1
|
Xie C, Zhu M, Shi R, Yang L, An X, Wang C. Annexins: central regulators of plant growth and stress signaling. Acta Biochim Biophys Sin (Shanghai) 2025; 57:507-520. [PMID: 39821233 DOI: 10.3724/abbs.2024228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Annexins are a family of multifunctional calcium-dependent and phospholipid-binding proteins that are widely distributed in the plant kingdom. They have a highly conserved evolutionary history that dates back to single-celled protists. Plant annexins, as soluble proteins, can flexibly bind to endomembranes and plasma membranes, exhibiting unique calcium-dependent and calcium-independent characteristics. Members of the annexin family have diverse functions, including binding to F-actin, participating in ATP and GTP hydrolysis, and even serving as peroxidases or cation channels. Annexins play pivotal roles in plant growth and stress signaling. They can respond sensitively to environmental, metabolic, and developmental signals, thereby affecting cytoskeleton remodeling and exocytosis mechanisms. Plant annexin gene families have been successfully identified in multiple species, and their expression and intracellular localization are precisely regulated by developmental processes and environmental factors. Although research on plant annexins has aroused great interest, their depth and breadth still need further expansion compared with those of animal annexins. This article provides a comprehensive and in-depth review of the characteristics and functions of plant annexin families, revealing their core roles in plant growth and adaptation, and yielding valuable references and insights for future research.
Collapse
|
2
|
Shi B, Liu W, Ma Q. The Wheat Annexin TaAnn12 Plays Positive Roles in Plant Disease Resistance by Regulating the Accumulation of Reactive Oxygen Species and Callose. Int J Mol Sci 2023; 24:16381. [PMID: 38003571 PMCID: PMC10671157 DOI: 10.3390/ijms242216381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Annexins are proteins that bind phospholipids and calcium ions in cell membranes and mediate signal transduction between Ca2+ and cell membranes. They play key roles in plant immunity. (2) In this study, virus mediated gene silencing and the heterologous overexpression of TaAnn12 in Arabidopsis thaliana Col-0 trials were used to determine whether the wheat annexin TaAnn12 plays a positive role in plant disease resistance. (3) During the incompatible interaction between wheat cv. Suwon 11 and the Puccinia striiformis f. sp. tritici (Pst) race CYR23, the expression of TaAnn12 was significantly upregulated at 24 h post inoculation (hpi). Silencing TaAnn12 in wheat enhanced the susceptibility to Pst. The salicylic acid hormone contents in the TaAnn12-silenced plants were significantly reduced. The overexpression of TaAnn12 in A. thaliana significantly increased resistance to Pseudomonas syringae pv. tomato DC3000, and the symptoms of the wild-type plants were more serious than those of the transgenic plants; the amounts of bacteria were significantly lower than those in the control group, the accumulation of Reactive Oxygen Species (ROS)and callose deposition increased, and the expression of resistance-related genes (AtPR1, AtPR2, and AtPR5) significantly increased. (4) Our results suggest that wheat TaAnn12 resisted the invasion of pathogens by inducing the production and accumulation of ROS and callose.
Collapse
Affiliation(s)
- Beibei Shi
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.S.); (W.L.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Weijian Liu
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.S.); (W.L.)
| | - Qing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Iqbal A, Aslam S, Ahmed M, Khan F, Ali Q, Han S. Role of Actin Dynamics and GhACTIN1 Gene in Cotton Fiber Development: A Prototypical Cell for Study. Genes (Basel) 2023; 14:1642. [PMID: 37628693 PMCID: PMC10454433 DOI: 10.3390/genes14081642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Cotton crop is considered valuable for its fiber and seed oil. Cotton fiber is a single-celled outgrowth from the ovule epidermis, and it is a very dynamic cell for study. It has four distinct but overlapping developmental stages: initiation, elongation, secondary cell wall synthesis, and maturation. Among the various qualitative characteristics of cotton fiber, the important ones are the cotton fiber staple length, tensile strength, micronaire values, and fiber maturity. Actin dynamics are known to play an important role in fiber elongation and maturation. The current review gives an insight into the cotton fiber developmental stages, the qualitative traits associated with cotton fiber, and the set of genes involved in regulating these developmental stages and fiber traits. This review also highlights some prospects for how biotechnological approaches can improve cotton fiber quality.
Collapse
Affiliation(s)
- Adnan Iqbal
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China;
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Sibgha Aslam
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Mukhtar Ahmed
- Government Boys College Sokasan, Higher Education Department, Azad Jammu and Kashmir, Bhimber 10040, Pakistan
| | - Fahad Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan 33001, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Shiming Han
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China;
| |
Collapse
|
4
|
UPL5 modulates WHY2 protein distribution in a Kub-site dependent ubiquitination in response to [Ca2+]cyt-induced leaf senescence. iScience 2023; 26:106216. [PMID: 36994183 PMCID: PMC10040967 DOI: 10.1016/j.isci.2023.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/08/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
The translocation of proteins between various compartments of cells is the simplest and most direct way of an/retrograde communication. However, the mechanism of protein trafficking is far understood. In this study, we showed that the alteration of WHY2 protein abundance in various compartments of cells was dependent on a HECT-type ubiquitin E3 ligase UPL5 interacting with WHY2 in the cytoplasm, plastid, and nucleus, as well as mitochondrion to selectively ubiquitinate various Kub-sites (Kub 45 and Kub 227) of WHY2. Plastid genome stability can be maintained by the UPL5-WHY2 module, accompany by the alteration of photosystem activity and senescence-associated gene expression. In addition, the specificity of UPL5 ubiquitinating various Kub-sites of WHY2 was responded to cold or CaCl2 stress, in a dose [Ca2+]cyt-dependent manner. This demonstrates the integration of the UPL5 ubiquitination with the regulation of WHY2 distribution and retrograde communication between organelle and nuclear events of leaf senescence.
Collapse
|
5
|
Moinoddini F, Mirshamsi Kakhki A, Bagheri A, Jalilian A. Genome-wide analysis of annexin gene family in Schrenkiella parvula and Eutrema salsugineum suggests their roles in salt stress response. PLoS One 2023; 18:e0280246. [PMID: 36652493 PMCID: PMC9847905 DOI: 10.1371/journal.pone.0280246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/24/2022] [Indexed: 01/19/2023] Open
Abstract
Annexins (Anns) play an important role in plant development, growth and responses to various stresses. Although Ann genes have been characterized in some plants, their role in adaptation mechanisms and tolerance to environmental stresses have not been studied in extremophile plants. In this study, Ann genes in Schrenkiella parvula and Eutrema salsugineum were identified using a genome-wide method and phylogenetic relationships, subcellular distribution, gene structures, conserved residues and motifs and also promoter prediction have been studied through bioinformatics analysis. We identified ten and eight encoding putative Ann genes in S. parvula and E. salsugineum genome respectively, which were divided into six subfamilies according to phylogenetic relationships. By observing conservation in gene structures and protein motifs we found that the majority of Ann members in two extremophile plants are similar. Furthermore, promoter analysis revealed a greater number of GATA, Dof, bHLH and NAC transcription factor binding sites, as well as ABRE, ABRE3a, ABRE4, MYB and Myc cis-acting elements in compare to Arabidopsis thaliana. To gain additional insight into the putative roles of candidate Ann genes, the expression of SpAnn1, SpAnn2 and SpAnn6 in S. parvula was studied in response to salt stress, which indicated that their expression level in shoot increased. Similarly, salt stress induced expression of EsAnn1, 5 and 7, in roots and EsAnn1, 2 and 5 in leaves of E. salsugineum. Our comparative analysis implies that both halophytes have different regulatory mechanisms compared to A. thaliana and suggest SpAnn2 gene play important roles in mediating salt stress.
Collapse
Affiliation(s)
- Fatemeh Moinoddini
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amin Mirshamsi Kakhki
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Jalilian
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Xu J, Han L, Xia S, Zhu R, Kang E, Shang Z. ATANN3 Is Involved in Extracellular ATP-Regulated Auxin Distribution in Arabidopsis thaliana Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:330. [PMID: 36679043 PMCID: PMC9867528 DOI: 10.3390/plants12020330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Extracellular ATP (eATP) plays multiple roles in plant growth and development, and stress responses. It has been revealed that eATP suppresses growth and alters the growth orientation of the root and hypocotyl of Arabidopsis thaliana by affecting auxin transport and localization in these organs. However, the mechanism of the eATP-stimulated auxin distribution remains elusive. Annexins are involved in multiple aspects of plant cellular metabolism, while their role in response to apoplastic signals remains unclear. Here, by using the loss-of-function mutations, we investigated the role of AtANN3 in the eATP-regulated root and hypocotyl growth. Firstly, the inhibitory effects of eATP on root and hypocotyl elongation were weakened or impaired in the AtANN3 null mutants (atann3-1 and atann3-2). Meanwhile, the distribution of DR5-GUS and DR5-GFP indicated that the eATP-induced asymmetric distribution of auxin in the root tips or hypocotyl cells occurred in wild-type control plants, while in atann3-1 mutant seedlings, it was not observed. Further, the eATP-induced asymmetric distribution of PIN2-GFP in root-tip cells or that of PIN3-GFP in hypocotyl cells was reduced in atann3-1 seedlings. Finally, the eATP-induced asymmetric distribution of cytoplasmic vesicles in root-tip cells was impaired in atann3-1 seedlings. Based on these results, we suggest that AtANN3 may be involved in eATP-regulated seedling growth by regulating the distribution of auxin and auxin transporters in vegetative organs.
Collapse
Affiliation(s)
| | | | | | | | - Erfang Kang
- Correspondence: (E.K.); (Z.S.); Tel.: +86-(311)-8078-7565 (E.K.); +86-(311)-8078-7570 (Z.S.)
| | - Zhonglin Shang
- Correspondence: (E.K.); (Z.S.); Tel.: +86-(311)-8078-7565 (E.K.); +86-(311)-8078-7570 (Z.S.)
| |
Collapse
|
7
|
GmWAK1, Novel Wall-Associated Protein Kinase, Positively Regulates Response of Soybean to Phytophthora sojae Infection. Int J Mol Sci 2023; 24:ijms24010798. [PMID: 36614246 PMCID: PMC9821614 DOI: 10.3390/ijms24010798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Phytophthora root rot is a destructive soybean disease worldwide, which is caused by the oomycete pathogen Phytophthora sojae (P. sojae). Wall-associated protein kinase (WAK) genes, a family of the receptor-like protein kinase (RLK) genes, play important roles in the plant signaling pathways that regulate stress responses and pathogen resistance. In our study, we found a putative Glycine max wall-associated protein kinase, GmWAK1, which we identified by soybean GmLHP1 RNA-sequencing. The expression of GmWAK1 was significantly increased by P. sojae and salicylic acid (SA). Overexpression of GmWAK1 in soybean significantly improved resistance to P. sojae, and the levels of phenylalanine ammonia-lyase (PAL), SA, and SA-biosynthesis-related genes were markedly higher than in the wild-type (WT) soybean. The activities of enzymatic superoxide dismutase (SOD) and peroxidase (POD) antioxidants in GmWAK1-overexpressing (OE) plants were significantly higher than those in in WT plants treated with P. sojae; reactive oxygen species (ROS) and hydrogen peroxide (H2O2) accumulation was considerably lower in GmWAK1-OE after P. sojae infection. GmWAK1 interacted with annexin-like protein RJ, GmANNRJ4, which improved resistance to P. sojae and increased intracellular free-calcium accumulation. In GmANNRJ4-OE transgenic soybean, the calmodulin-dependent kinase gene GmMPK6 and several pathogenesis-related (PR) genes were constitutively activated. Collectively, these results indicated that GmWAK1 interacts with GmANNRJ4, and GmWAK1 plays a positive role in soybean resistance to P. sojae via a process that might be dependent on SA and involved in alleviating damage caused by oxidative stress.
Collapse
|
8
|
Wu X, Wang Y, Bian Y, Ren Y, Xu X, Zhou F, Ding H. A critical review on plant annexin: Structure, function, and mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:81-89. [PMID: 36108355 DOI: 10.1016/j.plaphy.2022.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Plant annexins are evolutionary conserved protein family widely exist in almost all plant species, characterized by a shorter N-terminal region and four conservative annexin repeats. Plant annexins have Ca2+ channel-regulating activity and peroxidase as well as ATPase/GTPase activities, which give annexins functional specificity. They are widely involved in regulating diverse aspects of biochemical and cellular processes, plant growth and development, and responses to biotic and abiotic environmental stresses. Though many studies have reviewed the function of annexins, great progress have been made in the study of plant annexins recently. In this review, we outline the current understanding of basic properties of plant annexins and summarize the emerging advances in understanding the functional roles of annexins in plants and highlight the regulation mechanisms of annexin protein in response to stress especially to salt and cold stress. The interesting questions related to plant annexin that remain to be further elucidated are also discussed.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yan Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuhao Bian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yan Ren
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoying Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Fucai Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Shail M, Prasad R. Identification and molecular analysis of the annexin genes in Cyamopsis tetragonoloba L. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Wang X, Han L, Yin H, Zhao Z, Cao H, Shang Z, Kang E. AtANN1 and AtANN2 are involved in phototropism of etiolated hypocotyls of Arabidopsis by regulating auxin distribution. AOB PLANTS 2022; 14:plab075. [PMID: 35079328 PMCID: PMC8782606 DOI: 10.1093/aobpla/plab075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Phototropism is an essential response in some plant organs and features several signalling molecules involved in either photo-sensing or post-sensing responses. Annexins are involved in regulating plant growth and its responses to various stimuli. Here, we provide novel data showing that two members of the Annexin family in Arabidopsis thaliana, AtANN1 and AtANN2, may be involved in the phototropism of etiolated hypocotyls. In wild type, unilateral blue light (BL) induced a strong phototropic response, while red light (RL) only induced a weak response. The responses of single- or double-null mutants of the two annexins, including atann1, atann2 and atann1/atann2, were significantly weaker than those observed in wild type, indicating the involvement of AtANN1 and AtANN2 in BL-induced phototropism. Unilateral BL induced asymmetric distribution of DR5-GFP and PIN3-GFP fluorescence in hypocotyls; notably, fluorescent intensity on the shaded side was markedly stronger than that on the illuminated side. In etiolated atann1, atann2 or atann1/atann2 hypocotyls, unilateral BL-induced asymmetric distributions of DR5-GFP and PIN3-GFP were weakened or impaired. Herein, we suggest that during hypocotyls phototropic response, AtANN1 and AtANN2 may be involved in BL-stimulated signalling by regulating PIN3-charged auxin transport.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Department of Agricultural and Animal Engineering, Cangzhou Vocation College of Technology, Cangzhou 061001, China
| | - Lijuan Han
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Hongmin Yin
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhenping Zhao
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huishu Cao
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhonglin Shang
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Erfang Kang
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
11
|
Wei H, Movahedi A, Liu G, Li Y, Liu S, Yu C, Chen Y, Zhong F, Zhang J. Genome-Wide Characterization and Abiotic Stresses Expression Analysis of Annexin Family Genes in Poplar. Int J Mol Sci 2022; 23:ijms23010515. [PMID: 35008941 PMCID: PMC8745089 DOI: 10.3390/ijms23010515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023] Open
Abstract
Poplar is an illustrious industrial woody plant with rapid growth, providing a range of materials, and having simple post-treatment. Various kinds of environmental stresses limit its output. Plant annexin (ANN) is a calcium-dependent phospholipid-binding protein involved in plant metabolism, growth and development, and cooperatively regulating drought resistance, salt tolerance, and various stress responses. However, the features of the PtANN gene family and different stress responses remain unknown in poplar. This study identified 12 PtANN genes in the P. trichocarpa whole-genome and PtANNs divided into three subfamilies based on the phylogenetic tree. The PtANNs clustered into the same clade shared similar gene structures and conserved motifs. The 12 PtANN genes were located in ten chromosomes, and segmental duplication events were illustrated as the main duplication method. Additionally, the PtANN4 homogenous with AtANN1 was detected localized in the cytoplasm and plasma membrane. In addition, expression levels of PtANNs were induced by multiple abiotic stresses, which indicated that PtANNs could widely participate in response to abiotic stress. These results revealed the molecular evolution of PtANNs and their profiles in response to abiotic stress.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226000, China; (H.W.); (G.L.); (Y.L.); (S.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
- College of Arts and Sciences, Arlington International University, Wilmington, DE 19804, USA
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226000, China; (H.W.); (G.L.); (Y.L.); (S.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Yixin Li
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226000, China; (H.W.); (G.L.); (Y.L.); (S.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Shiwei Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226000, China; (H.W.); (G.L.); (Y.L.); (S.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226000, China; (H.W.); (G.L.); (Y.L.); (S.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226000, China; (H.W.); (G.L.); (Y.L.); (S.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226000, China; (H.W.); (G.L.); (Y.L.); (S.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226000, China; (H.W.); (G.L.); (Y.L.); (S.L.); (C.Y.); (Y.C.); (F.Z.)
- Correspondence:
| |
Collapse
|
12
|
Calmodulin and Its Interactive Proteins Participate in Regulating the Explosive Growth of Alexandrium pacificum (Dinoflagellate). Int J Mol Sci 2021; 23:ijms23010145. [PMID: 35008568 PMCID: PMC8745774 DOI: 10.3390/ijms23010145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Alexandrium pacificum is a typical dinoflagellate that can cause harmful algal blooms, resulting in negative impacts on ecology and human health. The calcium (Ca2+) signal transduction pathway plays an important role in cell proliferation. Calmodulin (CaM) and CaM-related proteins are the main cellular Ca2+ sensors, and can act as an intermediate in the Ca2+ signal transduction pathway. In this study, the proteins that interacted with CaM of A. pacificum were screened by two-dimensional electrophoresis analysis and far western blots under different growth conditions including lag phase and high phosphorus and manganese induced log phase (HPM). The interactive proteins were then identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Four proteins were identified, including Ca2+/CaM-dependent protein kinase, serine/threonine kinase, annexin, and inositol-3-phosphate synthase, which all showed high expression levels under HPM. The gene expression levels encoding these four proteins were also up-regulated under HPM, as revealed by quantitative polymerase chain reaction, suggesting that the identified proteins participate in the Ca2+ transport channel and cell cycle regulation to promote cell division. A network of proteins interacting with CaM and their target proteins involved in the regulation of cell proliferation was raised, which provided new insights into the mechanisms behind the explosive growth of A. pacificum.
Collapse
|
13
|
Ectomycorrhizal Fungal Strains Facilitate Cd 2+ Enrichment in a Woody Hyperaccumulator under Co-Existing Stress of Cadmium and Salt. Int J Mol Sci 2021; 22:ijms222111651. [PMID: 34769083 PMCID: PMC8583747 DOI: 10.3390/ijms222111651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd2+) pollution occurring in salt-affected soils has become an increasing environmental concern in the world. Fast-growing poplars have been widely utilized for phytoremediation of soil contaminating heavy metals (HMs). However, the woody Cd2+-hyperaccumulator, Populus × canescens, is relatively salt-sensitive and therefore cannot be directly used to remediate HMs from salt-affected soils. The aim of the present study was to testify whether colonization of P. × canescens with ectomycorrhizal (EM) fungi, a strategy known to enhance salt tolerance, provides an opportunity for affordable remediation of Cd2+-polluted saline soils. Ectomycorrhization with Paxillus involutus strains facilitated Cd2+ enrichment in P. × canescens upon CdCl2 exposures (50 μM, 30 min to 24 h). The fungus-stimulated Cd2+ in roots was significantly restricted by inhibitors of plasmalemma H+-ATPases and Ca2+-permeable channels (CaPCs), but stimulated by an activator of plasmalemma H+-ATPases. NaCl (100 mM) lowered the transient and steady-state Cd2+ influx in roots and fungal mycelia. Noteworthy, P. involutus colonization partly reverted the salt suppression of Cd2+ uptake in poplar roots. EM fungus colonization upregulated transcription of plasmalemma H+-ATPases (PcHA4, 8, 11) and annexins (PcANN1, 2, 4), which might mediate Cd2+ conductance through CaPCs. EM roots retained relatively highly expressed PcHAs and PcANNs, thus facilitating Cd2+ enrichment under co-occurring stress of cadmium and salinity. We conclude that ectomycorrhization of woody hyperaccumulator species such as poplar could improve phytoremediation of Cd2+ in salt-affected areas.
Collapse
|
14
|
Pavlova OA, Leppyanen IV, Kustova DV, Bovin AD, Dolgikh EA. Phylogenetic and structural analysis of annexins in pea (Pisum sativum L.) and their role in legume-rhizobial symbiosis development. Vavilovskii Zhurnal Genet Selektsii 2021; 25:502-513. [PMID: 34595373 PMCID: PMC8453364 DOI: 10.18699/vj21.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022] Open
Abstract
Annexins as Ca2+/phospholipid-binding proteins are involved in the control of many biological processes essential for plant growth and development. In a previous study, we had shown, using a proteomic approach, that the synthesis of two annexins is induced in pea roots in response to rhizobial inoculation. In this study, phylogenetic analysis identif ied these annexins as PsAnn4 and PsAnn8 based on their homology with annexins from other legumes. The modeling approach allowed us to estimate the structural features of these annexins that might inf luence their functional activity. To verify the functions of these annexins, we performed comparative proteomic analysis, experiments with calcium inf lux inhibitors, and localization of labeled proteins. Essential down-regulation of PsAnn4 synthesis in a non-nodulating pea mutant P56 (sym10) suggests an involvement of this annexin in the rhizobial symbiosis. Quantitative RT-PCR analysis showed that PsAnn4 was upregulated at the early stages of symbiosis development, starting from 1-3 days after inoculation to up to 5 days after inoculation, while experiments with the Ca2+ channel blocker LaCl3 revealed its negative inf luence on this expression. To follow the PsAnn4 protein localization in plant cells, it was fused to the f luorophores such as red f luorescent protein (RFP) and yellow f luorescent protein (YFP) and expressed under the transcriptional regulation of the 35S promoter in Nicotiana benthamiana leaves by inf iltration with Agrobacterium tumefaciens. The localization of PsAnn4 in the cell wall or plasma membrane of plant cells may indicate its participation in membrane modif ication or ion transport. Our results suggest that PsAnn4 may play an important role during the early stages of pea-rhizobial symbiosis development.
Collapse
Affiliation(s)
- O A Pavlova
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - I V Leppyanen
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - D V Kustova
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - A D Bovin
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - E A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| |
Collapse
|
15
|
Malabarba J, Meents AK, Reichelt M, Scholz SS, Peiter E, Rachowka J, Konopka-Postupolska D, Wilkins KA, Davies JM, Oelmüller R, Mithöfer A. ANNEXIN1 mediates calcium-dependent systemic defense in Arabidopsis plants upon herbivory and wounding. THE NEW PHYTOLOGIST 2021; 231:243-254. [PMID: 33586181 DOI: 10.1111/nph.17277] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 02/05/2021] [Indexed: 05/21/2023]
Abstract
Cellular calcium (Ca) transients are endogenous signals involved in local and systemic signaling and defense activation upon environmental stress, including wounding and herbivory. Still, not all Ca2+ channels contributing to the signaling have been identified, nor are their modes of action fully known. Plant annexins are proteins capable of binding to anionic phospholipids and can exhibit Ca channel-like activity. Arabidopsis ANNEXIN1 (ANN1) is suggested to contribute to Ca transport. Here, we report that wounding and simulated-herbivory-induced cytosolic free Ca elevation was impaired in systemic leaves in ann1 loss-of-function plants. We provide evidence for a role of ANN1 in local and systemic defense of plants attacked by herbivorous Spodoptera littoralis larvae. Bioassays identified ANN1 as a positive defense regulator. Spodoptera littoralis feeding on ann1 gained significantly more weight than larvae feeding on wild-type, whereas those feeding on ANN1-overexpressing lines gained less weight. Herbivory and wounding both induced defense-related responses on treated leaves, such as jasmonate accumulation and defense gene expression. These responses remained local and were strongly reduced in systemic leaves in ann1 plants. Our results indicate that ANN1 plays an important role in activation of systemic rather than local defense in plants attacked by herbivorous insects.
Collapse
Affiliation(s)
- Jaiana Malabarba
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Postgraduate Program in Cell and Molecular Biology, Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil
| | - Anja K Meents
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sandra S Scholz
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Julia Rachowka
- Plant Protein Phosphorylation Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Dorota Konopka-Postupolska
- Plant Protein Phosphorylation Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Katie A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, CB24 6DG, UK
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, CB24 6DG, UK
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
16
|
Peterson D, Li T, Calvo AM, Yin Y. Categorization of Orthologous Gene Clusters in 92 Ascomycota Genomes Reveals Functions Important for Phytopathogenicity. J Fungi (Basel) 2021; 7:337. [PMID: 33925458 PMCID: PMC8146833 DOI: 10.3390/jof7050337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/01/2023] Open
Abstract
Phytopathogenic Ascomycota are responsible for substantial economic losses each year, destroying valuable crops. The present study aims to provide new insights into phytopathogenicity in Ascomycota from a comparative genomic perspective. This has been achieved by categorizing orthologous gene groups (orthogroups) from 68 phytopathogenic and 24 non-phytopathogenic Ascomycota genomes into three classes: Core, (pathogen or non-pathogen) group-specific, and genome-specific accessory orthogroups. We found that (i) ~20% orthogroups are group-specific and accessory in the 92 Ascomycota genomes, (ii) phytopathogenicity is not phylogenetically determined, (iii) group-specific orthogroups have more enriched functional terms than accessory orthogroups and this trend is particularly evident in phytopathogenic fungi, (iv) secreted proteins with signal peptides and horizontal gene transfers (HGTs) are the two functional terms that show the highest occurrence and significance in group-specific orthogroups, (v) a number of other functional terms are also identified to have higher significance and occurrence in group-specific orthogroups. Overall, our comparative genomics analysis determined positive enrichment existing between orthogroup classes and revealed a prediction of what genomic characteristics make an Ascomycete phytopathogenic. We conclude that genes shared by multiple phytopathogenic genomes are more important for phytopathogenicity than those that are unique in each genome.
Collapse
Affiliation(s)
- Daniel Peterson
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Tang Li
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska–Lincoln, Lincoln, NE 68588, USA;
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska–Lincoln, Lincoln, NE 68588, USA;
| |
Collapse
|
17
|
Zhang Y, Sa G, Zhang Y, Hou S, Wu X, Zhao N, Zhang Y, Deng S, Deng C, Deng J, Zhang H, Yao J, Zhang Y, Zhao R, Chen S. Populus euphratica annexin1 facilitates cadmium enrichment in transgenic Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124063. [PMID: 33092878 DOI: 10.1016/j.jhazmat.2020.124063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation offers a great potential for affordable remediation of heavy metal (HM)-polluted soil and water. Screening and identifying candidate genes related to HM uptake and transport is prerequisite for improvement of phytoremediation by genetic engineering. Using the cadmium (Cd)-hypersensitive Populus euphratica, an annexin encoding gene facilitating Cd enrichment was identified in this study. With a 12 h exposure to CdCl2 (50-100 μM), P. euphratica cells down-regulated transcripts of annexin1 (PeANN1). PeANN1 was homologue to Arabidopsis annexin1 (AtANN1) and localized mainly to the plasma membrane (PM) and cytosol. Compared with wild type and Atann1 mutant, PeANN1 overexpression in Arabidopsis resulted in a more pronounced decline in survival rate and root length after a long-term Cd stress (10 d, 50 μM), due to a higher cadmium accumulation in roots. PeANN1-transgenic roots exhibited enhanced influx conductance of Cd2+ under cadmium shock (30 min, 50 μM) and short-term stress (12 h, 50 μM). Noteworthy, the PeANN1-facilitated Cd2+ influx was significantly inhibited by a calcium-permeable channel (CaPC) inhibitor (GdCl3) but was promoted by 1 mM H2O2, indicating that Cd2+ entered root cells via radical-activated CaPCs in the PM. Therefore, PeANN1 can serve as a candidate gene for improvement of phytoremediation by genetic engineering.
Collapse
Affiliation(s)
- Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; Forestry Institute of New Technology, Chinese Academy of Forestry, Beijing 100091, China
| | - Gang Sa
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Siyuan Hou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Xia Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Nan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yuhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shurong Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Jiayin Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Huilong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yanli Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
18
|
Zhao ZX, Xu YJ, Lei Y, Li Q, Zhao JQ, Li Y, Fan J, Xiao S, Wang WM. ANNEXIN 8 negatively regulates RPW8.1-mediated cell death and disease resistance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:378-392. [PMID: 33073904 DOI: 10.1111/jipb.13025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Study on the regulation of broad-spectrum resistance is an active area in plant biology. RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is one of a few broad-spectrum resistance genes triggering the hypersensitive response (HR) to restrict multiple pathogenic infections. To address the question how RPW8.1 signaling is regulated, we performed a genetic screen and tried to identify mutations enhancing RPW8.1-mediated HR. Here, we provided evidence to connect an annexin protein with RPW8.1-mediated resistance in Arabidopsis against powdery mildew. We isolated and characterized Arabidopsis b7-6 mutant. A point mutation in b7-6 at the At5g12380 locus resulted in an amino acid substitution in ANNEXIN 8 (AtANN8). Loss-of-function or RNA-silencing of AtANN8 led to enhanced expression of RPW8.1, RPW8.1-dependent necrotic lesions in leaves, and defense against powdery mildew. Conversely, over-expression of AtANN8 compromised RPW8.1-mediated disease resistance and cell death. Interestingly, the mutation in AtANN8 enhanced RPW8.1-triggered H2 O2 . In addition, mutation in AtANN8 led to hypersensitivity to salt stress. Together, our data indicate that AtANN8 is involved in multiple stress signaling pathways and negatively regulates RPW8.1-mediated resistance against powdery mildew and cell death, thus linking ANNEXIN's function with plant immunity.
Collapse
Affiliation(s)
- Zhi-Xue Zhao
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-Ju Xu
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Lei
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Li
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Qun Zhao
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland, Rockville, Maryland, 20850, USA
| | - Wen-Ming Wang
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
19
|
Liu Q, Ding Y, Shi Y, Ma L, Wang Y, Song C, Wilkins KA, Davies JM, Knight H, Knight MR, Gong Z, Guo Y, Yang S. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. EMBO J 2021; 40:e104559. [PMID: 33372703 PMCID: PMC7809786 DOI: 10.15252/embj.2020104559] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
The transient elevation of cytosolic free calcium concentration ([Ca2+ ]cyt ) induced by cold stress is a well-established phenomenon; however, the underlying mechanism remains elusive. Here, we report that the Ca2+ -permeable transporter ANNEXIN1 (AtANN1) mediates cold-triggered Ca2+ influx and freezing tolerance in Arabidopsis thaliana. The loss of function of AtANN1 substantially impaired freezing tolerance, reducing the cold-induced [Ca2+ ]cyt increase and upregulation of the cold-responsive CBF and COR genes. Further analysis showed that the OST1/SnRK2.6 kinase interacted with and phosphorylated AtANN1, which consequently enhanced its Ca2+ transport activity, thereby potentiating Ca2+ signaling. Consistent with these results and freezing sensitivity of ost1 mutants, the cold-induced [Ca2+ ]cyt elevation in the ost1-3 mutant was reduced. Genetic analysis indicated that AtANN1 acts downstream of OST1 in responses to cold stress. Our data thus uncover a cascade linking OST1-AtANN1 to cold-induced Ca2+ signal generation, which activates the cold response and consequently enhances freezing tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Qiangbo Liu
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Liang Ma
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yi Wang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Chunpeng Song
- Institute of Plant Stress BiologyCollaborative Innovation Center of Crop Stress BiologyHenan UniversityKaifengChina
| | - Katie A Wilkins
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Julia M Davies
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | | | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yan Guo
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
20
|
A novel Triticum durum Annexin 12 protein: Expression, purification and biological activities against Listeria monocytogenes growth in meat under refrigeration. Microb Pathog 2020; 143:104143. [DOI: 10.1016/j.micpath.2020.104143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023]
|
21
|
Gao S, Song T, Han J, He M, Zhang Q, Zhu Y, Zhu Z. A calcium-dependent lipid binding protein, OsANN10, is a negative regulator of osmotic stress tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110420. [PMID: 32081268 DOI: 10.1016/j.plantsci.2020.110420] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 05/21/2023]
Abstract
Annexin, a multi-gene family in plants, is essential for plant growth and stress responses. Recent studies demonstrated a positive effect of annexin in abiotic stress responses. Interestingly, we found OsANN10, a putative annexin gene in rice, negatively regulated plant responses to osmotic stress. Knocking down OsANN10 significantly decreased the content of H2O2 by increasing Peroxidase (POD) and Catalase (CAT) activities, further reducing oxidative damage in rice leaves, suggesting a negative regulation of OsANN10 in protecting cell membrane against oxidative damage via scavenging ROS under osmotic stress.
Collapse
Affiliation(s)
- Shuxin Gao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Tao Song
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Jianbo Han
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Mengli He
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Qian Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Ying Zhu
- The Institute of Viral and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhengge Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
22
|
Zhao J, Li L, Liu Q, Liu P, Li S, Yang D, Chen Y, Pagnotta S, Favery B, Abad P, Jian H. A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5943-5958. [PMID: 31365744 PMCID: PMC6812717 DOI: 10.1093/jxb/erz348] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/22/2019] [Indexed: 05/20/2023]
Abstract
Plant-parasitic nematodes secrete numerous effectors to facilitate parasitism, but detailed functions of nematode effectors and their plant targets remain largely unknown. Here, we characterized four macrophage migration inhibitory factors (MIFs) in Meloidogyne incognita resembling the MIFs secreted by human and animal parasites. Transcriptional data showed MiMIFs are up-regulated in parasitism. Immunolocalization provided evidence that MiMIF proteins are secreted from the nematode hypodermis to the parasite surface, detected in plant tissues and giant cells. In planta MiMIFs RNA interference in Arabidopsis decreased infection and nematode reproduction. Transient expression of MiMIF-2 could suppress Bax- and RBP1/Gpa2-induced cell death. MiMIF-2 ectopic expression led to higher levels of Arabidopsis susceptibility, suppressed immune responses triggered by flg22, and impaired [Ca2+]cyt influx induced by H2O2. The immunoprecipitation of MiMIF-2-interacting proteins, followed by co-immunoprecipitation and bimolecular fluorescence complementation validations, revealed specific interactions between MiMIF-2 and two Arabidopsis annexins, AnnAt1 and AnnAt4, involved in the transport of calcium ions, stress responses, and signal transduction. Suppression of expression or overexpression of these annexins modified nematode infection. Our results provide functional evidence that nematode effectors secreted from hypodermis to the parasite cuticle surface target host proteins and M. incognita uses MiMIFs to promote parasitism by interfering with the annexin-mediated plant immune responses.
Collapse
Affiliation(s)
- Jianlong Zhao
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Lijuan Li
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Qian Liu
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Pei Liu
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Shuang Li
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Dan Yang
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Yongpan Chen
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée (CCMA), Université de Nice Sophia Antipolis, Nice, France
| | | | - Pierre Abad
- Université Côte d’Azur, INRA, CNRS, ISA, France
| | - Heng Jian
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
23
|
Wang X, Zhu B, Jiang Z, Wang S. Calcium-mediation of jasmonate biosynthesis and signaling in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110192. [PMID: 31481228 DOI: 10.1016/j.plantsci.2019.110192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 05/22/2023]
Abstract
Jasmonates (JAs) play vital roles in regulating a range of plant growth and development processes including seed germination, seedling development, reproduction, formation and development of storage organs, and senescence. JAs are also involved in the regulation of plant responses to environmental stimuli. The biosynthesis of JAs takes place in three different subcellular compartments, namely, the chloroplast, peroxisome, and cytoplasm. JAs activate the expression of JA-responsive genes by degrading jasmonate zinc-finger-inflorescence meristem (Zim) domain (JAZ) repressors via the E3 ubiquitin-ligase Skp/Cullin/F-box protein CORONATINE INSENSITIVE1 (COI1) complex (SCFCOI1) by using 26S proteasome. Calcium, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), and nitric oxide (NO) are involved in the regulation of the biosynthesis and signaling of JAs in plants. Among these signaling molecules, calcium is one of the most important within plant cells. In plants, intracellular calcium levels change in response to JAs, resulting in calcium signatures with temporal and spatial features. Calcium channels are involved in the generation of calcium signatures. Calcium sensors, including calmodulins (CaMs), CaM-like proteins (CMLs), calcineurin B-like proteins (CBLs), and calcium-dependent protein kinases (CDPKs), can act to regulate the biosynthesis and signaling of JAs.
Collapse
Affiliation(s)
- Xiaoping Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Biping Zhu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhonghao Jiang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China; College of Life Science, Linyi University, Linyi, 276000, China.
| |
Collapse
|
24
|
Li X, Zhang Q, Yang X, Han J, Zhu Z. OsANN3, a calcium-dependent lipid binding annexin is a positive regulator of ABA-dependent stress tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:212-220. [PMID: 31084874 DOI: 10.1016/j.plantsci.2019.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 05/20/2023]
Abstract
Annexin is a multigene family that plays critical roles in plant stress responses and various cellular processes. Here, we reported the cloning and functional characterization of a novel rice annexin protein, OsANN3. We found that expression of OsANN3 was induced by polyethylene glycol (PEG) and abscisic acid (ABA) treatments. Overexpression of OsANN3 in rice significantly increased survival rates under drought stress, while knocking down OsANN3 resulted in sensitivity to drought. Meanwhile, OsANN3 overexpression showed enhanced sensitivity to exogenous ABA. Together with its Ca2+ and phospholipid binding activity, we proposed that when plants were subjected to drought stress, OsANN3 might mediate Ca2+ influx by binding to phospholipid to activate ABA signaling pathways. In addition, overexpression OsANN3 showed better growth under drought stress comparing to wild type, such as longer root length and more stomata closure for reducing water loss by regulating ABA-dependent stress response pathways.
Collapse
Affiliation(s)
- Xuefei Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Qian Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Xue Yang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Jianbo Han
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Zhengge Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
25
|
Medvedev S, Voronina O, Tankelyun O, Bilova T, Suslov D, Bankin M, Mackievic V, Makavitskaya M, Shishova M, Martinec J, Smolikova G, Sharova E, Demidchik V. Phosphatidic acids mediate transport of Ca 2+ and H + through plant cell membranes. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:533-542. [PMID: 30940327 DOI: 10.1071/fp18242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Phosphatidic acids (PAs) are a key intermediate in phospholipid biosynthesis, and a central element in numerous signalling pathways. Functions of PAs are related to their fundamental role in molecular interactions within cell membranes modifying membrane bending, budding, fission and fusion. Here we tested the hypothesis that PAs are capable of direct transport of ions across bio-membranes. We have demonstrated that PAs added to the maize plasma membrane vesicles induced ionophore-like transmembrane transport of Ca2+, H+ and Mg2+. PA-induced Ca2+ fluxes increased with an increasing PAs acyl chain unsaturation. For all the PAs analysed, the effect on Ca2+ permeability increased with increasing pH (pH 8.0>pH 7.2>pH 6.0). The PA-induced Ca2+, Mg2+ and H+ permeability was also more pronounced in the endomembrane vesicles as compared with the plasma membrane vesicles. Addition of PA to protoplasts from Arabidopsis thaliana (L.) Heynh. roots constitutively expressing aequorin triggered elevation of the cytosolic Ca2+ activity, indicating that the observed PA-dependent Ca2+ transport occurs in intact plants.
Collapse
Affiliation(s)
- Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia; and Corresponding authors. Emails: ;
| | - Olga Voronina
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Olga Tankelyun
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Dmitry Suslov
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Mikhail Bankin
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Viera Mackievic
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus
| | - Maryia Makavitskaya
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus
| | - Maria Shishova
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Jan Martinec
- Institute of Experimental Botany AS CR, vvi, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Galina Smolikova
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Elena Sharova
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus; and Corresponding authors. Emails: ;
| |
Collapse
|
26
|
He F, Gao C, Guo G, Liu J, Gao Y, Pan R, Guan Y, Hu J. Maize annexin genes ZmANN33 and ZmANN35 encode proteins that function in cell membrane recovery during seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1183-1195. [PMID: 30649398 PMCID: PMC6382337 DOI: 10.1093/jxb/ery452] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/10/2018] [Indexed: 05/08/2023]
Abstract
Plasma membrane (PM) recovery from the impaired dry state is essential for seed germination, but its underlying mechanism remains unclear. In this study, we found that ZmANN33 and ZmANN35, two annexin genes in maize, encode proteins that participate in PM recovery during seed germination. The expression of both genes was up-regulated during seed germination and strongly repressed by chilling (either 15 or 5 °C) as compared with the normal temperature (25 °C). In addition, the increased membrane damage caused by chilling imbibition was correlated with suppressed expression of ZmANN33 and ZmANN35, while rapid recovery of their expression levels accompanied the rescue of the damaged membrane. Arabidopsis seedlings ectopically expressing ZmANN33 or ZmANN35 had longer seedling length than wild-type (WT) plants during the recovery period after 3 d of chilling stress, indicating the positive roles of these two gene products in the plant's recovery from chilling injury. Moreover, these transgenic seedlings had lower lipid peroxidation and higher peroxidase activities than WT during the recovery period. Consistently, root cells of these transgenic seedlings had more intact PM after chilling stress, supporting the proposition that ZmANN33 and ZmANN35 contribute to the maintenance of PM integrity. The enhanced PM integrity is likely due to the accelerated exocytotic process after chilling stress. We also showed that both ZmANN33 and ZmANN35 localized in the cytosol near the plasma membrane. Thus, we conclude that ZmANN33 and ZmANN35 play essential roles in membrane recovery during maize seed germination.
Collapse
Affiliation(s)
- Fei He
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Canhong Gao
- Department of Seed Science and Industry, College of Agronomy, Anhui Agricultural University, Hefei City, China
| | - Genyuan Guo
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Gao
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yajing Guan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Correspondence:
| | - Jin Hu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Wang X, Hao L, Zhu B, Jiang Z. Plant Calcium Signaling in Response to Potassium Deficiency. Int J Mol Sci 2018; 19:E3456. [PMID: 30400321 PMCID: PMC6275041 DOI: 10.3390/ijms19113456] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 01/23/2023] Open
Abstract
Potassium (K⁺) is an essential macronutrient of living cells and is the most abundant cation in the cytosol. K⁺ plays a role in several physiological processes that support plant growth and development. However, soil K⁺ availability is very low and variable, which leads to severe reductions in plant growth and yield. Various K⁺ shortage-activated signaling cascades exist. Among these, calcium signaling is the most important signaling system within plant cells. This review is focused on the possible roles of calcium signaling in plant responses to low-K⁺ stress. In plants, intracellular calcium levels are first altered in response to K⁺ deficiency, resulting in calcium signatures that exhibit temporal and spatial features. In addition, calcium channels located within the root epidermis and root hair zone can then be activated by hyperpolarization of plasma membrane (PM) in response to low-K⁺ stress. Afterward, calcium sensors, including calmodulin (CaM), CaM-like protein (CML), calcium-dependent protein kinase (CDPK), and calcineurin B-like protein (CBL), can act in the sensing of K⁺ deprivation. In particular, the important components regarding CBL/CBL-interacting protein kinase (CBL/CIPK) complexes-involved in plant responses to K⁺ deficiency are also discussed.
Collapse
Affiliation(s)
- Xiaoping Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ling Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Biping Zhu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Zhonghao Jiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
28
|
Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I. Calcium transport across plant membranes: mechanisms and functions. THE NEW PHYTOLOGIST 2018; 220:49-69. [PMID: 29916203 DOI: 10.1111/nph.15266] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/21/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 49 I. Introduction 49 II. Physiological and structural characteristics of plant Ca2+ -permeable ion channels 50 III. Ca2+ extrusion systems 61 IV. Concluding remarks 64 Acknowledgements 64 References 64 SUMMARY: Calcium is an essential structural, metabolic and signalling element. The physiological functions of Ca2+ are enabled by its orchestrated transport across cell membranes, mediated by Ca2+ -permeable ion channels, Ca2+ -ATPases and Ca2+ /H+ exchangers. Bioinformatics analysis has not determined any Ca2+ -selective filters in plant ion channels, but electrophysiological tests do reveal Ca2+ conductances in plant membranes. The biophysical characteristics of plant Ca2+ conductances have been studied in detail and were recently complemented by molecular genetic approaches. Plant Ca2+ conductances are mediated by several families of ion channels, including cyclic nucleotide-gated channels (CNGCs), ionotropic glutamate receptors, two-pore channel 1 (TPC1), annexins and several types of mechanosensitive channels. Key Ca2+ -mediated reactions (e.g. sensing of temperature, gravity, touch and hormones, and cell elongation and guard cell closure) have now been associated with the activities of specific subunits from these families. Structural studies have demonstrated a unique selectivity filter in TPC1, which is passable for hydrated divalent cations. The hypothesis of a ROS-Ca2+ hub is discussed, linking Ca2+ transport to ROS generation. CNGC inactivation by cytosolic Ca2+ , leading to the termination of Ca2+ signals, is now mechanistically explained. The structure-function relationships of Ca2+ -ATPases and Ca2+ /H+ exchangers, and their regulation and physiological roles are analysed.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Horticulture, Foshan University, Foshan, 528000, China
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professora Popova Street, St Petersburg, 197376, Russia
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas, 7001, Australia
| | - Stanislav Isayenkov
- Institute of Food Biotechnology and Genomics, National Academy of Science of Ukraine, 2a Osipovskogo Street, Kyiv, 04123, Ukraine
| | - Tracey A Cuin
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas, 7001, Australia
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Avenida 25 de julio 965, Colima, 28045, Mexico
| |
Collapse
|
29
|
Xie XL, Yang H, Chen LN, Wei Y, Zhang SH. ANXC7 Is a Mitochondrion-Localized Annexin Involved in Controlling Conidium Development and Oxidative Resistance in the Thermophilic Fungus Thermomyces lanuginosus. Front Microbiol 2018; 9:1770. [PMID: 30271384 PMCID: PMC6142879 DOI: 10.3389/fmicb.2018.01770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/16/2018] [Indexed: 01/23/2023] Open
Abstract
Annexins (ANXs) are widely expressed and structurally related proteins which play multiple biological roles in animals, plants, and fungi. Although ANXs have been localized to the cytosol and the cell membrane and the molecular basis of the four annexin repeats is well established, the in vivo roles of these proteins are still far from clear, particularly with regard to the filamentous fungi. Thermomyces lanuginosus, a thermophilic fungus, is widely used in the fermentation industry; however, the role of ANX in this organism is unknown. In this study, a single ANX homologue (ANXC7) was identified and characterized in T. lanuginosus. The expression pattern indicated that ANXC7 is closely associated to conidium development, and it accumulated in the mitochondria of the forming conidia. The deletion of ANXC7 (ΔANXC7) resulted in no obvious phenotype related to colony growth on solid CM medium. However, when ΔANXC7 was grown in CM liquid culture, the mycelium masses appeared to be larger and looser compared to the wild-type. Additionally, the dry weight of the mutant mycelia was significantly increased. Under conditions that compromise cell-wall integrity, ΔANXC7 was less vulnerable than the wild-type with regard to such damage. Moreover, based on a surface hydrophobicity test, the ΔANXC7 strain was clearly less hydrophobic. The growth of ΔANXC7 was inhibited when grown under selected stress conditions, particularly with regard to salt stress; however, the oxidative resistance to exogenous H2O2 in ΔANXC7 was increased, and endogenous H2O2 levels within the ΔANXC7 were lower than in the wild-type, thereby suggesting that the ANXC7 specifically controls oxidative resistance. Based on microscopic observation, 4-day-conidia were more prevalent than 5-day conidia on the conidiophore stalk of ΔANXC7, even though the ΔANXC7 demonstrated an increased production of conidia during these days, indicating precocious conidial maturation and shedding from the conidiophore stalk in this strain. Taken together, our data indicate that ANXC7 localizes to the mitochondria and is involved in controlling conidium development and oxidative resistance in T. lanuginosus.
Collapse
Affiliation(s)
- Xiang-Li Xie
- College of Plant Sciences, Jilin University, Changchun, China
| | - Huan Yang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Li-Na Chen
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
30
|
Ahmed I, Yadav D, Shukla P, Kirti PB. Heterologous expression of Brassica juncea annexin, AnnBj2 confers salt tolerance and ABA insensitivity in transgenic tobacco seedlings. Funct Integr Genomics 2018; 18:569-579. [PMID: 29744759 DOI: 10.1007/s10142-018-0614-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/05/2023]
Abstract
Annexins are multifunctional proteins with roles in plant development and alleviation of stress tolerance. In the present communication, we report on the effect of heterologous expression of Brassica juncea annexin, AnnBj2 in tobacco. Transgenic tobacco plants expressing AnnBj2 exhibited salt-tolerant and abscisic acid (ABA)-insensitive phenotype at the seedling stage. Biochemical analysis showed that AnnBj2 transgenic plants retained higher chlorophyll and proline content, and lower malondialdehyde (MDA) levels compared to the null line under salt stress. They exhibited better water retention capacity compared to the null segregant (NS) line. AnnBj2 overexpression altered the transcript levels of several stress-related marker genes involved in reactive oxygen species (ROS) scavenging and abiotic stress signaling. Taken together, these results suggest a positive role for AnnBj2 in salt stress response upon heterologous expression in tobacco.
Collapse
Affiliation(s)
- Israr Ahmed
- Lab F-43, Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| | - Deepanker Yadav
- Lab F-43, Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 7505101, Rishon LeZion, Israel
| | - Pawan Shukla
- Lab F-43, Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
- Central Sericultural Research and Training Institute, Central Silk Board, NH-1A, Gallandar, Pampore, Jammu and Kashmir, 192 121, India
| | - P B Kirti
- Lab F-43, Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
31
|
De Vriese K, Costa A, Beeckman T, Vanneste S. Pharmacological Strategies for Manipulating Plant Ca 2+ Signalling. Int J Mol Sci 2018; 19:E1506. [PMID: 29783646 PMCID: PMC5983822 DOI: 10.3390/ijms19051506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 11/20/2022] Open
Abstract
Calcium is one of the most pleiotropic second messengers in all living organisms. However, signalling specificity is encoded via spatio-temporally regulated signatures that act with surgical precision to elicit highly specific cellular responses. How this is brought about remains a big challenge in the plant field, in part due to a lack of specific tools to manipulate/interrogate the plant Ca2+ toolkit. In many cases, researchers resort to tools that were optimized in animal cells. However, the obviously large evolutionary distance between plants and animals implies that there is a good chance observed effects may not be specific to the intended plant target. Here, we provide an overview of pharmacological strategies that are commonly used to activate or inhibit plant Ca2+ signalling. We focus on highlighting modes of action where possible, and warn for potential pitfalls. Together, this review aims at guiding plant researchers through the Ca2+ pharmacology swamp.
Collapse
Affiliation(s)
- Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Instititute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy.
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Korea.
| |
Collapse
|
32
|
Arora R. Mechanism of freeze-thaw injury and recovery: A cool retrospective and warming up to new ideas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:301-313. [PMID: 29576084 DOI: 10.1016/j.plantsci.2018.03.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/19/2018] [Accepted: 03/01/2018] [Indexed: 05/20/2023]
Abstract
Understanding cellular mechanism(s) of freeze-thaw injury (FTI) is key to the efforts for improving plant freeze-tolerance by cultural methods or molecular/genetic approaches. However, not much work has been done in the last 25+ years to advance our understanding of the nature and cellular loci of FTI. Currently, two FTI lesions are predominantly implicated: 1) structural and functional perturbations in plasma membrane; 2) ROS-induced oxidative damage. While both have stood the test of time, many questions remain unresolved and other potentially significant lesions need to be investigated. Additionally, molecular mechanism of post-thaw recovery (PTR), a critical component of frost-survival, has not been well investigated. Mechanistic understanding of repair after reversible injury could expand the options for strategies to improve frost-hardiness. In this review, without claiming to be exhaustive, I have attempted to synthesize major discoveries from last several decades on the mechanisms of FTI and the relatively little research conducted thus far on PTR mechanisms. It is followed by proposing of hypotheses for mechanism(s) for irreversible FTI or PTR involving cytosolic calcium and ROS signaling. Perspective is presented on some unresolved questions and research on new ideas to fill the knowledge gaps and advance the field.
Collapse
Affiliation(s)
- Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
33
|
Demidchik V. ROS-Activated Ion Channels in Plants: Biophysical Characteristics, Physiological Functions and Molecular Nature. Int J Mol Sci 2018; 19:E1263. [PMID: 29690632 PMCID: PMC5979493 DOI: 10.3390/ijms19041263] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
Ion channels activated by reactive oxygen species (ROS) have been found in the plasma membrane of charophyte Nitella flixilis, dicotyledon Arabidopsis thaliana, Pyrus pyrifolia and Pisum sativum, and the monocotyledon Lilium longiflorum. Their activities have been reported in charophyte giant internodes, root trichoblasts and atrichoblasts, pollen tubes, and guard cells. Hydrogen peroxide and hydroxyl radicals are major activating species for these channels. Plant ROS-activated ion channels include inwardly-rectifying, outwardly-rectifying, and voltage-independent groups. The inwardly-rectifying ROS-activated ion channels mediate Ca2+-influx for growth and development in roots and pollen tubes. The outwardly-rectifying group facilitates K⁺ efflux for the regulation of osmotic pressure in guard cells, induction of programmed cell death, and autophagy in roots. The voltage-independent group mediates both Ca2+ influx and K⁺ efflux. Most studies suggest that ROS-activated channels are non-selective cation channels. Single-channel studies revealed activation of 14.5-pS Ca2+ influx and 16-pS K⁺ efflux unitary conductances in response to ROS. The molecular nature of ROS-activated Ca2+ influx channels remains poorly understood, although annexins and cyclic nucleotide-gated channels have been proposed for this role. The ROS-activated K⁺ channels have recently been identified as products of Stellar K⁺ Outward Rectifier (SKOR) and Guard cell Outwardly Rectifying K⁺ channel (GORK) genes.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Horticulture, School of Food Science and Engineering, Foshan University, Foshan 528000, China.
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, 220030 Minsk, Belarus.
- Russian Academy of Sciences, Komarov Botanical Institute, 2 Professora Popova Street, 197376 St. Petersburg, Russia.
| |
Collapse
|
34
|
Demidchik V, Tyutereva EV, Voitsekhovskaja OV. The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:28-46. [PMID: 32291019 DOI: 10.1071/fp16380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/09/2016] [Indexed: 05/26/2023]
Abstract
Environmental stresses such as salinity, drought, oxidants, heavy metals, hypoxia, extreme temperatures and others can induce autophagy and necrosis-type programmed cell death (PCD) in plant roots. These reactions are accompanied by the generation of reactive oxygen species (ROS) and ion disequilibrium, which is induced by electrolyte/K+ leakage through ROS-activated ion channels, such as the outwardly-rectifying K+ channel GORK and non-selective cation channels. Here, we discuss mechanisms of the stress-induced ion disequilibrium and relate it with ROS generation and onset of morphological, biochemical and genetic symptoms of autophagy and PCD in roots. Based on our own data and that in the literature, we propose a hypothesis on the induction of autophagy and PCD in roots by loss of cytosolic K+. To support this, we present data showing that in conditions of salt stress-induced autophagy, gork1-1 plants lacking root K+ efflux channel have fewer autophagosomes compared with the wild type. Overall, literature analyses and presented data strongly suggest that stress-induced root autophagy and PCD are controlled by the level of cytosolic potassium and ROS.
Collapse
Affiliation(s)
- Vadim Demidchik
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Elena V Tyutereva
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| |
Collapse
|
35
|
Demidchik V, Shabala S. Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated 'ROS-Ca 2+ Hub'. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:9-27. [PMID: 32291018 DOI: 10.1071/fp16420] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 05/22/2023]
Abstract
Elevation in the cytosolic free calcium is crucial for plant growth, development and adaptation. Calcium influx into plant cells is mediated by Ca2+ depolarisation-activated, hyperpolarisation-activated and voltage-independent Ca2+-permeable channels (DACCs, HACCs and VICCs respectively). These channels are encoded by the following gene families: (1) cyclic nucleotide-gated channels (CNGCs), (2) ionotropic glutamate receptors (GLRs), (3) annexins, (4) 'mechanosensitive channels of small (MscS) conductance'-like channels (MSLs), (5) 'mid1-complementing activity' channels (MCAs), Piezo channels, and hyperosmolality-induced [Ca2+]cyt. channel 1 (OSCA1). Also, a 'tandem-pore channel1' (TPC1) catalyses Ca2+ efflux from the vacuole in response to the plasma membrane-mediated Ca2+ elevation. Recent experimental data demonstrated that Arabidopsis thaliana (L.) Heynh. CNGCs 2, 5-10, 14, 16 and 18, GLRs 1.2, 3.3, 3.4, 3.6 and 3.7, TPC1, ANNEXIN1, MSL9 and MSL10,MCA1 and MCA2, OSCA1, and some their homologues counterparts in other species, are responsible for Ca2+ currents and/or cytosolic Ca2+ elevation. Extrusion of Ca2+ from the cytosol is mediated by Ca2+-ATPases and Ca2+/H+ exchangers which were recently examined at the level of high resolution crystal structure. Calcium-activated NADPH oxidases and reactive oxygen species (ROS)-activated Ca2+ conductances form a self-amplifying 'ROS-Ca2+hub', enhancing and transducing Ca2+ and redox signals. The ROS-Ca2+ hub contributes to physiological reactions controlled by ROS and Ca2+, demonstrating synergism and unity of Ca2+ and ROS signalling mechanisms.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| |
Collapse
|
36
|
Liao C, Zheng Y, Guo Y. MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signaling in Arabidopsis. THE NEW PHYTOLOGIST 2017; 216:163-177. [PMID: 28726305 DOI: 10.1111/nph.14679] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/27/2017] [Indexed: 05/07/2023]
Abstract
Cytosolic calcium signaling is critical for regulating downstream responses in plants encountering unfavorable environmental conditions. In a genetic screen for Arabidopsis thaliana mutants defective in stress-induced cytosolic free Ca2+ ([Ca2+ ]cyt ) elevations, we identified the R2R3-MYB transcription factor MYB30 as a regulator of [Ca2+ ]cyt in response to H2 O2 and heat stresses. Plants lacking MYB30 protein exhibited greater elevation of [Ca2+ ]cyt in response to oxidative and heat stimuli. Real-time reverse transcription-polymerase chain reaction (RT-PCR) results indicated that the expression of a number of ANNEXIN (ANN) genes, which encode Ca2+ -regulated membrane-binding proteins modulating cytosolic calcium signatures, were upregulated in myb30 mutants. Further analysis showed that MYB30 bound to the promoters of ANN1 and ANN4 and repressed their expression. myb30 mutants were sensitive to methyl viologen (MV) and heat stresses. The H2 O2 - and heat-induced abnormal [Ca2+ ]cyt in myb30 was dependent on the function of ANN proteins. Moreover, the MV and heat sensitivity of myb30 was suppressed in mutants lacking ANN function or by application of LaCl3 , a calcium channel blocker. These results indicate that MYB30 regulates oxidative and heat stress responses through calcium signaling, which is at least partially mediated by ANN1 and ANN4.
Collapse
Affiliation(s)
- Chancan Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Zheng
- School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
37
|
He F, Shen H, Lin C, Fu H, Sheteiwy MS, Guan Y, Huang Y, Hu J. Transcriptome Analysis of Chilling-Imbibed Embryo Revealed Membrane Recovery Related Genes in Maize. FRONTIERS IN PLANT SCIENCE 2017; 7:1978. [PMID: 28101090 PMCID: PMC5209358 DOI: 10.3389/fpls.2016.01978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/13/2016] [Indexed: 05/23/2023]
Abstract
The delayed seed germination and poor seedling growth caused by imbibitional chilling injury was common phenomenon in maize seedling establishment. In this study, RNA sequencing technology was used to comprehensively investigate the gene expressions in chilling-imbibed maize embryo and to reveal the underlying mechanism of chilling injury at molecular level. Imbibed seeds for 2 h at 5°C (LT2) were selected and transcriptomic comparative analysis was performed. Among 327 DEGs indentified between dry seed (CK0) and LT2, 15 specific genes with plasma membrane (PM) relevant functions belonging to lipid metabolism, stress, signaling and transport were characterized, and most of them showed down-regulation pattern under chilling stress. When transferred to 25°C for recovery (LT3), remarkable changes occurred in maize embryo. There were 873 DEGs including many PM related genes being identified between LT2 and LT3, some of which showing significant increase after 1 h recovery. Moreover, 15 genes encoding intracellular vesicular trafficking proteins were found to be exclusively differential expressed at recovery stage. It suggested that the intracellular vesicle trafficking might be essential for PM recovery through PM turnover. Furthermore, transcriptome analyses on imbibed embryos under normal condition (25°C) were also made as a contrast. A total of 651 DEGs were identified to mainly involved in protein metabolism, transcriptional regulation, signaling, and energy productions. Overall, the RNA-Seq results provided us a deep knowledge of imbibitional chilling injury on plasma membrane and a new view on PM repaired mechanism during early seed imbibition at transcriptional level. The DEGs identified in this work would be useful references in future seed germination research.
Collapse
Affiliation(s)
- Fei He
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Hangqi Shen
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Cheng Lin
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Hong Fu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Mohamed S. Sheteiwy
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
- Department of Agronomy, Faculty of Agriculture, Mansoura UniversityMansoura, Egypt
| | - Yajing Guan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yutao Huang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Jin Hu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| |
Collapse
|
38
|
Huang F, Luo J, Ning T, Cao W, Jin X, Zhao H, Wang Y, Han S. Cytosolic and Nucleosolic Calcium Signaling in Response to Osmotic and Salt Stresses Are Independent of Each Other in Roots of Arabidopsis Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1648. [PMID: 28983313 PMCID: PMC5613247 DOI: 10.3389/fpls.2017.01648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/07/2017] [Indexed: 05/02/2023]
Abstract
Calcium acts as a universal second messenger in both developmental processes and responses to environmental stresses. Previous research has shown that a number of stimuli can induce [Ca2+] increases in both the cytoplasm and nucleus in plants. However, the relationship between cytosolic and nucleosolic calcium signaling remains obscure. Here, we generated transgenic plants containing a fusion protein, comprising rat parvalbumin (PV) with either a nuclear export sequence (PV-NES) or a nuclear localization sequence (NLS-PV), to selectively buffer the cytosolic or nucleosolic calcium. Firstly, we found that the osmotic stress-induced cytosolic [Ca2+] increase (OICIcyt) and the salt stress-induced cytosolic [Ca2+] increase (SICIcyt) were impaired in the PV-NES lines compared with the Arabidopsis wildtype (WT). Similarly, the osmotic stress-induced nucleosolic [Ca2+] increase (OICInuc) and salt stress-induced nucleosolic [Ca2+] increase (SICInuc) were also disrupted in the NLS-PV lines. These results indicate that PV can effectively buffer the increase of [Ca2+] in response to various stimuli in Arabidopsis. However, the OICIcyt and SICIcyt in the NLS-PV plants were similar to those in the WT, and the OICInuc and SICInuc in the PV-NES plants were also same as those in the WT, suggesting that the cytosolic and nucleosolic calcium dynamics are mutually independent. Furthermore, we found that osmotic stress- and salt stress-inhibited root growth was reduced dramatically in the PV-NES and NLS-PV lines, while the osmotic stress-induced increase of the lateral root primordia was higher in the PV-NES plants than either the WT or NLS-PV plants. In addition, several stress-responsive genes, namely CML37, DREB2A, MYB2, RD29A, and RD29B, displayed diverse expression patterns in response to osmotic and salt stress in the PV-NES and NLS-PV lines when compared with the WT. Together, these results imply that the cytosolic and nucleosolic calcium signaling coexist to play the pivotal roles in the growth and development of plants and their responses to environment stresses.
Collapse
|
39
|
Zhang F, Jin X, Wang L, Li S, Wu S, Cheng C, Zhang T, Guo W. A Cotton Annexin Affects Fiber Elongation and Secondary Cell Wall Biosynthesis Associated with Ca2+ Influx, ROS Homeostasis, and Actin Filament Reorganization. PLANT PHYSIOLOGY 2016; 171:1750-70. [PMID: 27255486 PMCID: PMC4936584 DOI: 10.1104/pp.16.00597] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 05/23/2023]
Abstract
Annexins play pivotal roles in a variety of cellular processes as well as in fiber development; however, the functional mechanisms of their activities are unclear. Here, an annexin gene that is preferentially expressed in fibers, GhFAnnxA, was found to be significantly associated with various cotton (Gossypium hirsutum) fiber traits. Transgenic analysis demonstrated that GhFAnnxA affected cotton fiber elongation and was involved in secondary cell wall (SCW) biosynthesis. Functional studies demonstrated that GhFAnnxA may act as a Ca(2+) conductance regulator and that reactive oxygen species (ROS) produced by Rbohs in a Ca(2+)-dependent manner may determine fiber elongation caused by elevated intracellular turgor and cell wall loosening. However, excessive hydrogen peroxide (H2O2) inhibited cotton fiber elongation in vitro. We speculate that a positive feedback loop involving ROS and Ca(2+) is regulated by GhCDPK1 and regulates fiber cell elongation. Furthermore, the convergence of actin filaments is altered by their interaction with GhFAnnxA, and this also may contribute to fiber elongation. Moreover, GhFAnnxA may affect SCW biosynthesis through changes in cell wall components caused by an increase in H2O2 levels. These results not only provide new insights into the signaling pathways of GhFAnnxA in fiber development but also clarify the role of ROS in fiber development.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xuanxiang Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Like Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Shufen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Shuang Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Chaoze Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| |
Collapse
|
40
|
Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco. PLANTS 2016; 5:plants5020018. [PMID: 27135239 PMCID: PMC4931398 DOI: 10.3390/plants5020018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/11/2023]
Abstract
Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses. Understanding the roles of different members of plant gene families involved in different stress responses, would be a step in this direction. Arabidopsis, which served as a model system for the plant research, is also the most suitable system for the functional characterization of plant gene families. Annexin family in Arabidopsis also is one gene family which has not been fully explored. Eight annexin genes have been reported in the genome of Arabidopsis thaliana. Expression studies of different Arabidopsis annexins revealed their differential regulation under various abiotic stress conditions. AnnAt8 (At5g12380), a member of this family has been shown to exhibit ~433 and ~175 fold increase in transcript levels under NaCl and dehydration stress respectively. To characterize Annexin8 (AnnAt8) further, we have generated transgenic Arabidopsis and tobacco plants constitutively expressing AnnAt8, which were evaluated under different abiotic stress conditions. AnnAt8 overexpressing transgenic plants exhibited higher seed germination rates, better plant growth, and higher chlorophyll retention when compared to wild type plants under abiotic stress treatments. Under stress conditions transgenic plants showed comparatively higher levels of proline and lower levels of malondialdehyde compared to the wild-type plants. Real-Time PCR analyses revealed that the expression of several stress-regulated genes was altered in AnnAt8 over-expressing transgenic tobacco plants, and the enhanced tolerance exhibited by the transgenic plants can be correlated with altered expressions of these stress-regulated genes. Our findings suggest a role for AnnAt8 in enhancing abiotic stress tolerance at different stages of plant growth and development.
Collapse
|
41
|
Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Subramaniam S, Golovko V, Anderson D, Sokolik A, Colbeck I, Demidchik V. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:245-57. [PMID: 26676841 DOI: 10.1111/tpj.13105] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/15/2015] [Accepted: 11/30/2015] [Indexed: 05/23/2023]
Abstract
Silver nanoparticles (Ag NPs) are the world's most important nanomaterial and nanotoxicant. The aim of this study was to determine the early stages of interactions between Ag NPs and plant cells, and to investigate their physiological roles. We have shown that the addition of Ag NPs to cultivation medium, at levels above 300 mg L(-1) , inhibited Arabidopsis thaliana root elongation and leaf expansion. This also resulted in decreased photosynthetic efficiency and the extreme accumulation of Ag in tissues. Acute application of Ag NPs induced a transient elevation of [Ca(2+) ]cyt and the accumulation of reactive oxygen species (ROS; partially generated by NADPH oxidase). Whole-cell patch-clamp measurements on root cell protoplasts demonstrated that Ag NPs slightly inhibited plasma membrane K(+) efflux and Ca(2+) influx currents, or caused membrane breakdown; however, in excised outside-out patches, Ag NPs activated Gd(3+) -sensitive Ca(2+) influx channels with unitary conductance of approximately 56 pS. Bulk particles did not modify the plasma membrane currents. Tests with electron paramagnetic resonance spectroscopy showed that Ag NPs were not able to catalyse hydroxyl radical generation, but that they directly oxidized the major plant antioxidant, l-ascorbic acid. Overall, the data presented shed light on mechanisms of the impact of nanosilver on plant cells, and show that these include the induction of classical stress signalling reactions (mediated by [Ca(2+) ]cyt and ROS) and a specific effect on the plasma membrane conductance and the reduced ascorbate.
Collapse
Affiliation(s)
- Arifa Sosan
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Dimitri Svistunenko
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Darya Straltsova
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
| | - Katsiaryna Tsiurkina
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
| | - Igor Smolich
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Sunitha Subramaniam
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Vladimir Golovko
- Department of Chemistry, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - David Anderson
- Department of Chemistry, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - Anatoliy Sokolik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
| | - Ian Colbeck
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
- Russian Academy of Sciences, Komarov Botanical Institute, 2 Professora Popova Street, 197376, St.-Petersburg, Russia
| |
Collapse
|
42
|
Qiao B, Zhang Q, Liu D, Wang H, Yin J, Wang R, He M, Cui M, Shang Z, Wang D, Zhu Z. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5853-66. [PMID: 26085678 DOI: 10.1093/jxb/erv294] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
OsANN1 is a member of the annexin protein family in rice. The function of this protein and the mechanisms of its involvement in stress responses and stress tolerance are largely unknown. Here it is reported that OsANN1 confers abiotic stress tolerance by modulating antioxidant accumulation under abiotic stress. OsANN1-knockdown [RNA interference (RNAi)] plants were more sensitive to heat and drought stresses, whereas OsANN1-overexpression (OE) lines showed improved growth with higher expression of OsANN1 under abiotic stress. Overexpression of OsANN1 promoted SOD (superoxide dismutase) and CAT (catalase) activities, which regulate H2O2 content and redox homeostasis, suggesting the existence of a feedback mechanism between OsANN1 and H2O2 production under abiotic stress. Higher expression of OsANN1 can provide overall cellular protection against abiotic stress-induced damage, and a significant accumulation of OsANN1-green fluorescent protein (GFP) signals was found in the cytosol after heat shock treatment. OsANN1 also has calcium-binding and ATPase activities in vitro, indicating that OsANN1 has multiple functions in rice growth. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays demonstrated that OsANN1 interacts with OsCDPK24. This cross-talk may provide additional layers of regulation in the abiotic stress response.
Collapse
Affiliation(s)
- Bei Qiao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Qian Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Dongliang Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Haiqi Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Jingya Yin
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Rui Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Mengli He
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Meng Cui
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Zhonglin Shang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Dekai Wang
- The Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhengge Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| |
Collapse
|
43
|
Szalonek M, Sierpien B, Rymaszewski W, Gieczewska K, Garstka M, Lichocka M, Sass L, Paul K, Vass I, Vankova R, Dobrev P, Szczesny P, Marczewski W, Krusiewicz D, Strzelczyk-Zyta D, Hennig J, Konopka-Postupolska D. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants. PLoS One 2015; 10:e0132683. [PMID: 26172952 PMCID: PMC4501783 DOI: 10.1371/journal.pone.0132683] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.
Collapse
Affiliation(s)
- Michal Szalonek
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Barbara Sierpien
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Wojciech Rymaszewski
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | | | - Maciej Garstka
- Department of Metabolic Regulation, University of Warsaw, Warsaw, Poland
| | - Malgorzata Lichocka
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Laszlo Sass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Kenny Paul
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Peter Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Pawel Szczesny
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Waldemar Marczewski
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Dominika Krusiewicz
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Danuta Strzelczyk-Zyta
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Jacek Hennig
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Dorota Konopka-Postupolska
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
- * E-mail:
| |
Collapse
|
44
|
He M, Yang X, Cui S, Mu G, Hou M, Chen H, Liu L. Molecular cloning and characterization of annexin genes in peanut (Arachis hypogaea L.). Gene 2015; 568:40-9. [PMID: 25958350 DOI: 10.1016/j.gene.2015.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/23/2015] [Accepted: 05/05/2015] [Indexed: 12/29/2022]
Abstract
Annexin, Ca(2+) or phospholipid binding proteins, with many family members are distributed throughout all tissues during plant growth and development. Annexins participate in a number of physiological processes, such as exocytosis, cell elongation, nodule formation in legumes, maturation and stress response. Six different full-length cDNAs and two partial-length cDNAs of peanut, (AnnAh1, AnnAh2, AnnAh3, AnnAh5, AnnAh6, AnnAh7, AnnAh4 and AnnAh8) encoding annexin proteins, were isolated and characterized using a RT-PCR/RACE-PCR based strategy. The predicted molecular masses of these annexins were 36.0kDa with acidic pIs of 5.97-8.81. ANNAh1, ANNAh2, ANNAh3, ANNAh5, ANNAh6 and ANNAh7 shared sequence similarity from 35.76 to 66.35% at amino acid level. Phylogenetic analysis revealed their evolutionary relationships with corresponding orthologous sequences in soybean and deduced proteins in various plant species. Real-time quantitative assays indicated that these genes were differentially expressed in various organs. Transcript level analysis for six annexin genes under stress conditions showed that these genes were regulated by drought, salinity, heavy metal stress, low temperature and hormone. Additionally, the prediction of cis-regulatory element suggested that different cis-responsive elements including stress- and hormone-responsive-related elements could respond to various stress conditions. These results indicated that members of AnnAhs family may play important roles in the adaptation of peanut to various environmental stresses.
Collapse
Affiliation(s)
- MeiJing He
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - XinLei Yang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - ShunLi Cui
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - GuoJun Mu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - MingYu Hou
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - HuanYing Chen
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - LiFeng Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China.
| |
Collapse
|
45
|
Chatterjee M, Gupta S, Bhar A, Chakraborti D, Basu D, Das S. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genomics 2014; 15:949. [PMID: 25363865 PMCID: PMC4237293 DOI: 10.1186/1471-2164-15-949] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/22/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Vascular wilt caused by Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) is a serious disease of chickpea (Cicer arietinum L.) accounting for approximately 10-15% annual crop loss. The fungus invades the plant via roots, colonizes the xylem vessels and prevents the upward translocation of water and nutrients, finally resulting in wilting of the entire plant. Although comparative transcriptomic profiling have highlighted some important signaling molecules, but proteomic studies involving chickpea-Foc1 are limited. The present study focuses on comparative root proteomics of susceptible (JG62) and resistant (WR315) chickpea genotypes infected with Foc1, to understand the mechanistic basis of susceptibility and/or resistance. RESULTS The differential and unique proteins of both genotypes were identified at 48 h, 72 h, and 96 h post Foc1 inoculation. 2D PAGE analyses followed by MALDI-TOF MS and MS/MS identified 100 differentially (>1.5 fold<, p<0.05) or uniquely expressed proteins. These proteins were further categorized into 10 functional classes and grouped into GO (gene ontology) categories. Network analyses of identified proteins revealed intra and inter relationship of these proteins with their neighbors as well as their association with different defense signaling pathways. qRT-PCR analyses were performed to correlate the mRNA and protein levels of some proteins of representative classes. CONCLUSIONS The differential and unique proteins identified indicate their involvement in early defense signaling of the host. Comparative analyses of expression profiles of obtained proteins suggest that albeit some common components participate in early defense signaling in both susceptible and resistant genotypes, but their roles and regulation differ in case of compatible and/or incompatible interactions. Thus, functional characterization of identified PR proteins (PR1, BGL2, TLP), Trypsin protease inhibitor, ABA responsive protein, cysteine protease, protein disulphide isomerase, ripening related protein and albumins are expected to serve as important molecular components for biotechnological application and development of sustainable resistance against Foc1.
Collapse
Affiliation(s)
- Moniya Chatterjee
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Sumanti Gupta
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Anirban Bhar
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Dipankar Chakraborti
- />Post Graduate Department of Biotechnology, St. Xavier’s College (Autonomous), 30 Park Street, Kolkata, 700016 India
| | - Debabrata Basu
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Sampa Das
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| |
Collapse
|
46
|
Tang W, He Y, Tu L, Wang M, Li Y, Ruan YL, Zhang X. Down-regulating annexin gene GhAnn2 inhibits cotton fiber elongation and decreases Ca2+ influx at the cell apex. PLANT MOLECULAR BIOLOGY 2014; 85:613-25. [PMID: 24890373 DOI: 10.1007/s11103-014-0208-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/26/2014] [Indexed: 05/02/2023]
Abstract
Cotton fiber is a single cell that differentiates from the ovule epidermis and undergoes synchronous elongation with high secretion and growth rate. Apart from economic importance, cotton fiber provides an excellent single-celled model for studying mechanisms of cell-growth. Annexins are Ca(2+)- and phospholipid-binding proteins that have been reported to be localized in multiple cellular compartments and involved in control of vesicle secretions. Although several annexins have been found to be highly expressed in elongating cotton fibers, their functional roles in fiber development remain unknown. Here, 14 annexin family members were identified from the fully sequenced diploid G. raimondii (D5 genome), half of which were expressed in fibers of the cultivated tetraploid species G. hirsutum (cv. YZ1). Among them, GhAnn2 from the D genome of the tetraploid species displayed high expression level in elongating fiber. The expression of GhAnn2 could be induced by some phytohormones that play important roles in fiber elongation, such as IAA and GA3. RNAi-mediated down-regulation of GhAnn2 inhibited fiber elongation and secondary cell wall synthesis, resulting in shorter and thinner mature fibers in the transgenic plants. Measurement with non-invasive scanning ion-selective electrode revealed that the rate of Ca(2+) influx from extracellular to intracellular was decreased at the fiber cell apex of GhAnn2 silencing lines, in comparison to that in the wild type. These results indicate that GhAnn2 may regulate fiber development through modulating Ca(2+) fluxes and signaling.
Collapse
Affiliation(s)
- Wenxin Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
47
|
Demidchik V. Mechanisms and physiological roles of K+ efflux from root cells. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:696-707. [PMID: 24685330 DOI: 10.1016/j.jplph.2014.01.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Potassium is the most abundant macronutrient, which is involved in a multitude of physiological processes. Potassium uptake in roots is crucial for plants; however, K(+) efflux can also occur and has important functions. Potassium efflux from roots is mainly induced by stresses, such as pathogens, salinity, freezing, oxidants and heavy metals. Reactive oxygen species (ROS) and exogenous purines also cause this reaction. The depolarisation and activation of cation channels are required for K(+) efflux from plant roots. Potassium channels and nonselective cation channels (NSCCs) are involved in this process. Some of them are 'constitutive', while the others require a chemical agent for activation. In Arabidopsis, there are 77 genes that can potentially encode K(+)-permeable channels. Potassium-selective channel genes include 9 Shaker and 6 Tandem-Pore K(+) channels. Genes of NSCCs are more abundant and present by 20 cyclic nucleotide gated channels, 20 ionotropic glutamate receptors, 1 two-pore channel, 10 mechanosensitive-like channels, 2 mechanosensitive 'Mid1-Complementing Activity' channels, 1 mechanosensitive Piezo channel, and 8 annexins. Two Shakers (SKOR and GORK) and several NSCCs are expressed in root cell plasma membranes. SKOR mediates K(+) efflux from xylem parenchyma cells to xylem vessels while GORK is expressed in the epidermis and functions in K(+) release. Both these channels are activated by ROS. The GORK channel activity is stimulated by hydroxyl radicals that are generated in a Ca(2+)-dependent manner in stress conditions, such as salinity or pathogen attack, resulting in dramatic K(+) efflux from root cells. Potassium loss simulates cytosolic proteases and endonucleases, leading to programmed cell death. Other physiological functions of K(+) efflux channels include repolarisation of the plasma membrane during action potentials and the 'hypothetical' function of a metabolic switch, which provides inhibition of energy-consuming biosyntheses and releasing energy for defence and reparation needs.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Avenue 4, Minsk 220030, Belarus.
| |
Collapse
|
48
|
Dalal A, Kumar A, Yadav D, Gudla T, Viehhauser A, Dietz KJ, Kirti PB. Alleviation of methyl viologen-mediated oxidative stress by Brassica juncea annexin-3 in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 219-220:9-18. [PMID: 24576759 DOI: 10.1016/j.plantsci.2013.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
Plant annexins function as calcium-dependent or -independent phospholipid binding proteins and constitute about 0.1% of total cellular proteins. Some of them were reported to antagonize oxidative stress and protect plant cells. Brassica juncea annexin-3 (AnnBj3) was recently discovered. To gain insight into a possible function of AnnBj3 in oxidative stress response, we investigated the resistance of Arabidopsis thaliana plants expressing AnnBj3 constitutively. Here we report that, AnnBj3 attenuates methyl viologen-mediated oxidative stress in plants. It protected photosynthesis and plasma membrane from methyl viologen-mediated oxidative damage. AnnBj3 detoxifies hydrogen peroxide and showed antioxidative property in vitro. The protein increased total peroxidase activity in transgenics and interfered with other cellular antioxidants, thereby giving an overall cellular protection against methyl viologen-induced cytotoxicity.
Collapse
Affiliation(s)
- Ahan Dalal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| | - Abhay Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Deepanker Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Triveni Gudla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Andrea Viehhauser
- Department of Plant Biochemistry and Physiology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Plant Biochemistry and Physiology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | | |
Collapse
|
49
|
Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1259-70. [PMID: 24520019 DOI: 10.1093/jxb/eru004] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrolyte leakage accompanies plant response to stresses, such as salinity, pathogen attack, drought, heavy metals, hyperthermia, and hypothermia; however, the mechanism and physiological role of this phenomenon have only recently been clarified. Accumulating evidence shows that electrolyte leakage is mainly related to K(+) efflux from plant cells, which is mediated by plasma membrane cation conductances. Recent studies have demonstrated that these conductances include components with different kinetics of activation and cation selectivity. Most probably they are encoded by GORK, SKOR, and annexin genes. Hypothetically, cyclic nucleotide-gated channels and ionotropic glutamate receptors can also be involved. The stress-induced electrolyte leakage is usually accompanied by accumulation of reactive oxygen species (ROS) and often results in programmed cell death (PCD). Recent data strongly suggest that these reactions are linked to each other. ROS have been shown to activate GORK, SKOR, and annexins. ROS-activated K(+) efflux through GORK channels results in dramatic K(+) loss from plant cells, which stimulates proteases and endonucleases, and promotes PCD. This mechanism is likely to trigger plant PCD under severe stress. However, in moderate stress conditions, K(+) efflux could play an essential role as a 'metabolic switch' in anabolic reactions, stimulating catabolic processes and saving 'metabolic' energy for adaptation and repair needs.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Avenue 4, 220030, Minsk, Belarus
| | | | | | | | | | | |
Collapse
|
50
|
Davies JM. Annexin-Mediated Calcium Signalling in Plants. PLANTS (BASEL, SWITZERLAND) 2014; 3:128-40. [PMID: 27135495 PMCID: PMC4844307 DOI: 10.3390/plants3010128] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/13/2022]
Abstract
Calcium-permeable channels underpin elevations of free calcium that encode specific signals in stress adaptation, development and immunity. Identifying the genes encoding these channels remains a central goal of plant signalling research. Evidence now suggests that members of the plant annexin family function as unconventional calcium-permeable channels, with roles in development and stress signalling. Arabidopsis annexin 1 mediates a plasma membrane calcium-permeable conductance in roots that is activated by reactive oxygen species. Recombinant annexin 1 forms a very similar conductance in planar lipid bilayers, indicating that this protein could facilitate the in vivo conductance directly. The annexin 1 mutant is impaired in salinity-induced calcium signalling. Protein-protein interactions, post-translational modification and dynamic association with membranes could all influence annexin-mediated calcium signalling and are reviewed here. The prospect of annexins playing roles in calcium signalling events in symbiosis and immunity are considered.
Collapse
Affiliation(s)
- Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| |
Collapse
|