1
|
Kuang W, Qin D, Huang Y, Liu Y, Cao X, Xu M. Analysis of the miR482 Gene Family in Plants. Genes (Basel) 2024; 15:1043. [PMID: 39202403 PMCID: PMC11353999 DOI: 10.3390/genes15081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
MicroRNA482 (miR482) is a conserved microRNA family in plants, playing critical regulatory roles in different biological activities. Though the members of the miR482 gene family have been identified in plants, a systematic study has not been reported yet. In the present research, 140 mature sequences generated by 106 precursors were used for molecular characterization, phylogenetic analysis, and target gene prediction, and the competing endogenous RNA (ceRNA) network mediated by miR482 was summarized. The length of mature sequences ranged from 17 nt to 25 nt, with 22 nt being the most abundant, and the start and end of the mature sequences had a preference for uracil (U). By sequence multiplex comparison, it was found that the mature sequences of 5p were clustered into one group, and others were clustered into the other group. Phylogenetic analysis revealed that the 140 mature sequences were categorized into six groups. Meanwhile, all the precursor sequences formed a stable hairpin structure, and the 106 precursors were divided into five groups. However, the expression of miR482 varied significantly between different species and tissues. In total, 149 target genes were predicted and their functions focused on single-organism process, cellular process, and cell and cell part. The ceRNA network of miR482 in tomato, cotton, and peanut was summarized based on related publications. In conclusion, this research will provide a foundation for further understanding of the miR482 gene family.
Collapse
Affiliation(s)
| | | | | | | | - Xue Cao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; (W.K.); (D.Q.); (Y.H.); (Y.L.); (M.X.)
| | | |
Collapse
|
2
|
Jiang C, Zhang X, Rao J, Luo S, Luo L, Lu W, Li M, Zhao S, Ren D, Liu J, Song Y, Zheng Y, Sun YB. Enhancing Pseudomonas syringae pv. Actinidiae sensitivity in kiwifruit by repressing the NBS-LRR genes through miRNA-215-3p and miRNA-29-3p identification. FRONTIERS IN PLANT SCIENCE 2024; 15:1403869. [PMID: 39086918 PMCID: PMC11288850 DOI: 10.3389/fpls.2024.1403869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (PSA), poses a grave threat to the global kiwifruit industry. In this study, we examined the role of microRNAs (miRNAs) in kiwifruit's response to PSA. Kiwifruit seedlings subjected to PSA treatment showed significant changes in both miRNA and gene expression compared to the control group. We identified 364 differentially expressed miRNAs (DEMs) and 7170 differentially expressed genes (DEGs). Further analysis revealed 180 miRNAs negatively regulating 641 mRNAs. Notably, two miRNAs from the miRNA482 family, miRNA-215-3p and miRNA-29-3p, were found to increase kiwifruit's sensitivity to PSA when overexpressed. These miRNAs were linked to the regulation of NBS-LRR target genes, shedding light on their role in kiwifruit's defence against PSA. This study offers insights into the miRNA482-NBS-LRR network as a crucial component in enhancing kiwifruit bioresistance to PSA infestation and provides promising candidate genes for further research.
Collapse
Affiliation(s)
- Chengyao Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoying Zhang
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Jiahui Rao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shu Luo
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Liang Luo
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shumei Zhao
- Key Laboratory of Agricultural Engineering in Structure and Environment, China Agricultural University, Beijing, China
| | - Dan Ren
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Jiaming Liu
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Yu Song
- Research Institute of Crop Germplasm Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, King’s College London, London, United Kingdom
| |
Collapse
|
3
|
Liang W, Xu Y, Cui X, Li C, Lu S. Genome-Wide Identification and Characterization of miRNAs and Natural Antisense Transcripts Show the Complexity of Gene Regulatory Networks for Secondary Metabolism in Aristolochia contorta. Int J Mol Sci 2024; 25:6043. [PMID: 38892231 PMCID: PMC11172604 DOI: 10.3390/ijms25116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Aristolochia contorta Bunge is an academically and medicinally important plant species. It belongs to the magnoliids, with an uncertain phylogenetic position, and is one of the few plant species lacking a whole-genome duplication (WGD) event after the angiosperm-wide WGD. A. contorta has been an important traditional Chinese medicine material. Since it contains aristolochic acids (AAs), chemical compounds with nephrotoxity and carcinogenicity, the utilization of this plant has attracted widespread attention. Great efforts are being made to increase its bioactive compounds and reduce or completely remove toxic compounds. MicroRNAs (miRNAs) and natural antisense transcripts (NATs) are two classes of regulators potentially involved in metabolism regulation. Here, we report the identification and characterization of 223 miRNAs and 363 miRNA targets. The identified miRNAs include 51 known miRNAs belonging to 20 families and 172 novel miRNAs belonging to 107 families. A negative correlation between the expression of miRNAs and their targets was observed. In addition, we identified 441 A. contorta NATs and 560 NAT-sense transcript (ST) pairs, of which 12 NATs were targets of 13 miRNAs, forming 18 miRNA-NAT-ST modules. Various miRNAs and NATs potentially regulated secondary metabolism through the modes of miRNA-target gene-enzyme genes, NAT-STs, and NAT-miRNA-target gene-enzyme genes, suggesting the complexity of gene regulatory networks in A. contorta. The results lay a solid foundation for further manipulating the production of its bioactive and toxic compounds.
Collapse
Affiliation(s)
- Wenjing Liang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yayun Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinyun Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Caili Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanfa Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
4
|
Zhou H, Jiang M, Li J, Xu Y, Li C, Lu S. Genome-Wide Identification and Functional Analysis of Salvia miltiorrhiza MicroRNAs Reveal the Negative Regulatory Role of Smi-miR159a in Phenolic Acid Biosynthesis. Int J Mol Sci 2024; 25:5148. [PMID: 38791194 PMCID: PMC11121111 DOI: 10.3390/ijms25105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs in plants. They play critical functions in various biological processes during plant growth and development. Salvia miltiorrhiza is a well-known traditional Chinese medicinal plant with significant medicinal, economic, and academic values. In order to elucidate the role of miRNAs in S. miltiorrhiza, six small RNA libraries from mature roots, young roots, stems, mature leaves, young leaves and flowers of S. miltiorrhiza and one degradome library from mixed tissues were constructed. A total of 184 miRNA precursors, generating 137 known and 49 novel miRNAs, were genome-widely identified. The identified miRNAs were predicted to play diversified regulatory roles in plants through regulating 891 genes. qRT-PCR and 5' RLM-RACE assays validated the negative regulatory role of smi-miR159a in SmMYB62, SmMYB78, and SmMYB80. To elucidate the function of smi-miR159a in bioactive compound biosynthesis, smi-miR159a transgenic hairy roots were generated and analyzed. The results showed that overexpression of smi-miR159a caused a significant decrease in rosmarinic acid and salvianolic acid B contents. qRT-PCR analysis showed that the targets of smi-miR159a, including SmMYB62, SmMYB78, and SmMYB80, were significantly down-regulated, accompanied by the down-regulation of SmPAL1, SmC4H1, Sm4CL1, SmTAT1, SmTAT3, SmHPPR1, SmRAS, and SmCYP98A14 genes involved in phenolic acid biosynthesis. It suggests that smi-miR159a is a significant negative regulator of phenolic acid biosynthesis in S. miltiorrhiza.
Collapse
Affiliation(s)
- Hong Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Maochang Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yayun Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Caili Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanfa Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
5
|
Gao C, Zhao B, Zhang J, Du X, Wang J, Guo Y, He Y, Feng H, Huang L. Adaptive regulation of miRNAs/milRNAs in tissue-specific interaction between apple and Valsa mali. HORTICULTURE RESEARCH 2024; 11:uhae094. [PMID: 38799130 PMCID: PMC11116833 DOI: 10.1093/hr/uhae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
In plant-pathogen interactions, pathogens display tissue specificity, infecting and causing disease in particular tissues. However, the involvement of microRNAs/microRNA-like RNAs (miRNAs/milRNAs) in tissue-specific regulation during plant-pathogen interactions remains largely unexplored. This study investigates the differential expression of miRNAs/milRNAs, as well as their corresponding target genes, in interactions between Valsa mali (Vm) and different apple tissues. The results demonstrated that both apple miRNAs and Vm milRNAs exhibited distinct expression profiles when Vm infected bark and leaves, with functionally diverse corresponding target genes. Furthermore, one apple miRNA (Mdo-miR482a) and one Vm milRNA (Vm-milR57) were identified as exhibiting tissue-specific expression in interactions between Vm and apple bark or leaves. Mdo-miR482a was exclusively up-regulated in response to Vm infection in bark and target a nucleotide-binding leucine-rich repeat (NLR) gene of apple. When Mdo-miR482a was transiently over-expressed or silenced, the resistance was significantly reduced or improved. Similarly, transient expression of the NLR gene also showed an increase in resistance. Vm-milR57 could target two essential pathogenicity-related genes of Vm. During Vm infection in bark, the expression of Vm-milR57 was down-regulated to enhance the expression of the corresponding target gene to improve the pathogenicity. The study is the first to reveal tissue-specific characteristics of apple miRNAs and Vm milRNAs in interactions between Vm and different apple tissues, providing new insights into adaptive regulation in tissue-specific interactions between plants and fungi.
Collapse
Affiliation(s)
- Chengyu Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Binsen Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanting He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Chen YL, Hsieh JWA, Kuo SC, Kao CT, Tung CC, Yu JH, Chang TH, Ku C, Xie J, Zhang D, Li Q, Lin YCJ. Merit of integrating in situ transcriptomics and anatomical information for cell annotation and lineage construction in single-cell analyses of Populus. Genome Biol 2024; 25:85. [PMID: 38570851 PMCID: PMC10988922 DOI: 10.1186/s13059-024-03227-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Cell type annotation and lineage construction are two of the most critical tasks conducted in the analyses of single-cell RNA sequencing (scRNA-seq). Four recent scRNA-seq studies of differentiating xylem propose four models on differentiating xylem development in Populus. The differences are mostly caused by the use of different strategies for cell type annotation and subsequent lineage interpretation. Here, we emphasize the necessity of using in situ transcriptomes and anatomical information to construct the most plausible xylem development model.
Collapse
Affiliation(s)
- Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | | | - Shang-Che Kuo
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Chung-Ting Kao
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Chia-Chun Tung
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jhong-He Yu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | | | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Ying-Chung Jimmy Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Zhu B, Wang M, Pang Y, Hu X, Sun C, Zhou H, Deng Y, Lu S. The Smi-miR858a- SmMYB module regulates tanshinone and phenolic acid biosynthesis in Salvia miltiorrhiza. HORTICULTURE RESEARCH 2024; 11:uhae047. [PMID: 38706582 PMCID: PMC11069429 DOI: 10.1093/hr/uhae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/13/2024] [Indexed: 05/07/2024]
Abstract
Tanshinones and phenolic acids are two major classes of bioactive compounds in Salvia miltiorrhiza. Revealing the regulatory mechanism of their biosynthesis is crucial for quality improvement of S. miltiorrhiza medicinal materials. Here we demonstrated that Smi-miR858a-Smi-miR858c, a miRNA family previously known to regulate flavonoid biosynthesis, also played critical regulatory roles in tanshinone and phenolic acid biosynthesis in S. miltiorrhiza. Overexpression of Smi-miR858a in S. miltiorrhiza plants caused significant growth retardation and tanshinone and phenolic acid reduction. Computational prediction and degradome and RNA-seq analyses revealed that Smi-miR858a could directly cleave the transcripts of SmMYB6, SmMYB97, SmMYB111, and SmMYB112. Yeast one-hybrid and transient transcriptional activity assays showed that Smi-miR858a-regulated SmMYBs, such as SmMYB6 and SmMYB112, could activate the expression of SmPAL1 and SmTAT1 involved in phenolic acid biosynthesis and SmCPS1 and SmKSL1 associated with tanshinone biosynthesis. In addition to directly activating the genes involved in bioactive compound biosynthesis pathways, SmMYB6, SmMYB97, and SmMYB112 could also activate SmAOC2, SmAOS4, and SmJMT2 involved in the biosynthesis of methyl jasmonate, a significant elicitor of plant secondary metabolism. The results suggest the existence of dual signaling pathways for the regulation of Smi-miR858a in bioactive compound biosynthesis in S. miltiorrhiza.
Collapse
Affiliation(s)
- Butuo Zhu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Meizhen Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yongqi Pang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Xiangling Hu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Chao Sun
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Hong Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yuxing Deng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
8
|
Ruan Q, Bai X, Wang Y, Zhang X, Wang B, Zhao Y, Zhu X, Wei X. Regulation of endogenous hormone and miRNA in leaves of alfalfa (Medicago sativa L.) seedlings under drought stress by endogenous nitric oxide. BMC Genomics 2024; 25:229. [PMID: 38429670 PMCID: PMC10908014 DOI: 10.1186/s12864-024-10024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/17/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Alfalfa (Medicago sativa. L) is one of the best leguminous herbage in China and even in the world, with high nutritional and ecological value. However, one of the drawbacks of alfalfa is its sensitivity to dry conditions, which is a global agricultural problem. The objective of this study was to investigate the regulatory effects of endogenous nitric oxide (NO) on endogenous hormones and related miRNAs in alfalfa seedling leaves under drought stress. The effects of endogenous NO on endogenous hormones such as ABA, GA3, SA, and IAA in alfalfa leaves under drought stress were studied. In addition, high-throughput sequencing technology was used to identify drought-related miRNAs and endogenous NO-responsive miRNAs in alfalfa seedling leaves under drought stress. RESULT By measuring the contents of four endogenous hormones in alfalfa leaves, it was found that endogenous NO could regulate plant growth and stress resistance by inducing the metabolism levels of IAA, ABA, GA3, and SA in alfalfa, especially ABA and SA in alfalfa. In addition, small RNA sequencing technology and bioinformatics methods were used to analyze endogenous NO-responsive miRNAs under drought stress. It was found that most miRNAs were enriched in biological pathways and molecular functions related to hormones (ABA, ETH, and JA), phenylpropane metabolism, and plant stress tolerance. CONCLUSION In this study, the analysis of endogenous hormone signals and miRNAs in alfalfa leaves under PEG and PEG + cPTIO conditions provided an important basis for endogenous NO to improve the drought resistance of alfalfa at the physiological and molecular levels. It has important scientific value and practical significance for endogenous NO to improve plant drought resistance.
Collapse
Affiliation(s)
- Qian Ruan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaoming Bai
- Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Yizhen Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of agronomy, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaofang Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Ying Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of agronomy, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China.
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
9
|
Li W, Lin YCJ, Chen YL, Zhou C, Li S, De Ridder N, Oliveira DM, Zhang L, Zhang B, Wang JP, Xu C, Fu X, Luo K, Wu AM, Demura T, Lu MZ, Zhou Y, Li L, Umezawa T, Boerjan W, Chiang VL. Woody plant cell walls: Fundamentals and utilization. MOLECULAR PLANT 2024; 17:112-140. [PMID: 38102833 DOI: 10.1016/j.molp.2023.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Toshiaki Umezawa
- Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
10
|
Zhou D, Zhao S, Zhou H, Chen J, Huang L. A lncRNA bra-miR156HG regulates flowering time and leaf morphology as a precursor of miR156 in Brassica campestris and Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111889. [PMID: 37805055 DOI: 10.1016/j.plantsci.2023.111889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) are important regulators in plant growth and development. Here the function of a lncRNA fragment was studied, which was predicted as an endogenous target mimic (eTM) of miR156 in Brassica campesrtis. Unexpectedly, the transformation of this lncRNA into Arabidopsis thaliana neither inhibited the expression of miR156a nor resulted in any phenotypes that differed from the control plants (CK). The full-length sequence of the lncRNA (named bra-miR156HG) was then obtained using RACE and transferred into A. thaliana. The transgenic plants displayed a delay in flowering time, an increasing number of rosette leaves, and a changed morphology of cauline leaves, which was similar to the plants that expressed bra-miR156a. In contrast, the overexpression of bra-miR156HG in B. campestris resulted in an increased tip angle of leaves and changed the length-width ratio of leaves at different nodes, suggesting that bra-miR156HG may be involved in regulating the leaf morphology. Collectively, our study showed that bra-miR156HG functions as a precursor of bra-miR156a involved in regulating plant flowering time and leaf development under different biological backgrounds. The secondary structure of lncRNA is essential not only for the normal roles that it plays but also for expanding the functional diversities.
Collapse
Affiliation(s)
- Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China
| | - Shengke Zhao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China
| | - Huiyan Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China
| | - Jingwen Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
11
|
Yuan J, Wang X, Qu S, Shen T, Li M, Zhu L. The roles of miR156 in abiotic and biotic stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108150. [PMID: 37922645 DOI: 10.1016/j.plaphy.2023.108150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
MicroRNAs (miRNAs), known as a kind of non-coding RNA, can negatively regulate its target genes. To date, the roles of various miRNAs in plant development and resistance to abiotic and biotic stresses have been widely explored. The present review summarized and discussed the functions of miR156 or miR156-SPL module in abiotic and biotic stresses, such as drought, salt, heat, cold stress, UV-B radiation, heavy mental hazards, nutritional starvation, as well as plant viruses, plant diseases, etc. Based on this, the regulation of miR156-involved stress tolerance was better understood, thus, it would be much easier for plant biologists to carry out suitable strategies to help plants suffer from unfavorable living environments.
Collapse
Affiliation(s)
- Jing Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengtao Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
López-Márquez D, Del-Espino Á, Ruiz-Albert J, Bejarano ER, Brodersen P, Beuzón CR. Regulation of plant immunity via small RNA-mediated control of NLR expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6052-6068. [PMID: 37449766 PMCID: PMC10575705 DOI: 10.1093/jxb/erad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Plants use different receptors to detect potential pathogens: membrane-anchored pattern recognition receptors (PRRs) activated upon perception of pathogen-associated molecular patterns (PAMPs) that elicit pattern-triggered immunity (PTI); and intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) activated by detection of pathogen-derived effectors, activating effector-triggered immunity (ETI). The interconnections between PTI and ETI responses have been increasingly reported. Elevated NLR levels may cause autoimmunity, with symptoms ranging from fitness cost to developmental arrest, sometimes combined with run-away cell death, making accurate control of NLR dosage key for plant survival. Small RNA-mediated gene regulation has emerged as a major mechanism of control of NLR dosage. Twenty-two nucleotide miRNAs with the unique ability to trigger secondary siRNA production from target transcripts are particularly prevalent in NLR regulation. They enhance repression of the primary NLR target, but also bring about repression of NLRs only complementary to secondary siRNAs. We summarize current knowledge on miRNAs and siRNAs in the regulation of NLR expression with an emphasis on 22 nt miRNAs and propose that miRNA and siRNA regulation of NLR levels provides additional links between PTI and NLR defense pathways to increase plant responsiveness against a broad spectrum of pathogens and control an efficient deployment of defenses.
Collapse
Affiliation(s)
- Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Ángel Del-Espino
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
13
|
Wang J, Li R, Chen Y, Wang X, Shi Q, Du K, Zheng B, Shi X. Expressing a Short Tandem Target Mimic (STTM) of miR164b/e-3p enhances poplar leaf serration by co-regulating the miR164-NAC module. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107790. [PMID: 37348390 DOI: 10.1016/j.plaphy.2023.107790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 06/24/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs (21-24 nt) that play important roles in plant growth and development. The miR164 family is highly conserved in plants and the miR164-NAM/ATAF/CUC (NAC) module is validated to regulate leaf and flower development, lateral root initiation and stress response. However, our knowledge of its role in Populus remains limited. In this study, two mature miRNA species, miR164e-5p and miR164e-3p, were identified in Populus deltoides. Their nucleotide sequences were identical to those of miR164a/b/c/d/e-5p and miR164b/e-3p in P. tremula × P. alba clone 717-1B4 (hereinafter poplar 717), respectively. Transgenic plants of poplar 717, including overexpression lines (35S::pri-miR164e) and Short Tandem Target Mimic lines (STTM-miR164a-d,e-5p and STTM-miR164b/e-3p), were generated to study the roles of miR164e-5p and miR164e-3p in poplar. Compared with poplar 717, the leaf margins of 35S::pri-miR164e lines were smoother, the leaves of STTM-miR164b/e-3p line were more serrated, while the leaf morphology of STTM-miR164a-d,e-5p lines had no obvious change. In addition, both 35S::pri-miR164e and STTM-miR164b/e-3p plants had a dwarf phenotype. Expressions of miR164a-d,e-5p target genes, including PtaCUC2a, PtaCUC2b and PtaORE1, was significantly reduced in the apex of 35S::pri-miR164e lines. Green fluorescent protein (GFP) reporter assay showed that PtaCUC2a/2b and PtaORE1 were cleaved by miR164a-d,e-5p, and the cleavage was inhibited by STTM-miR164b/e-3p. Therefore, miR164b/e-3p may cooperate with miR164a-d,e-5p to regulate certain NAC members, such as PtaCUC2a/2b and PtaORE1, thereby regulating leaf development and plant growth in poplar. Our findings add new insights into the mechanisms by which the miR164-NAC module regulates plant development.
Collapse
Affiliation(s)
- Jieyu Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Poplar Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruyi Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Poplar Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiming Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohui Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Poplar Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaofang Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kebing Du
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Poplar Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Poplar Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueping Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Poplar Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Wu P, Lu C, Wang B, Zhang F, Shi L, Xu Y, Chen A, Si H, Su J, Wu J. Cotton RSG2 Mediates Plant Resistance against Verticillium dahliae by miR482b Regulation. BIOLOGY 2023; 12:898. [PMID: 37508331 PMCID: PMC10376429 DOI: 10.3390/biology12070898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023]
Abstract
Cotton Verticillium wilt, mainly caused by Verticillium dahliae, has a serious impact on the yield and quality of cotton fiber. Many microRNAs (miRNAs) have been identified to participate in plant resistance to V. dahliae infection, but the exploration of miRNA's function mechanism in plant defense is needed. Here, we demonstrate that the ghr-miR482b-GhRSG2 module mediates cotton plant resistance to V. dahliae infection. Based on the mRNA degradation data and GUS fusion experiments, ghr-miR482b directedly bonds to GhRSG2 mRNA to lead to its degradation. The knockdown and overexpression of ghr-miR482b through virus-induced gene silencing strategies enhanced (decreased by 0.39-fold in disease index compared with the control) and weakened (increased by 0.46-fold) the plant resistance to V. dahliae, respectively. In addition, silencing GhRSG2 significantly increased (increased by 0.93-fold in disease index) the plant sensitivity to V. dahliae compared with the control plants treated with empty vector. The expression levels of two SA-related disease genes, GhPR1 and GhPR2, significantly decreased in GhRSG2-silenced plants by 0.71 and 0.67 times, respectively, and in ghr-miR482b-overexpressed (OX) plants by 0.59 and 0.75 times, respectively, compared with the control, whereas the expression levels of GhPR1 and GhPR2 were significantly increased by 1.21 and 2.59 times, respectively, in ghr-miR482b knockdown (KD) plants. In sum, the ghr-miR482b-GhRSG2 module participates in the regulation of plant defense against V. dahliae by inducing the expression of PR1 and PR2 genes.
Collapse
Affiliation(s)
- Pan Wu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Chengzhe Lu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bingting Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feiyan Zhang
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linfang Shi
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunjiao Xu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Aimin Chen
- The Key Laboratory for the Creation of Cotton Varieties in the Northwest, Ministry of Agriculture and Rural Affairs, Changji 831100, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Junji Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jiahe Wu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Ji C, Song F, He C, An J, Huang S, Yu H, Lu H, Xiao S, Bucher M, Pan Z. Integrated miRNA-mRNA analysis reveals candidate miRNA family regulating arbuscular mycorrhizal symbiosis of Poncirus trifoliata. PLANT, CELL & ENVIRONMENT 2023; 46:1805-1821. [PMID: 36760042 DOI: 10.1111/pce.14564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 05/04/2023]
Abstract
Over 70% land plants live in mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, and maintenance of symbiosis requires transcriptional and post-transcriptional regulation. The former has been widely studied, whereas the latter mediated by symbiotic microRNAs (miRNAs) remains obscure, especially in woody plants. Here, we performed high-throughput sequencing of the perennial woody citrus plant Poncirus trifoliata and identified 3750 differentially expressed genes (DEGs) and 42 miRNAs (DEmiRs) upon AM fungal colonization. By analyzing cis-regulatory elements in the promoters of the DEGs, we predicted 329 key AM transcription factors (TFs). A miRNA-mRNA regulatory network was then constructed by integrating these data. Several candidate miRNA families of P. trifoliata were identified whose members target known symbiotic genes, such as miR167h-AMT2;3 and miR156e-EXO70I, or key TFs, such as miR164d-NAC and miR477a-GRAS, thus are involved in AM symbiotic processes of fungal colonization, arbuscule development, nutrient exchange and phytohormone signaling. Finally, analysis of selected miRNA family revealed that a miR159b conserved in mycorrhizal plant species and a Poncirus-specific miR477a regulate AM symbiosis. The role of miR477a was likely to target GRAS family gene RAD1 in citrus plants. Our results not only revealed that miRNA-mRNA network analysis, especially miRNA-TF analysis, is effective in identifying miRNA family regulating AM symbiosis, but also shed light on miRNA-mediated post-transcriptional regulation of AM symbiosis in woody citrus plants.
Collapse
Affiliation(s)
- Chuanya Ji
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Fang Song
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chuan He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Jianyong An
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Shengyu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Huimin Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Hang Lu
- Institute for Plant Sciences, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Shunyuan Xiao
- Department of Plant Science and Landscape Architecture, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Marcel Bucher
- Institute for Plant Sciences, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Zhiyong Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Qin R, Hu Y, Chen H, Du Q, Yang J, Li WX. MicroRNA408 negatively regulates salt tolerance by affecting secondary cell wall development in maize. PLANT PHYSIOLOGY 2023; 192:1569-1583. [PMID: 36864608 PMCID: PMC10231460 DOI: 10.1093/plphys/kiad135] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/09/2023] [Indexed: 06/01/2023]
Abstract
Although microRNA408 (miR408) is a highly conserved miRNA, the miR408 response to salt stress differs among plant species. Here, we show that miR408 transcripts are strongly repressed by salt stress and methyl viologen treatment in maize (Zea mays). Application of N, N1-dimethylthiourea partly relieved the NaCl-induced down-regulation of miR408. Transgenic maize overexpressing MIR408b is hypersensitive to salt stress. Overexpression of MIR408b enhanced the rate of net Na+ efflux, caused Na+ to locate in the inter-cellular space, reduced lignin accumulation, and reduced the number of cells in vascular bundles under salt stress. We further demonstrated that miR408 targets ZmLACCASE9 (ZmLAC9). Knockout of MIR408a or MIR408b or overexpression of ZmLAC9 increased the accumulation of lignin, thickened the walls of pavement cells, and improved salt tolerance of maize. Transcriptome profiles of the wild-type and MIR408b-overexpressing transgenic maize with or without salt stress indicated that miR408 negatively regulates the expression of cell wall biogenesis genes under salt conditions. These results indicate that miR408 negatively regulates salt tolerance by regulating secondary cell wall development in maize.
Collapse
Affiliation(s)
- Ruidong Qin
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yumei Hu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Chen
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan Yang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Wang L, Hou J, Xu H, Zhang Y, Huang R, Wang D, He XQ. The PtoTCP20-miR396d-PtoGRF15 module regulates secondary vascular development in Populus. PLANT COMMUNICATIONS 2023; 4:100494. [PMID: 36419363 PMCID: PMC10030372 DOI: 10.1016/j.xplc.2022.100494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 05/04/2023]
Abstract
Secondary vascular development is a key biological characteristic of woody plants and the basis of wood formation. Our understanding of gene expression regulation and dynamic changes in microRNAs (miRNAs) during secondary vascular development is still limited. Here we present an integrated analysis of the miRNA and mRNA transcriptome of six phase-specific tissues-the shoot apex, procambium, primary vascular tissue, cambium, secondary phloem, and secondary xylem-in Populus tomentosa. Several novel regulatory modules, including the PtoTCP20-miR396d-PtoGRF15 module, were identified during secondary vascular development in Populus. A series of biochemical and molecular experiments confirmed that PtoTCP20 activated transcription of the miR396d precursor gene and that miR396d targeted PtoGRF15 to downregulate its expression. Plants overexpressing miR396d (35S:miR396d) showed enhanced secondary growth and increased xylem production. Conversely, during the transition from primary to secondary vascular development, plants with downregulated PtoTCP20expression (PtoTCP20-SRDX), downregulated miR396 expression (35S:STTM396), and PtoGRF15 overexpression (35S:PtoGRF15) showed delayed secondary growth. Novel regulatory modules were identified by integrated analysis of the miRNA and mRNA transcriptome, and the regulatory role of the PtoTCP20-miR396d-PtoGRF15 signaling cascade in secondary vascular development was validated in Populus, providing information to support improvements in forest cultivation and wood properties.
Collapse
Affiliation(s)
- Lingyan Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jie Hou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Huimin Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yufei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Runzhou Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Donghui Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
MicroRNA-483-5p Inhibits Hepatocellular Carcinoma Cell Proliferation, Cell Steatosis, and Fibrosis by Targeting PPARα and TIMP2. Cancers (Basel) 2023; 15:cancers15061715. [PMID: 36980601 PMCID: PMC10046356 DOI: 10.3390/cancers15061715] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that bind with the 3′ untranslated regions (UTRs) of genes to regulate expression. Downregulation of miR-483-5p (miR-483) is associated with the progression of hepatocellular carcinoma (HCC). However, the significant roles of miR-483 in nonalcoholic fatty liver disease (NAFLD), alcoholic fatty liver diseases (AFLD), and HCC remain elusive. In the current study, we investigated the biological significance of miR-483 in NAFLD, AFLD, and HCC in vitro and in vivo. The downregulation of miR-483 expression in HCC patients’ tumor samples was associated with Notch 3 upregulation. Overexpression of miR-483 in a human bipotent progenitor liver cell line HepaRG and HCC cells dysregulated Notch signaling, inhibited cell proliferation/migration, induced apoptosis, and increased sensitivity towards antineoplastic agents sorafenib/regorafenib. Interestingly, the inactivation of miR-483 upregulated cell steatosis and fibrosis signaling by modulation of lipogenic and fibrosis gene expression. Mechanistically, miR-483 targets PPARα and TIMP2 gene expression, which leads to the suppression of cell steatosis and fibrosis. The downregulation of miR-483 was observed in mice liver fed with a high-fat diet (HFD) or a standard Lieber-Decarli liquid diet containing 5% alcohol, leading to increased hepatic steatosis/fibrosis. Our data suggest that miR-483 inhibits cell steatosis and fibrogenic signaling and functions as a tumor suppressor in HCC. Therefore, miR-483 may be a novel therapeutic target for NAFLD/AFLD/HCC management in patients with fatty liver diseases and HCC.
Collapse
|
19
|
The Course of Mechanical Stress: Types, Perception, and Plant Response. BIOLOGY 2023; 12:biology12020217. [PMID: 36829495 PMCID: PMC9953051 DOI: 10.3390/biology12020217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Mechanical stimuli, together with the corresponding plant perception mechanisms and the finely tuned thigmomorphogenetic response, has been of scientific and practical interest since the mid-17th century. As an emerging field, there are many challenges in the research of mechanical stress. Indeed, studies on different plant species (annual/perennial) and plant organs (stem/root) using different approaches (field, wet lab, and in silico/computational) have delivered insufficient findings that frequently impede the practical application of the acquired knowledge. Accordingly, the current work distils existing mechanical stress knowledge by bringing in side-by-side the research conducted on both stem and roots. First, the various types of mechanical stress encountered by plants are defined. Second, plant perception mechanisms are outlined. Finally, the different strategies employed by the plant stem and roots to counteract the perceived mechanical stresses are summarized, depicting the corresponding morphological, phytohormonal, and molecular characteristics. The comprehensive literature on both perennial (woody) and annual plants was reviewed, considering the potential benefits and drawbacks of the two plant types, which allowed us to highlight current gaps in knowledge as areas of interest for future research.
Collapse
|
20
|
Ahmad S, Lu C, Gao J, Wei Y, Xie Q, Jin J, Zhu G, Yang F. The Integrated mRNA and miRNA Approach Reveals Potential Regulators of Flowering Time in Arundina graminifolia. Int J Mol Sci 2023; 24:ijms24021699. [PMID: 36675213 PMCID: PMC9865619 DOI: 10.3390/ijms24021699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Orchids are among the most precious flowers in the world. Regulation of flowering time is one of the most important targets to enhance their ornamental value. The beauty of Arundina graminifolia is its year-round flowering, although the molecular mechanism of this flowering ability remains masked. Therefore, we performed a comprehensive assessment to integrate transcriptome and miRNA sequencing to disentangle the genetic regulation of flowering in this valuable species. Clustering analyses provided a set of molecular regulators of floral transition and floral morphogenesis. We mined candidate floral homeotic genes, including FCA, FPA, GI, FT, FLC, AP2, SOC1, SVP, GI, TCP, and CO, which were targeted by a variety of miRNAs. MiR11091 targeted the highest number of genes, including candidate regulators of phase transition and hormonal control. The conserved miR156-miR172 pathway of floral time regulation was evident in our data, and we found important targets of these miRNAs in the transcriptome. Moreover, endogenous hormone levels were determined to decipher the hormonal control of floral buds in A. graminifolia. The qRT-PCR analysis of floral and hormonal integrators validated the transcriptome expression. Therefore, miRNA-mediated mining of candidate genes with hormonal regulation forms the basis for comprehending the complex regulatory network of perpetual flowering in precious orchids. The findings of this study can do a great deal to broaden the breeding programs for flowering time manipulation of orchids.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-020-8516-1014
| |
Collapse
|
21
|
Stu-miR827-Targeted StWRKY48 Transcription Factor Negatively Regulates Drought Tolerance of Potato by Increasing Leaf Stomatal Density. Int J Mol Sci 2022; 23:ijms232314805. [PMID: 36499135 PMCID: PMC9741430 DOI: 10.3390/ijms232314805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Stomata are specialized portals in plant leaves to modulate water loss from plants to the atmosphere by control of the transpiration, thereby determining the water-use efficiency and drought resistance of plants. Despite that the stomata developmental progression is well-understood at the molecular level, the experimental evidence that miRNA regulates stomata development is still lacking, and the underlying mechanism remains elusive. This study demonstrates the involvement of stu-miR827 in regulating the drought tolerance of potato due to its control over the leaf stomatal density. The expression analysis showed that stu-miR827 was obviously repressed by drought stresses and then rapidly increased after rewatering. Suppressing the expression of stu-miR827 transgenic potato lines showed an increase in stomatal density, correlating with a weaker drought resistance compared with wildtype potato lines. In addition, StWRKY48 was identified as the target gene of stu-miR827, and the expression of StWRKY48 was obviously induced by drought stresses and was greatly upregulated in stu-miR827 knockdown transgenic potato lines, suggesting its involvement in the drought stress response. Importantly, the expression of genes associated with stomata development, such as SDD (stomatal density and distribution) and TMM (too many mouths), was seriously suppressed in transgenic lines. Altogether, these observations demonstrated that suppression of stu-miR827 might lead to overexpression of StWRKY48, which may contribute to negatively regulating the drought adaptation of potato by increasing the stomatal density. The results may facilitate functional studies of miRNAs in the process of drought tolerance in plants.
Collapse
|
22
|
In silico analysis of key regulatory networks related to microfibril angle in Populus trichocarpa Hook. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractDissection of regulatory network that control wood structure is highly challenging in functional genomics. Nevertheless, due to the availability of genomic, transcriptomic and proteomic sequences, a large amount of information is available for use in achieving this goal. MicroRNAs, which compose a class of small non-coding RNA molecules that inhibit protein translation by targeting mRNA cleavage sites and thus regulate a wide variety of developmental and physiological processes in plants, are important parts of this regulatory network. These findings and the availability of sequence information have made it possible to carry out an in silico analysis to predict and annotate miRNAs and their target genes associated with an important factor affecting wood rigidity, microfibril angle (MFA), throughout the Populus trichocarpa Hook. genome. Our computational approach revealed miRNAs and their targets via ESTs, sequences putatively associated with microfibril angle. In total, 250 miRNAs were identified as RNA molecules with roles in the silencing and post-transcriptional regulation of the expression of nine genes. We found SHY2, IAA4 (ATAUX2–11), BZIP60, AP2, MYB15, ABI3, MYB17, LAF1 and MYB28 as important nodes in a network with possible role in MFA determination. Other co-expressed genes putatively involved in this regulatory system were also identified by construction of a co-expression network. The candidate genes from this study may help unravel the regulatory networks putatively linked to microfibril angle.
Collapse
|
23
|
Salgado FF, da Silva TLC, Vieira LR, Silva VNB, Leão AP, Costa MMDC, Togawa RC, de Sousa CAF, Grynberg P, Souza MT. The early response of oil palm ( Elaeis guineensis Jacq.) plants to water deprivation: Expression analysis of miRNAs and their putative target genes, and similarities with the response to salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:970113. [PMID: 36212369 PMCID: PMC9539919 DOI: 10.3389/fpls.2022.970113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/25/2022] [Indexed: 06/09/2023]
Abstract
Oil palm (Elaeis guineensis Jacq.) is a oilseed crop of great economic importance drastically affected by abiotic stresses. MicroRNAs (miRNAs) play crucial roles in transcription and post-transcription regulation of gene expression, being essential molecules in the response of plants to abiotic stress. To better understand the molecular mechanisms behind the response of young oil palm plants to drought stress, this study reports on the prediction and characterization of miRNAs and their putative target genes in the apical leaf of plants subjected to 14 days of water deprivation. Then, the data from this study were compared to the data from a similar study that focused on salinity stress. Both, the drought-and salt-responsive miRNAs and their putative target genes underwent correlation analysis to identify similarities and dissimilarities among them. Among the 81 identified miRNAs, 29 are specific for oil palm, including two (egu-miR28ds and egu-miR29ds) new ones - described for the first time. As for the expression profile, 62 miRNAs were significantly differentially expressed under drought stress, being five up-regulated (miR396e, miR159b, miR529b, egu-miR19sds, and egu-miR29ds) and 57 down-regulated. Transcription factors, such as MYBs, HOXs, and NF-Ys, were predicted as putative miRNA-target genes in oil palm under water deprivation; making them the most predominant group of such genes. Finally, the correlation analysis study revealed a group of putative target genes with similar behavior under salt and drought stresses. Those genes that are upregulated by these two abiotic stresses encode lncRNAs and proteins linked to stress tolerance, stress memory, modulation of ROS signaling, and defense response regulation to abiotic and biotic stresses. In summary, this study provides molecular evidence for the possible involvement of miRNAs in the drought stress response in oil palm. Besides, it shows that, at the molecular level, there are many similarities in the response of young oil palm plants to these two abiotic stresses.
Collapse
Affiliation(s)
| | | | - Letícia Rios Vieira
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras, MG, Brazil
| | | | - André Pereira Leão
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF, Brazil
| | - Marcos Mota do Carmo Costa
- The Brazilian Agricultural Research Corporation, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Roberto Coiti Togawa
- The Brazilian Agricultural Research Corporation, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | | | - Priscila Grynberg
- The Brazilian Agricultural Research Corporation, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Manoel Teixeira Souza
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras, MG, Brazil
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF, Brazil
| |
Collapse
|
24
|
Wu Y, Huang X, Zhang S, Zhang C, Yang H, Lyu L, Li W, Wu W. Small RNA and degradome sequencing reveal the role of blackberry miRNAs in flavonoid and anthocyanin synthesis during fruit ripening. Int J Biol Macromol 2022; 213:892-901. [PMID: 35691433 DOI: 10.1016/j.ijbiomac.2022.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/28/2022]
Abstract
Blackberry shrubs are economically important for their production of small, pulped fruits. This species has attracted much attention because of the unique flavor of its fruits and their rich nutritional and medicinal value. In this study, microRNAs (miRNAs) and their target genes related to flavonoids and anthocyanins in blackberry fruits during ripening were analyzed and identified by small RNA and degradome sequencing technology, and the expression levels of key miRNAs in unripe and ripe blackberry fruits were verified via the RT-qPCR. A total of 258 known miRNAs were identified. Eighty differentially expressed miRNAs (DEMs) were detected in the fruits of the ripe group compared with those of the unripe group. Differentially expressed miR828-x/miR828-z and unigene0086056 (unknown function) were coexpressed. Moreover, miR858 had the most target genes for the synthesis of flavonoids and anthocyanins. Taken together, these results provide important value for improving the quality of blackberry fruits and breeding blackberry plants that produce high-flavonoid fruits for the pharmaceutical industry.
Collapse
Affiliation(s)
- Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Xin Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Shanshan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Chunhong Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Haiyan Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China.
| |
Collapse
|
25
|
Niture S, Tricoli L, Qi Q, Gadi S, Hayes K, Kumar D. MicroRNA-99b-5p targets mTOR/AR axis, induces autophagy and inhibits prostate cancer cell proliferation. Tumour Biol 2022; 44:107-127. [PMID: 35811549 DOI: 10.3233/tub-211568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES: MicroRNAs (miRNAs) are the small non-coding regulatory RNA molecules involved in gene regulation via base-pairing with complementary sequences in mRNAs. The dysregulation of specific miRNAs, such as miR-99b-5p (miR-99b), is associated with prostate cancer (PCa) progression. However, the mechanistic role of miR-99b in PCa remains to be determined. In this study, we aimed to investigate the functional and clinical significance of miR-99b in PCa. STUDY DESIGN: The expression of miR-99b and its downstream targets mTOR/AR in the PCa samples were analyzed by RT/qPCR. The effects of miR-99b overexpression/inhibition on PCa cell survival/proliferation, spheroid formation, and cell migration were examined by specific assays. Luciferase reporter assays were performed to determine the binding of miR-99b to 3′ untranslated region (UTR) of the mTOR gene. The effects of miR-99b on the expression of mTOR, AR, and PSA proteins, as well as on AKT/mTOR signaling, autophagy, and neuroendocrine differentiation markers were analyzed by western blotting. The expression of miR-99b, mTOR, AR, PSA in AR-negative PC3 and AR-positive LNCaP cells was analyzed by RT/qPCR. The effect of miR-99b on global gene expression in PC3 cells was analyzed by RNA-seq. RESULTS: The expression of miR-99b was downregulated in tumor samples from PCa patients, whereas the expression of mTOR and AR was upregulated. In PCa cell lines, overexpression of miR-99b inhibited cell proliferation and cell colony/spheroid formation; induced apoptosis, and increased sensitivity towards docetaxel (DTX). In contrast, inhibition of miR-99b by miR-99b inhibitor resulted in increased cell growth in PCa cells. Mechanistically, miR-99b inhibited the expression of the mammalian target of the rapamycin (mTOR) gene by binding to its 3′ UTR and induced autophagy. Furthermore, miR-99b inhibited androgen receptor (AR) activity in LNCaP cells and induced apoptosis. Activation of AR signaling by dihydrotestosterone (DHT) downregulated miR-99b expression and promoted cell PCa cell growth/survival, whereas inactivation of mTOR by rapamycin or AR by enzalutamide decreased miR-99b mediated PCa cell growth. CONCLUSION: Our data suggest that miR-99b functions as a tumor suppressor by targeting the mTOR/AR axis in PCa cells, implicating miR-99b as a novel biomarker and therapeutic target for PCa management.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC, USA
| | - Lucas Tricoli
- Children’s Hospital of Philadelphia Research Institute, Pennsylvania, PA, USA
| | - Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC, USA
| | - Sashi Gadi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC, USA
| | - Kala Hayes
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC, USA
| |
Collapse
|
26
|
Zhang X, Ren C, Xue Y, Tian Y, Zhang H, Li N, Sheng C, Jiang H, Bai D. Small RNA and Degradome Deep Sequencing Reveals the Roles of microRNAs in Peanut ( Arachis hypogaea L.) Cold Response. FRONTIERS IN PLANT SCIENCE 2022; 13:920195. [PMID: 35720560 PMCID: PMC9203150 DOI: 10.3389/fpls.2022.920195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 05/31/2023]
Abstract
Cold stress is a major environmental factor that affects plant growth and development, as well as fruit postharvest life and quality. MicroRNAs (miRNAs) are a class of non-coding small RNAs that play crucial roles in various abiotic stresses. Peanuts (Arachis hypogaea L.), one of the most important grain legumes and source of edible oils and proteins, are cultivated in the semi-arid tropical and subtropical regions of the world. To date, there has been no report on the role of miRNAs in the response to cold stress in cultivated peanuts. In this study, we profiled cold-responsive miRNAs in peanuts using deep sequencing in cold-sensitive (WQL20) alongside a tolerant variety (WQL30). A total of 407 known miRNAs and 143 novel peanut-specific miRNAs were identified. The expression of selected known and novel miRNAs was validated by northern blotting and six known cold-responsive miRNAs were revealed. Degradome sequencing identified six cold-responsive miRNAs that regulate 12 target genes. The correlative expression patterns of several miRNAs and their target genes were further validated using qRT-PCR. Our data showed that miR160-ARF, miR482-WDRL, miR2118-DR, miR396-GRF, miR162-DCL, miR1511-SRF, and miR1511-SPIRAL1 modules may mediate cold stress responses. Transient expression analysis in Nicotiana benthamiana found that miR160, miR482, and miR2118 may play positive roles, and miR396, miR162, and miR1511 play negative roles in the regulation of peanut cold tolerance. Our results provide a foundation for understanding miRNA-dependent cold stress response in peanuts. The characterized correlations between miRNAs and their response to cold stress could serve as markers in breeding programs or tools for improving cold tolerance of peanuts.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Chao Ren
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Yunyun Xue
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Yuexia Tian
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Huiqi Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Na Li
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Cong Sheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dongmei Bai
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
27
|
Ivanova Z, Minkov G, Gisel A, Yahubyan G, Minkov I, Toneva V, Baev V. The Multiverse of Plant Small RNAs: How Can We Explore It?
. Int J Mol Sci 2022; 23:ijms23073979. [PMID: 35409340 PMCID: PMC8999349 DOI: 10.3390/ijms23073979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
Plant small RNAs (sRNAs) are a heterogeneous group of noncoding RNAs with a length of 20–24 nucleotides that are widely studied due to their importance as major regulators in various biological processes. sRNAs are divided into two main classes—microRNAs (miRNAs) and small interfering RNAs (siRNAs)—which differ in their biogenesis and functional pathways. Their identification and enrichment with new structural variants would not be possible without the use of various high-throughput sequencing (NGS) techniques, allowing for the detection of the total population of sRNAs in plants. Classifying sRNAs and predicting their functional role based on such high-performance datasets is a nontrivial bioinformatics task, as plants can generate millions of sRNAs from a variety of biosynthetic pathways. Over the years, many computing tools have been developed to meet this challenge. Here, we review more than 35 tools developed specifically for plant sRNAs over the past few years and explore some of their basic algorithms for performing tasks related to predicting, identifying, categorizing, and quantifying individual sRNAs in plant samples, as well as visualizing the results of these analyzes. We believe that this review will be practical for biologists who want to analyze their plant sRNA datasets but are overwhelmed by the number of tools available, thus answering the basic question of how to choose the right one for a particular study.
Collapse
Affiliation(s)
- Zdravka Ivanova
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
| | - Georgi Minkov
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Andreas Gisel
- Institute of Biomedical Technologies (ITB), CNR, 70126 Bari, Italy;
| | - Galina Yahubyan
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Ivan Minkov
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Valentina Toneva
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Vesselin Baev
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Correspondence:
| |
Collapse
|
28
|
Brenya E, Pervin M, Chen ZH, Tissue DT, Johnson S, Braam J, Cazzonelli CI. Mechanical stress acclimation in plants: Linking hormones and somatic memory to thigmomorphogenesis. PLANT, CELL & ENVIRONMENT 2022; 45:989-1010. [PMID: 34984703 DOI: 10.1111/pce.14252] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
A single event of mechanical stimulation is perceived by mechanoreceptors that transduce rapid transient signalling to regulate gene expression. Prolonged mechanical stress for days to weeks culminates in cellular changes that strengthen the plant architecture leading to thigmomorphogenesis. The convergence of multiple signalling pathways regulates mechanically induced tolerance to numerous biotic and abiotic stresses. Emerging evidence showed prolonged mechanical stimulation can modify the baseline level of gene expression in naive tissues, heighten gene expression, and prime disease resistance upon a subsequent pathogen encounter. The phenotypes of thigmomorphogenesis can persist throughout growth without continued stimulation, revealing somatic-stress memory. Epigenetic processes regulate TOUCH gene expression and could program transcriptional memory in differentiating cells to program thigmomorphogenesis. We discuss the early perception, gene regulatory and phytohormone pathways that facilitate thigmomorphogenesis and mechanical stress acclimation in Arabidopsis and other plant species. We provide insights regarding: (1) the regulatory mechanisms induced by single or prolonged events of mechanical stress, (2) how mechanical stress confers transcriptional memory to induce cross-acclimation to future stress, and (3) why thigmomorphogenesis might resemble an epigenetic phenomenon. Deeper knowledge of how prolonged mechanical stimulation programs somatic memory and primes defence acclimation could transform solutions to improve agricultural sustainability in stressful environments.
Collapse
Affiliation(s)
- Eric Brenya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Mahfuza Pervin
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Zhong-Hua Chen
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- School of Science, Western Sydney University, Richmond, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Scott Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Janet Braam
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
29
|
Zhang Y, Waseem M, Zeng Z, Xu J, Chen C, Liu Y, Zhai J, Xia R. MicroRNA482/2118, a miRNA superfamily essential for both disease resistance and plant development. THE NEW PHYTOLOGIST 2022; 233:2047-2057. [PMID: 34761409 DOI: 10.1111/nph.17853] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/07/2021] [Indexed: 05/17/2023]
Abstract
MicroRNAs (miRNAs) are a class of 21-24 nucleotides (nt) noncoding small RNAs ubiquitously distributed across the plant kingdom. miR482/2118, one of the conserved miRNA superfamilies originating from gymnosperms, has divergent main functions in core-angiosperms. It mainly regulates NUCLEOTIDE BINDING SITE-LEUCINE-RICH REPEAT (NBS-LRR) genes in eudicots, functioning as an essential component in plant disease resistance; in contrast, it predominantly targets numerous long noncoding RNAs (lncRNAs) in monocot grasses, which are vital for plant reproduction. Usually, miR482/2118 is 22-nt in length, which can trigger the production of phased small interfering RNAs (phasiRNAs) after directed cleavage. PhasiRNAs instigated from target genes of miR482/2118 enhance their roles in corresponding biological processes by cis-regulation on cognate genes and expands their function to other pathways via trans activity on different genes. This review summarizes the origin, biogenesis, conservation, and evolutionary characteristics of the miR482/2118 superfamily and delineates its diverse functions in disease resistance, plant development, stress responses, etc.
Collapse
Affiliation(s)
- Yanqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Muhammad Waseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Zaohai Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Jing Xu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
30
|
The Genetic and Hormonal Inducers of Continuous Flowering in Orchids: An Emerging View. Cells 2022; 11:cells11040657. [PMID: 35203310 PMCID: PMC8870070 DOI: 10.3390/cells11040657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Orchids are the flowers of magnetic beauty. Vivid and attractive flowers with magnificent shapes make them the king of the floriculture industry. However, the long-awaited flowering is a drawback to their market success, and therefore, flowering time regulation is the key to studies about orchid flower development. Although there are some rare orchids with a continuous flowering pattern, the molecular regulatory mechanisms are yet to be elucidated to find applicable solutions to other orchid species. Multiple regulatory pathways, such as photoperiod, vernalization, circadian clock, temperature and hormonal pathways are thought to signalize flower timing using a group of floral integrators. This mini review, thus, organizes the current knowledge of floral time regulators to suggest future perspectives on the continuous flowering mechanism that may help to plan functional studies to induce flowering revolution in precious orchid species.
Collapse
|
31
|
Liu S, Song H, Liu Z, Lu W, Zhang Q, Cheng J. Selection of References for microRNA Quantification in Japanese Flounder (Paralichthys olivaceus) Normal Tissues and Edwardsiella tarda-Infected Livers. Genes (Basel) 2022; 13:genes13020175. [PMID: 35205219 PMCID: PMC8871525 DOI: 10.3390/genes13020175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNA (miRNA) plays essential roles in post-transcriptional regulation of protein coding genes, and the quantitative real-time polymerase chain reaction (qRT-PCR) is the powerful and broadly employed tool to conduct studies of miRNA expression. Identifying appropriate references to normalize quantitative data is a prerequisite to ensure the qRT-PCR accuracy. Until now, there has been no report about miRNA reference for qRT-PCR in Japanese flounder (Paralichthys olivaceus), one important marine cultured fish along the coast of Northern Asia. In this study, combined with miRNA-Seq analysis and literature search, 10 candidates (miR-34a-5p, miR-205-5p, miR-101a-3p, miR-22-3p, miR-23a-3p, miR-210-5p, miR-30c-5p, U6, 5S rRNA, and 18S rRNA) were chosen as potential references to test their expression stability among P. olivaceus tissues, and in livers of P. olivaceus infected with Edwardsiella tarda at different time points. The expression stability of these candidates was analyzed by qRT-PCR and evaluated with Delta CT, BestKeeper, geNorm, as well as NormFinder methods, and RefFinder was employed to estimate the comprehensive ranking according to the four methods. As the result, miR-22-3p and miR-23a-3p were proved to be the suitable combination as reference miRNAs for both P. olivaceus normal tissues and livers infected with E. tarda, and they were successfully applied to normalize miR-7a and miR-221-5p expression in P. olivaceus livers in response to E. tarda infection. All these results provide valuable information for P. olivaceus miRNA quantitative expression analysis in the future.
Collapse
Affiliation(s)
- Saisai Liu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
| | - Haofei Song
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
| | - Zeyu Liu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Correspondence: ; Tel.: +86-0532-82031986
| |
Collapse
|
32
|
Xing H, Li Y, Ren Y, Zhao Y, Wu X, Li HL. Genome-wide investigation of microRNAs and expression profiles during rhizome development in ginger (Zingiber officinale Roscoe). BMC Genomics 2022; 23:49. [PMID: 35021996 PMCID: PMC8756691 DOI: 10.1186/s12864-021-08273-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous, non-coding small functional RNAs that govern the post-transcriptional regulatory system of gene expression and control the growth and development of plants. Ginger is an herb that is well-known for its flavor and medicinal properties. The genes involved in ginger rhizome development and secondary metabolism have been discovered, but the genome-wide identification of miRNAs and their overall expression profiles and targets during ginger rhizome development are largely unknown. In this study, we used BGISEQ-500 technology to perform genome-wide identification of miRNAs from the leaf, stem, root, flower, and rhizome of ginger during three development stages. RESULTS In total, 104 novel miRNAs and 160 conserved miRNAs in 28 miRNA families were identified. A total of 181 putative target genes for novel miRNAs and 2772 putative target genes for conserved miRNAs were predicted. Transcriptional factors were the most abundant target genes of miRNAs, and 17, 9, 8, 4, 13, 8, 3 conserved miRNAs and 5, 7, 4, 5, 5, 15, 9 novel miRNAs showed significant tissue-specific expression patterns in leaf, stem, root, flower, and rhizome. Additionally, 53 miRNAs were regarded as rhizome development-associated miRNAs, which mostly participate in metabolism, signal transduction, transport, and catabolism, suggesting that these miRNAs and their target genes play important roles in the rhizome development of ginger. Twelve candidate miRNA target genes were selected, and then, their credibility was confirmed using qRT-PCR. As the result of qRT-PCR analysis, the expression of 12 candidate target genes showed an opposite pattern after comparison with their miRNAs. The rhizome development system of ginger was observed to be governed by miR156, miR319, miR171a_2, miR164, and miR529, which modulated the expression of the SPL, MYB, GRF, SCL, and NAC genes, respectively. CONCLUSION This is a deep genome-wide investigation of miRNA and identification of miRNAs involved in rhizome development in ginger. We identified 52 rhizome-related miRNAs and 392 target genes, and this provides an important basis for understanding the molecular mechanisms of the miRNA target genes that mediate rhizome development in ginger.
Collapse
Affiliation(s)
- Haitao Xing
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yuan Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| | - Yun Ren
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Ying Zhao
- Research Center for Terrestrial Biodiversity of the South China Sea, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Xiaoli Wu
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| |
Collapse
|
33
|
Luo P, Di D, Wu L, Yang J, Lu Y, Shi W. MicroRNAs Are Involved in Regulating Plant Development and Stress Response through Fine-Tuning of TIR1/AFB-Dependent Auxin Signaling. Int J Mol Sci 2022; 23:ijms23010510. [PMID: 35008937 PMCID: PMC8745101 DOI: 10.3390/ijms23010510] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022] Open
Abstract
Auxin, primarily indole-3-acetic acid (IAA), is a versatile signal molecule that regulates many aspects of plant growth, development, and stress response. Recently, microRNAs (miRNAs), a type of short non-coding RNA, have emerged as master regulators of the auxin response pathways by affecting auxin homeostasis and perception in plants. The combination of these miRNAs and the autoregulation of the auxin signaling pathways, as well as the interaction with other hormones, creates a regulatory network that controls the level of auxin perception and signal transduction to maintain signaling homeostasis. In this review, we will detail the miRNAs involved in auxin signaling to illustrate its in planta complex regulation.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (P.L.); (D.D.)
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
- Correspondence: (P.L.); (D.D.)
| | - Lei Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Jiangwei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| |
Collapse
|
34
|
Palakolanu SR, Gupta S, Yeshvekar RK, Chakravartty N, Kaliamoorthy S, Shankhapal AR, Vempati AS, Kuriakose B, Lekkala SP, Philip M, Perumal RC, Lachagari VBR, Bhatnagar-Mathur P. Genome-wide miRNAs profiles of pearl millet under contrasting high vapor pressure deficit reveal their functional roles in drought stress adaptations. PHYSIOLOGIA PLANTARUM 2022; 174:e13521. [PMID: 34392545 DOI: 10.1111/ppl.13521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Pearl millet (Pennisetum glaucum [L.] R. Br.) is an important crop capable of growing in harsh and marginal environments, with the highest degree of tolerance to drought and heat stresses among cereals. Diverse germplasm of pearl millet shows a significant phenotypic variation in response to abiotic stresses, making it a unique model to study the mechanisms responsible for stress mitigation. The present study focuses on identifying the physiological response of two pearl millet high-resolution cross (HRC) genotypes, ICMR 1122 and ICMR 1152, in response to low and high vapor pressure deficit (VPD). Under high VPD conditions, ICMR 1152 exhibited a lower transpiration rate (Tr), higher transpiration efficiency, and lower root sap exudation than ICMR 1122. Further, Pg-miRNAs expressed in the contrasting genotypes under low and high VPD conditions were identified by deep sequencing analysis. A total of 116 known and 61 novel Pg-miRNAs were identified from ICMR 1152, while 26 known and six novel Pg-miRNAs were identified from ICMR 1122 genotypes, respectively. While Pg-miR165, 168, 170, and 319 families exhibited significant differential expression under low and high VPD conditions in both genotypes, ICMR 1152 showed abundant expression of Pg-miR167, Pg-miR172, Pg-miR396 Pg-miR399, Pg-miR862, Pg-miR868, Pg-miR950, Pg-miR5054, and Pg-miR7527 indicating their direct and indirect role in root physiology and abiotic stress responses. Drought responsive Pg-miRNA targets showed upregulation in response to high VPD stress, further narrowing down the miRNAs involved in regulation of drought tolerance in pearl millet.
Collapse
Affiliation(s)
- Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Saurabh Gupta
- AgriGenome Labs Pvt. Ltd, Hyderabad, Telangana, India
| | - Richa K Yeshvekar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, UK
| | | | - Sivasakthi Kaliamoorthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | | | - Ashwini Soumya Vempati
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | | | | | | | | | | | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| |
Collapse
|
35
|
Hao K, Wang Y, Zhu Z, Wu Y, Chen R, Zhang L. miR160: An Indispensable Regulator in Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:833322. [PMID: 35392506 PMCID: PMC8981303 DOI: 10.3389/fpls.2022.833322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/25/2022] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNA), recognized as crucial regulators of gene expression at the posttranscriptional level, have been found to be involved in the biological processes of plants. Some miRNAs are up- or down-regulated during plant development, stress response, and secondary metabolism. Over the past few years, it has been proved that miR160 is directly related to the developments of different tissues and organs in multifarious species, as well as plant-environment interactions. This review highlights the recent progress on the contributions of the miR160-ARF module to important traits of plants and the role of miR160-centered gene regulatory network in coordinating growth with endogenous and environmental factors. The manipulation of miR160-guided gene regulation may provide a new method to engineer plants with improved adaptability and yield.
Collapse
Affiliation(s)
- Kai Hao
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yun Wang
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, China
| | - Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yu Wu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
- *Correspondence: Lei Zhang,
| |
Collapse
|
36
|
Zhu Y, Li L. Multi-layered Regulation of Plant Cell Wall Thickening. PLANT & CELL PHYSIOLOGY 2021; 62:1867-1873. [PMID: 34698856 DOI: 10.1093/pcp/pcab152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Plants need to develop thickened cell walls with appropriate localization through precise regulation during the process of growth and development in order to support their body weight and to build long distance transportation systems. Wall thickening is achieved through a multitude of regulatory networks in various tissues under changeable environments. In this mini-review, we summarize current understanding of the regulatory pathways and mechanisms involved in cell wall thickening. Regulation of cell wall thickening is not only mechanistically essential to understand the plant structure accretion but also has applicable significance to plant cell wall biomass utilization.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
37
|
miRNAomic Approach to Plant Nitrogen Starvation. Int J Genomics 2021; 2021:8560323. [PMID: 34796230 PMCID: PMC8595019 DOI: 10.1155/2021/8560323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen (N) is one of the indispensable nutrients required by plants for their growth, development, and survival. Being a limited nutrient, it is mostly supplied exogenously to the plants, to maintain quality and productivity. The increased use of N fertilizers is associated with high-cost inputs and negative environmental consequences, which necessitates the development of nitrogen-use-efficient plants for sustainable agriculture. Understanding the regulatory mechanisms underlying N metabolism in plants under low N is one of the prerequisites for the development of nitrogen-use-efficient plants. One of the important and recently discovered groups of regulatory molecules acting at the posttranscriptional and translational levels are microRNAs (miRNAs). miRNAs are known to play critical roles in the regulation of gene expression in plants under different stress conditions including N stress. Several classes of miRNAs associated with N metabolism have been identified so far. These nitrogen-responsive miRNAs may provide a platform for a better understanding of the regulation of N metabolism and pave a way for the development of genotypes for better N utilization. The current review presents a brief outline of miRNAs and their regulatory role in N metabolism.
Collapse
|
38
|
Sharma P, Gupta OP, Gupta V, Singh G, Singh GP. Differential expression profiling of microRNAs and their target genes during wheat- Bipolaris sorokiniana pathosystem. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2567-2577. [PMID: 34924711 PMCID: PMC8639899 DOI: 10.1007/s12298-021-01092-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED Wheat spot blotch, caused by Bipolaris sorokiniana, is a serious constraint to wheat production, reducing grain yield and consequently having severe economic impact. Several plant miRNAs have recently been discovered as regulators of gene expression involved in cellular and metabolic functions. So far reports on the roles of miRNAs in B. sorokiniana infection response of wheat are scanty. To further understand the defence mechanism of miRNAs- regulated cellular functions, we examined the expression patterns of 17 miRNAs and their targets involved in the interaction between wheat and B. sorokiniana in two contrasting wheat genotypes, Chiriya-1 and WH-147. All of the miRNAs and target genes were shown to be expressed differentially in both genotypes after B. sorokiniana infection. Seven and nine miRNAs were observed as up-regulated in the resistant genotype Chiriya-1 and the susceptible genotype WH147, respectively. Among the up-regulated miRNAs, ptc-miR901 (~ 10.21 times) accumulated the most in Chiriya-1 followed by ptc-miR1450 (~ 7.6 times) in WH-147. Furthermore, only two miRNAs, tae-miR156 and ptc-miR482c showed a complete inverse relation with their target genes, SPL and NBS-LRR, respectively. This research sheds light on the temporal differential regulation of miRNAs and their targets, which may play a role in wheat adaptation to B. sorokiniana infection. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01092-1.
Collapse
Affiliation(s)
- Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001 Haryana India
| | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001 Haryana India
| | - Vikas Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001 Haryana India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001 Haryana India
| | | |
Collapse
|
39
|
Wu F, Xu J, Gao T, Huang D, Jin W. Molecular mechanism of modulating miR482b level in tomato with botrytis cinerea infection. BMC PLANT BIOLOGY 2021; 21:496. [PMID: 34706648 PMCID: PMC8555085 DOI: 10.1186/s12870-021-03203-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant miRNAs are involved in the response to biotic and abiotic stresses by altering their expression levels, and they play an important role in the regulation of plant resistance to stress. However, the molecular mechanism that regulates the expression levels of miRNAs in plants with biotic and abiotic stress still needs to be explored. Previously, we found that the expression of the miR482 family was changed in tomato infected by Botrytis cinerea. In this study, we investigated and uncovered the mechanism underlying the response of miR482 to B. cinerea infection in tomato. RESULTS First, RT-qPCR was employed to detect the expression patterns of miR482b in tomato infected by B. cinerea, and results showed that miR482b primary transcripts (pri-miR482b) were up-regulated in B. cinerea-infected leaves, but the mature miR482b was down-regulated. Subsequently, we used rapid amplification cDNA end method to amplify the full-length of pri-miR482b. Result showed that the pri-miR482b had two isoforms, with the longer one (consisting 300 bp) having an extra fragment of 53 bp in the 3'-end compared with the shorter one. In vitro Dicer assay indicated that the longer isoform pri-miR482b-x1 had higher efficiency in the post-transcriptional splicing of miRNA than the shorter isoform pri-miR482b-x2. In addition, the transcription level of mature miR482b was much higher in transgenic Arabidopsis overexpressing pri-miR482b-x1 than that in OE pri-miR482b-x2 Arabidopsis. These results confirmed that this extra 53 bp in pri-miR482b-x1 might play a key role in the miR482b biogenesis of post-transcription processing. CONCLUSIONS Extra 53 bp in pri-miR482b-x1 enhanced miR482b biogenesis, which elevated the transcription level of miR482b. This study clarified the response of miR482 to B. cinerea infection in tomato, thereby helping us further understand the molecular mechanisms that regulate the expression levels of other miRNAs.
Collapse
Affiliation(s)
- Fangli Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jinfeng Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Tiantian Gao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Diao Huang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Weibo Jin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| |
Collapse
|
40
|
Kamble MV, Shahapurkar AB, Adhikari S, Geetha N, Syed A, Ahmed B, Jogaiah S. Identification and Characterization of Downy Mildew-Responsive microRNAs in Indian Vitis vinifera by High-Throughput Sequencing. J Fungi (Basel) 2021; 7:jof7110899. [PMID: 34829189 PMCID: PMC8619265 DOI: 10.3390/jof7110899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Downy mildew (DM) is one of the most devastating diseases disturbing viticulture, mainly during temperate and humid climates. The DM pathogen can attack grapevine leaves and berries differentially, and the disease is managed with recurring applications of fungicides that direct pathogen pressure, develop of resistant strains, and lead to residual soil toxicity and increased pollution effects. Plant microRNAs (miRNAs) are important candidates in physiological regulatory roles in response to biotic stress in plants. In this study, high-throughput sequencing and MiRDeep-P were employed to identify miRNAs in Vitis vinifera. Altogether, 22,492,910, 25,476,471, and 22,448,438 clean reads from the sterile distilled water (SDW)-control, bio-pesticide Trichoderma harzianum (TriH_JSB36)-treated, and downy mildew Plasmopara viticola pathogen libraries, respectively, were obtained. On the basis of the sequencing results and analysis (differential expression analysis), we observed significant differences in 15 miRNAs (5 novel upregulated, and 10 known downregulated) in the pathogen-infected sample (Test) in comparison to the SDW-control sample, with majority of the reads beingin the range of 20-24 bp. This study involves the identification and characterization of vvi-miRNAs that are involved in resistance against downy mildew disease in grapes.
Collapse
Affiliation(s)
- Milan V. Kamble
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Studies in Biotechnology and Microbiology, Karnatak University, Pavate Nagar, Dharwad 580003, Karnataka, India; (M.V.K.); (A.B.S.); (S.A.)
| | - Abhishek B. Shahapurkar
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Studies in Biotechnology and Microbiology, Karnatak University, Pavate Nagar, Dharwad 580003, Karnataka, India; (M.V.K.); (A.B.S.); (S.A.)
| | - Shivakantkumar Adhikari
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Studies in Biotechnology and Microbiology, Karnatak University, Pavate Nagar, Dharwad 580003, Karnataka, India; (M.V.K.); (A.B.S.); (S.A.)
| | - Nagaraja Geetha
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Mysore 570005, Karnataka, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Studies in Biotechnology and Microbiology, Karnatak University, Pavate Nagar, Dharwad 580003, Karnataka, India; (M.V.K.); (A.B.S.); (S.A.)
- Correspondence: ; Tel.: +91-836-2779533; Fax: +91-836-2747884
| |
Collapse
|
41
|
Zhu W, Liu X, Chen M, Tao N, Tendu A, Yang Q. A New MiRNA MiRm0002 in Eggplant Participates in the Regulation of Defense Responses to Verticillium Wilt. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112274. [PMID: 34834637 PMCID: PMC8622893 DOI: 10.3390/plants10112274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Verticillium wilt is a major disease that severely affects eggplant production, and a new eggplant miRNA named miRm0002 identified through high-throughput sequencing was highly induced by Verticillium wilt infection. However, the miRm0002 function was still elusive. In this study, the sequence of the miRm0002 precursor was cloned and transgenic eggplants were constructed. In vivo inoculation test and in vitro fungistatic test showed that overexpressing miRm0002 lines were more resistant to Verticillium dahliae and inhibiting miRm0002 lines were more sensitive, compared to the wild-type (WT) control. Some physiological indicators were selected and the results showed that SOD, POD, and CAT activities were significantly increased in Verticillium wilt-infected overexpressing miRm0002 lines, indicating that the expression of miRm0002 activates the antioxidant system. QRT-PCR assay showed that the transcript expression of miRm0002 candidate target ARF8, a gene encoding auxin response factor was negatively related to miRm0002 in WT as well as transgenic eggplants. However, RLM-RACE mapping and degradome sequencing showed miRm0002 could not cleave the sequence of ARF8. Taken together, these data suggest that miRm0002 plays a positive role in the defense response of eggplant against Verticillium wilt.
Collapse
|
42
|
Sami A, Xue Z, Tazein S, Arshad A, He Zhu Z, Ping Chen Y, Hong Y, Tian Zhu X, Jin Zhou K. CRISPR-Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered 2021; 12:5814-5829. [PMID: 34506262 PMCID: PMC8808358 DOI: 10.1080/21655979.2021.1969831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In several parts of the world, the prevalence and severity of drought are predicted to increase, creating considerable pressure on global agricultural yield. Among all abiotic stresses, drought is anticipated to produce the most substantial impact on soil biota and plants, along with complex environmental impacts on other ecological systems. Being sessile, plants tend to be the least resilient to drought-induced osmotic stress, which reduces nutrient accessibility due to soil heterogeneity and limits nutrient access to the root system. Drought tolerance is a complex quantitative trait regulated by multiple genes, and it is one of the most challenging characteristics to study and classify. Fortunately, the clustered regularly interspaced short palindromic repeat (CRISPR) technology has paved the way as a new frontier in crop improvement, thereby revolutionizing plant breeding. The application of CRISPER systems has proven groundbreaking across numerous biological fields, particularly in biomedicine and agriculture. The present review highlights the principle and optimization of CRISPR systems and their implementation for crop improvement, particularly in terms of drought tolerance, yield, and domestication. Furthermore, we address the ways in which innovative genome editing tools can help recognize and modify novel genes coffering drought tolerance. We anticipate the establishment of effective strategies of crop yield improvement in water-limited regions through collaborative efforts in the near future.
Collapse
Affiliation(s)
- Abdul Sami
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Zhao Xue
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Saheera Tazein
- Pgrl CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Arshad
- Plant Physiology Lab, Quaid I Azam University, Islamabad, Pakistan
| | - Zong He Zhu
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Ya Ping Chen
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Yue Hong
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Xiao Tian Zhu
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Ke Jin Zhou
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| |
Collapse
|
43
|
Fang L, Wang Y. MicroRNAs in Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:686831. [PMID: 34531880 PMCID: PMC8438446 DOI: 10.3389/fpls.2021.686831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) are small (∼21-nucleotides) non-coding RNAs found in plant and animals. MiRNAs function as critical post-transcriptional regulators of gene expression by binding to complementary sequences in their target mRNAs, leading to mRNA destabilization and translational inhibition. Plant miRNAs have some distinct characteristics compared to their animal counterparts, including greater evolutionary conservation and unique miRNA processing methods. The lifecycle of a plant begins with embryogenesis and progresses through seed germination, vegetative growth, reproductive growth, flowering and fruiting, and finally senescence and death. MiRNAs participate in the transformation of plant growth and development and directly monitor progression of these processes and the expression of certain morphological characteristics by regulating transcription factor genes involved in cell growth and differentiation. In woody plants, a large and rapidly increasing number of miRNAs have been identified, but their biological functions are largely unknown. In this review, we summarize the progress of miRNA research in woody plants to date. In particular, we discuss the potential roles of these miRNAs in growth, development, and biotic and abiotic stresses responses in woody plants.
Collapse
Affiliation(s)
- Lisha Fang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
44
|
MiR1885 Regulates Disease Tolerance Genes in Brassica rapa during Early Infection with Plasmodiophora brassicae. Int J Mol Sci 2021; 22:ijms22179433. [PMID: 34502341 PMCID: PMC8430504 DOI: 10.3390/ijms22179433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
Clubroot caused by Plasmodiophora brassicae is a severe disease of cruciferous crops that decreases crop quality and productivity. Several clubroot resistance-related quantitative trait loci and candidate genes have been identified. However, the underlying regulatory mechanism, the interrelationships among genes, and how genes are regulated remain unexplored. MicroRNAs (miRNAs) are attracting attention as regulators of gene expression, including during biotic stress responses. The main objective of this study was to understand how miRNAs regulate clubroot resistance-related genes in P. brassicae-infected Brassica rapa. Two Brassica miRNAs, Bra-miR1885a and Bra-miR1885b, were revealed to target TIR-NBS genes. In non-infected plants, both miRNAs were expressed at low levels to maintain the balance between plant development and basal immunity. However, their expression levels increased in P. brassicae-infected plants. Both miRNAs down-regulated the expression of the TIR-NBS genes Bra019412 and Bra019410, which are located at a clubroot resistance-related quantitative trait locus. The Bra-miR1885-mediated down-regulation of both genes was detected for up to 15 days post-inoculation in the clubroot-resistant line CR Shinki and in the clubroot-susceptible line 94SK. A qRT-PCR analysis revealed Bra019412 expression was negatively regulated by miR1885. Both Bra019412 and Bra019410 were more highly expressed in CR Shinki than in 94SK; the same expression pattern was detected in multiple clubroot-resistant and clubroot-susceptible inbred lines. A 5′ rapid amplification of cDNA ends analysis confirmed the cleavage of Bra019412 by Bra-miR1885b. Thus, miR1885s potentially regulate TIR-NBS gene expression during P. brassicae infections of B. rapa.
Collapse
|
45
|
|
46
|
Xu C, Tao Y, Fu X, Guo L, Xing H, Li C, Yang Z, Su H, Wang X, Hu J, Fan D, Chiang VL, Luo K. The microRNA476a-RFL module regulates adventitious root formation through a mitochondria-dependent pathway in Populus. THE NEW PHYTOLOGIST 2021; 230:2011-2028. [PMID: 33533479 DOI: 10.1111/nph.17252] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/19/2021] [Indexed: 05/25/2023]
Abstract
For woody plants, clonal propagation efficiency is largely determined by adventitious root (AR) formation at the bases of stem cuttings. However, our understanding of the molecular mechanisms contributing to AR morphogenesis in trees remains limited, despite the importance of vegetative propagation, currently the most common practice for tree breeding and commercialization. Here, we identified Populus-specific miR476a as a regulator of wound-induced adventitious rooting that acts by orchestrating mitochondrial homeostasis. MiR476a exhibited inducible expression during AR formation and directly targeted several Restorer of Fertility like (RFL) genes encoding mitochondrion-localized pentatricopeptide repeat proteins. Genetic modification of miR476a-RFL expression revealed that miR476a/RFL-mediated dynamic regulation of mitochondrial homeostasis influences AR formation in poplar. Mitochondrial perturbation via exogenous application of a chemical inhibitor indicated that miR476a/RFL-directed AR formation depends on mitochondrial regulation that acts via auxin signaling. Our results thus establish a microRNA-directed mitochondrion-auxin signaling cascade required for AR development, providing insights into the role of mitochondrial regulation in the developmental plasticity of plants.
Collapse
Affiliation(s)
- Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuanxun Tao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Li Guo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Haitao Xing
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ziwei Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Huili Su
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xianqiang Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
47
|
Kondhare KR, Patil NS, Banerjee AK. A historical overview of long-distance signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4218-4236. [PMID: 33682884 DOI: 10.1093/jxb/erab048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Be it a small herb or a large tree, intra- and intercellular communication and long-distance signalling between distant organs are crucial for every aspect of plant development. The vascular system, comprising xylem and phloem, acts as a major conduit for the transmission of long-distance signals in plants. In addition to expanding our knowledge of vascular development, numerous reports in the past two decades revealed that selective populations of RNAs, proteins, and phytohormones function as mobile signals. Many of these signals were shown to regulate diverse physiological processes, such as flowering, leaf and root development, nutrient acquisition, crop yield, and biotic/abiotic stress responses. In this review, we summarize the significant discoveries made in the past 25 years, with emphasis on key mobile signalling molecules (mRNAs, proteins including RNA-binding proteins, and small RNAs) that have revolutionized our understanding of how plants integrate various intrinsic and external cues in orchestrating growth and development. Additionally, we provide detailed insights on the emerging molecular mechanisms that might control the selective trafficking and delivery of phloem-mobile RNAs to target tissues. We also highlight the cross-kingdom movement of mobile signals during plant-parasite relationships. Considering the dynamic functions of these signals, their implications in crop improvement are also discussed.
Collapse
Affiliation(s)
- Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL) Pune, Maharashtra, India
| | - Nikita S Patil
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Anjan K Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| |
Collapse
|
48
|
Liu B, Liu J, Yu J, Wang Z, Sun Y, Li S, Lin YCJ, Chiang VL, Li W, Wang JP. Transcriptional reprogramming of xylem cell wall biosynthesis in tension wood. PLANT PHYSIOLOGY 2021; 186:250-269. [PMID: 33793955 PMCID: PMC8154086 DOI: 10.1093/plphys/kiab038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 05/02/2023]
Abstract
Tension wood (TW) is a specialized xylem tissue developed under mechanical/tension stress in angiosperm trees. TW development involves transregulation of secondary cell wall genes, which leads to altered wood properties for stress adaptation. We induced TW in the stems of black cottonwood (Populus trichocarpa, Nisqually-1) and identified two significantly repressed transcription factor (TF) genes: class B3 heat-shock TF (HSFB3-1) and MYB092. Transcriptomic analysis and chromatin immunoprecipitation (ChIP) were used to identify direct TF-DNA interactions in P. trichocarpa xylem protoplasts overexpressing the TFs. This analysis established a transcriptional regulatory network in which PtrHSFB3-1 and PtrMYB092 directly activate 8 and 11 monolignol genes, respectively. The TF-DNA interactions were verified for their specificity and transactivator roles in 35 independent CRISPR-based biallelic mutants and overexpression transgenic lines of PtrHSFB3-1 and PtrMYB092 in P. trichocarpa. The gene-edited trees (mimicking the repressed PtrHSFB3-1 and PtrMYB092 under tension stress) have stem wood composition resembling that of TW during normal growth and under tension stress (i.e., low lignin and high cellulose), whereas the overexpressors showed an opposite effect (high lignin and low cellulose). Individual overexpression of the TFs impeded lignin reduction under tension stress and restored high levels of lignin biosynthesis in the TW. This study offers biological insights to further uncover how metabolism, growth, and stress adaptation are coordinately regulated in trees.
Collapse
Affiliation(s)
- Baoguang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Department of Forestry, Beihua University, Jilin 132013, China
| | - Juan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jing Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zhifeng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ying-Chung Jimmy Lin
- Department of Life Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
- Author for communication:
| |
Collapse
|
49
|
Waheed S, Anwar M, Saleem MA, Wu J, Tayyab M, Hu Z. The Critical Role of Small RNAs in Regulating Plant Innate Immunity. Biomolecules 2021; 11:biom11020184. [PMID: 33572741 PMCID: PMC7912340 DOI: 10.3390/biom11020184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Plants, due to their sessile nature, have an innate immune system that helps them to defend against different pathogen infections. The defense response of plants is composed of a highly regulated and complex molecular network, involving the extensive reprogramming of gene expression during the presence of pathogenic molecular signatures. Plants attain proper defense against pathogens through the transcriptional regulation of genes encoding defense regulatory proteins and hormone signaling pathways. Small RNAs are emerging as versatile regulators of plant development and act in different tiers of plant immunity, including pathogen-triggered immunity (PTI) and effector-triggered immunity (ETI). The versatile regulatory functions of small RNAs in plant growth and development and response to biotic and abiotic stresses have been widely studied in recent years. However, available information regarding the contribution of small RNAs in plant immunity against pathogens is more limited. This review article will focus on the role of small RNAs in innate immunity in plants.
Collapse
Affiliation(s)
- Saquib Waheed
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (M.A.); (Z.H.)
| | - Muhammad Asif Saleem
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Jinsong Wu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
- Correspondence: (M.A.); (Z.H.)
| |
Collapse
|
50
|
Zhang J, Sun X. Recent advances in polyphenol oxidase-mediated plant stress responses. PHYTOCHEMISTRY 2021; 181:112588. [PMID: 33232863 DOI: 10.1016/j.phytochem.2020.112588] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 05/29/2023]
Abstract
Plant polyphenol oxidases (PPOs) are ubiquitous copper metalloenzymes with a biochemistry that has been known for more than a century. By the 1990s, biologists began to recognize the importance of PPOs in plant response to the infestation of herbivores and pathogens; ideas concerning a defensive role for PPOs arose to address observed evidence, and several testable hypotheses were suggested. Two pivotal discoveries in tomato (Lycopersicon esculentum Miller) plants, an inverse correlation between PPO levels and insect growth and PPO induction by defence signals, have driven many studies of PPO defence functions in the context of abiotic and biotic stresses. During the past three decades, extensive molecular research in transgenic and non-transgenic systems has partly revealed the sophisticated mechanisms underlying PPO defence against herbivores and pathogens. These understandings, rather than theoretical predictions, have driven the development of new hypotheses and advanced PPO-related studies. Here, we review progress in PPO family features, expression regulation and the defensive role of PPOs in plants. We propose assumptions of an extended range of co- and post-transcriptional processes to the regulation of unexplored PPO expression. In addition, the identification of endogenous PPO substrates and downstream targets of PPO action will be useful for elucidating PPO defensive roles. The potential effects of PPO-mediated oxidative defences on herbivore performance ultimately needs to be further investigated. Therefore, expanding multidisciplinary approaches to unexplored dimensions of PPO defence function should be a future priority.
Collapse
Affiliation(s)
- Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|