that TmPAP2 may not be able to form an MBW complex with TmGL3 and TmTTG1. These results suggest that TmPAP2 may function alone as a key regulator of anthocyanin biosynthesis in nasturtiums.
Collapse
Affiliation(s)
| | | | | | | | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
39
|
Cheng W, Zhang M, Cheng T, Wang J, Zhang Q. Genome-wide identification of Aux/IAA gene family and their expression analysis in Prunus mume. Front Genet 2022; 13:1013822. [PMID: 36313426 PMCID: PMC9597081 DOI: 10.3389/fgene.2022.1013822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
AUXIN/INDOLE ACETIC ACIDs (Aux/IAAs), an early auxin-responsive gene family, is important for plant growth and development. To fully comprehend the character of Aux/IAA genes in woody plants, we identified 19 PmIAA genes in Prunus mume and dissected their protein domains, phylogenetic relationship, gene structure, promoter, and expression patterns during floral bud flushing, auxin response, and abiotic stress response. The study showed that PmIAA proteins shared conserved Aux/IAA domain, but differed in protein motif composition. 19 PmIAA genes were divided into six groups (Groups Ⅰ to Ⅵ) based on phylogenetic analysis. The gene duplication analysis showed that segmental and dispersed duplication greatly influenced the expansion of PmIAA genes. Moreover, we identified and classified the cis-elements of PmIAA gene promoters and detected elements that are related to phytohormone responses and abiotic stress responses. With expression pattern analysis, we observed the auxin-responsive expression of PmIAA5, PmIAA17, and PmIAA18 in flower bud, stem, and leaf tissues. PmIAA5, PmIAA13, PmIAA14, and PmIAA18 were possibly involved in abiotic stress responses in P. mume. In general, these results laid the theoretical foundation for elaborating the functions of Aux/IAA genes in perennial woody plant development.
Collapse
Affiliation(s)
| | - Man Zhang
- *Correspondence: Man Zhang, ; Qixiang Zhang,
| | | | | | | |
Collapse
|
40
|
AtEAU1 and AtEAU2, Two EAR Motif-Containing ABA Up-Regulated Novel Transcription Repressors Regulate ABA Response in Arabidopsis. Int J Mol Sci 2022; 23:ijms23169053. [PMID: 36012319 PMCID: PMC9409118 DOI: 10.3390/ijms23169053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
EAR (Ethylene-responsive element binding factor-associated Amphiphilic Repression) motif-containing transcription repressors have been shown to regulate plant growth and development, and plant responses to plant hormones and environmental stresses including biotic and abiotic stresses. However, the functions of most EAR-motif-containing proteins remain largely uncharacterized. The plant hormone abscisic acid (ABA) also plays important roles in regulating plant responses to abiotic stresses via activation/repression of ABA-responsive genes. We report here the identification and functional characterization of two ABA-responsive EAR motif-containing protein genes, AtEAU1 (Arabidopsis thaliana EAR motif-containing ABAUp-regulated 1) and AtEAU2. Quantitative RT-PCR results show that the expressions of AtEAU1 and AtEAU2 were increased by ABA treatment, and were decreased in the ABA biosynthesis mutant aba1-5. Assays in transfected Arabidopsis protoplasts show that both AtEAU1 and AtEAU2 were specifically localized in the nucleus, and when recruited to the promoter region of the reporter gene by a fused DNA binding domain, repressed reporter gene expression. By using T-DNA insertion mutants and a gene-edited transgene-free mutant generated by CRISPR/Cas9 gene editing, we performed ABA sensitivity assays, and found that ABA sensitivity in the both ateau1 and ateau2 single mutants was increased in seedling greening assays. ABA sensitivity in the ateau1 ateau2 double mutants was also increased, but was largely similar to the ateau1 single mutants. On the other hand, all the mutants showed a wild type response to ABA in root elongation assays. Quantitative RT-PCR results show that the expression level of PYL4, an ABA receptor gene was increased, whereas that of ABI2, a PP2C gene was decreased in the ateau1 and ateau1 single, and the ateau1 ateau2 double mutants. In summary, our results suggest that AtEAU1 and AtEAU2 are ABA-response genes, and AtEAU1 and AtEAU2 are novel EAR motif-containing transcription repressors that negatively regulate ABA responses in Arabidopsis, likely by regulating the expression of some ABA signaling key regulator genes.
Collapse
|
41
|
Iqbal S, Hayat F, Mushtaq N, Khalil-ur-Rehman M, Khan U, Yasoob TB, Khan MN, Ni Z, Ting S, Gao Z. Bioinformatics Study of Aux/IAA Family Genes and Their Expression in Response to Different Hormones Treatments during Japanese Apricot Fruit Development and Ripening. PLANTS 2022; 11:plants11151898. [PMID: 35893602 PMCID: PMC9332017 DOI: 10.3390/plants11151898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
Auxin/indole-3-acetic acid (Aux/IAA) is a transcriptional repressor in the auxin signaling pathway that plays a role in several plant growth and development as well as fruit and embryo development. However, it is unclear what role they play in Japanese apricot (Prunus mume) fruit development and maturity. To investigate the role of Aux/IAA genes in fruit texture, development, and maturity, we comprehensively identified and expressed 19 PmIAA genes, and demonstrated their conserved domains and homology across species. The majority of PmIAA genes are highly responsive and expressed in different hormone treatments. PmIAA2, PmIAA5, PmIAA7, PmIAA10, PmIAA13, PmIAA18, and PmIAA19 showed a substantial increase in expression, suggesting that these genes are involved in fruit growth and maturity. During fruit maturation, alteration in the expression of PmIAA genes in response to 1-Methylcyclopropene (1-MCP) treatment revealed an interaction between auxin and ethylene. The current study investigated the response of Aux/IAA development regulators to auxin during fruit ripening, with the goal of better understanding their potential application in functional genomics.
Collapse
Affiliation(s)
- Shahid Iqbal
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Z.N.); (S.T.)
- Correspondence: (S.I.); (Z.G.); Tel./Fax: +86-025-8439-5724 (S.I. & Z.G.)
| | - Faisal Hayat
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Naveed Mushtaq
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Z.N.); (S.T.)
| | - Muhammad Khalil-ur-Rehman
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ummara Khan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Talat Bilal Yasoob
- Department of Animal Sciences, Ghazi University, Dera Ghazi Khan 32200, Pakistan;
| | | | - Zhaojun Ni
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Z.N.); (S.T.)
| | - Shi Ting
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Z.N.); (S.T.)
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Z.N.); (S.T.)
- Correspondence: (S.I.); (Z.G.); Tel./Fax: +86-025-8439-5724 (S.I. & Z.G.)
| |
Collapse
|
42
|
Key regulatory pathways, microRNAs, and target genes participate in adventitious root formation of Acer rubrum L. Sci Rep 2022; 12:12057. [PMID: 35835811 PMCID: PMC9283533 DOI: 10.1038/s41598-022-16255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
Red maple (Acer rubrum L.) is a type of colorful ornamental tree with great economic value. Because this tree is difficult to root under natural conditions and the seedling survival rate is low, vegetative propagation methods are often used. Because the formation of adventitious roots (ARs) is essential for the asexual propagation of A. rubrum, it is necessary to investigate the molecular regulatory mechanisms of AR formation in A. rubrum. To address this knowledge gap, we sequenced the transcriptome and small RNAs (sRNAs) of the A. rubrum variety ‘Autumn Fantasy’ using high-throughput sequencing and explored changes in gene and microRNA (miRNA) expression in response to exogenous auxin treatment. We identified 82,468 differentially expressed genes (DEGs) between the treated and untreated ARs, as well as 48 known and 95 novel miRNAs. We also identified 172 target genes of the known miRNAs using degradome sequencing. Two key regulatory pathways (ubiquitin mediated proteolysis and plant hormone signal transduction), Ar-miR160a and the target gene auxin response factor 10 (ArARF10) were selected based on KEGG pathway and cluster analyses. We further investigated the expression patterns and regulatory roles of ArARF10 through subcellular localization, transcriptional activation, plant transformation, qRT-PCR analysis, and GUS staining. Experiments overexpressing ArARF10 and Ar-miR160a, indicated that ArARF10 promoted AR formation, while Ar-miR160a inhibited AR formation. Transcription factors (TFs) and miRNAs related to auxin regulation that promote AR formation in A. rubrum were identified. Differential expression patterns indicated the Ar-miR160a-ArARF10 interaction might play a significant role in the regulation of AR formation in A. rubrum. Our study provided new insights into mechanisms underlying the regulation of AR formation in A. rubrum.
Collapse
|
43
|
Aziz U, Rehmani MS, Wang L, Xian B, Luo X, Shu K. Repressors: the gatekeepers of phytohormone signaling cascades. PLANT CELL REPORTS 2022; 41:1333-1341. [PMID: 35262769 DOI: 10.1007/s00299-022-02853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Coordinated phytohormone signal transduction, in which repressors are the key players, is essential to balance plant development and stress response. In the absence of phytohormones, repressors interplay to terminate the transcription of phytohormone-responsive genes. For phytohormone signal transduction, degradation or inactivation of the repressors is a prerequisite, a process in which proteasomal degradation or protein modifications, such as phosphorylation, are involved. In this review, we summarize the various repressor proteins and their methods of regulation. In addition, we also shed light on other post-transcriptional modifications, including protein sumoylation, acetylation, methylation, and S-nitrosylation, which might be involved in repressor regulation. We conclude that repressors are the gatekeepers of phytohormone signaling, allowing transcription of phytohormone-responsive genes only when required and thus serving as a universal mechanism to conserve energy in plants. Finally, we strongly recommend that plant research should be focused further on elucidating the mechanisms regulating repressor abundance or activity, to improve our understanding of phytohormone signal transduction.
Collapse
Affiliation(s)
- Usman Aziz
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Muhammad Saad Rehmani
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Lei Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Baoshan Xian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China.
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China.
| |
Collapse
|
44
|
Siena LA, Azzaro CA, Podio M, Stein J, Leblanc O, Pessino SC, Ortiz JPA. The Auxin-Response Repressor IAA30 Is Down-Regulated in Reproductive Tissues of Apomictic Paspalum notatum. PLANTS 2022; 11:plants11111472. [PMID: 35684245 PMCID: PMC9182604 DOI: 10.3390/plants11111472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
The capacity for apomixis in Paspalum notatum is controlled by a single-dominant genomic region, which shows strong synteny to a portion of rice chromosome 12 long arm. The locus LOC_Os12g40890, encoding the Auxin/Indole-3-Acetic Acid (Aux/IAA) family member OsIAA30, is located in this rice genomic segment. The objectives of this work were to identify transcripts coding for Aux/IAA proteins expressed in reproductive tissues of P. notatum, detect the OsIAA30 putative ortholog and analyze its temporal and spatial expression pattern in reproductive organs of sexual and apomictic plants. Thirty-three transcripts coding for AUX/IAA proteins were identified. Predicted protein alignment and phylogenetic analysis detected a highly similar sequence to OsIAA30 (named as PnIAA30) present in both sexual and apomictic samples. The expression assays of PnIAA30 showed a significant down-regulation in apomictic spikelets compared to sexual ones at the stages of anthesis and post-anthesis, representation levels negatively correlated with apospory expressivity and different localizations in sexual and apomictic ovules. Several PnIAA30 predicted interactors also appeared differentially regulated in the sexual and apomictic floral transcriptomes. Our results showed that an auxin-response repressor similar to OsIAA30 is down-regulated in apomictic spikelets of P. notatum and suggests a contrasting regulation of auxin signaling during sexual and asexual seed formation.
Collapse
Affiliation(s)
- Lorena Adelina Siena
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Celeste Antonela Azzaro
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Maricel Podio
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Juliana Stein
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Olivier Leblanc
- DIADE, Université de Montpellier, IRD, CIRAD, 34394 Montpellier, France;
| | - Silvina Claudia Pessino
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Juan Pablo Amelio Ortiz
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
- Correspondence: ; Tel.: +54-341-4970080/85 (ext. 1180)
| |
Collapse
|
45
|
The R2R3 MYB Transcription Factor MYB71 Regulates Abscisic Acid Response in Arabidopsis. PLANTS 2022; 11:plants11101369. [PMID: 35631794 PMCID: PMC9143609 DOI: 10.3390/plants11101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Abscisic acid (ABA) regulates plant responses to abiotic stresses via regulating the expression of downstream genes, yet the functions of many ABA responsive genes remain unknown. We report here the characterization of MYB71, a R2R3 MYB transcription factor in regulating ABA responses in Arabidopsis. RT-PCR results show that the expression level of MYB71 was increased in response to ABA treatment. Arabidopsis protoplasts transfection results show that MYB71 was specifically localized in nucleus and it activated the Gal4:GUS reporter gene when recruited to the Gal4 promoter by a fused DNA binding domain GD. Roles of MYB71 in regulating plant response to ABA were analyzed by generating Arabidopsis transgenic plants overexpression MYB71 and gene edited mutants of MYB71. The results show that ABA sensitivity was increased in the transgenic plants overexpression MYB71, but decreased in the MYB71 mutants. By using a DEX inducible system, we further identified genes are likely regulated by MYB71, and found that they are enriched in biological process to environmental stimuli including abiotic stresses, suggesting that MYB71 may regulate plant response to abiotic stresses. Taken together, our results suggest that MYB71 is an ABA responsive gene, and MYB71 functions as a transcription activator and it positively regulates ABA response in Arabidopsis.
Collapse
|
46
|
Li Y, Gao R, Zhang J, Wang Y, Kong P, Lu K, Adnan , Liu M, Ao F, Zhao C, Wang L, Gao X. The biochemical and molecular investigation of flower color and scent sheds lights on further genetic modification of ornamental traits in Clivia miniata. HORTICULTURE RESEARCH 2022; 9:uhac114. [PMID: 35929604 PMCID: PMC9343915 DOI: 10.1093/hr/uhac114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/01/2022] [Indexed: 05/13/2023]
Abstract
Clivia miniata is renowned for its evergreen and strap-like leaves, whereas its floral color and scent are lacking diversity. Here, anthocyanin, volatile terpene, and carotenoid metabolisms were integrally investigated in C. miniata flowers. The results showed that pelargonidins and lutein might cooperate to confer orange or yellow color to C. miniata flowers, but only a trace amount of (+)-limonene was detected. The expression levels of CmF3'H and CmDFR appeared to be responsible for the ratio of cyanidin and pelargonidin derivatives in C. miniata, and the low expression of CmF3'H was responsible for the lack of cyanidins in flowers. Moreover, the CmF3'H promoter could not be activated by CmMYBAs, suggesting that it was controlled by novel regulators. Only two CmTPSs were functional, with CmTPS2 responsible for (+)-limonene synthesis, contributing to the monotonous flower volatile terpenes of C. miniata. CmCCD1a and CmCCD1b were able to cleave carotenoids at the 5,6 (5',6'), and 9,10 (9',10') positions to generate volatile apocarotenoids, whereas the substrates found in low-quantities or specific subcellular localizations of CmCCD1s might constrain volatile apocarotenoid release. Consequently, activating F3'H and introducing novel F3'5'H or versatile TPS may be effective ways to modify the floral color and scent, respectively. Alternatively, modifying the carotenoid flux or CCD1 localization might affect floral color and scent simultaneously. Taking these results together, the present study provides a preliminary deciphering of the genetic constraints underlying flower color and scent development, and proposes possible schemes for further genetic modification of ornamental traits in C. miniata and other plants.
Collapse
Affiliation(s)
- Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Ruifang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Jia Zhang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Yanan Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Peiru Kong
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Keyu Lu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Adnan
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Meng Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Feng Ao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Chunli Zhao
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
47
|
Polychroniadou C, Karagiannis E, Michailidis M, Adamakis IDS, Ganopoulos I, Tanou G, Bazakos C, Molassiotis A. Identification of genes and metabolic pathways involved in wounding-induced kiwifruit ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:179-190. [PMID: 35358868 DOI: 10.1016/j.plaphy.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Fruit is constantly challenged by wounding events, inducing accelerated ripening and irreversible metabolic changes. However, cognate mechanisms that regulate this process are little known. To expand our knowledge of ripening metabolism induced by wounding, an artificial-wound global transcriptome investigation combined with metabolite profiling study was conducted in postharvest kiwifruit (Actinidia chinensis var. deliciosa (A. Chev.) A. Chev. 'Hayward'). Wounding treatment promoted fruit ripening, as demonstrated by changes in fruit firmness, ethylene production and respiration activity determined periodically during a ripening period of 8 d at room temperature. Calcium imaging using fluorescent probe Fluo-3 AM revealed spatial dynamics of Ca2+ signaling in the wounding area following 8d ripening. Several sugars including fructose, glucose, and sucrose as well as organic acids such as citric, succinic and galacturonic acid were increased by wounding. Changes of various amino acids in wounded-treated fruit, especially 5-oxoproline and valine along with alternations of soluble alcohols, like myo-inositol were detected. Gene expression analysis of the wounded fruit showed increased expression of genes that are mainly involved in defense response (e.g., AdTLP.1-3, AdPP2C.1-2, AdMALD1), calcium ion binding (e.g., AdCbEFh, AdCLR, AdANX), TCA cycle (e.g., AdMDH.1, AdMDH.2, AdCS), sugars (e.g., AdSUSA.1, AdSPS4, AdABFr), secondary metabolism (e.g., AdPAL.1-3, AdCCR, AdHCT.1-2), lipid processing (e.g., AdGELP.1-4, AdGELP) and pectin degradation (e.g., AdPE.1-2, AdPAE.1-2, AdPG.1-2) as well as in ethylene (AdERF7, AdERF1B, AdACO.1-4) and auxin (AdICE, AdAEFc, AdASII) synthesis and perception. Moreover, genes related to aquaporins, such as AdAQP2, AdAQP4 and AdAQP7 were down-regulated in fruit exposed to wounding. These results demonstrate multiple metabolic points of wounding regulatory control during kiwifruit ripening and provide insights into the molecular basis of wounding-mediated ripening.
Collapse
Affiliation(s)
- Chrysanthi Polychroniadou
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | | | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece; Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| | - Georgia Tanou
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece; Institute of Soil and Water Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece; Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece; Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece.
| |
Collapse
|
48
|
Su Y, Wang P, Lu S, Chen B. Molecular cloning, bioinformatics analysis, and transient expression of MdAux/IAA28 in apple (Malus domestic). GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Zhang X, Zhang K, Luo L, Lv Y, Li Y, Zhu S, Luo B, Wan Y, Zhang X, Liu F. Identification of Peanut Aux/IAA Genes and Functional Prediction during Seed Development and Maturation. PLANTS (BASEL, SWITZERLAND) 2022; 11:472. [PMID: 35214804 PMCID: PMC8874715 DOI: 10.3390/plants11040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
Abstract
Auxin-responsive genes AUX/IAA are important during plant growth and development, but there are few relevant reports in peanut. In this study, 44 AhIAA genes were identified from cultivated peanut, of which 31 genes were expressed in seed at varying degrees. AhIAA-3A, AhIAA-16A and AhIAA-15B were up-regulated, while AhIAA-11A, AhIAA-5B and AhIAA-14B were down-regulated with seed development and maturation. The expression patterns of seven genes, AhIAA-1A, AhIAA-4A, AhIAA-10A, AhIAA-20A, AhIAA-1B, AhIAA-4B and AhIAA-19B, were consistent with the change trend of auxin, and expression in late-maturing variety LM was significantly higher than that in early-maturing EM. Furthermore, allelic polymorphism analysis of AhIAA-1A and AhIAA-1B, which were specifically expressed in seeds, showed that three SNP loci in 3'UTR of AhIAA-1A could effectively distinguish the EM- and LM- type germplasm, providing a basis for breeding markers development. Our results offered a comprehensive understanding of Aux/IAA genes in peanut and provided valuable clues for further investigation of the auxin signal transduction pathway and auxin regulation mechanism in peanut.
Collapse
Affiliation(s)
- Xiurong Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (K.Z.); (L.L.); (Y.L.); (Y.L.); (S.Z.); (B.L.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Kun Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (K.Z.); (L.L.); (Y.L.); (Y.L.); (S.Z.); (B.L.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Lu Luo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (K.Z.); (L.L.); (Y.L.); (Y.L.); (S.Z.); (B.L.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Yuying Lv
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (K.Z.); (L.L.); (Y.L.); (Y.L.); (S.Z.); (B.L.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Yuying Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (K.Z.); (L.L.); (Y.L.); (Y.L.); (S.Z.); (B.L.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Suqing Zhu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (K.Z.); (L.L.); (Y.L.); (Y.L.); (S.Z.); (B.L.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Bing Luo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (K.Z.); (L.L.); (Y.L.); (Y.L.); (S.Z.); (B.L.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Yongshan Wan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (K.Z.); (L.L.); (Y.L.); (Y.L.); (S.Z.); (B.L.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (K.Z.); (L.L.); (Y.L.); (Y.L.); (S.Z.); (B.L.)
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (K.Z.); (L.L.); (Y.L.); (Y.L.); (S.Z.); (B.L.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
50
|
Liu B, Zhu J, Lin L, Yang Q, Hu B, Wang Q, Zou XX, Zou SQ. Genome-Wide Identification and Co-Expression Analysis of ARF and IAA Family Genes in Euscaphis konishii: Potential Regulators of Triterpenoids and Anthocyanin Biosynthesis. Front Genet 2022; 12:737293. [PMID: 35069676 PMCID: PMC8766721 DOI: 10.3389/fgene.2021.737293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Euscaphis konishii is an evergreen plant that is widely planted as an industrial crop in Southern China. It produces red fruits with abundant secondary metabolites, giving E. konishii high medicinal and ornamental value. Auxin signaling mediated by members of the AUXIN RESPONSE FACTOR (ARF) and auxin/indole-3-acetic acid (Aux/IAA) protein families plays important roles during plant growth and development. Aux/IAA and ARF genes have been described in many plants but have not yet been described in E. konishii. In this study, we identified 34 EkIAA and 29 EkARF proteins encoded by the E. konishii genome through database searching using HMMER. We also performed a bioinformatic characterization of EkIAA and EkARF genes, including their phylogenetic relationships, gene structures, chromosomal distribution, and cis-element analysis, as well as conserved motifs in the proteins. Our results suggest that EkIAA and EkARF genes have been relatively conserved over evolutionary history. Furthermore, we conducted expression and co-expression analyses of EkIAA and EkARF genes in leaves, branches, and fruits, which identified a subset of seven EkARF genes as potential regulators of triterpenoids and anthocyanin biosynthesis. RT-qPCR, yeast one-hybrid, and transient expression analyses showed that EkARF5.1 can directly interact with auxin response elements and regulate downstream gene expression. Our results may pave the way to elucidating the function of EkIAA and EkARF gene families in E. konishii, laying a foundation for further research on high-yielding industrial products and E. konishii breeding.
Collapse
Affiliation(s)
- Bobin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, China.,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Juanli Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Lina Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Qixin Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Bangping Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Qingying Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Xiao-Xing Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| | - Shuang-Quan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute for Conservation and Utilization of Natural Bioresources, Fuzhou, China
| |
Collapse
|