1
|
Feng H, Fan G, Liu Z, Zhou L, Wang X, Kang Z, Cai L. Nanomediated Stimulation: An Alternative to Brassinolide Hormone Replacement Therapy for Plant Resistance Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40019385 DOI: 10.1021/acs.jafc.4c09341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Facing harsher losses of crop yield due to virus infection, it is critical to reduce yield loss by improving plants' disease resistance. Here, we proposed using nanoparticles to prestimulate Nicotiana benthamiana as a nanomediated brassinolide (BR) hormone replacement therapy to trigger immune responses and subsequently increase plant immunity against viruses. Our results showed the prestimulated leaves of zinc oxide nanoparticles (ZnONPs) exhibit accelerated antiviral capability, and the plant resistance activation was increased with a decrease in the ZnONP size. Transcriptome data and hormone assays revealed that ZnONP stimulation activated the brassinolide hormone signaling pathway and increased the brassinolide concentration. Importantly, the induced activity of ZnONPs on antiviral capability could be eliminated by virus-mediated silencing of key genes of brassinolide in Nicotiana benthamiana. In summary, we showed prestimulated plants with ZnONPs induced systemic resistance to TMV by activating the brassinolide pathways. This simple nanostimulant-based hormone replacement therapy may alleviate pathogen infection in crop plants and reduce the need for pesticides.
Collapse
Affiliation(s)
- Hui Feng
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Guizhou University, Guiyang , Guizhou Province 550025, China
| | - Guangjin Fan
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Guizhou University, Guiyang , Guizhou Province 550025, China
| | - Zhongwei Liu
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Guizhou University, Guiyang , Guizhou Province 550025, China
| | - Lihe Zhou
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Guizhou University, Guiyang , Guizhou Province 550025, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Lin Cai
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Guizhou Key Lab of Agro-Bioengineering, Guizhou University, Guiyang , Guizhou Province 550025, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
3
|
Wei C, Yan J, Xu P, Wu X, Yi Y, Yue X, Chen C, Yan L, Yin M. Genome-wide analysis of the potato GRF gene family and their expression profiles in response to hormone and Ralstonia solanacearum infection. Genes Genomics 2024; 46:1423-1436. [PMID: 39317859 DOI: 10.1007/s13258-024-01572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Potato (Solanum tuberosum L.) is one of the most economically significant crops globally. Nevertheless, potato cultivation is becoming increasingly susceptible to a multitude of diseases, including bacterial wilt, which is caused by Ralstonia solanacearum. OBJECTIVE To identify the GRF gene family in potatoes and to examine their expression profiles in response to hormones and R. solanacearum infection. METHODS A comprehensive genome-wide analysis was conducted to identify the GRF gene family in the potato genome. RESULTS A total of 13 GRF genes were identified from the latest potato genome, including five StGRFs belonging to the ɛ group and eight of the non-ɛ group. The transcriptional responses of the StGRFs to two biotic stress-related phytohormones (SA and MeJA) were defined, as well as the response to infection with R. solanacearum in a bacterial wilt-sensitive cultivar, S. tuberosum 'Qingshu 9'. Many StGRF genes exhibited high induction levels in response to R. solanacearum infection and SA treatment while displaying a marked decline in expression in the presence of MeJA. Furthermore, protein interaction network analysis revealed that the StGRF proteins interact with several candidate target proteins, indicating that GRF proteins are ubiquitous regulators in potatoes. However, the associations between two type III effectors (T3Es) RipAC/RipH2 from R. solanacearum isolates and StGRF7 were not detectable in a yeast two-hybrid assay. CONCLUSION This study provides comprehensive information on the GRF gene family and lays a foundation for further research on the molecular mechanism of potato biotic stress adaptation.
Collapse
Affiliation(s)
- Changhe Wei
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan, China
| | - Jinli Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan, China
| | - Pan Xu
- Sichuan Institute of Atomic Energy, Chengdu, China
| | - Xia Wu
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan, China
| | - Yan Yi
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan, China
| | - Xuemei Yue
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan, China
| | - Caiyan Chen
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan, China
| | - Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan, China.
| | - Mengmeng Yin
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan, China.
| |
Collapse
|
4
|
Obergfell E, Hohmann U, Moretti A, Chen H, Hothorn M. Mechanistic Insights into the Function of 14-3-3 Proteins as Negative Regulators of Brassinosteroid Signaling in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:1674-1688. [PMID: 38783418 PMCID: PMC11558545 DOI: 10.1093/pcp/pcae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Brassinosteroids (BRs) are vital plant steroid hormones sensed at the cell surface by a membrane signaling complex comprising the receptor kinase BRI1 and a SERK family co-receptor kinase. Activation of this complex lead to dissociation of the inhibitor protein BKI1 from the receptor and to differential phosphorylation of BZR1/BES1 transcription factors by the glycogen synthase kinase 3 protein BIN2. Many phosphoproteins of the BR signaling pathway, including BRI1, SERKs, BKI1 and BZR1/BES1 can associate with 14-3-3 proteins. In this study, we use quantitative ligand binding assays to define the minimal 14-3-3 binding sites in the N-terminal lobe of the BRI1 kinase domain, in BKI1, and in BZR1 from Arabidopsis thaliana. All three motifs require to be phosphorylated to specifically bind 14-3-3s with mid- to low-micromolar affinity. BR signaling components display minimal isoform preference within the 14-3-3 non-ε subgroup. 14-3-3λ and 14-3-3 ω isoform complex crystal structures reveal that BKI1 and BZR1 bind as canonical type II 14-3-3 linear motifs. Disruption of key amino acids in the phosphopeptide binding site through mutation impairs the interaction of 14-3-3λ with all three linear motifs. Notably, quadruple loss-of-function mutants from the non-ε group exhibit gain-of-function BR signaling phenotypes, suggesting a role for 14-3-3 proteins as overall negative regulators of the BR pathway. Collectively, our work provides further mechanistic and genetic evidence for the regulatory role of 14-3-3 proteins at various stages of the BR signaling cascade.
Collapse
Affiliation(s)
- Elsa Obergfell
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| | - Ulrich Hohmann
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| | - Andrea Moretti
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| | - Houming Chen
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| |
Collapse
|
5
|
Stachurska J, Sadura I, Jurczyk B, Rudolphi-Szydło E, Dyba B, Pociecha E, Ostrowska A, Rys M, Kvasnica M, Oklestkova J, Janeczko A. Cold Acclimation and Deacclimation of Winter Oilseed Rape, with Special Attention Being Paid to the Role of Brassinosteroids. Int J Mol Sci 2024; 25:6010. [PMID: 38892204 PMCID: PMC11172585 DOI: 10.3390/ijms25116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Winter plants acclimate to frost mainly during the autumn months, through the process of cold acclimation. Global climate change is causing changes in weather patterns such as the occurrence of warmer periods during late autumn or in winter. An increase in temperature after cold acclimation can decrease frost tolerance, which is particularly dangerous for winter crops. The aim of this study was to investigate the role of brassinosteroids (BRs) and BR analogues as protective agents against the negative results of deacclimation. Plants were cold-acclimated (3 weeks, 4 °C) and deacclimated (1 week, 16/9 °C d/n). Deacclimation generally reversed the cold-induced changes in the level of the putative brassinosteroid receptor protein (BRI1), the expression of BR-induced COR, and the expression of SERK1, which is involved in BR signal transduction. The deacclimation-induced decrease in frost tolerance in oilseed rape could to some extent be limited by applying steroid regulators. The deacclimation in plants could be detected using non-invasive measurements such as leaf reflectance, chlorophyll a fluorescence, and gas exchange monitoring.
Collapse
Affiliation(s)
- Julia Stachurska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland; (I.S.); (A.O.); (M.R.)
| | - Iwona Sadura
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland; (I.S.); (A.O.); (M.R.)
| | - Barbara Jurczyk
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Podłużna 3, 30-239 Krakow, Poland; (B.J.); (E.P.)
| | - Elżbieta Rudolphi-Szydło
- Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084 Krakow, Poland; (E.R.-S.); (B.D.)
| | - Barbara Dyba
- Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084 Krakow, Poland; (E.R.-S.); (B.D.)
| | - Ewa Pociecha
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Podłużna 3, 30-239 Krakow, Poland; (B.J.); (E.P.)
| | - Agnieszka Ostrowska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland; (I.S.); (A.O.); (M.R.)
| | - Magdalena Rys
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland; (I.S.); (A.O.); (M.R.)
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Faculty of Science and Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelu 27, CZ-78371 Olomouc, Czech Republic; (M.K.); (J.O.)
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Faculty of Science and Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelu 27, CZ-78371 Olomouc, Czech Republic; (M.K.); (J.O.)
| | - Anna Janeczko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland; (I.S.); (A.O.); (M.R.)
| |
Collapse
|
6
|
Wang S, Yi X, Zhang L, Ali MM, Ke M, Lu Y, Zheng Y, Cai X, Fang S, Wu J, Lin Z, Chen F. Characterisation and Expression Analysis of LdSERK1, a Somatic Embryogenesis Gene in Lilium davidii var. unicolor. PLANTS (BASEL, SWITZERLAND) 2024; 13:1495. [PMID: 38891306 PMCID: PMC11174594 DOI: 10.3390/plants13111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The Lanzhou lily (Lilium davidii var. unicolor) is a variant of the Sichuan lily of the lily family and is a unique Chinese 'medicinal and food' sweet lily. Somatic cell embryogenesis of Lilium has played an important role in providing technical support for germplasm conservation, bulb propagation and improvement of genetic traits. Somatic embryogenesis receptor-like kinases (SERKs) are widely distributed in plants and have been shown to play multiple roles in plant life, including growth and development, somatic embryogenesis and hormone induction. Integrating the results of KEGG enrichment, GO annotation and gene expression analysis, a lily LdSERK1 gene was cloned. The full-length open reading frame of LdSERK1 was 1875 bp, encoding 624 amino acids. The results of the phylogenetic tree analysis showed that LdSERK1 was highly similar to rice, maize and other plant SERKs. The results of the subcellular localisation in the onion epidermis suggested that the LdSERK1 protein was localised at the cell membrane. Secondly, we established the virus-induced gene-silencing (VIGS) system in lily scales, and the results of LdSERK1 silencing by Tobacco rattle virus (TRV) showed that, with the down-regulation of LdSERK1 expression, the occurrence of somatic embryogenesis and callus tissue induction in scales was significantly reduced. Finally, molecular assays from overexpression of the LdSERK1 gene in Arabidopsis showed that LdSERK1 expression was significantly enhanced in the three transgenic lines compared to the wild type, and that the probability of inducing callus tissue in seed was significantly higher than that of the wild type at a concentration of 2 mg/L 2,4-D, which was manifested by an increase in the granularity of the callus tissue.
Collapse
Affiliation(s)
- Shaojuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| | - Xiaoyan Yi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| | - Lijuan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| | - Mingli Ke
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| | - Yuxian Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| | - Yiping Zheng
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China; (Y.Z.); (X.C.); (S.F.)
| | - Xuanmei Cai
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China; (Y.Z.); (X.C.); (S.F.)
| | - Shaozhong Fang
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China; (Y.Z.); (X.C.); (S.F.)
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China;
| | - Zhimin Lin
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China; (Y.Z.); (X.C.); (S.F.)
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (X.Y.); (L.Z.); (M.M.A.); (M.K.); (Y.L.)
| |
Collapse
|
7
|
Diao Z, Yang R, Wang Y, Cui J, Li J, Wu Q, Zhang Y, Yu X, Gong B, Huang Y, Yu G, Yao H, Guo J, Zhang H, Shen J, Gust AA, Cai Y. Functional screening of the Arabidopsis 2C protein phosphatases family identifies PP2C15 as a negative regulator of plant immunity by targeting BRI1-associated receptor kinase 1. MOLECULAR PLANT PATHOLOGY 2024; 25:e13447. [PMID: 38561315 PMCID: PMC10984862 DOI: 10.1111/mpp.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Genetic engineering using negative regulators of plant immunity has the potential to provide a huge impetus in agricultural biotechnology to achieve a higher degree of disease resistance without reducing yield. Type 2C protein phosphatases (PP2Cs) represent the largest group of protein phosphatases in plants, with a high potential for negative regulatory functions by blocking the transmission of defence signals through dephosphorylation. Here, we established a PP2C functional protoplast screen using pFRK1::luciferase as a reporter and found that 14 of 56 PP2Cs significantly inhibited the immune response induced by flg22. To verify the reliability of the system, a previously reported MAPK3/4/6-interacting protein phosphatase, PP2C5, was used; it was confirmed to be a negative regulator of PAMP-triggered immunity (PTI). We further identified PP2C15 as an interacting partner of BRI1-associated receptor kinase 1 (BAK1), which is the most well-known co-receptor of plasma membrane-localized pattern recognition receptors (PRRs), and a central component of PTI. PP2C15 dephosphorylates BAK1 and negatively regulates BAK1-mediated PTI responses such as MAPK3/4/6 activation, defence gene expression, reactive oxygen species bursts, stomatal immunity, callose deposition, and pathogen resistance. Although plant growth and 1000-seed weight of pp2c15 mutants were reduced compared to those of wild-type plants, pp2c5 mutants did not show any adverse effects. Thus, our findings strengthen the understanding of the mechanism by which PP2C family members negatively regulate plant immunity at multiple levels and indicate a possible approach to enhance plant resistance by eliminating specific PP2Cs without affecting plant growth and yield.
Collapse
Affiliation(s)
- Zhihong Diao
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Rongqian Yang
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Yizhu Wang
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Junmei Cui
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Junhao Li
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Qiqi Wu
- Chengdu Lusyno Biotechnology Co., Ltd.ChengduChina
| | - Yaxin Zhang
- Chengdu Lusyno Biotechnology Co., Ltd.ChengduChina
| | - Xiaosong Yu
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Benqiang Gong
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yan Huang
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Guozhi Yu
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Huipeng Yao
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Jinya Guo
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Huaiyu Zhang
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Jinbo Shen
- Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and BiotechnologyZhejiang A&F UniversityZhejiangHangzhouChina
| | - Andrea A. Gust
- Department of the Centre for Plant Molecular Biology, Plant BiochemistryEberhard Karls University of TübingenTübingenGermany
| | - Yi Cai
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| |
Collapse
|
8
|
Xavier LR, Corrêa CCG, da Paschoa RP, Vieira KDS, Pacheco DDR, Gomes LDES, Duncan BC, da Conceição LDS, Pinto VB, Santa-Catarina C, Silveira V. Time-Dependent Proteomic Signatures Associated with Embryogenic Callus Induction in Carica papaya L. PLANTS (BASEL, SWITZERLAND) 2023; 12:3891. [PMID: 38005788 PMCID: PMC10675192 DOI: 10.3390/plants12223891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Sex segregation increases the cost of Carica papaya production through seed-based propagation. Therefore, in vitro techniques are an attractive option for clonal propagation, especially of hermaphroditic plants. Here, we performed a temporal analysis of the proteome of C. papaya calli aiming to identify the key players involved in embryogenic callus formation. Mature zygotic embryos used as explants were treated with 20 μM 2,4-dichlorophenoxyacetic acid to induce embryogenic callus. Total proteins were extracted from explants at 0 (zygotic embryo) and after 7, 14, and 21 days of induction. A total of 1407 proteins were identified using a bottom-up proteomic approach. The clustering analysis revealed four distinct patterns of protein accumulation throughout callus induction. Proteins related to seed maturation and storage are abundant in the explant before induction, decreasing as callus formation progresses. Carbohydrate and amino acid metabolisms, aerobic respiration, and protein catabolic processes were enriched throughout days of callus induction. Protein kinases associated with auxin responses, such as SKP1-like proteins 1B, accumulated in response to callus induction. Additionally, regulatory proteins, including histone deacetylase (HD2C) and argonaute 1 (AGO1), were more abundant at 7 days, suggesting their role in the acquisition of embryogenic competence. Predicted protein-protein networks revealed the regulatory role of proteins 14-3-3 accumulated during callus induction and the association of proteins involved in oxidative phosphorylation and hormone response. Our findings emphasize the modulation of the proteome during embryogenic callus initiation and identify regulatory proteins that might be involved in the activation of this process.
Collapse
Affiliation(s)
- Lucas Rodrigues Xavier
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Caio Cezar Guedes Corrêa
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Roberta Pena da Paschoa
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Karina da Silva Vieira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Daniel Dastan Rezabala Pacheco
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Lucas do Espirito Santo Gomes
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Bárbara Cardoso Duncan
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Laís dos Santos da Conceição
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Vitor Batista Pinto
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (V.B.P.); (C.S.-C.)
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (V.B.P.); (C.S.-C.)
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| |
Collapse
|
9
|
Xu Y, Shang W, Li L, Song Y, Wang G, Shi L, Shen Y, Sun Y, He S, Wang Z. Transcriptome Landscape Analyses of the Regulatory Network for Zygotic Embryo Development in Paeonia ostii. Int J Mol Sci 2023; 24:10715. [PMID: 37445891 DOI: 10.3390/ijms241310715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Paeonia ostii is a worldwide ornamental flower and an emerging oil crop. Zyotic embryogenesis is a critical process during seed development, and it can provide a basis for improving the efficiency of somatic embryogenesis (SE). In this study, transcriptome sequencing of embryo development was performed to investigate gene expression profiling in P. ostii and identified Differentially expressed genes (DEGs) related to transcription factors, plant hormones, and antioxidant enzymes. The results indicated that IAA (Indole-3-acetic acid), GA (Gibberellin), BR (Brassinosteroid) and ETH (Ethylene) were beneficial to early embryonic morphogenesis, while CTK (Cytokinin) and ABA (Abscisic Acid) promoted embryo morphogenesis and maturation. The antioxidant enzymes' activity was the highest in early embryos and an important participant in embryo formation. The high expression of the genes encoding fatty acid desaturase was beneficial to fast oil accumulation. Representative DEGs were selected and validated using qRT-PCR. Protein-protein interaction network (PPI) was predicted, and six central node proteins, including AUX1, PIN1, ARF6, LAX3, ABCB19, PIF3, and PIF4, were screened. Our results provided new insights into the formation of embryo development and even somatic embryo development in tree peonies.
Collapse
Affiliation(s)
- Yufeng Xu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Linda Li
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yinglong Song
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiqing Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyun Shi
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuxiao Shen
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuke Sun
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Songlin He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
- Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
10
|
Caperta AD, Fernandes I, Conceição SIR, Marques I, Róis AS, Paulo OS. Ovule Transcriptome Analysis Discloses Deregulation of Genes and Pathways in Sexual and Apomictic Limonium Species (Plumbaginaceae). Genes (Basel) 2023; 14:genes14040901. [PMID: 37107659 PMCID: PMC10137852 DOI: 10.3390/genes14040901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The genus Limonium Mill. (sea lavenders) includes species with sexual and apomixis reproductive strategies, although the genes involved in these processes are unknown. To explore the mechanisms beyond these reproduction modes, transcriptome profiling of sexual, male sterile, and facultative apomictic species was carried out using ovules from different developmental stages. In total, 15,166 unigenes were found to be differentially expressed with apomictic vs. sexual reproduction, of which 4275 were uniquely annotated using an Arabidopsis thaliana database, with different regulations according to each stage and/or species compared. Gene ontology (GO) enrichment analysis indicated that genes related to tubulin, actin, the ubiquitin degradation process, reactive oxygen species scavenging, hormone signaling such as the ethylene signaling pathway and gibberellic acid-dependent signal, and transcription factors were found among differentially expressed genes (DEGs) between apomictic and sexual plants. We found that 24% of uniquely annotated DEGs were likely to be implicated in flower development, male sterility, pollen formation, pollen-stigma interactions, and pollen tube formation. The present study identifies candidate genes that are highly associated with distinct reproductive modes and sheds light on the molecular mechanisms of apomixis expression in Limonium sp.
Collapse
Affiliation(s)
- Ana D Caperta
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Isabel Fernandes
- cE3c-Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sofia I R Conceição
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- LASIGE Computer Science and Engineering Research Centre, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Isabel Marques
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Forest Research Centre (CEF), Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana S Róis
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- School of Psychology and Life Sciences, Universidade Lusófona de Humanidades e Tecnologias (ULHT), Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Octávio S Paulo
- cE3c-Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
11
|
Bai Y, Liu M, Zhou R, Jiang F, Li P, Li M, Zhang M, Wei H, Wu Z. Construction of ceRNA Networks at Different Stages of Somatic Embryogenesis in Garlic. Int J Mol Sci 2023; 24:ijms24065311. [PMID: 36982386 PMCID: PMC10049443 DOI: 10.3390/ijms24065311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
LncRNA (long non-coding RNA) and mRNA form a competitive endogenous RNA (ceRNA) network by competitively binding to common miRNAs. This network regulates various processes of plant growth and development at the post-transcriptional level. Somatic embryogenesis is an effective means of plant virus-free rapid propagation, germplasm conservation, and genetic improvement, which is also a typical process to study the ceRNA regulatory network during cell development. Garlic is a typical asexual reproductive vegetable. Somatic cell culture is an effective means of virus-free rapid propagation in garlic. However, the ceRNA regulatory network of somatic embryogenesis remains unclear in garlic. In order to clarify the regulatory role of the ceRNA network in garlic somatic embryogenesis, we constructed lncRNA and miRNA libraries of four important stages (explant stage: EX; callus stage: AC; embryogenic callus stage: EC; globular embryo stage: GE) in the somatic embryogenesis of garlic. It was found that 44 lncRNAs could be used as precursors of 34 miRNAs, 1511 lncRNAs were predicted to be potential targets of 144 miRNAs, and 45 lncRNAs could be used as eTMs of 29 miRNAs. By constructing a ceRNA network with miRNA as the core, 144 miRNAs may bind to 1511 lncRNAs and 12,208 mRNAs. In the DE lncRNA-DE miRNA-DE mRNA network of adjacent stages of somatic embryo development (EX-VS-CA, CA-VS-EC, EC-VS-GE), by KEGG enrichment of adjacent stage DE mRNA, plant hormone signal transduction, butyric acid metabolism, and C5-branched dibasic acid metabolism were significantly enriched during somatic embryogenesis. Since plant hormones play an important role in somatic embryogenesis, further analysis of plant hormone signal transduction pathways revealed that the auxin pathway-related ceRNA network (lncRNAs-miR393s-TIR) may play a role in the whole stage of somatic embryogenesis. Further verification by RT-qPCR revealed that the lncRNA125175-miR393h-TIR2 network plays a major role in the network and may affect the occurrence of somatic embryos by regulating the auxin signaling pathway and changing the sensitivity of cells to auxin. Our results lay the foundation for studying the role of the ceRNA network in the somatic embryogenesis of garlic.
Collapse
Affiliation(s)
- Yunhe Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Min Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Ping Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Mengqian Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Meng Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Hanyu Wei
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
12
|
Soltabayeva A, Dauletova N, Serik S, Sandybek M, Omondi JO, Kurmanbayeva A, Srivastava S. Receptor-like Kinases (LRR-RLKs) in Response of Plants to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192660. [PMID: 36235526 PMCID: PMC9572924 DOI: 10.3390/plants11192660] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/14/2023]
Abstract
Plants live under different biotic and abiotic stress conditions, and, to cope with the adversity and severity, plants have well-developed resistance mechanisms. The mechanism starts with perception of the stimuli followed by molecular, biochemical, and physiological adaptive measures. The family of LRR-RLKs (leucine-rich repeat receptor-like kinases) is one such group that perceives biotic and abiotic stimuli and also plays important roles in different biological processes of development. This has been mostly studied in the model plant, Arabidopsis thaliana, and to some extent in other plants, such as Solanum lycopersicum, Nicotiana benthamiana, Brassica napus, Oryza sativa, Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Medicago truncatula, Gossypium barbadense, Phaseolus vulgaris, Solanum tuberosum, and Malus robusta. Most LRR-RLKs tend to form different combinations of LRR-RLKs-complexes (dimer, trimer, and tetramers), and some of them were observed as important receptors in immune responses, cell death, and plant development processes. However, less is known about the function(s) of LRR-RLKs in response to abiotic and biotic stresses. Here, we give recent updates about LRR-RLK receptors, specifically focusing on their involvement in biotic and abiotic stresses in the model plant, A. thaliana. Furthermore, the recent studies on LRR-RLKs that are homologous in other plants is also reviewed in relation to their role in triggering stress response processes against biotic and abiotic stimuli and/or in exploring their additional function(s). Furthermore, we present the interactions and combinations among LRR-RLK receptors that have been confirmed through experiments. Moreover, based on GENEINVESTIGATOR microarray database analysis, we predict some potential LRR-RLK genes involved in certain biotic and abiotic stresses whose function and mechanism may be explored.
Collapse
Affiliation(s)
- Aigerim Soltabayeva
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- Correspondence:
| | - Nurbanu Dauletova
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Symbat Serik
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Margulan Sandybek
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - John Okoth Omondi
- International Institute of Tropical Agriculture, Lilongwe P.O. Box 30258, Malawi
| | - Assylay Kurmanbayeva
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Sudhakar Srivastava
- NCS-TCP, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
13
|
Sivanesan I, Nayeem S, Venkidasamy B, Kuppuraj SP, RN C, Samynathan R. Genetic and epigenetic modes of the regulation of somatic embryogenesis: a review. Biol Futur 2022; 73:259-277. [DOI: 10.1007/s42977-022-00126-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/16/2022] [Indexed: 01/17/2023]
|
14
|
Rahman FU, Zhang Y, Khan IA, Liu R, Sun L, Wu Y, Jiang J, Fan X, Liu C. The Promoter Analysis of VvPR1 Gene: A Candidate Gene Identified through Transcriptional Profiling of Methyl Jasmonate Treated Grapevine (Vitis vinifera L.). PLANTS 2022; 11:plants11121540. [PMID: 35736691 PMCID: PMC9227488 DOI: 10.3390/plants11121540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Methyl jasmonate (MeJA) plays a vital role in plant disease resistance and also induces the expression of disease resistance genes in plants. In this study, a transcriptome analysis was performed on grapevine leaves after 12, 24 and 48 h of MeJA-100 μM treatment. A total of 1242 differentially expressed genes (DEGs) were identified from the transcriptome data, and the analysis of the DEGs showed that genes related to phytohormone signal transduction, jasmonic acid-mediated defense, Mitogen-activated protein kinase (MAPK), and flavonoid biosynthetic pathways were upregulated. As Pathogenesis-related gene 1 (PR1) is an important marker gene in plant defense also upregulated by MeJA treatment in RNA-seq data, the VvPR1 gene was selected for a promoter analysis with β-glucuronidase (GUS) through transient expression in tobacco leaves against abiotic stress. The results showed that the region from −1837 bp to −558 bp of the VvPR1 promoter is the key region in response to hormone and wound stress. In this study, we extended the available knowledge about induced defense by MeJA in a grapevine species that is susceptible to different diseases and identified the molecular mechanisms by which this defense might be mediated.
Collapse
|
15
|
Joshi S, Paul P, Hartman JM, Perry SE. AGL15 Promotion of Somatic Embryogenesis: Role and Molecular Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:861556. [PMID: 35419012 PMCID: PMC8996056 DOI: 10.3389/fpls.2022.861556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Plants have amazing regenerative properties with single somatic cells, or groups of cells able to give rise to fully formed plants. One means of regeneration is somatic embryogenesis, by which an embryonic structure is formed that "converts" into a plantlet. Somatic embryogenesis has been used as a model for zygotic processes that are buried within layers of maternal tissues. Understanding mechanisms of somatic embryo induction and development are important as a more accessible model for seed development. We rely on seed development not only for most of our caloric intake, but also as a delivery system for engineered crops to meet agricultural challenges. Regeneration of transformed cells is needed for this applied work as well as basic research to understand gene function. Here we focus on a MADS-domain transcription factor, AGAMOUS-Like15 (AGL15) that shows a positive correlation between accumulation levels and capacity for somatic embryogenesis. We relate AGL15 function to other transcription factors, hormones, and epigenetic modifiers involved in somatic embryo development.
Collapse
Affiliation(s)
- Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Priyanka Paul
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Jeanne M. Hartman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
16
|
Liu Z, Ren Z, Yan L, Li F. DeepLRR: An Online Webserver for Leucine-Rich-Repeat Containing Protein Characterization Based on Deep Learning. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11010136. [PMID: 35009139 PMCID: PMC8796025 DOI: 10.3390/plants11010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 05/26/2023]
Abstract
Members of the leucine-rich repeat (LRR) superfamily play critical roles in multiple biological processes. As the LRR unit sequence is highly variable, accurately predicting the number and location of LRR units in proteins is a highly challenging task in the field of bioinformatics. Existing methods still need to be improved, especially when it comes to similarity-based methods. We introduce our DeepLRR method based on a convolutional neural network (CNN) model and LRR features to predict the number and location of LRR units in proteins. We compared DeepLRR with six existing methods using a dataset containing 572 LRR proteins and it outperformed all of them when it comes to overall F1 score. In addition, DeepLRR has integrated identifying plant disease-resistance proteins (NLR, LRR-RLK, LRR-RLP) and non-canonical domains. With DeepLRR, 223, 191 and 183 LRR-RLK genes in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa ssp. Japonica) and tomato (Solanum lycopersicum) genomes were re-annotated, respectively. Chromosome mapping and gene cluster analysis revealed that 24.2% (54/223), 29.8% (57/191) and 16.9% (31/183) of LRR-RLK genes formed gene cluster structures in Arabidopsis, rice and tomato, respectively. Finally, we explored the evolutionary relationship and domain composition of LRR-RLK genes in each plant and distributions of known receptor and co-receptor pairs. This provides a new perspective for the identification of potential receptors and co-receptors.
Collapse
Affiliation(s)
- Zhenya Liu
- Key Lab of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zirui Ren
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.R.); (L.Y.)
| | - Lunyi Yan
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.R.); (L.Y.)
| | - Feng Li
- Key Lab of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Wu G, Li W, Tian N, Wang X, Wu W, Zheng S. Cloning and functional identification of setaria italica somatic embryogenesis receptor-like kinase1 gene (SiSERK1). Gene 2021; 813:146119. [PMID: 34902513 DOI: 10.1016/j.gene.2021.146119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
Abstract
Plant somatic embryogenesis receptor-like kinases (SERK), members of leucine-rich repeat receptor-like kinases (LRR-RLKs) subfamily, are widely involved in plant growth, development and innate immunity. In this study, the setaria italica somatic embryogenesis receptor-like kinase1 gene (SiSERK1) was cloned by gateway technology, and transferred into a brasssinosteroid (BR) receptor mutant of Arabidopsis thaliana WS2 (bri1-5). After BL treatment, the transgenic plants could partially restore the phenotype of bri1-5. After Pst DC3000 treatment, the CFU value of SiSERK1 overexpression plant pathogen was between WS2 and bri1-5. Stomatal opening and plant height were also between them. Therefore, it is speculated that SiSERK1 gene is involved in BR signaling pathway and can improve the resistance of bri1-5 to Pst DC3000 through SA and NHP mediated systemic acquired resistance (SAR).
Collapse
Affiliation(s)
- Guofan Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China.
| | - Wenbo Li
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Nongfu Tian
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Xin Wang
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Wangze Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Sheng Zheng
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
18
|
Kim S, Park J, Jeon BW, Hwang G, Kang NY, We Y, Park WY, Oh E, Kim J. Chemical control of receptor kinase signaling by rapamycin-induced dimerization. MOLECULAR PLANT 2021; 14:1379-1390. [PMID: 33964457 DOI: 10.1016/j.molp.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Membrane-localized leucine-rich repeat receptor kinases (LRR-RKs) sense diverse extracellular signals, and coordinate and specify cellular functions in plants. However, functional understanding and identification of the cellular signaling of most LRR-RKs remain a major challenge owing to their genetic redundancy, the lack of ligand information, and subtle phenotypes of LRR-RK overexpression. Here, we report an engineered rapamycin-inducible dimerization (RiD) receptor system that triggers a receptor-specific LRR-RK signaling independent of their cognate ligands or endogenous receptors. Using the RiD-receptors, we demonstrated that the rapamycin-mediated association of chimeric cytosolic kinase domains from the BRI1/BAK1 receptor/co-receptor, but not the BRI1/BRI1 or BAK1/BAK1 homodimer, is sufficient to activate downstream brassinosteroid signaling and physiological responses. Furthermore, we showed that the engineered RiD-FLS2/BAK1 could activate flagellin-22-mediated immune signaling and responses. Using the RiD system, we also identified the potential function of an unknown orphan receptor in immune signaling and revealed the differential activities of SERK co-receptors of LRR-RKs. Our results indicate that the RiD method can serve as a synthetic biology tool for precise temporal manipulation of LRR-RK signaling and for understanding LRR-RK biology.
Collapse
Affiliation(s)
- Sara Kim
- Department of Life Sciences, Korea University, Seoul, Korea
| | | | - Byeong Wook Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea; Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea
| | - Geonhee Hwang
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Na Young Kang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| | - Yeim We
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Won-Young Park
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul, Korea.
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea; Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Korea.
| |
Collapse
|
19
|
Zhao X, Li F, Li K. The 14-3-3 proteins: regulators of plant metabolism and stress responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:531-539. [PMID: 33811408 DOI: 10.1111/plb.13268] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The 14-3-3 proteins bind to and modulate the activity of phosphorylated proteins that regulate a variety of metabolic processes in plants. Over the past decade interest in the plant 14-3-3 field has increased dramatically, mainly due to the vast number of mechanisms by which 14-3-3 proteins regulate metabolism. As this field develops, it is essential to understand the role of these proteins in metabolic and stress responses. This review summarizes current knowledge about 14-3-3 proteins in plants, including their molecular structure and function, regulatory mechanism and roles in carbon and nitrogen metabolism and stress responses. We begin with a molecular structural analysis of 14-3-3 proteins, which describes the basic principles of 14-3-3 function, and then discuss the regulatory mechanisms and roles in carbon and nitrogen metabolism of 14-3-3 proteins. We conclude with a summary of the 14-3-3 response to biotic stress and abiotic stress.
Collapse
Affiliation(s)
- X Zhao
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - F Li
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - K Li
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
20
|
Hesami M, Baiton A, Alizadeh M, Pepe M, Torkamaneh D, Jones AMP. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int J Mol Sci 2021; 22:5671. [PMID: 34073522 PMCID: PMC8197860 DOI: 10.3390/ijms22115671] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023] Open
Abstract
For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Austin Baiton
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada;
| | | |
Collapse
|
21
|
Kour J, Kohli SK, Khanna K, Bakshi P, Sharma P, Singh AD, Ibrahim M, Devi K, Sharma N, Ohri P, Skalicky M, Brestic M, Bhardwaj R, Landi M, Sharma A. Brassinosteroid Signaling, Crosstalk and, Physiological Functions in Plants Under Heavy Metal Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:608061. [PMID: 33841453 PMCID: PMC8024700 DOI: 10.3389/fpls.2021.608061] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/27/2021] [Indexed: 05/05/2023]
Abstract
Brassinosteroids (BRs) are group of plant steroidal hormones that modulate developmental processes and also have pivotal role in stress management. Biosynthesis of BRs takes place through established early C-6 and late C-6 oxidation pathways and the C-22 hydroxylation pathway triggered by activation of the DWF4 gene that acts on multiple intermediates. BRs are recognized at the cell surface by the receptor kinases, BRI1 and BAK1, which relay signals to the nucleus through a phosphorylation cascade involving phosphorylation of BSU1 protein and proteasomal degradation of BIN2 proteins. Inactivation of BIN2 allows BES1/BZR1 to enter the nucleus and regulate the expression of target genes. In the whole cascade of signal recognition, transduction and regulation of target genes, BRs crosstalk with other phytohormones that play significant roles. In the current era, plants are continuously exposed to abiotic stresses and heavy metal stress is one of the major stresses. The present study reveals the mechanism of these events from biosynthesis, transport and crosstalk through receptor kinases and transcriptional networks under heavy metal stress.
Collapse
Affiliation(s)
- Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Palak Bakshi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Pooja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Mohd Ibrahim
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
22
|
He C, Wang J, Dong R, Guan H, Liu T, Liu C, Liu Q, Wang L. Overexpression of an Antisense RNA of Maize Receptor-Like Kinase Gene ZmRLK7 Enlarges the Organ and Seed Size of Transgenic Arabidopsis Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:579120. [PMID: 33304362 PMCID: PMC7693544 DOI: 10.3389/fpls.2020.579120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 05/28/2023]
Abstract
Leucine-rich repeat (LRR)-receptor-like protein kinases (LRR-RLKs) play vital roles in plant growth, development, and responses to environmental stresses. In this study, a new LRR-RLK gene, ZmRLK7, was isolated from maize, and its function within plant development was investigated through ectopic expression in Arabidopsis. The spatial expression pattern analysis reveals that ZmRLK7 is highly expressed in embryos prior to programmed cell death (PCD) of starchy endosperm tissues, and its encoded protein has been localized to both plasm and nuclear membranes subcellularly. Overexpression of sense ZmRLK7 reduced the plant height, organ size (e.g., petals, silique, and seeds), and 1000-seed weight in transgenic lines, while the antisense transgene enlarged these traits. Cytological analysis suggested that ZmRLK7 negatively regulates petal size through restricting both cell expansion and proliferation. In addition, abnormal epidermal cell structure was observed, and the stomata number decreased obviously in sense ZmRLK7 transgenic lines with a lower stomatal index than that in the wild type. Quantitative RT-PCR analysis indicated that transcript levels of genes that are involved in the brassinosteroid and ERACTA signaling pathways were coordinately altered, which could partially explain the phenotypic variation. Moreover, overexpression of antisense ZmRLK7 substantially rescued the Arabidopsis bak1-3 mutant phenotype. All these results together suggest that ZmRLK7 can serve as an important regulator in regulating plant architecture and organ size formation. This work will provide insight into the function of ZmRLK7 in maize.
Collapse
Affiliation(s)
- Chunmei He
- *Correspondence: Liming Wang, ; Chunmei He,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Martín-Barranco A, Spielmann J, Dubeaux G, Vert G, Zelazny E. Dynamic Control of the High-Affinity Iron Uptake Complex in Root Epidermal Cells. PLANT PHYSIOLOGY 2020; 184:1236-1250. [PMID: 32873629 PMCID: PMC7608170 DOI: 10.1104/pp.20.00234] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/20/2020] [Indexed: 05/05/2023]
Abstract
In plants, iron uptake from the soil is tightly regulated to ensure optimal growth and development. Iron absorption in Arabidopsis root epidermal cells requires the IRT1 transporter that also allows the entry of certain non-iron metals, such as Zn, Mn, and Co. Recent work demonstrated that IRT1 endocytosis and degradation are controlled by IRT1 non-iron metal substrates in a ubiquitin-dependent manner. To better understand how metal uptake is regulated, we identified IRT1-interacting proteins in Arabidopsis roots by mass spectrometry and established an interactome of IRT1. Interestingly, the AHA2 proton pump and the FRO2 reductase, both of which work in concert with IRT1 in the acidification-reduction-transport strategy of iron uptake, were part of this interactome. We confirmed that IRT1, FRO2, and AHA2 associate through co-immunopurification and split-ubiquitin analyses, and uncovered that they form tripartite direct interactions. We characterized the dynamics of the iron uptake complex and showed that FRO2 and AHA2 ubiquitination is independent of the non-iron metal substrates transported by IRT1. In addition, FRO2 and AHA2 are not largely endocytosed in response to non-iron metal excess, unlike IRT1. Indeed, we provide evidence that the phosphorylation of IRT1 in response to high levels of non-iron metals likely triggers dissociation of the complex. Overall, we propose that a dedicated iron-acquisition protein complex exists at the cell surface of Arabidopsis root epidermal cells to optimize iron uptake.
Collapse
Affiliation(s)
- Amanda Martín-Barranco
- Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Julien Spielmann
- Plant Science Research Laboratory, Unité Mixte de Recherche 5546, Centre National de la Recherche Scientifique/University of Toulouse 3, 31320 Auzeville Tolosane, France
| | - Guillaume Dubeaux
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093
| | - Grégory Vert
- Plant Science Research Laboratory, Unité Mixte de Recherche 5546, Centre National de la Recherche Scientifique/University of Toulouse 3, 31320 Auzeville Tolosane, France
| | - Enric Zelazny
- Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
24
|
Tian R, Paul P, Joshi S, Perry SE. Genetic activity during early plant embryogenesis. Biochem J 2020; 477:3743-3767. [PMID: 33045058 PMCID: PMC7557148 DOI: 10.1042/bcj20190161] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Seeds are essential for human civilization, so understanding the molecular events underpinning seed development and the zygotic embryo it contains is important. In addition, the approach of somatic embryogenesis is a critical propagation and regeneration strategy to increase desirable genotypes, to develop new genetically modified plants to meet agricultural challenges, and at a basic science level, to test gene function. We briefly review some of the transcription factors (TFs) involved in establishing primary and apical meristems during zygotic embryogenesis, as well as TFs necessary and/or sufficient to drive somatic embryo programs. We focus on the model plant Arabidopsis for which many tools are available, and review as well as speculate about comparisons and contrasts between zygotic and somatic embryo processes.
Collapse
Affiliation(s)
- Ran Tian
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Priyanka Paul
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| |
Collapse
|
25
|
He Y, Hong G, Zhang H, Tan X, Li L, Kong Y, Sang T, Xie K, Wei J, Li J, Yan F, Wang P, Tong H, Chu C, Chen J, Sun Z. The OsGSK2 Kinase Integrates Brassinosteroid and Jasmonic Acid Signaling by Interacting with OsJAZ4. THE PLANT CELL 2020; 32:2806-2822. [PMID: 32586913 PMCID: PMC7474301 DOI: 10.1105/tpc.19.00499] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/26/2020] [Accepted: 06/21/2020] [Indexed: 05/20/2023]
Abstract
The crosstalk between brassinosteroid (BR) and jasmonic acid (JA) signaling is crucial for plant growth and defense responses. However, the detailed interplay between BRs and JA remains obscure. Here, we found that the rice (Oryza sativa) Glycogen synthase kinase3 (GSK3)-like kinase OsGSK2, a conserved kinase serving as a key suppressor of BR signaling, enhanced antiviral defense and the JA response. We identified a member of the JASMONATE ZIM-domain (JAZ) family, OsJAZ4, as a OsGSK2 substrate and confirmed that OsGSK2 interacted with and phosphorylated OsJAZ4. We demonstrated that OsGSK2 disrupted the OsJAZ4-OsNINJA complex and OsJAZ4-OsJAZ11 dimerization by competitively binding to the ZIM domain, perhaps helping to facilitate the degradation of OsJAZ4 via the 26S proteasome pathway. We also showed that OsJAZ4 negatively modulated JA signaling and antiviral defense and that the BR pathway was involved in modulating the stability of OsJAZ4 protein in an OsCORONATINE INSENSITIVE1-dependent manner. Collectively, these results suggest that OsGSK2 enhances plant antiviral defenses by activating JA signaling as it directly interacts with, phosphorylates, and destabilizes OsJAZ4. Thus, our findings provide a clear link between BR and JA signaling.
Collapse
Affiliation(s)
- Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yaze Kong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tian Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kaili Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jia Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongning Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcai Chu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
26
|
Johnson A, Gnyliukh N, Kaufmann WA, Narasimhan M, Vert G, Bednarek SY, Friml J. Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis. J Cell Sci 2020; 133:jcs248062. [PMID: 32616560 DOI: 10.1242/jcs.248062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) is a crucial cellular process implicated in many aspects of plant growth, development, intra- and intercellular signaling, nutrient uptake and pathogen defense. Despite these significant roles, little is known about the precise molecular details of how CME functions in planta To facilitate the direct quantitative study of plant CME, we review current routinely used methods and present refined, standardized quantitative imaging protocols that allow the detailed characterization of CME at multiple scales in plant tissues. These protocols include: (1) an efficient electron microscopy protocol for the imaging of Arabidopsis CME vesicles in situ, thus providing a method for the detailed characterization of the ultrastructure of clathrin-coated vesicles; (2) a detailed protocol and analysis for quantitative live-cell fluorescence microscopy to precisely examine the temporal interplay of endocytosis components during single CME events; (3) a semi-automated analysis to allow the quantitative characterization of global internalization of cargos in whole plant tissues; and (4) an overview and validation of useful genetic and pharmacological tools to interrogate the molecular mechanisms and function of CME in intact plant samples.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alexander Johnson
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Nataliia Gnyliukh
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Walter A Kaufmann
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, 31320 Auzeville Tolosane, France
| | | | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
27
|
Mao J, Li J. Regulation of Three Key Kinases of Brassinosteroid Signaling Pathway. Int J Mol Sci 2020; 21:E4340. [PMID: 32570783 PMCID: PMC7352359 DOI: 10.3390/ijms21124340] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
Brassinosteroids (BRs) are important plant growth hormones that regulate a wide range of plant growth and developmental processes. The BR signals are perceived by two cell surface-localized receptor kinases, Brassinosteroid-Insensitive1 (BRI1) and BRI1-Associated receptor Kinase (BAK1), and reach the nucleus through two master transcription factors, bri1-EMS suppressor1 (BES1) and Brassinazole-resistant1 (BZR1). The intracellular transmission of the BR signals from BRI1/BAK1 to BES1/BZR1 is inhibited by a constitutively active kinase Brassinosteroid-Insensitive2 (BIN2) that phosphorylates and negatively regulates BES1/BZR1. Since their initial discoveries, further studies have revealed a plethora of biochemical and cellular mechanisms that regulate their protein abundance, subcellular localizations, and signaling activities. In this review, we provide a critical analysis of the current literature concerning activation, inactivation, and other regulatory mechanisms of three key kinases of the BR signaling cascade, BRI1, BAK1, and BIN2, and discuss some unresolved controversies and outstanding questions that require further investigation.
Collapse
Affiliation(s)
- Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
NAP1-RELATED PROTEIN1 and 2 negatively regulate H2A.Z abundance in chromatin in Arabidopsis. Nat Commun 2020; 11:2887. [PMID: 32513971 PMCID: PMC7280298 DOI: 10.1038/s41467-020-16691-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
In eukaryotes, DNA wraps around histones to form nucleosomes, which are compacted into chromatin. DNA-templated processes, including transcription, require chromatin disassembly and reassembly mediated by histone chaperones. Additionally, distinct histone variants can replace core histones to regulate chromatin structure and function. Although replacement of H2A with the evolutionarily conserved H2A.Z via the SWR1 histone chaperone complex has been extensively studied, in plants little is known about how a reduction of H2A.Z levels can be achieved. Here, we show that NRP proteins cause a decrease of H2A.Z-containing nucleosomes in Arabidopsis under standard growing conditions. nrp1-1 nrp2-2 double mutants show an over-accumulation of H2A.Z genome-wide, especially at heterochromatic regions normally H2A.Z-depleted in wild-type plants. Our work suggests that NRP proteins regulate gene expression by counteracting SWR1, thereby preventing excessive accumulation of H2A.Z. The histone variant H2A.Z is deposited by the SWR1 complex to replace H2A in Arabidopsis, but the mechanism of H2A.Z removal is unclear. Here, the authors show that NRP proteins can regulate gene expression by counteracting SWR1 and prevent excessive accumulation of H2A.Z.
Collapse
|
29
|
Rozhon W, Akter S, Fernandez A, Poppenberger B. Inhibitors of Brassinosteroid Biosynthesis and Signal Transduction. Molecules 2019; 24:E4372. [PMID: 31795392 PMCID: PMC6930552 DOI: 10.3390/molecules24234372] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Chemical inhibitors are invaluable tools for investigating protein function in reverse genetic approaches. Their application bears many advantages over mutant generation and characterization. Inhibitors can overcome functional redundancy, their application is not limited to species for which tools of molecular genetics are available and they can be applied to specific tissues or developmental stages, making them highly convenient for addressing biological questions. The use of inhibitors has helped to elucidate hormone biosynthesis and signaling pathways and here we review compounds that were developed for the plant hormones brassinosteroids (BRs). BRs are steroids that have strong growth-promoting capacities, are crucial for all stages of plant development and participate in adaptive growth processes and stress response reactions. In the last two decades, impressive progress has been made in BR inhibitor development and application, which has been instrumental for studying BR modes of activity and identifying and characterizing key players. Both, inhibitors that target biosynthesis, such as brassinazole, and inhibitors that target signaling, such as bikinin, exist and in a comprehensive overview we summarize knowledge and methodology that enabled their design and key findings of their use. In addition, the potential of BR inhibitors for commercial application in plant production is discussed.
Collapse
Affiliation(s)
- Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany
| | | | | | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany
| |
Collapse
|
30
|
Lozano-Elena F, Caño-Delgado AI. Emerging roles of vascular brassinosteroid receptors of the BRI1-like family. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:105-113. [PMID: 31349107 DOI: 10.1016/j.pbi.2019.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 05/22/2023]
Abstract
Brassinosteroids (BRs) are essential hormones for plant growth and development that are perceived at the plasma membrane by a group of Leucine-Rich Repeat Receptor-Like Kinases (LRR-RLKs) of the BRASSINOSTEROID INSENSITIVE 1 (BRI1) family. The BRI1 receptor was first discovered by genetic screenings based on the dwarfism of BR-deficient plants. There are three BRI1 homologs, named BRI1-like 1, 2 and 3 (BRLs), yet only BRL1 and BRL3 behave as functional BR receptors. Whereas the BRI1 pathway operates in the majority of cells to promote growth, BRL receptor signaling operates under specific spatiotemporal constraints. Despite a wealth of information on the BRI1 pathway, data on specific BRL pathways and their biological relevance is just starting to emerge. Here, we systematically compare BRLs with BRI1 to identify any differences that could account for specific receptor functions. Understanding how vascular and cell-specific BRL receptors orchestrate plant development and adaptation to the environment will help shed light on membrane signaling and cell communication in plants, while opening up novel possibilities to improve stress adaptation without penalizing growth.
Collapse
Affiliation(s)
- Fidel Lozano-Elena
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
| | - Ana I Caño-Delgado
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona 08193, Spain.
| |
Collapse
|
31
|
Niehl A, Heinlein M. Perception of double-stranded RNA in plant antiviral immunity. MOLECULAR PLANT PATHOLOGY 2019; 20:1203-1210. [PMID: 30942534 PMCID: PMC6715784 DOI: 10.1111/mpp.12798] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RNA silencing and antiviral pattern-triggered immunity (PTI) both rely on recognition of double-stranded (ds)RNAs as defence-inducing signals. While dsRNA recognition by dicer-like proteins during antiviral RNA silencing is thoroughly investigated, the molecular mechanisms involved in dsRNA perception leading to antiviral PTI are just about to be untangled. Parallels to antimicrobial PTI thereby only partially facilitate our view on antiviral PTI. PTI against microbial pathogens involves plasma membrane bound receptors; however, dsRNAs produced during virus infection occur intracellularly. Hence, how dsRNA may be perceived during this immune response is still an open question. In this short review, we describe recent discoveries in PTI signalling upon sensing of microbial patterns and endogenous 'danger' molecules with emphasis on immune signalling-associated subcellular trafficking processes in plants. Based on these studies, we develop different scenarios how dsRNAs could be sensed during antiviral PTI.
Collapse
Affiliation(s)
- Annette Niehl
- Julius Kühn‐Institute, Institute for Epidemiology and Pathogen DiagnosticsMesseweg 11‐12D‐38104BraunschweigGermany
| | - Manfred Heinlein
- Université de Strasbourg, CNRS, IBMP UPR235712 rue du Général ZimmerF‐67000StrasbourgFrance
| |
Collapse
|
32
|
Minami A, Takahashi K, Inoue SI, Tada Y, Kinoshita T. Brassinosteroid Induces Phosphorylation of the Plasma Membrane H+-ATPase during Hypocotyl Elongation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:935-944. [PMID: 30649552 DOI: 10.1093/pcp/pcz005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 05/19/2023]
Abstract
Brassinosteroids (BRs) are steroid phytohormones that regulate plant growth and development, and promote cell elongation at least in part via the acid-growth process. BRs have been suggested to induce cell elongation by the activating plasma membrane (PM) H+-ATPase. However, the mechanism by which BRs activate PM H+-ATPase has not been clarified. In this study, we investigated the effects of BR on hypocotyl elongation and the phosphorylation status of a penultimate residue, threonine, of PM H+-ATPase, which affects the activation, in the etiolated seedlings of Arabidopsis thaliana. Brassinolide (BL), an active endogenous BR, induced hypocotyl elongation, phosphorylation of the penultimate, threonine residue of PM H+-ATPase, and binding of the 14-3-3 protein to PM H+-ATPase in the endogenous BR-depleted seedlings. Changes in both BL-induced elongation and phosphorylation of PM H+-ATPase showed similar concentration dependency. BL did not induce phosphorylation of PM H+-ATPase in the BR receptor mutant bri1-6. In contrast, bikinin, a specific inhibitor of BIN2 that acts as a negative regulator of BR signaling, induced its phosphorylation. Furthermore, BL accumulated the transcripts of SMALL AUXIN UP RNA 9 (SAUR9) and SAUR19, which suppress dephosphorylation of the PM H+-ATPase penultimate residue by inhibiting D-clade type 2C protein phosphatase in the hypocotyls of etiolated seedlings. From these results, we conclude that BL-induced phosphorylation of PM H+-ATPase penultimate residue is mediated via the BRI1-BIN2 signaling pathway, together with the accumulation of SAURs during hypocotyl elongation.
Collapse
Affiliation(s)
- Anzu Minami
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Koji Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| | - Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
33
|
Zhou J, Wang P, Claus LAN, Savatin DV, Xu G, Wu S, Meng X, Russinova E, He P, Shan L. Proteolytic Processing of SERK3/BAK1 Regulates Plant Immunity, Development, and Cell Death. PLANT PHYSIOLOGY 2019; 180:543-558. [PMID: 30782965 PMCID: PMC6501102 DOI: 10.1104/pp.18.01503] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 05/18/2023]
Abstract
Plants have evolved many receptor-like kinases (RLKs) to sense extrinsic and intrinsic cues. The signaling pathways mediated by multiple Leucine-rich repeat (LRR) RLK (LRR-RLK) receptors require ligand-induced receptor-coreceptor heterodimerization and transphosphorylation with BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1)/SOMATIC EMBRYOGENESIS RECEPTOR KINASES family LRR-RLKs. Here we reveal an additional layer of regulation of BAK1 via a Ca2+-dependent proteolytic cleavage process that is conserved in Arabidopsis (Arabidopsis thaliana), Nicotiana benthamiana, and Saccharomyces cerevisiae The proteolytic cleavage of BAK1 is intrinsically regulated in response to developmental cues and immune stimulation. The surface-exposed Asp (D287) residue of BAK1 is critical for its proteolytic cleavage and plays an essential role in BAK1-regulated plant immunity, growth hormone brassinosteroid-mediated responses, and cell death containment. BAK1D287A mutation impairs BAK1 phosphorylation on its substrate BOTRYTIS-INDUCED KINASE1 (BIK1), and its plasma membrane localization. Intriguingly, it aggravates BAK1 overexpression-triggered cell death independent of BIK1, suggesting that maintaining homeostasis of BAK1 through a proteolytic process is crucial to control plant growth and immunity. Our data reveal that in addition to layered transphosphorylation in the receptor complexes, the proteolytic cleavage is an important regulatory process for the proper functions of the shared coreceptor BAK1 in diverse cellular signaling pathways.
Collapse
Affiliation(s)
- Jinggeng Zhou
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Ping Wang
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Lucas A N Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium
| | - Daniel V Savatin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium
| | - Guangyuan Xu
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Shujing Wu
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
- College of Horticulture, Shandong Agricultural University, Tai'an, Shandong, 271018 China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
34
|
Rose RJ. Somatic Embryogenesis in the Medicago truncatula Model: Cellular and Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2019; 10:267. [PMID: 30984208 PMCID: PMC6447896 DOI: 10.3389/fpls.2019.00267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/19/2019] [Indexed: 05/02/2023]
Abstract
Medicago truncatula is now widely regarded as a legume model where there is an increasing range of genomic resources. Highly regenerable lines have been developed from the wild-type Jemalong cultivar, most likely due to epigenetic changes. These lines with high rates of somatic embryogenesis (SE) can be compared with wild-type where SE is rare. Much of the research has been with the high SE genotype Jemalong 2HA (2HA). SE can be induced from leaf tissue explants or isolated mesophyll protoplasts. In 2HA, the exogenous phytohormones 1-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP) are central to SE. However, there are interactions with ethylene, abscisic acid (ABA), and gibberellic acid (GA) which produce maximum SE. In the main, somatic embryos are derived from dedifferentiated cells, undergo organellar changes, and produce stem-like cells. There is evidence that the SE is induced as a result of a stress and hormone interaction and this is discussed. In M. truncatula, there are connections between stress and specific up-regulated genes and specific hormones and up-regulated genes during the SE induction phase. Some of the transcription factors have been knocked down using RNAi to show they are critical for SE induction (MtWUSCHEL, MtSERF1). SE research in M. truncatula has utilized high throughput transcriptomic and proteomic studies and the more detailed investigation of some individual genes. In this review, these studies are integrated to suggest a framework and timeline for some of the key events of SE induction in M. truncatula.
Collapse
Affiliation(s)
- Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
35
|
van der Burgh AM, Postma J, Robatzek S, Joosten MHAJ. Kinase activity of SOBIR1 and BAK1 is required for immune signalling. MOLECULAR PLANT PATHOLOGY 2019; 20:410-422. [PMID: 30407725 PMCID: PMC6637861 DOI: 10.1111/mpp.12767] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Leucine-rich repeat-receptor-like proteins (LRR-RLPs) and LRR-receptor-like kinases (LRR-RLKs) trigger immune signalling to promote plant resistance against pathogens. LRR-RLPs lack an intracellular kinase domain, and several of these receptors have been shown to constitutively interact with the LRR-RLK Suppressor of BIR1-1/EVERSHED (SOBIR1/EVR) to form signalling-competent receptor complexes. Ligand perception by LRR-RLPs initiates recruitment of the co-receptor BRI1-Associated Kinase 1/Somatic Embryogenesis Receptor Kinase 3 (BAK1/SERK3) to the LRR-RLP/SOBIR1 complex, thereby activating LRR-RLP-mediated immunity. We employed phosphorylation analysis of in planta-produced proteins, live cell imaging, gene silencing and co-immunoprecipitation to investigate the roles of SOBIR1 and BAK1 in immune signalling. We show that Arabidopsis thaliana (At) SOBIR1, which constitutively activates immune responses when overexpressed in planta, is highly phosphorylated. Moreover, in addition to the kinase activity of SOBIR1 itself, kinase-active BAK1 is essential for AtSOBIR1-induced constitutive immunity and for the phosphorylation of AtSOBIR1. Furthermore, the defence response triggered by the tomato LRR-RLP Cf-4 on perception of Avr4 from the extracellular pathogenic fungus Cladosporium fulvum is dependent on kinase-active BAK1. We argue that, in addition to the trans-autophosphorylation of SOBIR1, it is likely that SOBIR1 and BAK1 transphosphorylate, and thereby activate the receptor complex. The signalling-competent cell surface receptor complex subsequently activates downstream cytoplasmic signalling partners to initiate RLP-mediated immunity.
Collapse
Affiliation(s)
- Aranka M. van der Burgh
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Jelle Postma
- The Sainsbury LaboratoryNorwich Research Park, NorwichNR4 7UHUK
| | - Silke Robatzek
- The Sainsbury LaboratoryNorwich Research Park, NorwichNR4 7UHUK
- Ludwig‐Maximilians‐Universität MünchenGeneticsGroßhaderner Str. 2–482152MartinsriedGermany
| | - Matthieu H. A. J. Joosten
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| |
Collapse
|
36
|
Gordon-Kamm B, Sardesai N, Arling M, Lowe K, Hoerster G, Betts S, Jones AT. Using Morphogenic Genes to Improve Recovery and Regeneration of Transgenic Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E38. [PMID: 30754699 PMCID: PMC6409764 DOI: 10.3390/plants8020038] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Efficient transformation of numerous important crops remains a challenge, due predominantly to our inability to stimulate growth of transgenic cells capable of producing plants. For years, this difficulty has been partially addressed by tissue culture strategies that improve regeneration either through somatic embryogenesis or meristem formation. Identification of genes involved in these developmental processes, designated here as morphogenic genes, provides useful tools in transformation research. In species from eudicots and cereals to gymnosperms, ectopic overexpression of genes involved in either embryo or meristem development has been used to stimulate growth of transgenic plants. However, many of these genes produce pleiotropic deleterious phenotypes. To mitigate this, research has been focusing on ways to take advantage of growth-stimulating morphogenic genes while later restricting or eliminating their expression in the plant. Methods of controlling ectopic overexpression include the use of transient expression, inducible promoters, tissue-specific promoters, and excision of the morphogenic genes. These methods of controlling morphogenic gene expression have been demonstrated in a variety of important crops. Here, we provide a review that highlights how ectopic overexpression of genes involved in morphogenesis has been used to improve transformation efficiencies, which is facilitating transformation of numerous recalcitrant crops. The use of morphogenic genes may help to alleviate one of the bottlenecks currently slowing progress in plant genome modification.
Collapse
Affiliation(s)
- Bill Gordon-Kamm
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - Nagesh Sardesai
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - Maren Arling
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - Keith Lowe
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - George Hoerster
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - Scott Betts
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| | - And Todd Jones
- Corteva Agriscience™, Agriculture Division of DowDuPont, Johnston, IA 50131, USA.
| |
Collapse
|
37
|
Xi L, Wu XN, Gilbert M, Schulze WX. Classification and Interactions of LRR Receptors and Co-receptors Within the Arabidopsis Plasma Membrane - An Overview. FRONTIERS IN PLANT SCIENCE 2019; 10:472. [PMID: 31057579 PMCID: PMC6477698 DOI: 10.3389/fpls.2019.00472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/28/2019] [Indexed: 05/18/2023]
Abstract
Receptor kinases (RK) constitute the largest protein kinase family in plants. In particular, members of the leucine-rich repeat-receptor kinases (LRR-RKs) are involved in the perception of various signals at the plasma membrane. Experimental evidence over the past years revealed a conserved activation mechanism through ligand-inducible heterodimer formation: a ligand is recognized by a receptor kinase with a large extracellular domain (ECD). This ligand binding receptor directly interacts with a so-called co-receptor with a small ECD for ligand fixation and kinase activation. A large proportion of LRR-RKs is functionally still uncharacterized and the dynamic complexity of the plasma membrane makes it difficult to precisely define receptor kinase heterodimer pairs and their functions. In this review, we give an overview of the current knowledge of LRR receptor and co-receptor functions. We use ECD lengths to classify the LRR receptor kinase family and describe different interaction properties of ligand-binding receptors and their respective co-receptor from a network perspective.
Collapse
|
38
|
Zheng L, Ma J, Mao J, Fan S, Zhang D, Zhao C, An N, Han M. Genome-wide identification of SERK genes in apple and analyses of their role in stress responses and growth. BMC Genomics 2018; 19:962. [PMID: 30587123 PMCID: PMC6307271 DOI: 10.1186/s12864-018-5342-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Somatic embryogenesis receptor-like kinases (SERKs) are leucine-rich repeat receptor-like kinases associated with various signaling pathways. These kinases have a relationship with stress signals, and they are also believed to be important for regulating plant growth. However, information about this protein family in apple is limited. RESULTS Twelve apple SERK genes distributed across eight chromosomes were identified. These genes clustered into three distinct groups in a phylogenetic analysis. All of the encoded proteins contained typical SERK domains. The chromosomal locations, gene/protein structures, synteny, promoter sequences, protein-protein interactions, and physicochemical characteristics of MdSERK genes were analyzed. Bioinformatics analyses demonstrated that gene duplications have likely contributed to the expansion and evolution of SERK genes in the apple genome. Six homologs of SERK genes were identified between apple and Arabidopsis. Quantitative real-time PCR analyses revealed that the MdSERK genes showed different expression patterns in various tissues. Eight MdSERK genes were responsive to stress signals, such as methyl jasmonate, salicylic acid, abscisic acid, and salt (NaCl). The application of exogenous brassinosteroid and auxin increased the growth and endogenous hormone contents of Malus hupehensis seedlings. The expression levels of seven MdSERK genes were significantly upregulated by brassinosteroid and auxin. In addition, several MdSERK genes showed higher expression levels in standard trees of 'Nagafu 2' (CF)/CF than in dwarf trees of CF/'Malling 9' (M.9), and in CF than in the spur-type bud mutation "Yanfu 6" (YF). CONCLUSION This study represents the first comprehensive investigation of the apple SERK gene family. These data indicate that apple SERKs may function in adaptation to adverse environmental conditions and may also play roles in controlling apple tree growth.
Collapse
Affiliation(s)
- Liwei Zheng
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Jiangping Mao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Sheng Fan
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China. .,College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
39
|
Genome-Wide Analysis of LRR-RLK Gene Family in Four Gossypium Species and Expression Analysis during Cotton Development and Stress Responses. Genes (Basel) 2018; 9:genes9120592. [PMID: 30501109 PMCID: PMC6316826 DOI: 10.3390/genes9120592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 11/26/2022] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have been reported to play important roles in plant growth, development, and stress responses. However, no comprehensive analysis of this family has been performed in cotton (Gossypium spp.), which is an important economic crop that suffers various stresses in growth and development. Here we conducted a comprehensive analysis of LRR-RLK family in four Gossypium species (Gossypium arboreum, Gossypium barbadense, Gossypium hirsutum, and Gossypium raimondii). A total of 1641 LRR-RLK genes were identified in the four Gossypium species involved in our study. The maximum-likelihood phylogenetic tree revealed that all the LRR-RLK genes were divided into 21 subgroups. Exon-intron organization structure of LRR-RLK genes kept relatively conserved within subfamilies and between Arabidopsis and Gossypium genomes. Notably, subfamilies XI and XII were found dramatically expanded in Gossypium species. Tandem duplication acted as an important mechanism in expansion of the Gossypium LRR-RLK gene family. Functional analysis suggested that GossypiumLRR-RLK genes were enriched for plant hormone signaling and plant-pathogen interaction pathways. Promoter analysis revealed that GossypiumLRR-RLK genes were extensively regulated by transcription factors (TFs), phytohormonal, and various environmental stimuli. Expression profiling showed that GossypiumLRR-RLK genes were widely involved in stress defense and diverse developmental processes including cotton fiber development and provides insight into potential functional divergence within and among subfamilies. Our study provided valuable information for further functional study of GossypiumLRR-RLK genes.
Collapse
|
40
|
Fàbregas N, Lozano-Elena F, Blasco-Escámez D, Tohge T, Martínez-Andújar C, Albacete A, Osorio S, Bustamante M, Riechmann JL, Nomura T, Yokota T, Conesa A, Alfocea FP, Fernie AR, Caño-Delgado AI. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat Commun 2018; 9:4680. [PMID: 30409967 PMCID: PMC6224425 DOI: 10.1038/s41467-018-06861-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/26/2018] [Indexed: 01/04/2023] Open
Abstract
Drought represents a major threat to food security. Mechanistic data describing plant responses to drought have been studied extensively and genes conferring drought resistance have been introduced into crop plants. However, plants with enhanced drought resistance usually display lower growth, highlighting the need for strategies to uncouple drought resistance from growth. Here, we show that overexpression of BRL3, a vascular-enriched member of the brassinosteroid receptor family, can confer drought stress tolerance in Arabidopsis. Whereas loss-of-function mutations in the ubiquitously expressed BRI1 receptor leads to drought resistance at the expense of growth, overexpression of BRL3 receptor confers drought tolerance without penalizing overall growth. Systematic analyses reveal that upon drought stress, increased BRL3 triggers the accumulation of osmoprotectant metabolites including proline and sugars. Transcriptomic analysis suggests that this results from differential expression of genes in the vascular tissues. Altogether, this data suggests that manipulating BRL3 expression could be used to engineer drought tolerant crops. Drought resistant plants typically have reduced growth. Here the authors show that overexpression of the BRL3 brassinosteroid receptor confers drought tolerance and accumulation of osmoprotectant metabolites without penalizing growth, demonstrating that drought response and growth can be uncoupled.
Collapse
Affiliation(s)
- Norma Fàbregas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.,Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - Fidel Lozano-Elena
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | - David Blasco-Escámez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany.,NAIST Graduate school of Biological Sciences, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | | | | | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", University of Málaga-Consejo Superior de Investigaciones Científicas. Department of Molecular Biology and Biochemistry, 29071, Málaga, Spain
| | - Mariana Bustamante
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | - José Luis Riechmann
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, Minemachi, Utsunomiya, 321-8505, Japan
| | - Takao Yokota
- Department of Biosciences, Teikyo University, Toyosatodai, Utsunomiya, 320-8551, Japan
| | - Ana Conesa
- Microbiology and Cell Science Department, IFAS, Genetics Institute, University of Florida, Gainesville, 32603, USA
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - Ana I Caño-Delgado
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.
| |
Collapse
|
41
|
Jiménez-Guillen D, Pérez-Pascual D, Souza-Perera R, Godoy-Hernández G, Zúñiga-Aguilar JJ. Cloning of the Coffea canephora SERK1 promoter and its molecular analysis during the cell-to-embryo transition. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
42
|
Qin J, Zhou X, Sun L, Wang K, Yang F, Liao H, Rong W, Yin J, Chen H, Chen X, Zhang J. The Xanthomonas effector XopK harbours E3 ubiquitin-ligase activity that is required for virulence. THE NEW PHYTOLOGIST 2018; 220:219-231. [PMID: 29949665 DOI: 10.1111/nph.15287] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/22/2018] [Indexed: 05/26/2023]
Abstract
Xanthomonas oryzae pv. oryzae is the causative agent of rice bacterial leaf blight. While the type III secretion system of X. oryzae pv. oryzae is essential for virulence, the biochemical activities and virulence mechanisms of non-transcription activator-like (non-TAL) effectors delivered by this system are largely unknown. Here, by screening for non-TAL effectors that contribute to X. oryzae pv. oryzae virulence, we revealed that Xanthomonas outer protein K (XopK) inhibits pathogen-associated molecular pattern-triggered immunity upstream of mitogen-activated protein kinase cascades. Specifically, XopK interacted with and directly ubiquitinated rice somatic embryogenic receptor kinase 2 (OsSERK2), resulting in its degradation. Accordingly, mutation of a putative ubiquitin-conjugation enzyme (E2) binding site abolished XopK-induced degradation of OsSERK2 and compromised XopK-dependent virulence. As crucial immune regulators associated with a multitude of immune receptors, SERKs have been shown to be perturbed by Pseudomonas effectors via different mechanisms. Our study revealed a distinct perturbation mechanism of SERK activity via ubiquitination achieved by Xanthomonas non-TAL effector.
Collapse
Affiliation(s)
- Jun Qin
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaogang Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lifan Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kailun Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Yang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haicheng Liao
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Wei Rong
- College of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Junjie Yin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xuewei Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, 611130, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
43
|
Pérez-Pascual D, Jiménez-Guillen D, Villanueva-Alonzo H, Souza-Perera R, Godoy-Hernández G, Zúñiga-Aguilar JJ. Ectopic expression of the Coffea canephora SERK1 homolog-induced differential transcription of genes involved in auxin metabolism and in the developmental control of embryogenesis. PHYSIOLOGIA PLANTARUM 2018; 163:530-551. [PMID: 29607503 DOI: 10.1111/ppl.12709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 05/28/2023]
Abstract
Somatic embryogenesis receptor-like kinase 1 (SERK1) is a membrane receptor that might serve as common co-regulator of plant cell differentiation processes by forming heterodimers with specific receptor-like kinases. The Coffea canephora SERK1 homolog (CcSERK1) was cloned in this work, and its early function in the transcription of embryogenesis master genes and of genes encoding proteins involved in auxin metabolism was investigated by externally manipulating its expression in embryogenic leaf explants, before the appearance of embryogenic structures. Overexpression of CcSERK1 early during embryogenesis caused an increase in the number of somatic embryos when the 55-day process was completed. Suppression of CcSERK1 expression by RNA interference almost abolished somatic embryogenesis. Real time-PCR experiments revealed that the transcription of the CcAGL15, CcWUS, CcBBM, CcPKL, CcYUC1, CcPIN1 and CcPIN4 homologs was modified in direct proportion to the expression of CcSERK1 and that only CcLEC1 was inversely affected by the expression levels of CcSERK1. The expression of the CcYUC4 homolog was induced to more than 80-fold under CcSERK1 overexpression conditions, but it was also induced when CcSERK1 expression was silenced. The level of CcTIR1 was not affected by CcSERK1 overexpression but was almost abolished during CcSERK1 silencing. These results suggest that CcSERK1 co-regulates the induction of somatic embryogenesis in Coffea canephora by early activation of YUC-dependent auxin biosynthesis, auxin transport mediated by PIN1 and PIN4, and probably auxin perception by the TIR1 receptor, leading to the induction of early-stage homeotic genes (CcAGL15, CcWUS, CcPKL and CcBBM) and repression of late-stage homeotic genes (CcLec1).
Collapse
Affiliation(s)
- Daniel Pérez-Pascual
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | - Doribet Jiménez-Guillen
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | - Hernán Villanueva-Alonzo
- Current address: Centro de Investigaciones Regionales, Dr. Hideyo Noguchi, Mérida, Yucatán, Mexico
| | - Ramón Souza-Perera
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | - Gregorio Godoy-Hernández
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | | |
Collapse
|
44
|
Regulation of Arabidopsis brassinosteroid receptor BRI1 endocytosis and degradation by plant U-box PUB12/PUB13-mediated ubiquitination. Proc Natl Acad Sci U S A 2018; 115:E1906-E1915. [PMID: 29432171 DOI: 10.1073/pnas.1712251115] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plants largely rely on plasma membrane (PM)-resident receptor-like kinases (RLKs) to sense extracellular and intracellular stimuli and coordinate cell differentiation, growth, and immunity. Several RLKs have been shown to undergo internalization through the endocytic pathway with a poorly understood mechanism. Here, we show that endocytosis and protein abundance of the Arabidopsis brassinosteroid (BR) receptor, BR INSENSITIVE1 (BRI1), are regulated by plant U-box (PUB) E3 ubiquitin ligase PUB12- and PUB13-mediated ubiquitination. BR perception promotes BRI1 ubiquitination and association with PUB12 and PUB13 through phosphorylation at serine 344 residue. Loss of PUB12 and PUB13 results in reduced BRI1 ubiquitination and internalization accompanied with a prolonged BRI1 PM-residence time, indicating that ubiquitination of BRI1 by PUB12 and PUB13 is a key step in BRI1 endocytosis. Our studies provide a molecular link between BRI1 ubiquitination and internalization and reveal a unique mechanism of E3 ligase-substrate association regulated by phosphorylation.
Collapse
|
45
|
Chen Z, Rao P, Yang X, Su X, Zhao T, Gao K, Yang X, An X. A Global View of Transcriptome Dynamics During Male Floral Bud Development in Populus tomentosa. Sci Rep 2018; 8:722. [PMID: 29335419 PMCID: PMC5768756 DOI: 10.1038/s41598-017-18084-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/05/2017] [Indexed: 02/01/2023] Open
Abstract
To obtain a comprehensive overview of the dynamic transcriptome during male floral bud development in Populus tomentosa, high-throughput RNA-seq was conducted during eight flowering-related stages. Among the 109,212 de novo assembled unigenes, 6,959 were differentially expressed during the eight stages. The overrepresented classed of genes identified by Gene Ontology (GO) enrichment included 'response to environmental stimuli' and 'plant-type spore development'. One-third of the differentially expressed genes were transcription factors (TFs). Several genes and gene families were analyzed in depth, including MADS-box TFs, Squamosa promoter binding protein-like family, receptor-like kinases, FLOWERING LOCUS T/TERMINAL-FLOWER-LIKE 1 family, key genes involved in anther and tapetum development, as well as LEAFY, WUSCHEL and CONSTANS. The results provided new insights into the roles of these and other well known gene families during the annual flowering cycle. To explore the mechanisms regulating poplar flowering, a weighted gene co-expression network was constructed using 98 floral-related genes involved in flower meristem identity and flower development. Many modules of co-expressed genes and hub genes were identified, such as APETALA1 and HUA1. This work provides many new insights on the annual flowering cycle in a perennial plant, and a major new resource for plant biology and biotechnology.
Collapse
Affiliation(s)
- Zhong Chen
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Pian Rao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyu Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoxing Su
- Berry Genomics Co., Ltd, Beijing, 100015, China
| | - Tianyun Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Kai Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiong Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinmin An
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
46
|
An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 2018; 553:342-346. [PMID: 29320478 PMCID: PMC6485605 DOI: 10.1038/nature25184] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/29/2017] [Indexed: 12/22/2022]
Abstract
Multicellular organisms receive extracellular signals at the surface of a cell by using receptors. The extracellular domains (ECDs) of cell surface receptors serve as interaction platforms, and as regulatory modules of receptor activation1,2. Understanding how interactions between ECDs produce signal-competent receptor complexes is challenging because of their low biochemical tractability3,4. In plants, discovery of ECD interactions is complicated by the massive expansion of receptor families, which creates tremendous potential for changeover in receptor interactions5. The largest of these families in Arabidopsis thaliana consists of 225 evolutionarily-related leucine-rich repeat receptor kinases (LRR-RKs)5, that function in microbe sensing, cell expansion, stomata development and stem cell maintenance6–9. While the principles governing LRR-RK signalling activation are emerging1,10, the systems-level organization of this family of proteins is totally unexplored. To address this, we interrogated 40,000 potential ECD interactions via a sensitized high-throughput interaction assay3, and produced an LRR-based Cell Surface Interaction network (CSILRR) comprising 567 interactions. To demonstrate the power of CSILRR for detecting biologically relevant interactions, we predicted and validated the function of uncharacterized LRR-RKs in plant growth and immunity. In addition, we show that CSILRR operates as a unified regulatory network in which the LRR-RKs most critical for its overall structure are required to prevent aberrant signalling of receptors that are several network-steps away. Thus, plants have evolved LRR-RK networks to process extracellular signals into carefully balanced responses.
Collapse
|
47
|
Characterization of the CCT family and analysis of gene expression in Aegilops tauschii. PLoS One 2017; 12:e0189333. [PMID: 29220383 PMCID: PMC5722339 DOI: 10.1371/journal.pone.0189333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/22/2017] [Indexed: 01/24/2023] Open
Abstract
Flowering is crucial for reproductive success in flowering plant. The CCT domain-containing genes widely participate in the regulation of flowering process in various plant species. So far, the CCT family in common wheat is largely unknown. Here, we characterized the structure, organization, molecular evolution and expression of the CCT genes in Aegilops tauschii, which is the D genome donor of hexaploid wheat. Twenty-six CCT genes (AetCCT) were identified from the full genome of A. tauschii and these genes were distributed on all 7 chromosomes. Phylogenetic analysis classified these AetCCT genes into 10 subgroups. Thirteen AetCCT members in group A, C, H and G achieved rapid evolution based on evolutionary rate analysis. The AetCCT genes respond to different exogenous hormones and abiotic treatments, the expression of AetCCT4, 7, 8, 11, 12, 16, 17, 19, 21 and 22 showed a significant 24 h rhythm. This study may provide a reference for common wheat's evolution, domestication and evolvement rules, and also help us to understand the ecological adaptability of A. tauschii.
Collapse
|
48
|
Zahid A, Jaber R, Laggoun F, Lehner A, Remy-Jouet I, Pamlard O, Beaupierre S, Leprince J, Follet-Gueye ML, Vicré-Gibouin M, Latour X, Richard V, Guillou C, Lerouge P, Driouich A, Mollet JC. Holaphyllamine, a steroid, is able to induce defense responses in Arabidopsis thaliana and increases resistance against bacterial infection. PLANTA 2017; 246:1109-1124. [PMID: 28815300 DOI: 10.1007/s00425-017-2755-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
MAIN CONCLUSION A chemical screen of plant-derived compounds identified holaphyllamine, a steroid, able to trigger defense responses in Arabidopsis thaliana and improve resistance against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. A chemical screen of 1600 plant-derived compounds was conducted and allowed the identification of a steroid able to activate defense responses in A. thaliana at a concentration of 1 µM without altering growth. The identified compound is holaphyllamine (HPA) whose chemical structure is similar to steroid pregnanes of mammals. Our data show that HPA, which is not constitutively present in A. thaliana, is able to trigger the formation of reactive oxygen species, deposition of callose and expression of several pathogenesis-related genes of the salicylic and jasmonic acid pathways. In addition, the results show that pre-treatment of A. thaliana seedlings with HPA before infection with the pathogenic bacterium Pseudomonas syringae pv tomato DC3000 results in a significant reduction of symptoms (i.e., reduction of bacterial colonies). Using A. thaliana mutants, we have found that the activation of defense responses by HPA does not depend on BRI1/BAK1 receptor kinases. Finally, a structure/function study reveals that the minimal structure required for activity is a 5-pregnen-20-one steroid with an equatorial nucleophilic group in C-3. Together, these findings demonstrate that HPA can activate defense responses that lead to improved resistance against bacterial infection in A. thaliana.
Collapse
Affiliation(s)
- Abderrakib Zahid
- Normandie Univ, UniRouen, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, SFR Normandie Végétal, 76000, Rouen, France
- SATT Nord, GIS PhyNoPi CS80699, 62229, Calais, France
| | - Rim Jaber
- Normandie Univ, UniRouen, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, SFR Normandie Végétal, 76000, Rouen, France
| | - Ferdousse Laggoun
- Normandie Univ, UniRouen, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, SFR Normandie Végétal, 76000, Rouen, France
| | - Arnaud Lehner
- Normandie Univ, UniRouen, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, SFR Normandie Végétal, 76000, Rouen, France
| | - Isabelle Remy-Jouet
- Normandie Univ, UniRouen, Laboratoire Nouvelles Cibles Pharmacologiques du Traitement de la Dysfonction Endothéliale et de l'Insuffisance Cardiaque, INSERM, IRIB, 76000, Rouen, France
| | - Olivier Pamlard
- Institut de Chimie des Substances Naturelles, CNRS, LabEx LERMIT, 91198, Gif-sur-Yvette, France
| | - Sandra Beaupierre
- Institut de Chimie des Substances Naturelles, CNRS, LabEx LERMIT, 91198, Gif-sur-Yvette, France
| | - Jérome Leprince
- Normandie Univ, UniRouen, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine INSERM, IRIB, 76000, Rouen, France
| | - Marie-Laure Follet-Gueye
- Normandie Univ, UniRouen, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, SFR Normandie Végétal, 76000, Rouen, France
| | - Maïté Vicré-Gibouin
- Normandie Univ, UniRouen, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, SFR Normandie Végétal, 76000, Rouen, France
| | - Xavier Latour
- Normandie Univ, UniRouen, IUT Evreux, Laboratoire de Microbiologie Signaux et Microenvironnement, SFR Normandie Végétal, 76000, Rouen, France
| | - Vincent Richard
- Normandie Univ, UniRouen, Laboratoire Nouvelles Cibles Pharmacologiques du Traitement de la Dysfonction Endothéliale et de l'Insuffisance Cardiaque, INSERM, IRIB, 76000, Rouen, France
| | - Catherine Guillou
- Institut de Chimie des Substances Naturelles, CNRS, LabEx LERMIT, 91198, Gif-sur-Yvette, France
| | - Patrice Lerouge
- Normandie Univ, UniRouen, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, SFR Normandie Végétal, 76000, Rouen, France
| | - Azeddine Driouich
- Normandie Univ, UniRouen, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, SFR Normandie Végétal, 76000, Rouen, France
| | - Jean-Claude Mollet
- Normandie Univ, UniRouen, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, SFR Normandie Végétal, 76000, Rouen, France.
- Normandie Univ, UniRouen, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco-MEV) EA4358, 76821, Mont-Saint-Aignan, France.
| |
Collapse
|
49
|
Sakaguchi J, Watanabe Y. Light perception in aerial tissues enhances DWF4 accumulation in root tips and induces root growth. Sci Rep 2017; 7:1808. [PMID: 28500288 PMCID: PMC5431926 DOI: 10.1038/s41598-017-01872-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/05/2017] [Indexed: 02/02/2023] Open
Abstract
Many attempts have been made to characterize the activities of brassinosteroids (BRs), which are important plant hormones. The crosstalk between light perception and the BR signalling pathway has been extensively studied regarding its effects on photomorphogenesis, especially in elongating etiolated hypocotyls. In contrast, how and where the light induces BR biosynthesis remain uncharacterized. DWF4 is one of the main enzymes involved in the BR biosynthesis pathway in Arabidopsis thaliana. We established DWF4-GUS A. thaliana lines in a homozygous dwf4-102 genetic background, but functionally complemented with a genomic DWF4 sequence fused in-frame with a β-glucuronidase (GUS) marker gene. The DWF4-GUS plants enabled the visualization of the accumulation of DWF4 under different conditions. We investigated the effects of aboveground light on root and hypocotyl growth. We observed that root length increased when shoots were maintained under light irrespective of whether roots were exposed to light. We also determined that light perception in aerial tissues enhanced DWF4 accumulation in the root tips. Overall, our data indicate that BR biosynthesis is promoted in the root tip regions by an unknown mechanism in distantly located shoot tissues exposed to light, leading to increased root growth.
Collapse
Affiliation(s)
- Jun Sakaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
50
|
Visualization of BRI1 and SERK3/BAK1 Nanoclusters in Arabidopsis Roots. PLoS One 2017; 12:e0169905. [PMID: 28114413 PMCID: PMC5256950 DOI: 10.1371/journal.pone.0169905] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/23/2016] [Indexed: 01/06/2023] Open
Abstract
Brassinosteroids (BRs) are plant hormones that are perceived at the plasma membrane (PM) by the ligand binding receptor BRASSINOSTEROID-INSENSITIVE1 (BRI1) and the co-receptor SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASE 3/BRI1 ASSOCIATED KINASE 1 (SERK3/BAK1). To visualize BRI1-GFP and SERK3/BAK1-mCherry in the plane of the PM, variable-angle epifluorescence microscopy (VAEM) was employed, which allows selective illumination of a thin surface layer. VAEM revealed an inhomogeneous distribution of BRI1-GFP and SERK3/BAK1-mCherry at the PM, which we attribute to the presence of distinct nanoclusters. Neither the BRI1 nor the SERK3/BAK1 nanocluster density is affected by depletion of endogenous ligands or application of exogenous ligands. To reveal interacting populations of receptor complexes, we utilized selective-surface observation—fluorescence lifetime imaging microscopy (SSO-FLIM) for the detection of Förster resonance energy transfer (FRET). Using this approach, we observed hetero-oligomerisation of BRI1 and SERK3 in the nanoclusters, which did not change upon depletion of endogenous ligand or signal activation. Upon ligand application, however, the number of BRI1-SERK3 /BAK1 hetero-oligomers was reduced, possibly due to endocytosis of active signalling units of BRI1-SERK3/BAK1 residing in the PM. We propose that formation of nanoclusters in the plant PM is subjected to biophysical restraints, while the stoichiometry of receptors inside these nanoclusters is variable and important for signal transduction.
Collapse
|