1
|
Wang K, Li L, Kenny S, Gan D, Reitsma JM, Zhou Y, Das C, Liu X. Molecular mechanisms of CAND2 in regulating SCF ubiquitin ligases. Nat Commun 2025; 16:1998. [PMID: 40011427 PMCID: PMC11865535 DOI: 10.1038/s41467-025-57065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
Protein degradation orchestrated by SKP1·CUL1·F-box protein (SCF) ubiquitin ligases is a fundamental process essential for cellular and organismal function. The dynamic assembly of SCFs, facilitated by CAND1, ensures timely ubiquitination of diverse SCF target proteins. As a homolog of CAND1, CAND2 alone has been implicated in various human diseases, yet its functional mechanisms remain elusive. Here, we investigate the role of CAND2 in human cells and its distinct mode of action compared to CAND1. Using an array of quantitative assays, we demonstrate that CAND2 promotes SCF-mediated protein degradation as an F-box protein exchange factor. While CAND2 binds CUL1 with structure and affinity comparable to CAND1, it exhibits lower efficiency in exchanging F-box proteins. Kinetic measurements reveal a significantly higher KM for CAND2-catalyzed SCF disassembly than CAND1, which explains the lower exchange efficiency of CAND2 and is likely due to conformations of the CAND2·SCF exchange intermediate complex being less favorable for F-box protein dissociation. Our study provides mechanistic insights into the biochemical and structural properties of CAND2, as well as its role in regulating cellular dynamics of SCFs, laying a foundation for understanding contributions of CAND2 to healthy and diseased human cells.
Collapse
Affiliation(s)
- Kankan Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Lihong Li
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Sebastian Kenny
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Dailin Gan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Justin M Reitsma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- AbbVie Inc., North Chicago, IL, USA
| | - Yun Zhou
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Desai H, Andrews KH, Bergersen KV, Ofori S, Yu F, Shikwana F, Arbing MA, Boatner LM, Villanueva M, Ung N, Reed EF, Nesvizhskii AI, Backus KM. Chemoproteogenomic stratification of the missense variant cysteinome. Nat Commun 2024; 15:9284. [PMID: 39468056 PMCID: PMC11519605 DOI: 10.1038/s41467-024-53520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Cancer genomes are rife with genetic variants; one key outcome of this variation is widespread gain-of-cysteine mutations. These acquired cysteines can be both driver mutations and sites targeted by precision therapies. However, despite their ubiquity, nearly all acquired cysteines remain unidentified via chemoproteomics; identification is a critical step to enable functional analysis, including assessment of potential druggability and susceptibility to oxidation. Here, we pair cysteine chemoproteomics-a technique that enables proteome-wide pinpointing of functional, redox sensitive, and potentially druggable residues-with genomics to reveal the hidden landscape of cysteine genetic variation. Our chemoproteogenomics platform integrates chemoproteomic, whole exome, and RNA-seq data, with a customized two-stage false discovery rate (FDR) error controlled proteomic search, which is further enhanced with a user-friendly FragPipe interface. Chemoproteogenomics analysis reveals that cysteine acquisition is a ubiquitous feature of both healthy and cancer genomes that is further elevated in the context of decreased DNA repair. Reference cysteines proximal to missense variants are also found to be pervasive, supporting heretofore untapped opportunities for variant-specific chemical probe development campaigns. As chemoproteogenomics is further distinguished by sample-matched combinatorial variant databases and is compatible with redox proteomics and small molecule screening, we expect widespread utility in guiding proteoform-specific biology and therapeutic discovery.
Collapse
Affiliation(s)
- Heta Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Katrina H Andrews
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kristina V Bergersen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Flowreen Shikwana
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Mark A Arbing
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Nicholas Ung
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
- UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
3
|
de Roij M, Borst JW, Weijers D. Protein degradation in auxin response. THE PLANT CELL 2024; 36:3025-3035. [PMID: 38652687 PMCID: PMC11371164 DOI: 10.1093/plcell/koae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2024]
Abstract
The signaling molecule auxin sits at the nexus of plant biology where it coordinates essentially all growth and developmental processes. Auxin molecules are transported throughout plant tissues and are capable of evoking highly specific physiological responses by inducing various molecular pathways. In many of these pathways, proteolysis plays a crucial role for correct physiological responses. This review provides a chronology of the discovery and characterization of the auxin receptor, which is a fascinating example of separate research trajectories ultimately converging on the discovery of a core auxin signaling hub that relies on degradation of a family of transcriptional inhibitor proteins-the Aux/IAAs. Beyond describing the "classical" proteolysis-driven auxin response system, we explore more recent examples of the interconnection of proteolytic systems, which target a range of other auxin signaling proteins, and auxin response. By highlighting these emerging concepts, we provide potential future directions to further investigate the role of protein degradation within the framework of auxin response.
Collapse
Affiliation(s)
- Martijn de Roij
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| |
Collapse
|
4
|
Wang K, Diaz S, Li L, Lohman JR, Liu X. CAND1 inhibits Cullin-2-RING ubiquitin ligases for enhanced substrate specificity. Nat Struct Mol Biol 2024; 31:323-335. [PMID: 38177676 PMCID: PMC10923007 DOI: 10.1038/s41594-023-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/29/2023] [Indexed: 01/06/2024]
Abstract
Through targeting essential cellular regulators for ubiquitination and serving as a major platform for discovering proteolysis-targeting chimera (PROTAC) drugs, Cullin-2 (CUL2)-RING ubiquitin ligases (CRL2s) comprise an important family of CRLs. The founding members of CRLs, the CUL1-based CRL1s, are known to be activated by CAND1, which exchanges the variable substrate receptors associated with the common CUL1 core and promotes the dynamic assembly of CRL1s. Here we find that CAND1 inhibits CRL2-mediated protein degradation in human cells. This effect arises due to altered binding kinetics, involving CAND1 and CRL2VHL, as we illustrate that CAND1 dramatically increases the dissociation rate of CRL2s but barely accelerates the assembly of stable CRL2s. Using PROTACs that differently recruit neo-substrates to CRL2VHL, we demonstrate that the inhibitory effect of CAND1 helps distinguish target proteins with different affinities for CRL2s, presenting a mechanism for selective protein degradation with proper pacing in the changing cellular environment.
Collapse
Affiliation(s)
- Kankan Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Stephanie Diaz
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Lihong Li
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Jeremy R Lohman
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Desai H, Ofori S, Boatner L, Yu F, Villanueva M, Ung N, Nesvizhskii AI, Backus K. Multi-omic stratification of the missense variant cysteinome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.12.553095. [PMID: 37645963 PMCID: PMC10461992 DOI: 10.1101/2023.08.12.553095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cancer genomes are rife with genetic variants; one key outcome of this variation is gain-ofcysteine, which is the most frequently acquired amino acid due to missense variants in COSMIC. Acquired cysteines are both driver mutations and sites targeted by precision therapies. However, despite their ubiquity, nearly all acquired cysteines remain uncharacterized. Here, we pair cysteine chemoproteomics-a technique that enables proteome-wide pinpointing of functional, redox sensitive, and potentially druggable residues-with genomics to reveal the hidden landscape of cysteine acquisition. For both cancer and healthy genomes, we find that cysteine acquisition is a ubiquitous consequence of genetic variation that is further elevated in the context of decreased DNA repair. Our chemoproteogenomics platform integrates chemoproteomic, whole exome, and RNA-seq data, with a customized 2-stage false discovery rate (FDR) error controlled proteomic search, further enhanced with a user-friendly FragPipe interface. Integration of CADD predictions of deleteriousness revealed marked enrichment for likely damaging variants that result in acquisition of cysteine. By deploying chemoproteogenomics across eleven cell lines, we identify 116 gain-of-cysteines, of which 10 were liganded by electrophilic druglike molecules. Reference cysteines proximal to missense variants were also found to be pervasive, 791 in total, supporting heretofore untapped opportunities for proteoform-specific chemical probe development campaigns. As chemoproteogenomics is further distinguished by sample-matched combinatorial variant databases and compatible with redox proteomics and small molecule screening, we expect widespread utility in guiding proteoform-specific biology and therapeutic discovery.
Collapse
Affiliation(s)
- Heta Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Lisa Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Nicholas Ung
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Keriann Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Shaaban M, Clapperton JA, Ding S, Kunzelmann S, Mäeots ME, Maslen SL, Skehel JM, Enchev RI. Structural and mechanistic insights into the CAND1-mediated SCF substrate receptor exchange. Mol Cell 2023:S1097-2765(23)00418-5. [PMID: 37339624 DOI: 10.1016/j.molcel.2023.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023]
Abstract
Modular SCF (SKP1-CUL1-Fbox) ubiquitin E3 ligases orchestrate multiple cellular pathways in eukaryotes. Their variable SKP1-Fbox substrate receptor (SR) modules enable regulated substrate recruitment and subsequent proteasomal degradation. CAND proteins are essential for the efficient and timely exchange of SRs. To gain structural understanding of the underlying molecular mechanism, we reconstituted a human CAND1-driven exchange reaction of substrate-bound SCF alongside its co-E3 ligase DCNL1 and visualized it by cryo-EM. We describe high-resolution structural intermediates, including a ternary CAND1-SCF complex, as well as conformational and compositional intermediates representing SR- or CAND1-dissociation. We describe in molecular detail how CAND1-induced conformational changes in CUL1/RBX1 provide an optimized DCNL1-binding site and reveal an unexpected dual role for DCNL1 in CAND1-SCF dynamics. Moreover, a partially dissociated CAND1-SCF conformation accommodates cullin neddylation, leading to CAND1 displacement. Our structural findings, together with functional biochemical assays, help formulate a detailed model for CAND-SCF regulation.
Collapse
Affiliation(s)
- Mohammed Shaaban
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Julie A Clapperton
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Shan Ding
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Märt-Erik Mäeots
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Sarah L Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Radoslav I Enchev
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| |
Collapse
|
7
|
Li L, Wang K, Zhou Y, Liu X. Review: A silent concert in developing plants: Dynamic assembly of cullin-RING ubiquitin ligases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111662. [PMID: 36822503 PMCID: PMC10065934 DOI: 10.1016/j.plantsci.2023.111662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Plants appear quiet: quietly, they break the ground, expand leaves, search for resources, alert each other to invaders, and heal their own wounds. In contrast to the stationary appearance, the inside world of a plant is full of movements: cells divide to increase the body mass and form new organs; signaling molecules migrate among cells and tissues to drive transcriptional cascades and developmental programs; macromolecules, such as RNAs and proteins, collaborate with different partners to maintain optimal organismal function under changing cellular and environmental conditions. All these activities require a dynamic yet appropriately controlled molecular network in plant cells. In this short review, we used the regulation of cullin-RING ubiquitin ligases (CRLs) as an example to discuss how dynamic biochemical processes contribute to plant development. CRLs comprise a large family of modular multi-unit enzymes that determine the activity and stability of diverse regulatory proteins playing crucial roles in plant growth and development. The mechanism governing the dynamic assembly of CRLs is essential for CRL activity and biological function, and it may provide insights and implications for the regulation of other dynamic multi-unit complexes involved in fundamental processes such as transcription, translation, and protein sorting in plants.
Collapse
Affiliation(s)
- Lihong Li
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Kankan Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
8
|
Baek K, Scott DC, Henneberg LT, King MT, Mann M, Schulman BA. Systemwide disassembly and assembly of SCF ubiquitin ligase complexes. Cell 2023; 186:1895-1911.e21. [PMID: 37028429 PMCID: PMC10156175 DOI: 10.1016/j.cell.2023.02.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 04/09/2023]
Abstract
Cells respond to environmental cues by remodeling their inventories of multiprotein complexes. Cellular repertoires of SCF (SKP1-CUL1-F box protein) ubiquitin ligase complexes, which mediate much protein degradation, require CAND1 to distribute the limiting CUL1 subunit across the family of ∼70 different F box proteins. Yet, how a single factor coordinately assembles numerous distinct multiprotein complexes remains unknown. We obtained cryo-EM structures of CAND1-bound SCF complexes in multiple states and correlated mutational effects on structures, biochemistry, and cellular assays. The data suggest that CAND1 clasps idling catalytic domains of an inactive SCF, rolls around, and allosterically rocks and destabilizes the SCF. New SCF production proceeds in reverse, through SKP1-F box allosterically destabilizing CAND1. The CAND1-SCF conformational ensemble recycles CUL1 from inactive complexes, fueling mixing and matching of SCF parts for E3 activation in response to substrate availability. Our data reveal biogenesis of a predominant family of E3 ligases, and the molecular basis for systemwide multiprotein complex assembly.
Collapse
Affiliation(s)
- Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Moeko T King
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
9
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
10
|
Li L, Garsamo M, Yuan J, Wang X, Lam SH, Varala K, Boavida LC, Zhou Y, Liu X. CAND1 is required for pollen viability in Arabidopsis thaliana-a test of the adaptive exchange hypothesis. FRONTIERS IN PLANT SCIENCE 2022; 13:866086. [PMID: 35968124 PMCID: PMC9366119 DOI: 10.3389/fpls.2022.866086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/04/2022] [Indexed: 05/11/2023]
Abstract
The dynamic assembly of SKP1•CUL1•F-box protein (SCF) ubiquitin ligases is important for protein ubiquitination and degradation. This process is enabled by CAND1, which exchanges F-box proteins associated with the common CUL1 scaffold, and thereby, recycles the limited CUL1 core and allows diverse F-box proteins to assemble active SCFs. Previous human cell biological and computational studies have led to the adaptive exchange hypothesis, which suggests that the CAND1-mediated exchange confers plasticity on the SCF system, allowing cells to tolerate large variations in F-box protein expression. Here, we tested this hypothesis using Arabidopsis thaliana, a multicellular organism expressing hundreds of F-box protein genes at variable levels in different tissues. The cand1 null mutant in Arabidopsis is viable but produce almost no seeds. Bioinformatic, cell biological, and developmental analyses revealed that the low fertility in the cand1 mutant is associated with cell death in pollen, where the net expression of F-box protein genes is significantly higher than any other Arabidopsis tissue. In addition, we show that the transmission efficiency of the cand1 null allele was reduced through the male but not the female gametophyte. Our results suggest that CAND1 activity is essential in cells or tissues expressing high levels of F-box proteins. This finding is consistent with the proposed adaptive exchange hypothesis, demonstrating the necessity of the evolutionarily conserved CAND1-mediated exchange system in the development of a multicellular organism.
Collapse
Affiliation(s)
- Lihong Li
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Melaku Garsamo
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Jing Yuan
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Xiaojin Wang
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Susan H. Lam
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Kranthi Varala
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Leonor C. Boavida
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Yun Zhou
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Xing Liu,
| |
Collapse
|
11
|
The Lotus japonicus AFB6 Gene Is Involved in the Auxin Dependent Root Developmental Program. Int J Mol Sci 2021; 22:ijms22168495. [PMID: 34445201 PMCID: PMC8395167 DOI: 10.3390/ijms22168495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Auxin is essential for root development, and its regulatory action is exerted at different steps from perception of the hormone up to transcriptional regulation of target genes. In legume plants there is an overlap between the developmental programs governing lateral root and N2-fixing nodule organogenesis, the latter induced as the result of the symbiotic interaction with rhizobia. Here we report the characterization of a member of the L. japonicus TIR1/AFB auxin receptor family, LjAFB6. A preferential expression of the LjAFB6 gene in the aerial portion of L. japonicus plants was observed. Significant regulation of the expression was not observed during the symbiotic interaction with Mesorhizobium loti and the nodule organogenesis process. In roots, the LjAFB6 expression was induced in response to nitrate supply and was mainly localized in the meristematic regions of both primary and lateral roots. The phenotypic analyses conducted on two independent null mutants indicated a specialized role in the control of primary and lateral root elongation processes in response to auxin, whereas no involvement in the nodulation process was found. We also report the involvement of LjAFB6 in the hypocotyl elongation process and in the control of the expression profile of an auxin-responsive gene.
Collapse
|
12
|
Panda S, Majhi PK, Anandan A, Mahender A, Veludandi S, Bastia D, Guttala SB, Singh SK, Saha S, Ali J. Proofing Direct-Seeded Rice with Better Root Plasticity and Architecture. Int J Mol Sci 2021; 22:6058. [PMID: 34199720 PMCID: PMC8199995 DOI: 10.3390/ijms22116058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
The underground reserve (root) has been an uncharted research territory with its untapped genetic variation yet to be exploited. Identifying ideal traits and breeding new rice varieties with efficient root system architecture (RSA) has great potential to increase resource-use efficiency and grain yield, especially under direct-seeded rice, by adapting to aerobic soil conditions. In this review, we tried to mine the available research information on the direct-seeded rice (DSR) root system to highlight the requirements of different root traits such as root architecture, length, number, density, thickness, diameter, and angle that play a pivotal role in determining the uptake of nutrients and moisture at different stages of plant growth. RSA also faces several stresses, due to excess or deficiency of moisture and nutrients, low or high temperature, or saline conditions. To counteract these hindrances, adaptation in response to stress becomes essential. Candidate genes such as early root growth enhancer PSTOL1, surface rooting QTL qSOR1, deep rooting gene DRO1, and numerous transporters for their respective nutrients and stress-responsive factors have been identified and validated under different circumstances. Identifying the desired QTLs and transporters underlying these traits and then designing an ideal root architecture can help in developing a suitable DSR cultivar and aid in further advancement in this direction.
Collapse
Affiliation(s)
- Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Prasanta Kumar Majhi
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| | - Sumanth Veludandi
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Debendranath Bastia
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Suresh Babu Guttala
- Department of Genetics and Plant Breeding, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj 211007, Uttar Pradesh, India;
| | - Shravan Kumar Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Sanjoy Saha
- Crop Production Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India;
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| |
Collapse
|
13
|
Cheng W, Yin S, Tu Y, Mei H, Wang Y, Yang Y. SlCAND1, encoding cullin-associated Nedd8-dissociated protein 1, regulates plant height, flowering time, seed germination, and root architecture in tomato. PLANT MOLECULAR BIOLOGY 2020; 102:537-551. [PMID: 31916084 DOI: 10.1007/s11103-020-00963-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/03/2020] [Indexed: 05/22/2023]
Abstract
Silencing of SlCAND1 expression resulted in dwarfish, loss of apical dominance, early flowering, suppression of seed germination, and abnormal root architecture in tomato Cullin-RING E3 ligases (CRLs)-dependent ubiquitin proteasome system mediates degradation of numerous proteins that controls a wide range of developmental and physiological processes in eukaryotes. Cullin-associated Nedd8-dissociated protein 1 (CAND1) acts as an exchange factor allowing substrate recognition part exchange and plays a vital role in reactivating CRLs. The present study reports on the identification of SlCAND1, the only one CAND gene in tomato. SlCAND1 expression is ubiquitous and positively regulated by multiple plant hormones. Silencing of SlCAND1 expression using RNAi strategy resulted in a pleiotropic and gibberellin/auxin-associated phenotypes, including dwarf plant with reduced internode length, loss of apical dominance, early flowering, low seed germination percentage, delayed seed germination speed, short primary root, and increased lateral root proliferation and elongation. Moreover, application of exogenous GA3 or IAA could partly rescue some SlCAND1-silenced phenotypes, and the expression levels of gibberellin/auxin-related genes were altered in SlCAND1-RNAi lines. These facts revealed that SlCAND1 is required for gibberellin/auxin-associated regulatory network in tomato. Although SlCAND1 is crucial for multiple developmental processes during vegetative growth stage, SlCAND1-RNAi lines didn't exhibit visible effect on fruit development and ripening. Meanwhile, we discussed that multiple physiological functions of SlCAND1 in tomato are different to previous report of its ortholog in Arabidopsis. Our study adds a new perspective on the functional roles of CAND1 in plants, and strongly supports the hypothesis that CAND1 and its regulated ubiquitin proteasome system are pivotal for plant vegetative growth but possibly have different roles in diverse plant species.
Collapse
Affiliation(s)
- Wenjing Cheng
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Shuangqin Yin
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yun Tu
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Hu Mei
- Bioengineering College, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yongzhong Wang
- Bioengineering College, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yingwu Yang
- Bioengineering College, Chongqing University, Chongqing, 400044, China.
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
14
|
A Quantitative Genetic Interaction Map of HIV Infection. Mol Cell 2020; 78:197-209.e7. [PMID: 32084337 DOI: 10.1016/j.molcel.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/16/2022]
Abstract
We have developed a platform for quantitative genetic interaction mapping using viral infectivity as a functional readout and constructed a viral host-dependency epistasis map (vE-MAP) of 356 human genes linked to HIV function, comprising >63,000 pairwise genetic perturbations. The vE-MAP provides an expansive view of the genetic dependencies underlying HIV infection and can be used to identify drug targets and study viral mutations. We found that the RNA deadenylase complex, CNOT, is a central player in the vE-MAP and show that knockout of CNOT1, 10, and 11 suppressed HIV infection in primary T cells by upregulating innate immunity pathways. This phenotype was rescued by deletion of IRF7, a transcription factor regulating interferon-stimulated genes, revealing a previously unrecognized host signaling pathway involved in HIV infection. The vE-MAP represents a generic platform that can be used to study the global effects of how different pathogens hijack and rewire the host during infection.
Collapse
|
15
|
Wang K, Deshaies RJ, Liu X. Assembly and Regulation of CRL Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:33-46. [DOI: 10.1007/978-981-15-1025-0_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Liu X, Reitsma JM, Mamrosh JL, Zhang Y, Straube R, Deshaies RJ. Cand1-Mediated Adaptive Exchange Mechanism Enables Variation in F-Box Protein Expression. Mol Cell 2019; 69:773-786.e6. [PMID: 29499133 DOI: 10.1016/j.molcel.2018.01.038] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/08/2018] [Accepted: 01/29/2018] [Indexed: 11/16/2022]
Abstract
Skp1⋅Cul1⋅F-box (SCF) ubiquitin ligase assembly is regulated by the interplay of substrate binding, reversible Nedd8 conjugation on Cul1, and the F-box protein (FBP) exchange factors Cand1 and Cand2. Detailed investigations into SCF assembly and function in reconstituted systems and Cand1/2 knockout cells informed the development of a mathematical model for how dynamical assembly of SCF complexes is controlled and how this cycle is coupled to degradation of an SCF substrate. Simulations predicted an unanticipated hypersensitivity of Cand1/2-deficient cells to FBP expression levels, which was experimentally validated. Together, these and prior observations lead us to propose the adaptive exchange hypothesis, which posits that regulation of the koff of an FBP from SCF by the actions of substrate, Nedd8, and Cand1 molds the cellular repertoire of SCF complexes and that the plasticity afforded by this exchange mechanism may enable large variations in FBP expression during development and in FBP gene number during evolution.
Collapse
Affiliation(s)
- Xing Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Justin M Reitsma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer L Mamrosh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yaru Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ronny Straube
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Amgen, One Amgen Center Way, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
17
|
Schwechheimer C. NEDD8-its role in the regulation of Cullin-RING ligases. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:112-119. [PMID: 29909289 DOI: 10.1016/j.pbi.2018.05.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 05/10/2023]
Abstract
The ubiquitin-related protein NEDD8 is conjugated and deconjugated to and from proteins in processes related to ubiquitin conjugation and deconjugation. Neddylation is a well-studied posttranslational modification of Cullin-RING E3 ligases (CRLs). Biochemical and structural studies aiming at understanding the role of NEDD8 in CRL function have now resulted in a convincing model of how neddylation and deneddylation antagonistically regulate CRL stability, conformation, activity as well as degradation substrate receptor exchange. Studies of the Arabidopsis thaliana deneddylation-deficient den1 mutant led to the identification of many low abundant, non-Cullin NEDD8 conjugates. Examination of neddylated AUXIN RESISTANT1 (AXR1), a prominent neddylated protein in den1, suggests, however, that AXR1 neddylation may be an auto-catalytic side-reaction of Cullin-targeted neddylation and that DEN1 may serve to antagonize non-productive, auto-neddylation from substrates to provide free NEDD8 for CRL regulation.
Collapse
Affiliation(s)
- Claus Schwechheimer
- Plant Systems Biology, Emil-Ramann-Strasse 8, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
18
|
Abstract
Auxin triggers diverse responses in plants, and this is reflected in quantitative and qualitative diversity in the auxin signaling machinery.
Collapse
Affiliation(s)
- Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| |
Collapse
|
19
|
Trade-off and flexibility in the dynamic regulation of the cullin-RING ubiquitin ligase repertoire. PLoS Comput Biol 2017; 13:e1005869. [PMID: 29149173 PMCID: PMC5711038 DOI: 10.1371/journal.pcbi.1005869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 12/01/2017] [Accepted: 11/02/2017] [Indexed: 11/19/2022] Open
Abstract
Cullin-RING ubiquitin ligases (CRLs) catalyze the ubiquitylation of substrates many of which are degraded by the 26S proteasome. Their modular architecture enables recognition of numerous substrates via exchangeable substrate receptors that competitively bind to a cullin scaffold with high affinity. Due to the plasticity of these interactions there is ongoing uncertainty how cells maintain a flexible CRL repertoire in view of changing substrate loads. Based on a series of in vivo and in vitro studies, different groups proposed that the exchange of substrate receptors is mediated by a protein exchange factor named Cand1. Here, we have performed mathematical modeling to provide a quantitative underpinning of this hypothesis. First we show that the exchange activity of Cand1 necessarily leads to a trade-off between high ligase activity and fast receptor exchange. Supported by measurements we argue that this trade-off yields an optimal Cand1 concentration in cells where the time scale for substrate degradation becomes minimal. In a second step we show through simulations that (i) substrates bias the CRL repertoire leading to preferential assembly of ligases for which substrates are available and (ii) differences in binding affinities or substrate receptor abundances create a temporal hierarchy for the degradation of substrates. Finally, we compare the Cand1-mediated exchange cycle with an alternative architecture lacking Cand1 which indicates superiority of a system with exchange factor if substrate receptors bind substrates and the cullin scaffold in a random order. Together, our results provide general constraints for the operating regimes of molecular exchange systems and suggest that Cand1 endows the CRL network with the properties of an “on demand” system allowing cells to dynamically adjust their CRL repertoire to fluctuating substrate abundances. Cullin-RING ubiquitin ligases (CRLs) are multisubunit protein complexes where exchangeable substrate receptors (SRs) assemble on a cullin scaffold to mediate ubiquitylation and subsequent degradation of a large variety of substrates. In humans there are hundreds of different CRLs having potentially thousands of substrates. Due to the high affinity of cullin-SR interactions, it has long been a mystery how cells would maintain flexibility to sample the entire SR repertoire in order to match fluctuating substrate loads. Recent experiments indicate that the exchange of different SRs is mediated by a novel protein exchange factor (Cand1). However, the proposed biochemical function of Cand1 as a promoter of CRL activity remained difficult to reconcile with previous reports of Cand1 acting as an inhibitor of CRL activity in vitro. Here we show that these two findings are not contradictory, but that the exchange activity of Cand1 necessarily leads to a trade-off between high ligase activity and fast receptor exchange which leads us to predict an optimal Cand1 concentration and a temporal hierarchy for substrate degradation. Our results support the view that Cand1 endows the CRL network with the flexibility of an “on demand” system where relative CRL abundances are dictated by substrate availability.
Collapse
|
20
|
Aguilar-Hernández V, Kim DY, Stankey RJ, Scalf M, Smith LM, Vierstra RD. Mass Spectrometric Analyses Reveal a Central Role for Ubiquitylation in Remodeling the Arabidopsis Proteome during Photomorphogenesis. MOLECULAR PLANT 2017; 10:846-865. [PMID: 28461270 PMCID: PMC5695678 DOI: 10.1016/j.molp.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 05/21/2023]
Abstract
The switch from skotomorphogenesis to photomorphogenesis is a key developmental transition in the life of seed plants. While much of the underpinning proteome remodeling is driven by light-induced changes in gene expression, the proteolytic removal of specific proteins by the ubiquitin-26S proteasome system is also likely paramount. Through mass spectrometric analysis of ubiquitylated proteins affinity-purified from etiolated Arabidopsis seedlings before and after red-light irradiation, we identified a number of influential proteins whose ubiquitylation status is modified during this switch. We observed a substantial enrichment for proteins involved in auxin, abscisic acid, ethylene, and brassinosteroid signaling, peroxisome function, disease resistance, protein phosphorylation and light perception, including the phytochrome (Phy) A and phototropin photoreceptors. Soon after red-light treatment, PhyA becomes the dominant ubiquitylated species, with ubiquitin attachment sites mapped to six lysines. A PhyA mutant protected from ubiquitin addition at these sites is substantially more stable in planta upon photoconversion to Pfr and is hyperactive in driving photomorphogenesis. However, light still stimulates ubiquitylation and degradation of this mutant, implying that other attachment sites and/or proteolytic pathways exist. Collectively, we expand the catalog of ubiquitylation targets in Arabidopsis and show that this post-translational modification is central to the rewiring of plants for photoautotrophic growth.
Collapse
Affiliation(s)
- Victor Aguilar-Hernández
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA; Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Do-Young Kim
- Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert J Stankey
- Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Scalf
- Department of Chemistry, 1101 University Avenue, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, 1101 University Avenue, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA; Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
21
|
Cui X, Xu X, He Y, Du X, Zhu J. Overexpression of an F-box protein gene disrupts cotyledon vein patterning in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:43-52. [PMID: 26901782 DOI: 10.1016/j.plaphy.2016.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
Plant vascular patterning is complex. However, the detailed molecular mechanism of vascular patterning is still unknown. In this study, FBXL, an Arabidopsis F-box motif gene, was isolated by using 3' rapid amplification of cDNA ends (RACE) technique. The gene contained a coding sequence of 1407 nucleotides coding 468 amino acid residues. Amino acid sequence analysis revealed that the gene encoded a protein harboring an F-box motif at the N terminus, an LRRs motif in the middle, and an FBD motif at the C terminus. FBXL promoter-β-glucuronidase (GUS) and 35S promoter-FBXL vectors were constructed and transformed into Arabidopsis thaliana to understand the function of the FBXL gene. GUS expression analysis indicated that FBXL was specifically expressed in the vascular tissues of the root, stem, leaf, and inflorescence. FBXL overexpression in Arabidopsis displayed an abnormal venation pattern in cotyledons. Furthermore, FBXL expression was not induced by exogenous auxin and its transcript accumulation did not overlap with the distribution of endogenous auxin. These results suggested that FBXL may be involved in cotyledon vein patterning via auxin-independent pathway.
Collapse
Affiliation(s)
- Xianghuan Cui
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaofeng Xu
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yangyang He
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiling Du
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jian Zhu
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
22
|
Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M. HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 2016; 7:10269. [PMID: 26728313 PMCID: PMC4728404 DOI: 10.1038/ncomms10269] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/23/2015] [Indexed: 01/24/2023] Open
Abstract
Recent studies have revealed that a mild increase in environmental temperature stimulates the growth of Arabidopsis seedlings by promoting biosynthesis of the plant hormone auxin. However, little is known about the role of other factors in this process. In this report, we show that increased temperature promotes rapid accumulation of the TIR1 auxin co-receptor, an effect that is dependent on the molecular chaperone HSP90. In addition, we show that HSP90 and the co-chaperone SGT1 each interact with TIR1, confirming that TIR1 is an HSP90 client. Inhibition of HSP90 activity results in degradation of TIR1 and interestingly, defects in a range of auxin-mediated growth processes at lower as well as higher temperatures. Our results indicate that HSP90 and SGT1 integrate temperature and auxin signalling in order to regulate plant growth in a changing environment. A moderate increase in temperature promotes hypocotyl elongation in Arabidopsis. Here, Wang et al. show that elevated temperature not only increases auxin biosynthesis but also acts via the co-chaperones HSP90 and SGT1 to stabilize the TIR1 auxin receptor.
Collapse
Affiliation(s)
- Renhou Wang
- Section of Cell and Developmental Biology, University of San Diego California, Howard Hughes Medical Institute, 9500 Gilman Dr, La Jolla, California 92093, USA
| | - Yi Zhang
- Section of Cell and Developmental Biology, University of San Diego California, Howard Hughes Medical Institute, 9500 Gilman Dr, La Jolla, California 92093, USA
| | - Martin Kieffer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Hong Yu
- Section of Cell and Developmental Biology, University of San Diego California, Howard Hughes Medical Institute, 9500 Gilman Dr, La Jolla, California 92093, USA
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Estelle
- Section of Cell and Developmental Biology, University of San Diego California, Howard Hughes Medical Institute, 9500 Gilman Dr, La Jolla, California 92093, USA
| |
Collapse
|
23
|
Jayaweera T, Siriwardana C, Dharmasiri S, Quint M, Gray WM, Dharmasiri N. Alternative splicing of Arabidopsis IBR5 pre-mRNA generates two IBR5 isoforms with distinct and overlapping functions. PLoS One 2014; 9:e102301. [PMID: 25144378 PMCID: PMC4140696 DOI: 10.1371/journal.pone.0102301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/12/2014] [Indexed: 01/01/2023] Open
Abstract
The INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5) gene encodes a dual specificity phosphatase that regulates plant auxin responses. IBR5 has been predicted to generate two transcripts through alternative splicing, but alternative splicing of IBR5 has not been confirmed experimentally. The previously characterized ibr5-1 null mutant exhibits many auxin related defects such as auxin insensitive primary root growth, defective vascular development, short stature and reduced lateral root development. However, whether all these defects are caused by the lack of phosphatase activity is not clear. Here we describe two new auxin insensitive IBR5 alleles, ibr5-4, a catalytic site mutant, and ibr5-5, a splice site mutant. Characterization of these new mutants indicates that IBR5 is post-transcriptionally regulated to generate two transcripts, AT2G04550.1 and AT2G04550.3, and consequently two IBR5 isoforms, IBR5.1 and IBR5.3. The IBR5.1 isoform exhibits phosphatase catalytic activity that is required for both proper degradation of Aux/IAA proteins and auxin-induced gene expression. These two processes are independently regulated by IBR5.1. Comparison of new mutant alleles with ibr5-1 indicates that all three mutant alleles share many phenotypes. However, each allele also confers distinct defects implicating IBR5 isoform specific functions. Some of these functions are independent of IBR5.1 catalytic activity. Additionally, analysis of these new mutant alleles suggests that IBR5 may link ABP1 and SCFTIR1/AFBs auxin signaling pathways.
Collapse
Affiliation(s)
- Thilanka Jayaweera
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| | - Chamindika Siriwardana
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Sunethra Dharmasiri
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| | - Marcel Quint
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - William M. Gray
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nihal Dharmasiri
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Del Pozo JC, Manzano C. Auxin and the ubiquitin pathway. Two players-one target: the cell cycle in action. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2617-2632. [PMID: 24215077 DOI: 10.1093/jxb/ert363] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Plants are sessile organisms that have to adapt their growth to the surrounding environment. Concomitant with this adaptation capability, they have adopted a post-embryonic development characterized by continuous growth and differentiation abilities. Constant growth is based on the potential of stem cells to divide almost incessantly and on a precise balance between cell division and cell differentiation. This balance is influenced by environmental conditions and by the genetic information of the cell. Among the internal cues, the cross-talk between different hormonal signalling pathways is essential to control this division/differentiation equilibrium. Auxin, one of the most important plant hormones, regulates cell division and differentiation, among many other processes. Amazing advances in auxin signal transduction at the molecular level have been reported, but how this signalling is connected to the cell cycle is, so far, not well known. Auxin signalling involves the auxin-dependent degradation of transcription repressors by F-box-containing E3 ligases of ubiquitin. Recently, SKP2A, another F-box protein, was shown to bind auxin and to target cell-cycle repressors for proteolysis, representing a novel mechanism that links auxin to cell division. In this review, a general vision of what is already known and the most recent advances on how auxin signalling connects to cell division and the role of the ubiquitin pathway in plant cell cycle will be covered.
Collapse
Affiliation(s)
- Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Concepción Manzano
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
25
|
Choi CM, Gray WM, Mooney S, Hellmann H. Composition, roles, and regulation of cullin-based ubiquitin e3 ligases. THE ARABIDOPSIS BOOK 2014; 12:e0175. [PMID: 25505853 PMCID: PMC4262284 DOI: 10.1199/tab.0175] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities.
Collapse
Affiliation(s)
| | | | | | - Hanjo Hellmann
- Washington State University, Pullman, Washington
- Address correspondence to
| |
Collapse
|
26
|
Building and remodelling Cullin-RING E3 ubiquitin ligases. EMBO Rep 2013; 14:1050-61. [PMID: 24232186 PMCID: PMC3849489 DOI: 10.1038/embor.2013.173] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/08/2013] [Indexed: 02/07/2023] Open
Abstract
Cullin-RING E3 ubiquitin ligases (CRLs) control a plethora of biological pathways through targeted ubiquitylation of signalling proteins. These modular assemblies use substrate receptor modules to recruit specific targets. Recent efforts have focused on understanding the mechanisms that control the activity state of CRLs through dynamic alterations in CRL architecture. Central to these processes are cycles of cullin neddylation and deneddylation, as well as exchange of substrate receptor modules to re-sculpt the CRL landscape, thereby responding to the cellular requirements to turn over distinct proteins in different contexts. This review is focused on how CRLs are dynamically controlled with an emphasis on how cullin neddylation cycles are integrated with receptor exchange.
Collapse
|
27
|
Zemla A, Thomas Y, Kedziora S, Knebel A, Wood NT, Rabut G, Kurz T. CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. Nat Commun 2013; 4:1641. [PMID: 23535662 DOI: 10.1038/ncomms2628] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/20/2013] [Indexed: 01/10/2023] Open
Abstract
Cullin-RING ligases (CRLs) are ubiquitin E3 enzymes with variable substrate-adaptor and -receptor subunits. All CRLs are activated by modification of the cullin subunit with the ubiquitin-like protein Nedd8 (neddylation). The protein CAND1 (Cullin-associated-Nedd8-dissociated-1) also promotes CRL activity, even though it only interacts with inactive ligase complexes. The molecular mechanism underlying this behaviour remains largely unclear. Here, we find that yeast SCF (Skp1-Cdc53-F-box) Cullin-RING complexes are remodelled in a CAND1-dependent manner, when cells are switched from growth in fermentable to non-fermentable carbon sources. Mechanistically, CAND1 promotes substrate adaptor release following SCF deneddylation by the COP9 signalosome (CSN). CSN- or CAND1-mutant cells fail to release substrate adaptors. This delays the formation of new complexes during SCF reactivation and results in substrate degradation defects. Our results shed light on how CAND1 regulates CRL activity and demonstrate that the cullin neddylation-deneddylation cycle is not only required to activate CRLs, but also to regulate substrate specificity through dynamic substrate adaptor exchange.
Collapse
Affiliation(s)
- Aleksandra Zemla
- Scottish Institute for Cell Signalling, Protein Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
28
|
Wu S, Zhu W, Nhan T, Toth JI, Petroski MD, Wolf DA. CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire. Nat Commun 2013; 4:1642. [PMID: 23535663 PMCID: PMC3637025 DOI: 10.1038/ncomms2636] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/20/2013] [Indexed: 02/06/2023] Open
Abstract
The combinatorial architecture of cullin 1-RING ubiquitin ligases (CRL1s), in which multiple F-box containing substrate receptors (FBPs) compete for access to CUL1, poses special challenges to assembling CRL1 complexes through high affinity protein interactions while maintaining the flexibility to dynamically sample the entire FBP repertoire. Here, using highly quantitative mass spectrometry, we demonstrate that this problem is addressed by CAND1, a factor that controls the dynamics of the global CRL1 network by promoting the assembly of newly synthesized FBPs with CUL1-RBX1 core complexes. Our studies of in vivo CRL1 dynamics and in vitro biochemical findings showing that CAND1 can displace FBPs from Cul1p suggest that CAND1 functions in a cycle that serves to exchange FBPs on CUL1 cores. We propose that this cycle assures comprehensive sampling of the entire FBP repertoire in order to maintain the CRL1 landscape, a function that we show to be critical for substrate degradation and normal physiology.
Collapse
Affiliation(s)
- Shuangding Wu
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
29
|
Oono Y, Nakasone A. Lack of SMALL ACIDIC PROTEIN 1 (SMAP1) causes increased sensitivity to an inhibitor of RUB/NEDD8-activating enzyme in Arabidopsis seedlings. PLANT SIGNALING & BEHAVIOR 2013; 8:25986. [PMID: 24270629 PMCID: PMC4091117 DOI: 10.4161/psb.25986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
SMALL ACIDIC PROTEIN 1 (SMAP1) functions upstream of the degradation of AUX/IAA-proteins in the response to 2,4-dichlorophenoxyacetic acid and physically interacts with the COP9 SIGNALOSOME (CSN). Also, its function is linked to RELATED TO UBIQUITIN (RUB) modification. To further investigate the relationship between SMAP1 and the RUB modification system, we examined the effect of MLN4924, an inhibitor of RUB/NEDD8-activating E1 enzyme, on the growth of Arabidopsis thaliana. We found that the anti-auxin resistant 1 mutants, which lack SMAP1, are more sensitive to MLN4924 than wild type and that SMAP1 is responsible for this hypersensitivity. This new evidence supports our previous speculation that SMAP1 acts in Cullin-RING ubiquitin E3 ligase regulated signaling processes via its interaction with components associated with the RUB modification system.
Collapse
Affiliation(s)
- Yutaka Oono
- Medical and Biotechnological Application Division; Japan Atomic Energy Agency (JAEA); Takasaki, Japan
| | - Akari Nakasone
- Medical and Biotechnological Application Division; Japan Atomic Energy Agency (JAEA); Takasaki, Japan
- Current affiliation: Department of Science and Engineering; Saitama University; Saitama, Japan
| |
Collapse
|
30
|
Abstract
E3 ligases comprise a highly diverse and important group of enzymes that act within the 26S ubiquitin proteasome pathway. They facilitate the transfer of ubiquitin moieties to substrate proteins which may be marked for degradation by this step. As such, they serve as central regulators in many cellular and physiological processes in plants. The review provides an update on the multitude of different E3 ligases currently known in plants, and illustrates the central role in plant biology of specific examples.
Collapse
Affiliation(s)
- Liyuan Chen
- Plant Stress Physiology, School of Biological Sciences, Abelson 435, PO Box 644236, Washington State University, Pullman, WA 99164-4236, USA
| | | |
Collapse
|
31
|
Craney A, Rape M. Dynamic regulation of ubiquitin-dependent cell cycle control. Curr Opin Cell Biol 2013; 25:704-10. [PMID: 23890701 DOI: 10.1016/j.ceb.2013.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 06/29/2013] [Accepted: 07/04/2013] [Indexed: 12/13/2022]
Abstract
Recent work revealed that cullin-RING ligases and the anaphase-promoting complex, two classes of ubiquitin ligases that are essential for cell division in all eukaryotes, are regulated in a highly dynamic manner. Here, we describe mechanisms that establish the dynamic regulation of these crucial ubiquitylation enzymes and discuss the functional consequences for cell division control.
Collapse
Affiliation(s)
- Allison Craney
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | | |
Collapse
|
32
|
Cordero-Espinoza L, Hagen T. Regulation of Cullin-RING ubiquitin ligase 1 by Spliceosome-associated protein 130 (SAP130). Biol Open 2013; 2:838-44. [PMID: 23951410 PMCID: PMC3744076 DOI: 10.1242/bio.20134374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 06/04/2013] [Indexed: 11/25/2022] Open
Abstract
Cullin-RING ubiquitin ligases (CRLs) mediate the ubiquitination of numerous protein substrates and target them for proteasomal degradation. The function of CRLs is under tight regulation by Cullin-binding proteins. It has been reported that the Spliceosome-associated protein 130 (SAP130/SF3b-3) binds to several Cullin proteins, yet it remains unknown whether SAP130 plays any role in regulating the function of CRLs. Here, we report that SAP130 overexpression reduces the binding of adaptor protein Skp1 and substrate receptor Skp2 to Cul1, whereas it has no effect on CAND1 binding to Cul1. Overexpression of SAP130 decreases the degradation rate of p27, a protein substrate of the SCFSkp2 ligase. Interestingly, silencing of SAP130 also inhibits the degradation of p27, suggesting a dual role for SAP130 in the regulation of SCF activity. We hypothesized that the regulatory role of SAP130 could extend to other CRLs; however, overexpression of SAP130 is unable to affect the protein stability of the Cul2 and Cul3 substrates, HIF-1 and NRF-2. SAP130 binds to Cul1, Cul2 and Cul4 with similar affinity, and it binds to Cul3 more strongly. SAP130 localizes in both the nucleus and the cytoplasm. Hence, the inability of SAP130 to regulate Cul2 and Cul3 CRLs cannot be explained by low binding affinity of SAP130 to these cullins or by subcellular sequestration of SAP130. We propose a novel role for SAP130 in the regulation of SCF, whereby SAP130 physically competes with the adaptor protein/F-box protein for Cul1 binding and interferes with the assembly of a functional SCF ligase.
Collapse
Affiliation(s)
- Lucia Cordero-Espinoza
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore 117597 , Singapore
| | | |
Collapse
|
33
|
Huang H, Quint M, Gray WM. The eta7/csn3-3 auxin response mutant of Arabidopsis defines a novel function for the CSN3 subunit of the COP9 signalosome. PLoS One 2013; 8:e66578. [PMID: 23762492 PMCID: PMC3676356 DOI: 10.1371/journal.pone.0066578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/07/2013] [Indexed: 12/02/2022] Open
Abstract
The COP9 signalosome (CSN) is an eight subunit protein complex conserved in all higher eukaryotes. In Arabidopsis thaliana, the CSN regulates auxin response by removing the ubiquitin-like protein NEDD8/RUB1 from the CUL1 subunit of the SCF(TIR1/AFB) ubiquitin-ligase (deneddylation). Previously described null mutations in any CSN subunit result in the pleiotropic cop/det/fus phenotype and cause seedling lethality, hampering the study of CSN functions in plant development. In a genetic screen to identify enhancers of the auxin response defects conferred by the tir1-1 mutation, we identified a viable csn mutant of subunit 3 (CSN3), designated eta7/csn3-3. In addition to enhancing tir1-1 mutant phenotypes, the csn3-3 mutation alone confers several phenotypes indicative of impaired auxin signaling including auxin resistant root growth and diminished auxin responsive gene expression. Unexpectedly however, csn3-3 plants are not defective in either the CSN-mediated deneddylation of CUL1 or in SCF(TIR1)-mediated degradation of Aux/IAA proteins. These findings suggest that csn3-3 is an atypical csn mutant that defines a novel CSN or CSN3-specific function. Consistent with this possibility, we observe dramatic differences in double mutant interactions between csn3-3 and other auxin signaling mutants compared to another weak csn mutant, csn1-10. Lastly, unlike other csn mutants, assembly of the CSN holocomplex is unaffected in csn3-3 plants. However, we detected a small CSN3-containing protein complex that is altered in csn3-3 plants. We hypothesize that in addition to its role in the CSN as a cullin deneddylase, CSN3 functions in a distinct protein complex that is required for proper auxin signaling.
Collapse
Affiliation(s)
- He Huang
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Marcel Quint
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - William M. Gray
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
34
|
Williamson A, Werner A, Rape M. The Colossus of ubiquitylation: decrypting a cellular code. Mol Cell 2013; 49:591-600. [PMID: 23438855 DOI: 10.1016/j.molcel.2013.01.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/19/2013] [Accepted: 01/24/2013] [Indexed: 11/20/2022]
Abstract
Ubiquitylation is an essential posttranslational modification that can regulate the stability, activity, and localization of thousands of proteins. The reversible attachment of ubiquitin as well as interpretation of the ubiquitin signal depends on dynamic protein networks that are challenging to analyze. In this perspective, we discuss tools of the trade that have recently been developed to dissect mechanisms of ubiquitin-dependent signaling, thereby revealing the critical features of an important cellular code.
Collapse
Affiliation(s)
- Adam Williamson
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
35
|
Pierce NW, Lee JE, Liu X, Sweredoski MJ, Graham RLJ, Larimore EA, Rome M, Zheng N, Clurman BE, Hess S, Shan SO, Deshaies RJ. Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell 2013; 153:206-15. [PMID: 23453757 DOI: 10.1016/j.cell.2013.02.024] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 11/29/2022]
Abstract
The modular SCF (Skp1, cullin, and F box) ubiquitin ligases feature a large family of F box protein substrate receptors that enable recognition of diverse targets. However, how the repertoire of SCF complexes is sustained remains unclear. Real-time measurements of formation and disassembly indicate that SCF(Fbxw7) is extraordinarily stable, but, in the Nedd8-deconjugated state, the cullin-binding protein Cand1 augments its dissociation by one-million-fold. Binding and ubiquitylation assays show that Cand1 is a protein exchange factor that accelerates the rate at which Cul1-Rbx1 equilibrates with multiple F box protein-Skp1 modules. Depletion of Cand1 from cells impedes recruitment of new F box proteins to pre-existing Cul1 and profoundly alters the cellular landscape of SCF complexes. We suggest that catalyzed protein exchange may be a general feature of dynamic macromolecular machines and propose a hypothesis for how substrates, Nedd8, and Cand1 collaborate to regulate the cellular repertoire of SCF complexes.
Collapse
Affiliation(s)
- Nathan W Pierce
- Division of Biology, MC 156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Monocot cereals develop a complex root system comprising embryonic roots at an early seedling stage and postembryonic roots which make up the fibrous root system of adult crops. In the model cereals maize, rice, and barley a number of mutants affecting root development have been identified in the past and a subset of the affected genes have been recently cloned and functionally characterized. The present review summarizes genetic and molecular data of cereal root mutants impaired in the elongation or initiation of embryonic and postembryonic roots and the elongation of root hairs for which the affected genes have been recently cloned.
Collapse
Affiliation(s)
- Caroline Marcon
- Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
37
|
Leal Valentim F, Neven F, Boyen P, van Dijk ADJ. Interactome-wide prediction of protein-protein binding sites reveals effects of protein sequence variation in Arabidopsis thaliana. PLoS One 2012; 7:e47022. [PMID: 23077539 PMCID: PMC3471968 DOI: 10.1371/journal.pone.0047022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/07/2012] [Indexed: 11/18/2022] Open
Abstract
The specificity of protein-protein interactions is encoded in those parts of the sequence that compose the binding interface. Therefore, understanding how changes in protein sequence influence interaction specificity, and possibly the phenotype, requires knowing the location of binding sites in those sequences. However, large-scale detection of protein interfaces remains a challenge. Here, we present a sequence- and interactome-based approach to mine interaction motifs from the recently published Arabidopsis thaliana interactome. The resultant proteome-wide predictions are available via www.ab.wur.nl/sliderbio and set the stage for further investigations of protein-protein binding sites. To assess our method, we first show that, by using a priori information calculated from protein sequences, such as evolutionary conservation and residue surface accessibility, we improve the performance of interface prediction compared to using only interactome data. Next, we present evidence for the functional importance of the predicted sites, which are under stronger selective pressure than the rest of protein sequence. We also observe a tendency for compensatory mutations in the binding sites of interacting proteins. Subsequently, we interrogated the interactome data to formulate testable hypotheses for the molecular mechanisms underlying effects of protein sequence mutations. Examples include proteins relevant for various developmental processes. Finally, we observed, by analysing pairs of paralogs, a correlation between functional divergence and sequence divergence in interaction sites. This analysis suggests that large-scale prediction of binding sites can cast light on evolutionary processes that shape protein-protein interaction networks.
Collapse
Affiliation(s)
| | - Frank Neven
- Hasselt University and Transnational University of Limburg, Hasselt, Belgium
| | - Peter Boyen
- Hasselt University and Transnational University of Limburg, Hasselt, Belgium
| | - Aalt D. J. van Dijk
- Plant Research International, Bioscience, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
38
|
Zhou Z, Wang Y, Cai G, He Q. Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function. PLoS Genet 2012; 8:e1002712. [PMID: 22589747 PMCID: PMC3349749 DOI: 10.1371/journal.pgen.1002712] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/29/2012] [Indexed: 11/18/2022] Open
Abstract
The COP9 signalosome (CSN) is a highly conserved multifunctional complex that has two major biochemical roles: cleaving NEDD8 from cullin proteins and maintaining the stability of CRL components. We used mutation analysis to confirm that the JAMM domain of the CSN-5 subunit is responsible for NEDD8 cleavage from cullin proteins in Neurospora crassa. Point mutations of key residues in the metal-binding motif (EX(n)HXHX(10)D) of the CSN-5 JAMM domain disrupted CSN deneddylation activity without interfering with assembly of the CSN complex or interactions between CSN and cullin proteins. Surprisingly, CSN-5 with a mutated JAMM domain partially rescued the phenotypic defects observed in a csn-5 mutant. We found that, even without its deneddylation activity, the CSN can partially maintain the stability of the SCF(FWD-1) complex and partially restore the degradation of the circadian clock protein FREQUENCY (FRQ) in vivo. Furthermore, we showed that CSN containing mutant CSN-5 efficiently prevents degradation of the substrate receptors of CRLs. Finally, we found that deletion of the CAND1 ortholog in N. crassa had little effect on the conidiation circadian rhythm. Our results suggest that CSN integrity plays major roles in hyphal growth, conidial development, and circadian function in N. crassa.
Collapse
Affiliation(s)
- Zhipeng Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gaihong Cai
- National Institute of Biological Sciences, Beijing, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
39
|
Neddylation and CAND1 independently stimulate SCF ubiquitin ligase activity in Candida albicans. EUKARYOTIC CELL 2011; 11:42-52. [PMID: 22080453 DOI: 10.1128/ec.05250-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SCF (Skp1-cullin/Cdc53-F-box protein) ubiquitin ligases bind substrates via the variable F-box protein and, in conjunction with the RING domain protein Rbx1 and the ubiquitin-conjugating enzyme Ubc3/Cdc34, catalyze substrate ubiquitination. The cullin subunit can be modified covalently by conjugation of the ubiquitin-like protein Rub1/NEDD8 (neddylation) or bound noncovalently by the protein CAND1 (cullin-associated, neddylation-dissociated). Expression of the Candida albicans CAND1 gene homolog CaTIP120 in Saccharomyces cerevisiae is toxic only in the presence of CaCdc53, consistent with a specific interaction between CaTip120 and CaCdc53. To genetically analyze this system in C. albicans, we deleted the homologs of RUB1/NEDD8, TIP120/CAND1, and the deneddylase gene JAB1, and we also generated a temperature-sensitive allele of the essential CaCDC53 gene by knock-in site-directed mutagenesis. Deletion of CaRUB1 and CaTIP120 caused morphological, growth, and protein degradation phenotypes consistent with a reduction in SCF ubiquitin ligase activity. Furthermore, the double Carub1(-/-) Catip120(-/-) mutant was more defective in SCF activity than either individual deletion mutant. These results indicate that CAND1 stimulates SCF ubiquitin ligase activity and that it does so independently of neddylation. Our data do not support a role for CAND1 in the protection of either the F-box protein or cullin from degradation but are consistent with the suggested role of CAND1 in SCF complex remodeling.
Collapse
|
40
|
Wang F, Deng XW. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Res 2011; 21:1286-94. [PMID: 21788985 DOI: 10.1038/cr.2011.118] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) in plants, like in other eukaryotes, targets numerous intracellular regulators and thus modulates almost every aspect of growth and development. The well-known and best-characterized outcome of ubiquitination is mediating target protein degradation via the 26S proteasome, which represents the major selective protein degradation pathway conserved among eukaryotes. In this review, we will discuss the molecular composition, regulation and function of plant UPS, with a major focus on how DELLA protein degradation acts as a key in gibberellin signal transduction and its implication in the regulation of plant growth.
Collapse
Affiliation(s)
- Feng Wang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
41
|
Wang XF, He FF, Ma XX, Mao CZ, Hodgman C, Lu CG, Wu P. OsCAND1 is required for crown root emergence in rice. MOLECULAR PLANT 2011; 4:289-99. [PMID: 20978084 DOI: 10.1093/mp/ssq068] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Crown roots are main components of the fibrous root system and important for crops to anchor and absorb water and nutrition. To understand the molecular mechanisms of crown root formation, we isolated a rice mutant defective in crown root emergence designated as Oscand1 (named after the Arabidopsis homologous gene AtCAND1). The defect of visible crown root in the Oscand1 mutant is the result of cessation of the G2/M cell cycle transition in the crown root meristem. Map-based cloning revealed that OsCAND1 is a homolog of Arabidopsis CAND1. During crown root primordium development, the expression of OsCAND1 is confined to the root cap after the establishment of fundamental organization. The transgenic plants harboring DR5::GUS showed that auxin signaling in crown root tip is abnormal in the mutant. Exogenous auxin application can partially rescue the defect of crown root development in Oscand1. Taken together, these data show that OsCAND1 is involved in auxin signaling to maintain the G2/M cell cycle transition in crown root meristem and, consequently, the emergence of crown root. Our findings provide new information about the molecular regulation of the emergence of crown root in rice.
Collapse
Affiliation(s)
- Xiao-Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | | | | | | | | | | | | |
Collapse
|
42
|
Regulation of cullin RING E3 ubiquitin ligases by CAND1 in vivo. PLoS One 2011; 6:e16071. [PMID: 21249194 PMCID: PMC3020946 DOI: 10.1371/journal.pone.0016071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/04/2010] [Indexed: 11/20/2022] Open
Abstract
Cullin RING ligases are multi-subunit complexes consisting of a cullin protein which forms a scaffold onto which the RING protein Rbx1/2 and substrate receptor subunits assemble. CAND1, which binds to cullins that are not conjugated with Nedd8 and not associated with substrate receptors, has been shown to function as a positive regulator of Cullin ligases in vivo. Two models have been proposed to explain this requirement: (i) CAND1 sequesters cullin proteins and thus prevents autoubiquitination of substrate receptors, and (ii) CAND1 is required to promote the exchange of bound substrate receptors. Using mammalian cells, we show that CAND1 is predominantly cytoplasmically localized and that cullins are the major CAND1 interacting proteins. However, only small amounts of CAND1 bind to Cul1 in cells, despite low basal levels of Cul1 neddylation and approximately equal cytoplasmic endogenous protein concentrations of CAND1 and Cul1. Compared to F-box protein substrate receptors, binding of CAND1 to Cul1 in vivo is weak. Furthermore, preventing binding of F-box substrate receptors to Cul1 does not increase CAND1 binding. In conclusion, our study suggests that CAND1 does not function by sequestering cullins in vivo to prevent substrate receptor autoubiquitination and is likely to regulate cullin RING ligase activity via alternative mechanisms.
Collapse
|
43
|
Abstract
The posttranslational addition of ubiquitin (Ub) helps control the half-life, localization, and action of many intracellular plant proteins. A primary function is the degradation of ubiquitylated proteins by the 26S proteasome, which in turn plays important housekeeping and regulatory roles by removing aberrant polypeptides and various normal short-lived regulators. Strikingly, both genetic and genomic studies reveal that Ub conjugation is extraordinarily complex in plants, with more than 1500 Ub-protein ligases (or E3s) possible that could direct the final transfer of the Ub moiety to an equally large number of targets. The cullin-RING ligases (CRLs) are a highly polymorphic E3 collection composed of a cullin backbone onto which binds carriers of activated Ub and a diverse assortment of adaptors that recruit appropriate substrates for ubiquitylation. Here, we review our current understanding of the organization and structure of CRLs in plants and their dynamics, substrates, potential functions, and evolution. The importance of CRLs is exemplified by their ability to serve as sensors of hormones and light; their essential participation in various signaling pathways; their control of the cell cycle, transcription, the stress response, self-incompatibility, and pathogen defense; and their dramatically divergent evolutionary histories in many plant lineages. Given both their organizational complexities and their critical influences, CRLs likely impact most, if not all, aspects of plant biology.
Collapse
Affiliation(s)
- Zhihua Hua
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706-1574, USA.
| | | |
Collapse
|
44
|
Helmstaedt K, Schwier EU, Christmann M, Nahlik K, Westermann M, Harting R, Grond S, Busch S, Braus GH. Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site. Mol Biol Cell 2010; 22:153-64. [PMID: 21119001 PMCID: PMC3016973 DOI: 10.1091/mbc.e10-08-0732] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cand1 inhibits cullin RING ubiquitin ligases by binding unneddylated cullins. The Cand1 N-terminus blocks the cullin neddylation site, whereas the C-terminus inhibits cullin adaptor interaction. These Cand1 binding sites can be separated into two functional polypeptides which bind sequentially. C-terminal Cand1 can directly bind to unneddylated cullins in the nucleus without blocking the neddylation site. The smaller N-terminal Cand1 cannot bind to the cullin neddylation region without C-terminal Cand1. The separation of a single cand1 into two independent genes represents the in vivo situation of the fungus Aspergillus nidulans, where C-terminal Cand1 recruits smaller N-terminal Cand1 in the cytoplasm. Either deletion results in an identical developmental and secondary metabolism phenotype in fungi, which resembles csn mutants deficient in the COP9 signalosome (CSN) deneddylase. We propose a two-step Cand1 binding to unneddylated cullins which initiates at the adaptor binding site and subsequently blocks the neddylation site after CSN has left.
Collapse
Affiliation(s)
- Kerstin Helmstaedt
- Institute of Microbiology and Genetics, Georg-August-Universität, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim SH, Kim HJ, Kim S, Yim J. Drosophila Cand1 regulates Cullin3-dependent E3 ligases by affecting the neddylation of Cullin3 and by controlling the stability of Cullin3 and adaptor protein. Dev Biol 2010; 346:247-57. [PMID: 20691177 DOI: 10.1016/j.ydbio.2010.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 06/22/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
Cullin-RING ubiquitin ligases (CRLs), which comprise the largest class of E3 ligases, regulate diverse cellular processes by targeting numerous proteins. Conjugation of the ubiquitin-like protein Nedd8 with Cullin activates CRLs. Cullin-associated and neddylation-dissociated 1 (Cand1) is known to negatively regulate CRL activity by sequestering unneddylated Cullin1 (Cul1) in biochemical studies. However, genetic studies of Arabidopsis have shown that Cand1 is required for optimal CRL activity. To elucidate the regulation of CRLs by Cand1, we analyzed a Cand1 mutant in Drosophila. Loss of Cand1 causes accumulation of neddylated Cullin3 (Cul3) and stabilizes the Cul3 adaptor protein HIB. In addition, the Cand1 mutation stimulates protein degradation of Cubitus interruptus (Ci), suggesting that Cul3-RING ligase activity is enhanced by the loss of Cand1. However, the loss of Cand1 fails to repress the accumulation of Ci in Nedd8(AN015) or CSN5(null) mutant clones. Although Cand1 is able to bind both Cul1 and Cul3, mutation of Cand1 suppresses only the accumulation of Cul3 induced by the dAPP-BP1 mutation defective in the neddylation pathway, and this effect is attenuated by inhibition of proteasome function. Furthermore, overexpression of Cand1 stabilizes the Cul3 protein when the neddylation pathway is partially suppressed. These data indicate that Cand1 stabilizes unneddylated Cul3 by preventing proteasomal degradation. Here, we propose that binding of Cand1 to unneddylated Cul3 causes a shift in the equilibrium away from the neddylation of Cul3 that is required for the degradation of substrate by CRLs, and protects unneddylated Cul3 from proteasomal degradation. Cand1 regulates Cul3-mediated E3 ligase activity not only by acting on the neddylation of Cul3, but also by controlling the stability of the adaptor protein and unneddylated Cul3.
Collapse
Affiliation(s)
- Song-Hee Kim
- School of Biological Science, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Yang XY, Chen WP, Rendahl AK, Hegeman AD, Gray WM, Cohen JD. Measuring the turnover rates of Arabidopsis proteins using deuterium oxide: an auxin signaling case study. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:680-695. [PMID: 20525007 DOI: 10.1111/j.1365-313x.2010.04266.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Rapid environmental responses in plants rely on endogenous signaling mechanisms, which in many cases are mediated by changes in protein turnover rates. It is therefore necessary to develop methods for measuring protein dynamics that monitor large sets of plant proteins to begin to apply a systems biology approach to the study of plant behavior. The use of stable isotope labeling strategies that are adaptable to proteomic methods is particularly attractive for this purpose. Here, we explore one example of such methods that is particularly suitable for plants at the seedling stage, where measurement of amino acid and protein turnover rates is accomplished using a heavy water labeling strategy. The method is backed by microarray evaluation to define its feasibility for specific experimental approaches, and the CULLIN-ASSOCIATED AND NEDDYLATION DISSOCIATED 1 (CAND1) and TRANSPORT INHIBITOR RESPONSE 1 (TIR1) proteins are used to illustrate the potential utility in understanding hormonal signaling regulation. These studies provide insight not only into the potential utility of the method, but also address possible areas of concern regarding the use of heavy water labeling during plant growth. These considerations suggest a prescription for specific experimental designs that minimize interference resulting from the induction of treatment-specific gene expression in the results obtained.
Collapse
Affiliation(s)
- Xiao-Yuan Yang
- Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
47
|
Bosu DR, Feng H, Min K, Kim Y, Wallenfang MR, Kipreos ET. C. elegans CAND-1 regulates cullin neddylation, cell proliferation and morphogenesis in specific tissues. Dev Biol 2010; 346:113-26. [PMID: 20659444 DOI: 10.1016/j.ydbio.2010.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 07/14/2010] [Accepted: 07/18/2010] [Indexed: 11/26/2022]
Abstract
Cullin-RING ubiquitin ligases (CRLs) are critical regulators of multiple developmental and cellular processes in eukaryotes. CAND1 is a biochemical inhibitor of CRLs, yet has been shown to promote CRL activity in plant and mammalian cells. Here we analyze CAND1 function in the context of a developing metazoan organism. Caenorhabditis elegans CAND-1 is capable of binding to all of the cullins, and we show that it physically interacts with CUL-2 and CUL-4 in vivo. The covalent attachment of the ubiquitin-like protein Nedd8 is required for cullin activity in animals and plants. In cand-1 mutants, the levels of the neddylated isoforms of CUL-2 and CUL-4 are increased, indicating that CAND-1 is a negative regulator of cullin neddylation. cand-1 mutants are hypersensitive to the partial loss of cullin activity, suggesting that CAND-1 facilitates CRL functions. cand-1 mutants exhibit impenetrant phenotypes, including developmental arrest, morphological defects of the vulva and tail, and reduced fecundity. cand-1 mutants share with cul-1 and lin-23 mutants the phenotypes of supernumerary seam cell divisions, defective alae formation, and the accumulation of the SCF(LIN-23) target the glutamate receptor GLR-1. The observation that cand-1 mutants have phenotypes associated with the loss of the SCF(LIN-23) complex, but lack phenotypes associated with other specific CRL complexes, suggests that CAND-1 is differentially required for the activity of distinct CRL complexes.
Collapse
Affiliation(s)
- Dimple R Bosu
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
48
|
Robles P, Fleury D, Candela H, Cnops G, Alonso-Peral MM, Anami S, Falcone A, Caldana C, Willmitzer L, Ponce MR, Van Lijsebettens M, Micol JL. The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:1357-72. [PMID: 20044451 PMCID: PMC2832283 DOI: 10.1104/pp.109.149369] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/26/2009] [Indexed: 05/19/2023]
Abstract
To identify genes involved in vascular patterning in Arabidopsis (Arabidopsis thaliana), we screened for abnormal venation patterns in a large collection of leaf shape mutants isolated in our laboratory. The rotunda1-1 (ron1-1) mutant, initially isolated because of its rounded leaves, exhibited an open venation pattern, which resulted from an increased number of free-ending veins. We positionally cloned the RON1 gene and found it to be identical to FRY1/SAL1, which encodes an enzyme with inositol polyphosphate 1-phosphatase and 3' (2'),5'-bisphosphate nucleotidase activities and has not, to our knowledge, previously been related to venation patterning. The ron1-1 mutant and mutants affected in auxin homeostasis share perturbations in venation patterning, lateral root formation, root hair length, shoot branching, and apical dominance. These similarities prompted us to monitor the auxin response using a DR5-GUS auxin-responsive reporter transgene, the expression levels of which were increased in roots and reduced in leaves in the ron1-1 background. To gain insight into the function of RON1/FRY1/SAL1 during vascular development, we generated double mutants for genes involved in vein patterning and found that ron1 synergistically interacts with auxin resistant1 and hemivenata-1 but not with cotyledon vascular pattern1 (cvp1) and cvp2. These results suggest a role for inositol metabolism in the regulation of auxin responses. Microarray analysis of gene expression revealed that several hundred genes are misexpressed in ron1-1, which may explain the pleiotropic phenotype of this mutant. Metabolomic profiling of the ron1-1 mutant revealed changes in the levels of 38 metabolites, including myoinositol and indole-3-acetonitrile, a precursor of auxin.
Collapse
|
49
|
Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:1029-40. [PMID: 20409276 PMCID: PMC3066055 DOI: 10.1111/j.1365-313x.2010.04112.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants utilize the ubiquitin-proteasome system (UPS) to modulate nearly every aspect of growth and development. Ubiquitin is covalently attached to target proteins through the action of three enzymes known as E1, E2, and E3. The ultimate outcome of this post-translational modification depends on the nature of the ubiquitin linkage and the extent of polyubiquitination. In most cases, ubiquitination results in degradation of the target protein in the 26S proteasome. During the last 10 years it has become clear that the UPS plays a prominent regulatory role in hormone biology. E3 ubiquitin ligases in particular actively participate in hormone perception, de-repression of hormone signaling pathways, degradation of hormone specific transcription factors, and regulation of hormone biosynthesis. It is certain that additional functions will be discovered as more of the nearly 1200 potential E3s in plants are elucidated.
Collapse
Affiliation(s)
- Aaron Santner
- Molecular Kinetics, Inc., 6201 La Pas Trail, Suite 160, Indianapolis, IN 46268, USA
| | - Mark Estelle
- University of California San Diego, Section of Cell and Developmental Biology, 9500 Gilman Drive, La Jolla, CA 9209, USA
- For correspondence (fax +858 534 7108; )
| |
Collapse
|
50
|
Deshaies RJ, Emberley ED, Saha A. Control of cullin-ring ubiquitin ligase activity by nedd8. Subcell Biochem 2010; 54:41-56. [PMID: 21222272 DOI: 10.1007/978-1-4419-6676-6_4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Cullin-RING ubiquitin ligase (CRL) family, which may number as many as 350 different enzymes, has an enormous impact on cellular regulation. CRL enzymes regulate cell biology by conjugating ubiquitin onto target proteins that are involved in a multitude of processes. In most cases this leads to degradation of the target, but in some cases CRL-dependent ubiquitination acts as a switch to activate or repress target function. The ubiquitin ligase activity of CRLs is controlled by cycles of attachment and removal of the ubiquitin-like protein Nedd8. Conjugation of Nedd8 onto the cullin subunit of CRLs promotes assembly of an intact CRL complex and switches on ubiquitin ligase activity. Conversely, removal of Nedd8 switches off ubiquitin ligase activity and initiates CRL disassembly. Continuous maintenance of CRL function in vivo requires the activities of both the Nedd8-conjugating and deconjugating enzymes, pointing to a critical role of complex dynamics in CRL function. Here, we review how the Nedd8 cycle controls CRL activity and how perturbations of this cycle can lead to disease.
Collapse
Affiliation(s)
- Raymond J Deshaies
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA,
| | | | | |
Collapse
|