1
|
Guo D, Gao H, Yan T, Xia C, Lin B, Xiang X, Cai B, Geng Z. Proteomic and metabolomic insights into the impact of topping treatment on cigar tobacco. FRONTIERS IN PLANT SCIENCE 2025; 15:1425154. [PMID: 40052119 PMCID: PMC11882365 DOI: 10.3389/fpls.2024.1425154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/07/2024] [Indexed: 03/09/2025]
Abstract
Top removal is a widely utilized method in production process of tobacco, but little is known regarding the way it impacts protein and metabolic regulation. In this study, we investigated the underlying processes of alterations in cigar tobacco leaves with and without top removal, using a combined proteomic and metabolomic approach. The results revealed that: (1) Topping significantly affected superoxide anion (O2 -) levels, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content, (2) In the cigar tobacco proteome, 385 differentially expressed proteins (DEPs) were identified, with 228 proteins upregulated and 156 downregulated. Key pathways enriched included flavonoid biosynthesis, porphyrin and chlorophyll metabolism, cysteine and methionine metabolism, and amino acid biosynthesis and metabolism. A network of 161 nodes interconnected by 102 significantly altered proteins was established, (3) In the cigar tobacco metabolome, 247 significantly different metabolites (DEMs) were identified, with 120 upregulated and 128 downregulated metabolites, mainly comprising lipids and lipid-like molecules, phenylpropanoids and polyketides, organic acids and derivatives, and organic heterocyclic compounds, (4) KEGG pathway enrichment revealed upregulation of proteins such as chalcone synthase (CHS), chalcone isomerase (CHI), naringenin 3-dioxygenase (F3H), and flavonoid 3'-monooxygenase (F3'H), along with metabolites like pinocembrin, kaempferol, trifolin, rutin, and quercetin, enhancing the pathways of 'flavonoid' and 'flavone and flavonol' biosynthesis. This study sheds light on the metabolic and proteomic responses of cigar tobacco after topping.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Cai
- Haikou Cigar Research Institute, Hainan Province Company, China National Tobacco
Corporation, Haikou, China
| | - Zhaoliang Geng
- Haikou Cigar Research Institute, Hainan Province Company, China National Tobacco
Corporation, Haikou, China
| |
Collapse
|
2
|
Sargent DJ, Buti M, Martens S, Pugliesi C, Aaby K, Røen D, Yadav CB, Fernández Fernández F, Alsheikh M, Davik J, Price RJ. A CACTA-like transposon in the Anthocyanidin synthase 1 (Ans-1) gene is responsible for apricot fruit colour in the raspberry (Rubus idaeus) cultivar 'Varnes'. PLoS One 2025; 20:e0318692. [PMID: 39899506 PMCID: PMC11790086 DOI: 10.1371/journal.pone.0318692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
Cultivated raspberries (Rubus idaeus L.) most commonly bear small, red, highly aromatic fruits. Their colour is derived predominantly from anthocyanins, water soluble polyphenolic pigments, but as well as red forms, there exist cultivars that display yellow- and apricot-coloured fruits. In this investigation, we used a multi-omics approach to elucidate the genetic basis of the apricot fruit colour in raspberry. Using metabolomics, we quantified anthocyanins in red and apricot raspberry fruits and demonstrated that, in contrast to red-fruited raspberries, fruits of the apricot cultivar 'Varnes' contain low concentrations of only a small number of anthocyanin compounds. By performing RNASeq, we revealed differential expression patterns in the apricot-fruited 'Varnes' for genes in the anthocyanin biosynthesis pathway and following whole genome sequencing using long-read Oxford Nanopore Technologies sequencing, we identified a CACTA-like transposable element (TE) in the second exon of the Anthocyanidin synthase (Ans) gene that caused a truncated predicted ANS protein. PCR confirmed the presence in heterozygous form of the transposon in an unrelated, red-fruited cultivar 'Veten', indicating apricot fruit colour is recessive to red and that it may be widespread in raspberry germplasm, potentially explaining why apricot forms appear at regular intervals in modern raspberry breeding populations.
Collapse
Affiliation(s)
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Stefan Martens
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Centro Ricerca e Innovazione, San Michele all’Adige, Trentino, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Pisa, Italy
| | - Kjersti Aaby
- NOFIMA AS, Norwegian Institute of Food Fisheries and Aquaculture Research, Ås, Norway
| | - Dag Røen
- Njos Fruit and Berry Centre, Leikanger, Norway
| | | | | | - Muath Alsheikh
- Graminor Breeding Ltd., Ridabu, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jahn Davik
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | |
Collapse
|
3
|
Qin P, Gao J, Shen W, Wu Z, Dai C, Wen J, Yi B, Ma C, Shen J, Fu T, Tu J. BnaCRCs with domestication preference positively correlate with the seed-setting rate of canola. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1717-1731. [PMID: 35882961 DOI: 10.1111/tpj.15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Canola (Brassica napus) is an important oil crop worldwide. The seed-setting rate (SS) is a critical factor in determining its yield, and the development of pistils affects pollination and seed sets. However, research on seed-setting defects has been limited owing to difficulties in the identification of phenotypes, mutations, and complex genetic mechanisms. In this study, we found a stigma defect (sd) mutant in B. napus, which had no nectary. The SS of sd mutants in the field was approximately 93.4% lower than that of the wild type. Scanning and transmission electron microscopy imaging of sd mutants showed a low density of stigma papillary cells and stigma papillary cell vacuoles that disappeared 16 h after flowering. Genetic analysis of segregated populations showed that two recessive nuclear genes are responsible for the mutant phenotype of sd. Based on re-sequencing and map-based cloning, we reduced the candidate sites on ChrA07 (BnaSSA07) and ChrC06 (BnaSSC06) to 30 and 67 kb, including six and eight predicted genes, respectively. Gene analyses showed that a pair of CRABS CLAW (CRC) homeologous genes at BnaSSA07 and BnaSSC06 were associated with the development of carpel and nectary. BnaSSA07.CRC and BnaSSC06.CRC candidate genes were found to be expressed in flower organs only, with significant differences in their expression in the pistils of the near-isogenic lines. DNA sequencing showed transposon insertions in the upstream region and intron of the candidate gene BnaSSA07.crc. We also found that BnaSSC06.crc exists widely in the natural population and we give possible reasons for its widespread existence.
Collapse
Affiliation(s)
- Pei Qin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiang Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhao Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zengxiang Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Belyayev A, Josefiová J, Jandová M, Kalendar R, Mahelka V, Mandák B, Krak K. The structural diversity of CACTA transposons in genomes of Chenopodium (Amaranthaceae, Caryophyllales) species: specific traits and comparison with the similar elements of angiosperms. Mob DNA 2022; 13:8. [PMID: 35379321 PMCID: PMC8978399 DOI: 10.1186/s13100-022-00265-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/11/2022] [Indexed: 12/05/2022] Open
Abstract
Background CACTA transposable elements (TEs) comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) transposons. Over recent decades, CACTA elements were widely identified in species from the plant, fungi, and animal kingdoms, but sufficiently studied in the genomes of only a few model species although non-model genomes can bring additional and valuable information. It primarily concerned the genomes of species belonging to clades in the base of large taxonomic groups whose genomes, to a certain extent, can preserve relict and/or possesses specific traits. Thus, we sought to investigate the genomes of Chenopodium (Amaranthaceae, Caryophyllales) species to unravel the structural variability of CACTA elements. Caryophyllales is a separate branch of Angiosperms and until recently the diversity of CACTA elements in this clade was unknown. Results Application of the short-read genome assembly algorithm followed by analysis of detected complete CACTA elements allowed for the determination of their structural diversity in the genomes of 22 Chenopodium album aggregate species. This approach yielded knowledge regarding: (i) the coexistence of two CACTA transposons subtypes in single genome; (ii) gaining of additional protein conserved domains within the coding sequence; (iii) the presence of captured gene fragments, including key genes for flower development; and (iv)) identification of captured satDNA arrays. Wide comparative database analysis revealed that identified events are scattered through Angiosperms in different proportions. Conclusions Our study demonstrated that while preserving the basic element structure a wide range of coding and non-coding additions to CACTA transposons occur in the genomes of C. album aggregate species. Ability to relocate additions inside genome in combination with the proposed novel functional features of structural-different CACTA elements can impact evolutionary trajectory of the host genome. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00265-3.
Collapse
|
5
|
GC content of plant genes is linked to past gene duplications. PLoS One 2022; 17:e0261748. [PMID: 35025913 PMCID: PMC8758071 DOI: 10.1371/journal.pone.0261748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
The frequency of G and C nucleotides in genomes varies from species to species, and sometimes even between different genes in the same genome. The monocot grasses have a bimodal distribution of genic GC content absent in dicots. We categorized plant genes from 5 dicots and 4 monocot grasses by synteny to related species and determined that syntenic genes have significantly higher GC content than non-syntenic genes at their 5`-end in the third position within codons for all 9 species. Lower GC content is correlated with gene duplication, as lack of synteny to distantly related genomes is associated with past interspersed gene duplications. Two mutation types can account for biased GC content, mutation of methylated C to T and gene conversion from A to G. Gene conversion involves non-reciprocal exchanges between homologous alleles and is not detectable when the alleles are identical or heterozygous for presence-absence variation, both likely situations for genes duplicated to new loci. Gene duplication can cause production of siRNA which can induce targeted methylation, elevating mC→T mutations. Recently duplicated plant genes are more frequently methylated and less likely to undergo gene conversion, each of these factors synergistically creating a mutational environment favoring AT nucleotides. The syntenic genes with high GC content in the grasses compose a subset that have undergone few duplications, or for which duplicate copies were purged by selection. We propose a “biased gene duplication / biased mutation” (BDBM) model that may explain the origin and trajectory of the observed link between duplication and genic GC bias. The BDBM model is supported by empirical data based on joint analyses of 9 angiosperm species with their genes categorized by duplication status, GC content, methylation levels and functional classes.
Collapse
|
6
|
Liu Y, Qian J, Li J, Xing M, Grierson D, Sun C, Xu C, Li X, Chen K. Hydroxylation decoration patterns of flavonoids in horticultural crops: chemistry, bioactivity and biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhab068. [PMID: 35048127 PMCID: PMC8945325 DOI: 10.1093/hr/uhab068] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/20/2021] [Indexed: 05/14/2023]
Abstract
Flavonoids are the most widespread polyphenolic compounds and are important dietary constituents present in horticultural crops such as fruits, vegetables, and tea. Natural flavonoids are responsible for important quality traits, such as food colors and beneficial dietary antioxidants and numerous investigations have shown that intake of flavonoids can reduce the incidence of various non-communicable diseases (NCDs). Analysis of the thousands of flavonoids reported so far has shown that different hydroxylation modifications affect their chemical properties and nutritional values. These diverse flavonoids can be classified based on different hydroxylation patterns in the B, C, A rings and multiple structure-activity analyses have shown that hydroxylation decoration at specific positions markedly enhances their bioactivities. This review focuses on current knowledge concerning hydroxylation of flavonoids catalyzed by several different types of hydroxylase enzymes. Flavonoid 3'-hydroxylase (F3'H) and flavonoid 3'5'-hydroxylase (F3'5'H) are important enzymes for the hydroxylation of the B ring of flavonoids. Flavanone 3-hydroxylase (F3H) is key for the hydroxylation of the C ring, while flavone 6-hydroxylase (F6H) and flavone 8-hydroxylase (F8H) are key enzymes for hydroxylation of the A ring. These key hydroxylases in the flavonoid biosynthesis pathway are promising targets for the future bioengineering of plants and mass production of flavonoids with designated hydroxylation patterns of high nutritional importance. In addition, hydroxylation in key places on the ring may help render flavonoids ready for degradation, the catabolic turnover of which may open the door for new lines of inquiry.
Collapse
Affiliation(s)
- Yilong Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Jiafei Qian
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Mengyun Xing
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Chongde Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
7
|
Zhang L, Qian J, Han Y, Jia Y, Kuang H, Chen J. Alternative splicing triggered by the insertion of a CACTA transposon attenuates LsGLK and leads to the development of pale-green leaves in lettuce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:182-195. [PMID: 34724596 DOI: 10.1111/tpj.15563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 05/28/2023]
Abstract
Lettuce (Lactuca sativa) is one of the most important vegetable crops in the world. As a leafy vegetable, the polymorphism of lettuce leaves from dark to pale green is an important trait. However, the genetic and molecular mechanisms underlying such variations remain poorly understood. In this study, one major locus controlling the polymorphism of dark- and pale-green leaves in lettuce was identified using genome-wide association studies (GWAS). This locus was then fine mapped to an interval of 5375 bp on chromosome 4 using a segregating population containing 2480 progeny. Only one gene, homologous to the GLK genes in Arabidopsis and other plants, is present in the candidate region. A complementation test confirmed that the candidate gene, LsGLK, contributes to the variation of dark- and pale-green leaves. Sequence analysis showed that a CACTA transposon of 7434 bp was inserted 10 bp downstream of the stop codon of LsGLK, followed by a duplication of a 1826-bp fragment covering exons 3-6 of the LsGLK gene. The transposon insertion did not change the expression level of the LsGLK gene. However, because of alternative splicing, only 6% of the transcripts produced from the transposon insertion were wild-type transcripts, which led to the production of pale-green leaves. An evolutionary analysis revealed that the insertion of the CACTA transposon occurred in cultivated lettuce and might have been selected in particular cultivars to satisfy the diverse demands of consumers. In this study, we demonstrated that a transposon insertion near a gene may affect its splicing and consequently generate phenotypic variations.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jinlong Qian
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yuting Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yue Jia
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
8
|
Biosynthetic Pathway of Proanthocyanidins in Major Cash Crops. PLANTS 2021; 10:plants10091792. [PMID: 34579325 PMCID: PMC8472070 DOI: 10.3390/plants10091792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023]
Abstract
Proanthocyanidins (PAs) are a group of oligomers or polymers composed of monomeric flavanols. They offer many benefits for human fitness, such as antioxidant, anticancer, and anti-inflammatory activities. To date, three types of PA have been observed in nature: procyanidins, propelargonidins, and prodelphinidins. These are synthesized as some of the end-products of the flavonoid pathway by different consecutive enzymatic activities, from the same precursor—naringenin. Although the general biosynthetic pathways of PAs have been reported in a few model plant species, little is known about the species-specific pathways in major crops containing different types of PA. In the present study, we identified the species-specific pathways in 10 major crops, based on the presence/absence of flavanol-based intermediates in the metabolic pathway, and found 202 orthologous genes in the reference genomic database of each species, which may encode for key enzymes involved in the biosynthetic pathways of PAs. Parallel enzymatic reactions in the pathway are responsible for the ratio between PAs and anthocyanins, as well as among the three types of PAs. Our study suggests a promising strategy for molecular breeding, to regulate the content of PAs and anthocyanins and improve the nutritional quality of food sources globally.
Collapse
|
9
|
Orłowska R, Pachota KA, Dynkowska WM, Niedziela A, Bednarek PT. Androgenic-Induced Transposable Elements Dependent Sequence Variation in Barley. Int J Mol Sci 2021; 22:ijms22136783. [PMID: 34202586 PMCID: PMC8268840 DOI: 10.3390/ijms22136783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
A plant genome usually encompasses different families of transposable elements (TEs) that may constitute up to 85% of nuclear DNA. Under stressful conditions, some of them may activate, leading to sequence variation. In vitro plant regeneration may induce either phenotypic or genetic and epigenetic changes. While DNA methylation alternations might be related, i.e., to the Yang cycle problems, DNA pattern changes, especially DNA demethylation, may activate TEs that could result in point mutations in DNA sequence changes. Thus, TEs have the highest input into sequence variation (SV). A set of barley regenerants were derived via in vitro anther culture. High Performance Liquid Chromatography (RP-HPLC), used to study the global DNA methylation of donor plants and their regenerants, showed that the level of DNA methylation increased in regenerants by 1.45% compared to the donors. The Methyl-Sensitive Transposon Display (MSTD) based on methylation-sensitive Amplified Fragment Length Polymorphism (metAFLP) approach demonstrated that, depending on the selected elements belonging to the TEs family analyzed, varying levels of sequence variation were evaluated. DNA sequence contexts may have a different impact on SV generated by distinct mobile elements belonged to various TE families. Based on the presented study, some of the selected mobile elements contribute differently to TE-related SV. The surrounding context of the TEs DNA sequence is possibly important here, and the study explained some part of SV related to those contexts.
Collapse
|
10
|
Liu B, Iwata-Otsubo A, Yang D, Baker RL, Liang C, Jackson SA, Liu S, Ma J, Zhao M. Analysis of CACTA transposase genes unveils the mechanism of intron loss and distinct small RNA silencing pathways underlying divergent evolution of Brassica genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:34-48. [PMID: 33098166 DOI: 10.1111/tpj.15037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
In comparison with retrotransposons, DNA transposons make up a smaller proportion of most plant genomes. However, these elements are often proximal to genes to affect gene expression depending on the activity of the transposons, which is largely reflected by the activity of the transposase genes. Here, we show that three AT-rich introns were retained in the TNP2-like transposase genes of the Bot1 (Brassica oleracea transposon 1) CACTA transposable elements in Brassica oleracea, but were lost in the majority of the Bot1 elements in Brassica rapa. A recent burst of transposition of Bot1 was observed in B. oleracea, but not in B. rapa. This burst of transposition is likely related to the activity of the TNP2-like transposase genes as the expression values of the transposase genes were higher in B. oleracea than in B. rapa. In addition, distinct populations of small RNAs (21, 22 and 24 nt) were detected from the Bot1 elements in B. oleracea, but the vast majority of the small RNAs from the Bot1 elements in B. rapa are 24 nt in length. We hypothesize that the different activity of the TNP2-like transposase genes is likely associated with the three introns, and intron loss is likely reverse transcriptase mediated. Furthermore, we propose that the Bot1 family is currently undergoing silencing in B. oleracea, but has already been silenced in B. rapa. Taken together, our data provide new insights into the differentiation of transposons and their role in the asymmetric evolution of these two closely related Brassica species.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Aiko Iwata-Otsubo
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602,, USA
| | - Diya Yang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Robert L Baker
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602,, USA
| | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Meixia Zhao
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
11
|
Comparative Study of Pine Reference Genomes Reveals Transposable Element Interconnected Gene Networks. Genes (Basel) 2020; 11:genes11101216. [PMID: 33081418 PMCID: PMC7602945 DOI: 10.3390/genes11101216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing the giga-genomes of several pine species has enabled comparative genomic analyses of these outcrossing tree species. Previous studies have revealed the wide distribution and extraordinary diversity of transposable elements (TEs) that occupy the large intergenic spaces in conifer genomes. In this study, we analyzed the distribution of TEs in gene regions of the assembled genomes of Pinus taeda and Pinus lambertiana using high-performance computing resources. The quality of draft genomes and the genome annotation have significant consequences for the investigation of TEs and these aspects are discussed. Several TE families frequently inserted into genes or their flanks were identified in both species’ genomes. Potentially important sequence motifs were identified in TEs that could bind additional regulatory factors, promoting gene network formation with faster or enhanced transcription initiation. Node genes that contain many TEs were observed in multiple potential transposable element-associated networks. This study demonstrated the increased accumulation of TEs in the introns of stress-responsive genes of pines and suggests the possibility of rewiring them into responsive networks and sub-networks interconnected with node genes containing multiple TEs. Many such regulatory influences could lead to the adaptive environmental response clines that are characteristic of naturally spread pine populations.
Collapse
|
12
|
Lallemand T, Leduc M, Landès C, Rizzon C, Lerat E. An Overview of Duplicated Gene Detection Methods: Why the Duplication Mechanism Has to Be Accounted for in Their Choice. Genes (Basel) 2020; 11:E1046. [PMID: 32899740 PMCID: PMC7565063 DOI: 10.3390/genes11091046] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Gene duplication is an important evolutionary mechanism allowing to provide new genetic material and thus opportunities to acquire new gene functions for an organism, with major implications such as speciation events. Various processes are known to allow a gene to be duplicated and different models explain how duplicated genes can be maintained in genomes. Due to their particular importance, the identification of duplicated genes is essential when studying genome evolution but it can still be a challenge due to the various fates duplicated genes can encounter. In this review, we first describe the evolutionary processes allowing the formation of duplicated genes but also describe the various bioinformatic approaches that can be used to identify them in genome sequences. Indeed, these bioinformatic approaches differ according to the underlying duplication mechanism. Hence, understanding the specificity of the duplicated genes of interest is a great asset for tool selection and should be taken into account when exploring a biological question.
Collapse
Affiliation(s)
- Tanguy Lallemand
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Martin Leduc
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Claudine Landès
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d’Evry (LaMME), Université d’Evry Val d’Essonne, Université Paris-Saclay, UMR CNRS 8071, ENSIIE, USC INRAE, 23 bvd de France, CEDEX, 91037 Evry Paris, France;
| | - Emmanuelle Lerat
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
13
|
Zhao J, Bayer PE, Ruperao P, Saxena RK, Khan AW, Golicz AA, Nguyen HT, Batley J, Edwards D, Varshney RK. Trait associations in the pangenome of pigeon pea (Cajanus cajan). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1946-1954. [PMID: 32020732 PMCID: PMC7415775 DOI: 10.1111/pbi.13354] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 05/21/2023]
Abstract
Pigeon pea (Cajanus cajan) is an important orphan crop mainly grown by smallholder farmers in India and Africa. Here, we present the first pigeon pea pangenome based on 89 accessions mainly from India and the Philippines, showing that there is significant genetic diversity in Philippine individuals that is not present in Indian individuals. Annotation of variable genes suggests that they are associated with self-fertilization and response to disease. We identified 225 SNPs associated with nine agronomically important traits over three locations and two different time points, with SNPs associated with genes for transcription factors and kinases. These results will lead the way to an improved pigeon pea breeding programme.
Collapse
Affiliation(s)
- Junliang Zhao
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Guangdong Key Laboratory of New Technology in Rice BreedingGuangzhouChina
| | - Philipp E. Bayer
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaPerthWAAustralia
| | - Pradeep Ruperao
- National Institute of Agricultural BotanyCambridgeUK
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Rachit K. Saxena
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Aamir W. Khan
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaPerthWAAustralia
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Agnieszka A. Golicz
- Plant Molecular Biology and Biotechnology LaboratoryFaculty of Veterinary and Agricultural SciencesUniversity of MelbourneMelbourneVICAustralia
| | - Henry T. Nguyen
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Jacqueline Batley
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaPerthWAAustralia
| | - David Edwards
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaPerthWAAustralia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| |
Collapse
|
14
|
Zhang P, Du H, Wang J, Pu Y, Yang C, Yan R, Yang H, Cheng H, Yu D. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1384-1395. [PMID: 31769589 PMCID: PMC7206993 DOI: 10.1111/pbi.13302] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 11/18/2019] [Indexed: 05/18/2023]
Abstract
Isoflavonoids, which include a variety of secondary metabolites, are derived from the phenylpropanoid pathway and are distributed predominantly in leguminous plants. These compounds play a critical role in plant-environment interactions and are beneficial to human health. Isoflavone synthase (IFS) is a key enzyme in isoflavonoid synthesis and shares a common substrate with flavanone-3-hydroxylase (F3H) and flavone synthase II (FNS II). In this study, CRISPR/Cas9-mediated multiplex gene-editing technology was employed to simultaneously target GmF3H1, GmF3H2 and GmFNSII-1 in soya bean hairy roots and plants. Various mutation types and frequencies were observed in hairy roots. Higher mutation efficiencies were found in the T0 transgenic plants, with a triple gene mutation efficiency of 44.44%, and these results of targeted mutagenesis were stably inherited in the progeny. Metabolomic analysis of T0 triple-mutants leaves revealed significant improvement in isoflavone content. Compared with the wild type, the T3 generation homozygous triple mutants had approximately twice the leaf isoflavone content, and the soya bean mosaic virus (SMV) coat protein content was significantly reduced by one-third after infection with strain SC7, suggesting that increased isoflavone content enhanced the leaf resistance to SMV. The isoflavone content in the seeds of T2 triple mutants was also significantly increased. This study provides not only materials for the improvement of soya bean isoflavone content and resistance to SMV but also a simple system to generate multiplex mutations in soya bean, which may be beneficial for further breeding and metabolic engineering.
Collapse
Affiliation(s)
- Peipei Zhang
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Hongyang Du
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural ScienceHefeiChina
| | - Jiao Wang
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yixiang Pu
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Changyun Yang
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Rujuan Yan
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Hui Yang
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Hao Cheng
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Deyue Yu
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| |
Collapse
|
15
|
Sarkar MAR, Otsu W, Suzuki A, Hashimoto F, Anai T, Watanabe S. Single-base deletion in GmCHR5 increases the genistein-to-daidzein ratio in soybean seed. BREEDING SCIENCE 2020; 70:265-276. [PMID: 32714048 PMCID: PMC7372027 DOI: 10.1270/jsbbs.19134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/03/2019] [Indexed: 06/11/2023]
Abstract
Novel mutant alleles related to isoflavone content are useful for breeding programs to improve the disease resistance and nutritional content of soybean. However, identification of mutant alleles from high-density mutant libraries is expensive and time-consuming because soybean has a large, complicated genome. Here, we identified the gene responsible for increased genistein-to-daidzein ratio in seed of the mutant line F333ES017D9. For this purpose, we used a time- and cost-effective approach based on selective genotyping of a small number of F2 plants showing the mutant phenotype with nearest-neighboring-nucleotide substitution-high-resolution melting analysis markers, followed by alignment of short reads obtained by next-generation sequencing analysis with the identified locus. In the mutant line, GmCHR5 harbored a single-base deletion that caused a change in the substrate flow in the isoflavone biosynthetic pathway towards genistein. Mutated GmCHR5 was expressed at a lower level during seed development than wild-type GmCHR5. Ectopic overexpression of GmCHR5 increased the production of daidzein derivatives in both the wild-type and mutant plants. The present strategy will be useful for accelerating identification of mutant alleles responsible for traits of interest in agronomically important crops.
Collapse
Affiliation(s)
- Md. Abdur Rauf Sarkar
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Wakana Otsu
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| | - Akihiro Suzuki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| | - Fumio Hashimoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Toyoaki Anai
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| | - Satoshi Watanabe
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| |
Collapse
|
16
|
Catoni M, Jonesman T, Cerruti E, Paszkowski J. Mobilization of Pack-CACTA transposons in Arabidopsis suggests the mechanism of gene shuffling. Nucleic Acids Res 2019; 47:1311-1320. [PMID: 30476196 PMCID: PMC6379663 DOI: 10.1093/nar/gky1196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 11/21/2022] Open
Abstract
Pack-TYPE transposons are a unique class of potentially mobile non-autonomous elements that can capture, merge and relocate fragments of chromosomal DNA. It has been postulated that their activity accelerates the evolution of host genes. However, this important presumption is based only on the sequences of currently inactive Pack-TYPE transposons and the acquisition of chromosomal DNA has not been recorded in real time. Analysing the DNA copy number variation in hypomethylated Arabidopsis lines, we have now for the first time witnessed the mobilization of novel Pack-TYPE elements related to the CACTA transposon family, over several plant generations. Remarkably, these elements can insert into genes as closely spaced direct repeats and they frequently undergo incomplete excisions, resulting in the deletion of one of the end sequences. These properties suggest a mechanism of efficient acquisition of genic DNA residing between neighbouring Pack-TYPE transposons and its subsequent mobilization. Our work documents crucial steps in the formation of in vivo novel Pack-TYPE transposons, and thus the possible mechanism of gene shuffling mediated by this type of mobile element.
Collapse
Affiliation(s)
- Marco Catoni
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK.,School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Thomas Jonesman
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Elisa Cerruti
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Jerzy Paszkowski
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| |
Collapse
|
17
|
Zhao D, Hamilton JP, Vaillancourt B, Zhang W, Eizenga GC, Cui Y, Jiang J, Buell CR, Jiang N. The unique epigenetic features of Pack-MULEs and their impact on chromosomal base composition and expression spectrum. Nucleic Acids Res 2019; 46:2380-2397. [PMID: 29365184 PMCID: PMC5861414 DOI: 10.1093/nar/gky025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
Acquisition and rearrangement of host genes by transposable elements (TEs) is an important mechanism to increase gene diversity as exemplified by the ∼3000 Pack-Mutator-like TEs in the rice genome which have acquired gene sequences (Pack-MULEs), yet remain enigmatic. To identify signatures of functioning Pack-MULEs and Pack-MULE evolution, we generated transcriptome, translatome, and epigenome datasets and compared Pack-MULEs to genes and other TE families. Approximately 40% of Pack-MULEs were transcribed with 9% having translation evidence, clearly distinguishing them from other TEs. Pack-MULEs exhibited a unique expression profile associated with specificity in reproductive tissues that may be associated with seed traits. Expressed Pack-MULEs resemble regular protein-coding genes as exhibited by a low level of DNA methylation, association with active histone marks and DNase I hypersensitive sites, and an absence of repressive histone marks, suggesting that a substantial fraction of Pack-MULEs are potentially functional in vivo. Interestingly, the expression capacity of Pack-MULEs is independent of the local genomic environment, and the insertion and expression of Pack-MULEs may have altered the local chromosomal expression pattern as well as counteracted the impact of recombination on chromosomal base composition, which has profound consequences on the evolution of chromosome structure.
Collapse
Affiliation(s)
- Dongyan Zhao
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Wenli Zhang
- Department of Horticulture, University of Wisconsin, Madison, WI 53705, USA.,State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Georgia C Eizenga
- USDA-ARS Dale Bumpers National Rice Research Center, 2890 Highway 130 East, Stuttgart, AR 72160, USA
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Jiming Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
18
|
Prokaryotic expression of goldfish Tgf2 transposase with optimal codons and its enzyme activity. AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2018.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Ha J, Kang YG, Lee T, Kim M, Yoon MY, Lee E, Yang X, Kim D, Kim YJ, Lee TR, Kim MY, Lee SH. Comprehensive RNA sequencing and co-expression network analysis to complete the biosynthetic pathway of coumestrol, a phytoestrogen. Sci Rep 2019; 9:1934. [PMID: 30760815 PMCID: PMC6374408 DOI: 10.1038/s41598-018-38219-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
Coumestrol (CMS), a coumestan isoflavone, plays key roles in nodulation through communication with rhizobia, and has been used as phytoestrogens for hormone replacement therapy in humans. Because CMS content is controlled by multiple genetic factors, the genetic basis of CMS biosynthesis has remained unclear. We identified soybean genotypes with consistently high (Daewonkong) or low (SS0903-2B-21-1-2) CMS content over 2 years. We performed RNA sequencing of leaf samples from both genotypes at developmental stage R7, when CMS levels are highest. Within the phenylpropanoid biosynthetic pathway, 41 genes were tightly connected in a functional co-expression gene network; seven of these genes were differentially expressed between two genotypes. We identified 14 candidate genes involved in CMS biosynthesis. Among them, seven were annotated as encoding oxidoreductases that may catalyze the transfer of electrons from daidzein, a precursor of CMS. Two of the other genes, annotated as encoding a MYB domain protein and a MLP-like protein, may increase CMS accumulation in response to stress conditions. Our results will help to complete our understanding of the CMS biosynthetic pathway, and should facilitate development of soybean cultivars with high CMS content that could be used to promote the fitness of plants and human beings.
Collapse
Affiliation(s)
- Jungmin Ha
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Young-Gyu Kang
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Taeyoung Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Myoyeon Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Min Young Yoon
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Eunsoo Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Xuefei Yang
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yong-Jin Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Tae Ryong Lee
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Moon Young Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Kaler AS, Gillman JD, Beissinger T, Purcell LC. Comparing Different Statistical Models and Multiple Testing Corrections for Association Mapping in Soybean and Maize. FRONTIERS IN PLANT SCIENCE 2019; 10:1794. [PMID: 32158452 PMCID: PMC7052329 DOI: 10.3389/fpls.2019.01794] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/23/2019] [Indexed: 05/19/2023]
Abstract
Association mapping (AM) is a powerful tool for fine mapping complex trait variation down to nucleotide sequences by exploiting historical recombination events. A major problem in AM is controlling false positives that can arise from population structure and family relatedness. False positives are often controlled by incorporating covariates for structure and kinship in mixed linear models (MLM). These MLM-based methods are single locus models and can introduce false negatives due to over fitting of the model. In this study, eight different statistical models, ranging from single-locus to multilocus, were compared for AM for three traits differing in heritability in two crop species: soybean (Glycine max L.) and maize (Zea mays L.). Soybean and maize were chosen, in part, due to their highly differentiated rate of linkage disequilibrium (LD) decay, which can influence false positive and false negative rates. The fixed and random model circulating probability unification (FarmCPU) performed better than other models based on an analysis of Q-Q plots and on the identification of the known number of quantitative trait loci (QTLs) in a simulated data set. These results indicate that the FarmCPU controls both false positives and false negatives. Six qualitative traits in soybean with known published genomic positions were also used to compare these models, and results indicated that the FarmCPU consistently identified a single highly significant SNP closest to these known published genes. Multiple comparison adjustments (Bonferroni, false discovery rate, and positive false discovery rate) were compared for these models using a simulated trait having 60% heritability and 20 QTLs. Multiple comparison adjustments were overly conservative for MLM, CMLM, ECMLM, and MLMM and did not find any significant markers; in contrast, ANOVA, GLM, and SUPER models found an excessive number of markers, far more than 20 QTLs. The FarmCPU model, using less conservative methods (false discovery rate, and positive false discovery rate) identified 10 QTLs, which was closer to the simulated number of QTLs than the number found by other models.
Collapse
Affiliation(s)
- Avjinder S. Kaler
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Jason D. Gillman
- Plant Genetic Research Unit, USDA-ARS, Columbia, MO, United States
| | - Timothy Beissinger
- Division of Plant Breeding Methodology, Center for Integrated Breeding Research, Georg-August-Universität, Göttingen, Germany
| | - Larry C. Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Larry C. Purcell,
| |
Collapse
|
21
|
Ma KF, Zhang QX, Cheng TR, Yan XL, Pan HT, Wang J. Substantial Epigenetic Variation Causing Flower Color Chimerism in the Ornamental Tree Prunus mume Revealed by Single Base Resolution Methylome Detection and Transcriptome Sequencing. Int J Mol Sci 2018; 19:E2315. [PMID: 30087265 PMCID: PMC6121637 DOI: 10.3390/ijms19082315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 01/03/2023] Open
Abstract
Epigenetic changes caused by methylcytosine modification participate in gene regulation and transposable element (TE) repression, resulting in phenotypic variation. Although the effects of DNA methylation and TE repression on flower, fruit, seed coat, and leaf pigmentation have been investigated, little is known about the relationship between methylation and flower color chimerism. In this study, we used a comparative methylomic⁻transcriptomic approach to explore the molecular mechanism responsible for chimeric flowers in Prunus mume "Danban Tiaozhi". High-performance liquid chromatography-electrospray ionization mass spectrometry revealed that the variation in white (WT) and red (RT) petal tissues in this species is directly due to the accumulation of anthocyanins, i.e., cyanidin 3,5-O-diglucoside, cyanidin 3-O-glucoside, and peonidin 3-O-glucoside. We next mapped the first-ever generated methylomes of P. mume, and found that 11.29⁻14.83% of the genomic cytosine sites were methylated. We also determined that gene expression was negatively correlated with methylcytosine level in general, and uncovered significant epigenetic variation between WT and RT. Furthermore, we detected differentially methylated regions (DMRs) and DMR-related genes between WT and RT, and concluded that many of these genes, including differentially expressed genes (DEGs) and transcription factor genes, are critical participants in the anthocyanin regulatory pathway. Importantly, some of the associated DEGs harbored TE insertions that were also modified by methylcytosine. The above evidence suggest that flower color chimerism in P. mume is induced by the DNA methylation of critical genes and TEs.
Collapse
Affiliation(s)
- Kai-Feng Ma
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Qi-Xiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| | - Tang-Ren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Xiao-Lan Yan
- Mei Research Center of China, Wuhan 430074, China.
| | - Hui-Tang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
22
|
Ha J, Kim M, Kim MY, Lee T, Yoon MY, Lee J, Lee YH, Kang YG, Park JS, Lee JH, Lee SH. Transcriptomic variation in proanthocyanidin biosynthesis pathway genes in soybean (Glycine spp.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2138-2146. [PMID: 28960323 DOI: 10.1002/jsfa.8698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/29/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Proanthocyanidins are oligomeric or polymeric end products of flavonoid metabolic pathways starting with the central phenylpropanoid pathway. Although soybean (Glycine spp.) seeds represent a major source of nutrients for the human diet, as well as components for the cosmetics industry as a result of their high levels of flavonoid metabolites, including isoflavonoids, anthocyanins and proanthocyanidins, the genetic regulatory mechanisms underlying proanthocyanidin biosynthesis in soybean remain unclear. RESULTS We evaluated interspecific and intraspecific variability in flavonoid components in soybean using 43 cultivars, landraces and wild soybean accessions. We performed transcriptomic profiling of genes encoding enzymes involved in flavonoid biosynthesis using three soybean genotypes, Hwangkeum (elite cultivar), IT109098 (landrace) and IT182932 (wild accession), in seeds. We identified a Glycine max landrace, IT109098, with a proanthocyanidin content as high as that of wild soybean. Different homologous genes for anthocyanidin reductase, which is involved in proanthocyanidin biosynthesis, were detected as differentially expressed genes between IT109098 and IT182932 compared to Hwangkeum. CONCLUSION We detected major differences in the transcriptional levels of genes involved in the biosynthesis of proanthocyanidin and anthocyanin among genotypes beginning at the early stage of seed development. The results of the present study provide insights into the underlying genetic variation in proanthocyanidin biosynthesis among soybean genotypes. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jungmin Ha
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Myoyeon Kim
- Applied Technology & Research Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Moon Young Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Taeyoung Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min Young Yoon
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Jayern Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeong-Ho Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Gyu Kang
- Applied Technology & Research Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jun Seong Park
- Applied Technology & Research Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - John Hwan Lee
- Applied Technology & Research Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Shamimuzzaman M, Vodkin L. Ribosome profiling reveals changes in translational status of soybean transcripts during immature cotyledon development. PLoS One 2018; 13:e0194596. [PMID: 29570733 PMCID: PMC5865733 DOI: 10.1371/journal.pone.0194596] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/06/2018] [Indexed: 11/19/2022] Open
Abstract
To understand translational capacity on a genome-wide scale across three developmental stages of immature soybean seed cotyledons, ribosome profiling was performed in combination with RNA sequencing and cluster analysis. Transcripts representing 216 unique genes demonstrated a higher level of translational activity in at least one stage by exhibiting higher translational efficiencies (TEs) in which there were relatively more ribosome footprint sequence reads mapping to the transcript than were present in the control total RNA sample. The majority of these transcripts were more translationally active at the early stage of seed development and included 12 unique serine or cysteine proteases and 16 2S albumin and low molecular weight cysteine-rich proteins that may serve as substrates for turnover and mobilization early in seed development. It would appear that the serine proteases and 2S albumins play a vital role in the early stages. In contrast, our investigation of profiles of 19 genes encoding high abundance seed storage proteins, such as glycinins, beta-conglycinins, lectin, and Kunitz trypsin inhibitors, showed that they all had similar patterns in which the TE values started at low levels and increased approximately 2 to 6-fold during development. The highest levels of these seed protein transcripts were found at the mid-developmental stage, whereas the highest ribosome footprint levels of only up to 1.6 TE were found at the late developmental stage. These experimental findings suggest that the major seed storage protein coding genes are primarily regulated at the transcriptional level during normal soybean cotyledon development. Finally, our analyses also identified a total of 370 unique gene models that showed very low TE values including over 48 genes encoding ribosomal family proteins and 95 gene models that are related to energy and photosynthetic functions, many of which have homology to the chloroplast genome. Additionally, we showed that genes of the chloroplast were relatively translationally inactive during seed development.
Collapse
Affiliation(s)
- Md. Shamimuzzaman
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Lila Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
24
|
Brzostowski LF, Pruski TI, Specht JE, Diers BW. Impact of seed protein alleles from three soybean sources on seed composition and agronomic traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2315-2326. [PMID: 28795235 DOI: 10.1007/s00122-017-2961-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/31/2017] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Evaluation of seed protein alleles in soybean populations showed that an increase in protein concentration is generally associated with a decrease in oil concentration and yield. Soybean [Glycine max (L.) Merrill] meal is one of the most important plant-based protein sources in the world. Developing cultivars high in seed protein concentration and seed yield is a difficult task because the traits have an inverse relationship. Over two decades ago, a protein quantitative trait loci (QTL) was mapped on chromosome (chr) 20, and this QTL has been mapped to the same position in several studies and given the confirmed QTL designation cqSeed protein-003. In addition, the wp allele on chr 2, which confers pink flower color, has also been associated with increased protein concentration. The objective of our study was to evaluate the effect of cqSeed protein-003 and the wp locus on seed composition and agronomic traits in elite soybean backgrounds adapted to the Midwestern USA. Segregating populations of isogenic lines were developed to test the wp allele and the chr 20 high protein QTL alleles from Danbaekkong (PI619083) and Glycine soja PI468916 at cqSeed protein-003. An increase in protein concentration and decrease in yield were generally coupled with the high protein alleles at cqSeed protein-003 across populations, whereas the effects of wp on protein concentration and yield were variable. These results not only demonstrate the difficulty in developing cultivars with increased protein and yield but also provide information for breeding programs seeking to improve seed composition and agronomic traits simultaneously.
Collapse
Affiliation(s)
- Lillian F Brzostowski
- Department of Crop Sciences, University of Illinois, 1101 W. Peabody Drive, Urbana, IL, 61801, USA
| | - Timothy I Pruski
- Bayer CropScience, 21 County Road 1200 North, White Heath, IL, 61884, USA
| | - James E Specht
- Department of Agronomy and Horticulture, University of Nebraska, 363 Keim Hall, Lincoln, NE, 68583, USA
| | - Brian W Diers
- Department of Crop Sciences, University of Illinois, 1101 W. Peabody Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
25
|
Sundaramoorthy J, Park GT, Chang JH, Lee JD, Kim JH, Seo HS, Chung G, Song JT. Identification and Molecular Analysis of Four New Alleles at the W1 Locus Associated with Flower Color in Soybean. PLoS One 2016; 11:e0159865. [PMID: 27442124 PMCID: PMC4956318 DOI: 10.1371/journal.pone.0159865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/09/2016] [Indexed: 11/18/2022] Open
Abstract
In soybean, flavonoid 3'5'-hydroxylase (F3'5'H) and dihydroflavonol-4-reductase (DFR) play a crucial role in the production of anthocyanin pigments. Loss-of-function of the W1 locus, which encodes the former, or W3 and W4, which encode the latter, always produces white flowers. In this study, we searched for new genetic components responsible for the production of white flowers in soybean and isolated four white-flowered mutant lines, i.e., two Glycine soja accessions (CW12700 and CW13381) and two EMS-induced mutants of Glycine max (PE1837 and PE636). F3'5'H expression in CW12700, PE1837, and PE636 was normal, whereas that in CW13381 was aberrant and missing the third exon. Sequence analysis of F3'5'H of CW13381 revealed the presence of an indel (~90-bp AT-repeat) in the second intron. In addition, the F3'5'H of CW12700, PE1837, and PE636 harbored unique single-nucleotide substitutions. The single nucleotide polymorphisms resulted in substitutions of amino acid residues located in or near the SRS4 domain of F3'5'H, which is essential for substrate recognition. 3D structure modeling of F3'5'H indicated that the substitutions could interfere with an interaction between the substrate and heme group and compromise the conformation of the active site of F3'5'H. Recombination analysis revealed a tight correlation between all of the mutant alleles at the W1 locus and white flower color. On the basis of the characterization of the new mutant alleles, we discussed the biological implications of F3'5'H and DFR in the determination of flower colors in soybean.
Collapse
Affiliation(s)
| | - Gyu Tae Park
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong Hoe Kim
- Department of Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Hak Soo Seo
- Department of Plant Bioscience, Seoul National University, Seoul, Republic of Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam, Republic of Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
26
|
Wei L, Cao X. The effect of transposable elements on phenotypic variation: insights from plants to humans. SCIENCE CHINA-LIFE SCIENCES 2016; 59:24-37. [PMID: 26753674 DOI: 10.1007/s11427-015-4993-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/16/2015] [Indexed: 11/25/2022]
Abstract
Transposable elements (TEs), originally discovered in maize as controlling elements, are the main components of most eukaryotic genomes. TEs have been regarded as deleterious genomic parasites due to their ability to undergo massive amplification. However, TEs can regulate gene expression and alter phenotypes. Also, emerging findings demonstrate that TEs can establish and rewire gene regulatory networks by genetic and epigenetic mechanisms. In this review, we summarize the key roles of TEs in fine-tuning the regulation of gene expression leading to phenotypic plasticity in plants and humans, and the implications for adaption and natural selection.
Collapse
Affiliation(s)
- Liya Wei
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
27
|
Park GT, Sundaramoorthy J, Lee JD, Kim JH, Seo HS, Song JT. Elucidation of Molecular Identity of the W3 Locus and Its Implication in Determination of Flower Colors in Soybean. PLoS One 2015; 10:e0142643. [PMID: 26555888 PMCID: PMC4640537 DOI: 10.1371/journal.pone.0142643] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/23/2015] [Indexed: 12/03/2022] Open
Abstract
The wide range of flower colors in soybean is controlled by six independent loci (W1, W2, W3, W4, Wm, and Wp). Among these loci, mutations in the W3 locus under the w4 allelic background (i.e., w3w4) produce near-white flowers, while the W3w4 genotype produces purple throat flowers. Although a gene encoding dihydroflavonol 4-reductase, DFR1, has been known to be closely associated with the W3 locus, its molecular identity has not yet been characterized. In the present study, we aimed to determine whether DFR1 is responsible for allelic variations in the W3 locus. On the basis of the sequence of a DFR probe, Glyma.14G072700 was identified as a candidate gene for DFR1, and nucleotide sequences of Glyma.14G072700 from cultivars with previously validated genotypes for the W3 locus were determined. As a result, a number of nucleotide polymorphisms, mainly single-base substitutions, between both coding and 5'-upstream region sequences of the W3 and w3 alleles were identified. Among them, an indel of 311-bp in the 5'-upstream region was noteworthy, since the Glyma.14G072700 in all the w3 alleles examined contained the indel, whereas that in all the W3 alleles did not; the former was barely expressed, but the latter was well expressed. These results suggest that Glyma.14G072700 is likely to correspond to DFR1 for the W3 locus and that its expression patterns may lead to allelic color phenotypes of W3 and w3 alleles under the w4 allelic background.
Collapse
Affiliation(s)
- Gyu Tae Park
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | | | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Jeong Hoe Kim
- Department of Biology, Kyungpook National University, Daegu, Korea
| | - Hak Soo Seo
- Department of Plant Bioscience, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
28
|
Yan F, Di S, Takahashi R. CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds. Genome 2015; 58:365-74. [PMID: 26360633 DOI: 10.1139/gen-2015-0054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The R gene of soybean, presumably encoding a MYB transcription factor, controls seed coat color. The gene consists of multiple alleles, R (black), r-m (black spots and (or) concentric streaks on brown seed), and r (brown seed). This study was conducted to determine the structure of the MYB transcription factor gene in a near-isogenic line (NIL) having r-m allele. PCR amplification of a fragment of the candidate gene Glyma.09G235100 generated a fragment of about 1 kb in the soybean cultivar Clark, whereas a fragment of about 14 kb in addition to fragments of 1 and 1.4 kb were produced in L72-2040, a Clark 63 NIL with the r-m allele. Clark 63 is a NIL of Clark with the rxp and Rps1 alleles. A DNA fragment of 13 060 bp was inserted in the intron of Glyma.09G235100 in L72-2040. The fragment had the CACTA motif at both ends, imperfect terminal inverted repeats (TIR), inverse repetition of short sequence motifs close to the 5' and 3' ends, and a duplication of three nucleotides at the site of integration, indicating that it belongs to a CACTA-superfamily transposable element. We designated the element as Tgm11. Overall nucleotide sequence, motifs of TIR, and subterminal repeats were similar to those of Tgm1 and Tgs1, suggesting that these elements comprise a family.
Collapse
Affiliation(s)
- Fan Yan
- a Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8518 Japan
| | - Shaokang Di
- a Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8518 Japan
| | - Ryoji Takahashi
- a Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8518 Japan
- b National Institute of Crop Science, Tsukuba, Ibaraki, 305-8518 Japan
| |
Collapse
|
29
|
Sundaramoorthy J, Park GT, Lee JD, Kim JH, Seo HS, Song JT. Genetic and molecular regulation of flower pigmentation in soybean. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0077-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Zabala G, Vodkin LO. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats. PLoS One 2014; 9:e111959. [PMID: 25369033 PMCID: PMC4219821 DOI: 10.1371/journal.pone.0111959] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/07/2014] [Indexed: 01/26/2023] Open
Abstract
We determined the molecular basis of three soybean lines that vary in seed coat color at the R locus which is thought to encode a MYB transcription factor. RM55-r(m) is homozygous for a mutable allele (r(m)) that specifies black and brown striped seeds; RM30-R* is a stable black revertant isoline derived from the mutable line; and RM38-r has brown seed coats due to a recessive r allele shown to translate a truncated MYB protein. Using long range PCR, 454 sequencing of amplicons, and whole genome re-sequencing, we determined that the variegated RM55-r(m) line had a 13 kb CACTA subfamily transposon insertion (designated TgmR*) at a position 110 bp from the beginning of Intron2 of the R locus, Glyma09g36983. Although the MYB encoded by R was expressed at only very low levels in older seed coats of the black revertant RM30-R* line, it upregulated expression of anthocyanidin synthase genes (ANS2, ANS3) to promote the synthesis of anthocyanins. Surprisingly, the RM30-R* revertant also carried the 13 kb TgmR* insertion in Intron2. Using RNA-Seq, we showed that intron splicing was accurate, albeit at lower levels, despite the presence of the 13 kb TgmR* element. As determined by whole genome methylation sequencing, we demonstrate that the TgmR* sequence was relatively more methylated in RM30-R* than in the mutable RM55-r(m) progenitor line. The stabilized and more methylated RM30-R* revertant line apparently lacks effective binding of a transposae to its subterminal repeats, thus allowing intron splicing to proceed resulting in sufficient MYB protein to stimulate anthocyanin production and thus black seed coats. In this regard, the TgmR* element in soybean resembles McClintock's Spm-suppressible and change-of-state alleles of maize. This comparison explains the opposite effects of the TgmR* element on intron splicing of the MYB gene in which it resides depending on the methylation state of the element.
Collapse
Affiliation(s)
- Gracia Zabala
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Lila O. Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
31
|
Zabala G, Vodkin LO. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats. PLoS One 2014; 9:e111959. [PMID: 25369033 DOI: 10.1371/journalpone.0111959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/07/2014] [Indexed: 05/28/2023] Open
Abstract
We determined the molecular basis of three soybean lines that vary in seed coat color at the R locus which is thought to encode a MYB transcription factor. RM55-r(m) is homozygous for a mutable allele (r(m)) that specifies black and brown striped seeds; RM30-R* is a stable black revertant isoline derived from the mutable line; and RM38-r has brown seed coats due to a recessive r allele shown to translate a truncated MYB protein. Using long range PCR, 454 sequencing of amplicons, and whole genome re-sequencing, we determined that the variegated RM55-r(m) line had a 13 kb CACTA subfamily transposon insertion (designated TgmR*) at a position 110 bp from the beginning of Intron2 of the R locus, Glyma09g36983. Although the MYB encoded by R was expressed at only very low levels in older seed coats of the black revertant RM30-R* line, it upregulated expression of anthocyanidin synthase genes (ANS2, ANS3) to promote the synthesis of anthocyanins. Surprisingly, the RM30-R* revertant also carried the 13 kb TgmR* insertion in Intron2. Using RNA-Seq, we showed that intron splicing was accurate, albeit at lower levels, despite the presence of the 13 kb TgmR* element. As determined by whole genome methylation sequencing, we demonstrate that the TgmR* sequence was relatively more methylated in RM30-R* than in the mutable RM55-r(m) progenitor line. The stabilized and more methylated RM30-R* revertant line apparently lacks effective binding of a transposae to its subterminal repeats, thus allowing intron splicing to proceed resulting in sufficient MYB protein to stimulate anthocyanin production and thus black seed coats. In this regard, the TgmR* element in soybean resembles McClintock's Spm-suppressible and change-of-state alleles of maize. This comparison explains the opposite effects of the TgmR* element on intron splicing of the MYB gene in which it resides depending on the methylation state of the element.
Collapse
Affiliation(s)
- Gracia Zabala
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
32
|
Thomas J, Phillips CD, Baker RJ, Pritham EJ. Rolling-circle transposons catalyze genomic innovation in a mammalian lineage. Genome Biol Evol 2014; 6:2595-610. [PMID: 25223768 PMCID: PMC4224331 DOI: 10.1093/gbe/evu204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rolling-circle transposons (Helitrons) are a newly discovered group of mobile DNA widespread in plant and invertebrate genomes but limited to the bat family Vespertilionidae among mammals. Little is known about the long-term impact of Helitron activity because the genomes where Helitron activity has been extensively studied are predominated by young families. Here, we report a comprehensive catalog of vetted Helitrons from the 7× Myotis lucifugus genome assembly. To estimate the timing of transposition, we scored presence/absence across related vespertilionid genome sequences with estimated divergence times. This analysis revealed that the Helibat family has been a persistent source of genomic innovation throughout the vespertilionid diversification from approximately 30–36 Ma to as recently as approximately 1.8–6 Ma. This is the first report of persistent Helitron transposition over an extended evolutionary timeframe. These findings illustrate that the pattern of Helitron activity is akin to the vertical persistence of LINE retrotransposons in primates and other mammalian lineages. Like retrotransposition in primates, rolling-circle transposition has generated lineage-specific variation and accounts for approximately 110 Mb, approximately 6% of the genome of M. lucifugus. The Helitrons carry a heterogeneous assortment of host sequence including retroposed messenger RNAs, retrotransposons, DNA transposons, as well as introns, exons and regulatory regions (promoters, 5′-untranslated regions [UTRs], and 3′-UTRs) of which some are evolving in a pattern suggestive of purifying selection. Evidence that Helitrons have contributed putative promoters, exons, splice sites, polyadenylation sites, and microRNA-binding sites to transcripts otherwise conserved across mammals is presented, and the implication of Helitron activity to innovation in these unique mammals is discussed.
Collapse
Affiliation(s)
- Jainy Thomas
- Department of Human Genetics, University of Utah
| | - Caleb D Phillips
- Department of Biological Sciences and Museum, Texas Tech University
| | - Robert J Baker
- Department of Biological Sciences and Museum, Texas Tech University
| | | |
Collapse
|
33
|
Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 2014; 5:1886-901. [PMID: 24065734 PMCID: PMC3814199 DOI: 10.1093/gbe/evt141] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a dominant feature of most flowering plant genomes. Together with other accepted facilitators of evolution, accumulating data indicate that TEs can explain much about their rapid evolution and diversification. Genome size in angiosperms is highly correlated with TE content and the overwhelming bulk (>80%) of large genomes can be composed of TEs. Among retro-TEs, long terminal repeats (LTRs) are abundant, whereas DNA-TEs, which are often less abundant than retro-TEs, are more active. Much adaptive or evolutionary potential in angiosperms is due to the activity of TEs (active TE-Thrust), resulting in an extraordinary array of genetic changes, including gene modifications, duplications, altered expression patterns, and exaptation to create novel genes, with occasional gene disruption. TEs implicated in the earliest origins of the angiosperms include the exapted Mustang, Sleeper, and Fhy3/Far1 gene families. Passive TE-Thrust can create a high degree of adaptive or evolutionary potential by engendering ectopic recombination events resulting in deletions, duplications, and karyotypic changes. TE activity can also alter epigenetic patterning, including that governing endosperm development, thus promoting reproductive isolation. Continuing evolution of long-lived resprouter angiosperms, together with genetic variation in their multiple meristems, indicates that TEs can facilitate somatic evolution in addition to germ line evolution. Critical to their success, angiosperms have a high frequency of polyploidy and hybridization, with resultant increased TE activity and introgression, and beneficial gene duplication. Together with traditional explanations, the enhanced genomic plasticity facilitated by TE-Thrust, suggests a more complete and satisfactory explanation for Darwin's "abominable mystery": the spectacular success of the angiosperms.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | | |
Collapse
|
34
|
Nishihara M, Yamada E, Saito M, Fujita K, Takahashi H, Nakatsuka T. Molecular characterization of mutations in white-flowered torenia plants. BMC PLANT BIOLOGY 2014; 14:86. [PMID: 24694353 PMCID: PMC4234012 DOI: 10.1186/1471-2229-14-86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Torenia (Torenia fournieri Lind.) is a model plant increasingly exploited in studies in various disciplines, including plant engineering, biochemistry, physiology, and ecology. Additionally, cultivars with different flower colors have been bred and made commercially available. Flower color in torenia is mainly attributed to the accumulation of anthocyanins, but the molecular mechanisms inducing flower color mutations in torenia have not been well elucidated. In this study, we therefore attempted to identify the cause of white coloration in torenia by comparing the white-flowered cultivar Crown White (CrW) with Crown Violet (CrV), a violet-flowered variety. RESULTS In an expression analysis, no flavanone 3-hydroxylase (TfF3H) transcript accumulation was detected in CrW petals. Sequence analyses revealed that a novel long terminal repeat (LTR)-type retrotransposable element, designated as TORE1 (Torenia retrotransposon 1), is inserted into the 5'-upstream region of the TfF3H gene in CrW. A transient expression assay using torenia F3H promoters with or without TORE1 insertion showed that the TORE1 insertion substantially suppressed F3H promoter activity, suggesting that this insertion is responsible for the absence of F3H transcripts in white petals. Furthermore, a transformation experiment demonstrated that the introduction of a foreign gentian F3H cDNA, GtF3H, into CrW was able to recover pink-flower pigmentation, indicating that F3H deficiency is indeed the cause of the colorless flower phenotype in CrW. Detailed sequence analysis also identified deletion mutations in flavonoid 3'-hydroxylase (TfF3'H) and flavonoid 3',5'- hydroxylase (TfF3'5'H) genes, but these were not directly responsible for white coloration in this cultivar. CONCLUSIONS Taken together, a novel retrotransposable element, TORE1, inserted into the F3H 5'-upstream region is the cause of deficient F3H transcripts in white-flowered torenia, thereby leading to reduced petal anthocyanin levels. This is the first report of a retrotransposable element involved in flower color mutation in the genus Torenia.
Collapse
Affiliation(s)
- Masahiro Nishihara
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 024-0003, Japan
| | - Eri Yamada
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 024-0003, Japan
| | - Misa Saito
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 024-0003, Japan
| | - Kohei Fujita
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 024-0003, Japan
| | - Hideyuki Takahashi
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 024-0003, Japan
| | - Takashi Nakatsuka
- Department of Biological and Environmental Science, Graduate School of Agriculture, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
35
|
Vitte C, Fustier MA, Alix K, Tenaillon MI. The bright side of transposons in crop evolution. Brief Funct Genomics 2014; 13:276-95. [PMID: 24681749 DOI: 10.1093/bfgp/elu002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The past decades have revealed an unexpected yet prominent role of so-called 'junk DNA' in the regulation of gene expression, thereby challenging our view of the mechanisms underlying phenotypic evolution. In particular, several mechanisms through which transposable elements (TEs) participate in functional genome diversity have been depicted, bringing to light the 'TEs bright side'. However, the relative contribution of those mechanisms and, more generally, the importance of TE-based polymorphisms on past and present phenotypic variation in crops species remain poorly understood. Here, we review current knowledge on both issues, and discuss how analyses of massively parallel sequencing data combined with statistical methodologies and functional validations will help unravelling the impact of TEs on crop evolution in a near future.
Collapse
|
36
|
Yan F, Di S, Rojas Rodas F, Rodriguez Torrico T, Murai Y, Iwashina T, Anai T, Takahashi R. Allelic variation of soybean flower color gene W4 encoding dihydroflavonol 4-reductase 2. BMC PLANT BIOLOGY 2014; 14:58. [PMID: 24602314 PMCID: PMC4015899 DOI: 10.1186/1471-2229-14-58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/26/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND Flower color of soybean is primarily controlled by six genes, viz., W1, W2, W3, W4, Wm and Wp. This study was conducted to investigate the genetic and chemical basis of newly-identified flower color variants including two soybean mutant lines, 222-A-3 (near white flower) and E30-D-1 (light purple flower), a near-isogenic line (Clark-w4), flower color variants (T321 and T369) descended from the w4-mutable line and kw4 (near white flower, Glycine soja). RESULTS Complementation tests revealed that the flower color of 222-A-3 and kw4 was controlled by the recessive allele (w4) of the W4 locus encoding dihydroflavonol 4-reductase 2 (DFR2). In 222-A-3, a single base was deleted in the first exon resulting in a truncated polypeptide consisting of 24 amino acids. In Clark-w4, base substitution of the first nucleotide of the fourth intron abolished the 5' splice site, resulting in the retention of the intron. The DFR2 gene of kw4 was not expressed. The above results suggest that complete loss-of-function of DFR2 gene leads to near white flowers. Light purple flower of E30-D-1 was controlled by a new allele at the W4 locus, w4-lp. The gene symbol was approved by the Soybean Genetics Committee. In E30-D-1, a single-base substitution changed an amino acid at position 39 from arginine to histidine. Pale flowers of T369 had higher expression levels of the DFR2 gene. These flower petals contained unique dihydroflavonols that have not yet been reported to occur in soybean and G. soja. CONCLUSIONS Complete loss-of-function of DFR2 gene leads to near white flowers. A new allele of the W4 locus, w4-lp regulates light purple flowers. Single amino acid substitution was associated with light purple flowers. Flower petals of T369 had higher levels of DFR2 gene expression and contained unique dihydroflavonols that are absent in soybean and G. soja. Thus, mutants of the DFR2 gene have unique flavonoid compositions and display a wide variety of flower color patterns in soybean, from near white, light purple, dilute purple to pale.
Collapse
Affiliation(s)
- Fan Yan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8518, Japan
| | - Shaokang Di
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8518, Japan
| | - Felipe Rojas Rodas
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8518, Japan
| | - Tito Rodriguez Torrico
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8518, Japan
| | - Yoshinori Murai
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki 305-0005, Japan
| | - Tsukasa Iwashina
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki 305-0005, Japan
| | - Toyoaki Anai
- Laboratory of Plant Genetics and Breeding, Faculty of Agriculture, Saga University, Honjo-machi, Saga 840-8502, Japan
| | - Ryoji Takahashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8518, Japan
- National Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
37
|
Daron J, Glover N, Pingault L, Theil S, Jamilloux V, Paux E, Barbe V, Mangenot S, Alberti A, Wincker P, Quesneville H, Feuillet C, Choulet F. Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol 2014; 15:546. [PMID: 25476263 PMCID: PMC4290129 DOI: 10.1186/s13059-014-0546-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/17/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The 17 Gb bread wheat genome has massively expanded through the proliferation of transposable elements (TEs) and two recent rounds of polyploidization. The assembly of a 774 Mb reference sequence of wheat chromosome 3B provided us with the opportunity to explore the impact of TEs on the complex wheat genome structure and evolution at a resolution and scale not reached so far. RESULTS We develop an automated workflow, CLARI-TE, for TE modeling in complex genomes. We delineate precisely 56,488 intact and 196,391 fragmented TEs along the 3B pseudomolecule, accounting for 85% of the sequence, and reconstruct 30,199 nested insertions. TEs have been mostly silent for the last one million years, and the 3B chromosome has been shaped by a succession of bursts that occurred between 1 to 3 million years ago. Accelerated TE elimination in the high-recombination distal regions is a driving force towards chromosome partitioning. CACTAs overrepresented in the high-recombination distal regions are significantly associated with recently duplicated genes. In addition, we identify 140 CACTA-mediated gene capture events with 17 genes potentially created by exon shuffling and show that 19 captured genes are transcribed and under selection pressure, suggesting the important role of CACTAs in the recent wheat adaptation. CONCLUSION Accurate TE modeling uncovers the dynamics of TEs in a highly complex and polyploid genome. It provides novel insights into chromosome partitioning and highlights the role of CACTA transposons in the high level of gene duplication in wheat.
Collapse
Affiliation(s)
- Josquin Daron
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Natasha Glover
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Lise Pingault
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Sébastien Theil
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Véronique Jamilloux
- />INRA-URGI, Centre de Versailles, Route de Saint Cyr, 78026 Versailles, France
| | - Etienne Paux
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Valérie Barbe
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Sophie Mangenot
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Adriana Alberti
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Patrick Wincker
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
- />CNRS UMR 8030, 2 rue Gaston Crémieux, 91000 Evry, France
- />Université d’Evry, P5706 Evry, France
| | - Hadi Quesneville
- />INRA-URGI, Centre de Versailles, Route de Saint Cyr, 78026 Versailles, France
| | - Catherine Feuillet
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Frédéric Choulet
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| |
Collapse
|
38
|
Smýkal P, Vernoud V, Blair MW, Soukup A, Thompson RD. The role of the testa during development and in establishment of dormancy of the legume seed. FRONTIERS IN PLANT SCIENCE 2014; 5:351. [PMID: 25101104 PMCID: PMC4102250 DOI: 10.3389/fpls.2014.00351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/30/2014] [Indexed: 05/19/2023]
Abstract
Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the "domestication syndrome." Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on structural and chemical aspects.
Collapse
Affiliation(s)
- Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacký University in OlomoucOlomouc, Czech Republic
- *Correspondence: Petr Smýkal, Department of Botany, Faculty of Sciences, Palacký University in Olomouc, Šlechtitelů 11, 783 71 Olomouc, Czech Republic e-mail:
| | | | - Matthew W. Blair
- Department of Agricultural and Environmental Sciences, Tennessee State UniversityNashville, TN, USA
| | - Aleš Soukup
- Department of Experimental Plant Biology, Charles UniversityPrague, Czech Republic
| | | |
Collapse
|
39
|
New insights into helitron transposable elements in the mesopolyploid species Brassica rapa. Gene 2013; 532:236-45. [DOI: 10.1016/j.gene.2013.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022]
|
40
|
Ferguson AA, Zhao D, Jiang N. Selective acquisition and retention of genomic sequences by Pack-Mutator-like elements based on guanine-cytosine content and the breadth of expression. PLANT PHYSIOLOGY 2013; 163:1419-32. [PMID: 24028844 PMCID: PMC3813661 DOI: 10.1104/pp.113.223271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The process of gene duplication followed by sequence and functional divergence is important for the generation of new genes. Pack-MULEs, nonautonomous Mutator-like elements (MULEs) that carry genic sequence(s), are potentially involved in generating new open reading frames and regulating parental gene expression. These elements are identified in many plant genomes and are most abundant in rice (Oryza sativa). Despite the abundance of Pack-MULEs, the mechanism by which parental genes are captured by Pack-MULEs remains largely unknown. In this study, we identified all MULEs in rice and examined factors likely important for sequence acquisition. Terminal inverted repeat MULEs are the predominant MULE type and account for the majority of the Pack-MULEs. In addition to genic sequences, rice MULEs capture guanine-cytosine (GC)-rich intergenic sequences, albeit at a much lower frequency. MULEs carrying nontransposon sequences have longer terminal inverted repeats and higher GC content in terminal and subterminal regions. An overrepresentation of genes with known functions and genes with orthologs among parental genes of Pack-MULEs is observed in rice, maize (Zea mays), and Arabidopsis (Arabidopsis thaliana), suggesting preferential acquisition for bona fide genes by these elements. Pack-MULEs selectively acquire/retain parental sequences through a combined effect of GC content and breadth of expression, with GC content playing a stronger role. Increased GC content and number of tissues with detectable expression result in higher chances of a gene being acquired by Pack-MULEs. Such selective acquisition/retention provides these elements greater chances of carrying functional sequences that may provide new genetic resources for the evolution of new genes or the modification of existing genes.
Collapse
|
41
|
Reinprecht Y, Yadegari Z, Perry GE, Siddiqua M, Wright LC, McClean PE, Pauls KP. In silico comparison of genomic regions containing genes coding for enzymes and transcription factors for the phenylpropanoid pathway in Phaseolus vulgaris L. and Glycine max L. Merr. FRONTIERS IN PLANT SCIENCE 2013; 4:317. [PMID: 24046770 PMCID: PMC3763686 DOI: 10.3389/fpls.2013.00317] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/29/2013] [Indexed: 05/27/2023]
Abstract
Legumes contain a variety of phytochemicals derived from the phenylpropanoid pathway that have important effects on human health as well as seed coat color, plant disease resistance and nodulation. However, the information about the genes involved in this important pathway is fragmentary in common bean (Phaseolus vulgaris L.). The objectives of this research were to isolate genes that function in and control the phenylpropanoid pathway in common bean, determine their genomic locations in silico in common bean and soybean, and analyze sequences of the 4CL gene family in two common bean genotypes. Sequences of phenylpropanoid pathway genes available for common bean or other plant species were aligned, and the conserved regions were used to design sequence-specific primers. The PCR products were cloned and sequenced and the gene sequences along with common bean gene-based (g) markers were BLASTed against the Glycine max v.1.0 genome and the P. vulgaris v.1.0 (Andean) early release genome. In addition, gene sequences were BLASTed against the OAC Rex (Mesoamerican) genome sequence assembly. In total, fragments of 46 structural and regulatory phenylpropanoid pathway genes were characterized in this way and placed in silico on common bean and soybean sequence maps. The maps contain over 250 common bean g and SSR (simple sequence repeat) markers and identify the positions of more than 60 additional phenylpropanoid pathway gene sequences, plus the putative locations of seed coat color genes. The majority of cloned phenylpropanoid pathway gene sequences were mapped to one location in the common bean genome but had two positions in soybean. The comparison of the genomic maps confirmed previous studies, which show that common bean and soybean share genomic regions, including those containing phenylpropanoid pathway gene sequences, with conserved synteny. Indels identified in the comparison of Andean and Mesoamerican common bean 4CL gene sequences might be used to develop inter-pool phenylpropanoid pathway gene-based markers. We anticipate that the information obtained by this study will simplify and accelerate selections of common bean with specific phenylpropanoid pathway alleles to increase the contents of beneficial phenylpropanoids in common bean and other legumes.
Collapse
Affiliation(s)
| | - Zeinab Yadegari
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| | - Gregory E. Perry
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| | - Mahbuba Siddiqua
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| | - Lori C. Wright
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| | - Phillip E. McClean
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, USA
| | - K. Peter Pauls
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| |
Collapse
|
42
|
Tan J, Tu L, Deng F, Hu H, Nie Y, Zhang X. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. PLANT PHYSIOLOGY 2013; 162:86-95. [PMID: 23535943 PMCID: PMC3641232 DOI: 10.1104/pp.112.212142] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/24/2013] [Indexed: 05/18/2023]
Abstract
The cotton (Gossypium spp.) fiber is a unique elongated cell that is useful for investigating cell differentiation. Previous studies have demonstrated the importance of factors such as sugar metabolism, the cytoskeleton, and hormones, which are commonly known to be involved in plant cell development, while the secondary metabolites have been less regarded. By mining public data and comparing analyses of fiber from two cotton species (Gossypium hirsutum and Gossypium barbadense), we found that the flavonoid metabolism is active in early fiber cell development. Different flavonoids exhibited distinct effects on fiber development during ovule culture; among them, naringenin (NAR) could significantly retard fiber development. NAR is a substrate of flavanone 3-hydroxylase (F3H), and silencing the F3H gene significantly increased the NAR content of fiber cells. Fiber development was suppressed following F3H silencing, but the overexpression of F3H caused no obvious effects. Significant retardation of fiber growth was observed after the introduction of the F3H-RNA interference segment into the high-flavonoid brown fiber G. hirsutum T586 line by cross. A greater accumulation of NAR as well as much shorter fibers were also observed in the BC1 generation plants. These results suggest that NAR is negatively associated with fiber development and that the metabolism mediated by F3H is important in fiber development, thus highlighting that flavonoid metabolism represents a novel pathway with the potential for cotton fiber improvement.
Collapse
Affiliation(s)
- Jiafu Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fenglin Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haiyan Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yichun Nie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
43
|
Cheng H, Wang J, Chu S, Yan HL, Yu D. Diversifying selection on flavanone 3-hydroxylase and isoflavone synthase genes in cultivated soybean and its wild progenitors. PLoS One 2013; 8:e54154. [PMID: 23342093 PMCID: PMC3546919 DOI: 10.1371/journal.pone.0054154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
Soybean isoflavone synthase (IFS) and flavanone 3-hydroxylase (F3H) are two key enzymes catalyzing the biosynthesis of isoflavonoids and flavonoids, both of which play diverse roles in stress responses. However, little is known about the evolutionary pattern of these genes in cultivated soybean and its wild progenitors. Herein, we investigated the nucleotide polymorphisms in Isoflavone synthase (IFS1, IFS2) and Flavanone 3-hydroxylase (F3H2) genes from 33 soybean accessions, including 17 cultivars (Glycine max) and 16 their wild progenitors (Glycine soja). Our data showed that the target genes shared the levels of nucleotide polymorphism with three reference genes involved in plant-microbe interactions, but possessed a much higher nucleotide polymorphism than other reference genes. Moreover, no significant genetic differentiation was found between cultivated soybean and its wild relatives in three target genes, despite of considering bottleneck and founder effect during domestication. These results indicate that IFS and F3H genes could have experienced gene introgressions or diversifying selection events during domestication process. Especially, F3H2 gene appears to evolve under positive selection and enjoy a faster evolutionary rate than IFS1 and IFS2 genes.
Collapse
Affiliation(s)
- Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jiao Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shanshan Chu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Hong-Lang Yan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Abstract
The initial identification of transposable elements (TEs) was attributed to the activity of DNA transposable elements, which are prevalent in plants. Unlike RNA elements, which accumulate in the gene-poor heterochromatic regions, most DNA elements are located in the gene rich regions and many of them carry genes or gene fragments. As such, DNA elements have a more intimate relationship with genes and may have an immediate impact on gene expression and gene function. DNA elements are structurally distinct from RNA elements and most of them have terminal inverted repeats (TIRs). Such structural features have been used to identify the relevant elements from genomic sequences. Among the DNA elements in plants, the most abundant type is the miniature inverted repeat transposable elements (MITEs). This chapter discusses the methods to identify MITEs, Helitrons, and other DNA transposable elements.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
45
|
Weber N, Halpin C, Hannah LC, Jez JM, Kough J, Parrott W. Editor's choice: Crop genome plasticity and its relevance to food and feed safety of genetically engineered breeding stacks. PLANT PHYSIOLOGY 2012; 160:1842-53. [PMID: 23060369 PMCID: PMC3510115 DOI: 10.1104/pp.112.204271] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/02/2012] [Indexed: 05/22/2023]
Affiliation(s)
- Natalie Weber
- Pioneer Hi-Bred International, Wilmington, Delaware 19880, USA
| | | | | | | | | | | |
Collapse
|
46
|
Moreau C, Ambrose MJ, Turner L, Hill L, Ellis TN, Hofer JM. The B gene of pea encodes a defective flavonoid 3',5'-hydroxylase, and confers pink flower color. PLANT PHYSIOLOGY 2012; 159:759-68. [PMID: 22492867 PMCID: PMC3375939 DOI: 10.1104/pp.112.197517] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/03/2012] [Indexed: 05/25/2023]
Abstract
The inheritance of flower color in pea (Pisum sativum) has been studied for more than a century, but many of the genes corresponding to these classical loci remain unidentified. Anthocyanins are the main flower pigments in pea. These are generated via the flavonoid biosynthetic pathway, which has been studied in detail and is well conserved among higher plants. A previous proposal that the Clariroseus (B) gene of pea controls hydroxylation at the 5' position of the B ring of flavonoid precursors of the anthocyanins suggested to us that the gene encoding flavonoid 3',5'-hydroxylase (F3'5'H), the enzyme that hydroxylates the 5' position of the B ring, was a good candidate for B. In order to test this hypothesis, we examined mutants generated by fast neutron bombardment. We found allelic pink-flowered b mutant lines that carried a variety of lesions in an F3'5'H gene, including complete gene deletions. The b mutants lacked glycosylated delphinidin and petunidin, the major pigments present in the progenitor purple-flowered wild-type pea. These results, combined with the finding that the F3'5'H gene cosegregates with b in a genetic mapping population, strongly support our hypothesis that the B gene of pea corresponds to a F3'5'H gene. The molecular characterization of genes involved in pigmentation in pea provides valuable anchor markers for comparative legume genomics and will help to identify differences in anthocyanin biosynthesis that lead to variation in pigmentation among legume species.
Collapse
Affiliation(s)
- Carol Moreau
- Department of Metabolic Biology (C.M., L.H.) and Department of Crop Genetics (M.J.A., L.T.), John Innes Centre, Norwich NR4 7UH, United Kingdom; and Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, Ceredigion SY23 3EB, United Kingdom (T.H.N.E., J.M.I.H.)
| | - Mike J. Ambrose
- Department of Metabolic Biology (C.M., L.H.) and Department of Crop Genetics (M.J.A., L.T.), John Innes Centre, Norwich NR4 7UH, United Kingdom; and Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, Ceredigion SY23 3EB, United Kingdom (T.H.N.E., J.M.I.H.)
| | - Lynda Turner
- Department of Metabolic Biology (C.M., L.H.) and Department of Crop Genetics (M.J.A., L.T.), John Innes Centre, Norwich NR4 7UH, United Kingdom; and Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, Ceredigion SY23 3EB, United Kingdom (T.H.N.E., J.M.I.H.)
| | - Lionel Hill
- Department of Metabolic Biology (C.M., L.H.) and Department of Crop Genetics (M.J.A., L.T.), John Innes Centre, Norwich NR4 7UH, United Kingdom; and Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, Ceredigion SY23 3EB, United Kingdom (T.H.N.E., J.M.I.H.)
| | - T.H. Noel Ellis
- Department of Metabolic Biology (C.M., L.H.) and Department of Crop Genetics (M.J.A., L.T.), John Innes Centre, Norwich NR4 7UH, United Kingdom; and Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, Ceredigion SY23 3EB, United Kingdom (T.H.N.E., J.M.I.H.)
| | - Julie M.I. Hofer
- Department of Metabolic Biology (C.M., L.H.) and Department of Crop Genetics (M.J.A., L.T.), John Innes Centre, Norwich NR4 7UH, United Kingdom; and Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, Ceredigion SY23 3EB, United Kingdom (T.H.N.E., J.M.I.H.)
| |
Collapse
|
47
|
Kovinich N, Saleem A, Arnason JT, Miki B. Identification of two anthocyanidin reductase genes and three red-brown soybean accessions with reduced anthocyanidin reductase 1 mRNA, activity, and seed coat proanthocyanidin amounts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:574-84. [PMID: 22107112 DOI: 10.1021/jf2033939] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Anthocyanidin reductase (ANR; EC 1.3.1.77) catalyzes a key step in the biosynthesis of proanthocyanidins (PAs; also known as condensed tannins), flavonoid metabolites responsible for the brown pigmentation of seeds. Here, two ANR genes (ANR1 and ANR2) from the seed coat of brown soybean (Glycine max (L.) Merr.) have been isolated and their enzymatic function confirmed for the reduction of cyanidin to (-)-epicatechin in vitro. Biochemical and genetic comparisons of soybean lines differing in seed coat color revealed three red-brown lines to exhibit major reductions in the amounts of soluble PAs in the seed coat compared to brown soybean lines. Two spontaneous mutants with red-brown grain color had reduced ANR1 gene expression in the seed coat, and an EMS-mutagenized red-brown mutant had nonsynonymous substitutions that resulted in slightly reduced ANR1 activity in vitro. These results suggest that defects in the ANR1 gene can be associated with red-brown soybean grain color. These results suggest that suppressing ANR1 gene expression or activity may be a rational approach toward engineering seed coat color to enable the visual identification of genetically modified soybean grains.
Collapse
Affiliation(s)
- Nik Kovinich
- Bioproducts and Bioprocesses, Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
48
|
Du C, Hoffman A, He L, Caronna J, Dooner HK. The complete Ac/Ds transposon family of maize. BMC Genomics 2011; 12:588. [PMID: 22132901 PMCID: PMC3260210 DOI: 10.1186/1471-2164-12-588] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/01/2011] [Indexed: 01/29/2023] Open
Abstract
Background The nonautonomous maize Ds transposons can only move in the presence of the autonomous element Ac. They comprise a heterogeneous group that share 11-bp terminal inverted repeats (TIRs) and some subterminal repeats, but vary greatly in size and composition. Three classes of Ds elements can cause mutations: Ds-del, internal deletions of the 4.6-kb Ac element; Ds1, ~400-bp in size and sharing little homology with Ac, and Ds2, variably-sized elements containing about 0.5 kb from the Ac termini and unrelated internal sequences. Here, we analyze the entire complement of Ds-related sequences in the genome of the inbred B73 and ask whether additional classes of Ds-like (Ds-l) elements, not uncovered genetically, are mobilized by Ac. We also compare the makeup of Ds-related sequences in two maize inbreds of different origin. Results We found 903 elements with 11-bp Ac/Ds TIRs flanked by 8-bp target site duplications. Three resemble Ac, but carry small rearrangements. The others are much shorter, once extraneous insertions are removed. There are 331 Ds1 and 39 Ds2 elements, many of which are likely mobilized by Ac, and two novel classes of Ds-l elements. Ds-l3 elements lack subterminal homology with Ac, but carry transposase gene fragments, and represent decaying Ac elements. There are 44 such elements in B73. Ds-l4 elements share little similarity with Ac outside of the 11-bp TIR, have a modal length of ~1 kb, and carry filler DNA which, in a few cases, could be matched to gene fragments. Most Ds-related elements in B73 (486/903) fall in this class. None of the Ds-l elements tested responded to Ac. Only half of Ds insertion sites examined are shared between the inbreds B73 and W22. Conclusions The majority of Ds-related sequences in maize correspond to Ds-l elements that do not transpose in the presence of Ac. Unlike actively transposing elements, many Ds-l elements are inserted in repetitive DNA, where they probably become methylated and begin to decay. The filler DNA present in most elements is occasionally captured from genes, a rare feature in transposons of the hAT superfamily to which Ds belongs. Maize inbreds of different origin are highly polymorphic in their DNA transposon makeup.
Collapse
Affiliation(s)
- Chunguang Du
- Dept. of Biology & Molecular Biology, Montclair State University, NJ 07043, USA.
| | | | | | | | | |
Collapse
|
49
|
Hunt M, Kaur N, Stromvik M, Vodkin L. Transcript profiling reveals expression differences in wild-type and glabrous soybean lines. BMC PLANT BIOLOGY 2011; 11:145. [PMID: 22029708 PMCID: PMC3217893 DOI: 10.1186/1471-2229-11-145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/26/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND Trichome hairs affect diverse agronomic characters such as seed weight and yield, prevent insect damage and reduce loss of water but their molecular control has not been extensively studied in soybean. Several detailed models for trichome development have been proposed for Arabidopsis thaliana, but their applicability to important crops such as cotton and soybean is not fully known. RESULTS Two high throughput transcript sequencing methods, Digital Gene Expression (DGE) Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS) and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG) soybean isoline that carries the dominant P1 allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models) predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, Glyma04g35130, in wild-type soybean was of interest as it has high homology to the cotton gene GhRDL1 gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of Glyma04g35130 among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. CONCLUSION Although not a candidate for the P1 locus, a BURP family member (Glyma04g35130) from soybean has been shown to be abundantly expressed in the CS line and very weakly expressed in the glabrous CG line. RNA-Seq and DGE data are compared and provide experimental data on the expression of predicted soybean gene models as well as an overview of the genes expressed in young shoot tips of two closely related isolines.
Collapse
Affiliation(s)
- Matt Hunt
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, 61801, USA
- Current address: Ohio State University, Columbus, OH 43210, USA
| | - Navneet Kaur
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, 61801, USA
| | - Martina Stromvik
- Department of Plant Science/McGill Centre for Bioinformatics, McGill University, Macdonald campus, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Lila Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, 61801, USA
| |
Collapse
|
50
|
Kovinich N, Saleem A, Arnason JT, Miki B. Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes. BMC Genomics 2011; 12:381. [PMID: 21801362 PMCID: PMC3163566 DOI: 10.1186/1471-2164-12-381] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 07/29/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The R locus controls the color of pigmented soybean (Glycine max) seeds. However information about its control over seed coat biochemistry and gene expressions remains limited. The seed coats of nearly-isogenic black (iRT) and brown (irT) soybean (Glycine max) were known to differ by the presence or absence of anthocyanins, respectively, with genes for only a single enzyme (anthocyanidin synthase) found to be differentially expressed between isolines. We recently identified and characterized a UDP-glycose:flavonoid-3-O-glycosyltransferase (UGT78K1) from the seed coat of black (iRT) soybean with the aim to engineer seed coat color by suppression of an anthocyanin-specific gene. However, it remained to be investigated whether UGT78K1 was overexpressed with anthocyanin biosynthesis in the black (iRT) seed coat compared to the nearly-isogenic brown (irT) tissue.In this study, we performed a combined analysis of transcriptome and metabolite data to elucidate the control of the R locus over seed coat biochemistry and to identify pigment biosynthesis genes. Two differentially expressed late-stage anthocyanin biosynthesis isogenes were further characterized, as they may serve as useful targets for the manipulation of soybean grain color while minimizing the potential for unintended effects on the plant system. RESULTS Metabolite composition differences were found to not be limited to anthocyanins, with specific proanthocyanidins, isoflavones, and phenylpropanoids present exclusively in the black (iRT) or the brown (irT) seed coat. A global analysis of gene expressions identified UGT78K1 and 19 other anthocyanin, (iso)flavonoid, and phenylpropanoid isogenes to be differentially expressed between isolines. A combined analysis of metabolite and gene expression data enabled the assignment of putative functions to biosynthesis and transport isogenes. The recombinant enzymes of two genes were validated to catalyze late-stage steps in anthocyanin biosynthesis in vitro and expression profiles of the corresponding genes were shown to parallel anthocyanin biosynthesis during black (iRT) seed coat development. CONCLUSION Metabolite composition and gene expression differences between black (iRT) and brown (irT) seed coats are far more extensive than previously thought. Putative anthocyanin, proanthocyanidin, (iso)flavonoid, and phenylpropanoid isogenes were differentially-expressed between black (iRT) and brown (irT) seed coats, and UGT78K2 and OMT5 were validated to code UDP-glycose:flavonoid-3-O-glycosyltransferase and anthocyanin 3'-O-methyltransferase proteins in vitro, respectively. Duplicate gene copies for several enzymes were overexpressed in the black (iRT) seed coat suggesting more than one isogene may have to be silenced to engineer seed coat color using RNA interference.
Collapse
Affiliation(s)
- Nik Kovinich
- Bioproducts and Bioprocesses, Research Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6
- Ottawa-Carleton Institute of Biology, Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Ammar Saleem
- Department of Biology and Center for Research in Biopharmaceuticals and Biotechnology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - John T Arnason
- Department of Biology and Center for Research in Biopharmaceuticals and Biotechnology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Brian Miki
- Bioproducts and Bioprocesses, Research Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6
| |
Collapse
|