1
|
Keerthana K, Ramakrishnan M, Ahmad Z, Amali P, Vijayakanth V, Wei Q. Root-derived small peptides: Key regulators of plant development, stress resilience, and nutrient acquisition. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112433. [PMID: 40020973 DOI: 10.1016/j.plantsci.2025.112433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 03/03/2025]
Abstract
Small peptides (SPs), emerging as crucial signaling molecules in plants, regulate diverse processes such as plant development, stress tolerance, and nutrient acquisition. Consisting of fewer than 100 amino acids, SPs are classified into two main groups: precursor-derived SPs and small open reading frame (sORF)-encoded SPs, including miRNA-encoded SPs. SPs are secreted from various plant parts, with root-derived SPs playing particularly significant roles in stress tolerance and nutrient uptake. Even at low concentrations, root-derived SPs are highly effective signaling molecules that influence the distribution and effects of phytohormones, particularly auxin. For instance, under low phosphorus conditions, CLAVATA3/Embryo-Surrounding Region-Related (CLE/CLV), a root-derived SP, enhances root apical meristem differentiation and root architecture to improve phosphate acquisition. By interacting with CLV2 and PEPR2 receptors, it modulates auxin-related pathways, directing root morphology changes to optimize nutrient uptake. During nitrogen (N) starvation, root-derived SPs are transported to the shoot, where they interact with leucine-rich repeat receptor kinases (LRR-RKs) to alleviate nitrogen deficiency. Similarly, C-terminally Encoded Peptides (CEPs) are involved in primary root growth and N-acquisition responses. Despite the identification of many SPs, countless others remain to be discovered, and the functions of those identified so far remain elusive. This review focuses on the functions of root-derived SPs, such as CLE, CEP, RALF, RGF, PSK, PSY, and DVL, and discusses the receptor-mediated signaling pathways involved. Additionally, it explores the roles of SPs in root architecture, plant development, and their metabolic functions in nutrient signaling.
Collapse
Affiliation(s)
- Krishnamurthi Keerthana
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - P Amali
- PG Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), Chennai, Tamil Nadu 600106, India
| | - Venkatesan Vijayakanth
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
2
|
Yu H, Maoliniyazi M, Han X, Yang H, Zhang Z, Guo Y, Tang X, Li H, Cao Q, Wang S, Wang X. YUCCA3 interacts with ADF4 to regulate Arabidopsis hypocotyl elongation by organizing actin arrays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109877. [PMID: 40220667 DOI: 10.1016/j.plaphy.2025.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/15/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Hypocotyl elongation is critical for plants emerging from the soil, and serves as a model for investigating cell elongation mechanism. It has been reported that auxin biosynthesis enzyme YUCCAs (YUCs) and the cytoskeleton are involved in the regulation of hypocotyl elongation in Arabidopsis. However, whether and how the cytoskeleton is involved in YUCs-regulated hypocotyl elongation is not well understood. Here, we report that YUC3 directly interacted with Actin Depolymerizing Factor 4 (ADF4) to regulate hypocotyl elongation. The yuc3 mutant seedlings produced shorter hypocotyls, while YUC3-OEs seedlings showed longer hypocotyls. Pharmacological analysis showed that microfilament but not microtubule was involved in YUC3-regulated hypocotyl elongation. Consistent with this, defects in actin arrays were observed in the yuc3 seedlings. In addition, YUC3 interacted with ADF4 but not ADF1 in vitro and in vivo. Knock out of ADF4 partially rescued the defects of yuc3 mutant hypocotyl elongation and actin arrays. In summary, our results demonstrate that YUC3 mediates the organization of actin filaments possibly by interacting with ADF4 and affecting its actin depolymerizing/severing activity in the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Haiyang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mairepaiti Maoliniyazi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xueping Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hui Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziheng Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yongchao Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiwen Tang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huiru Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qijiang Cao
- College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, 276000, China.
| | - Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
3
|
Fedoreyeva LI, Kononenko NV. Peptides and Reactive Oxygen Species Regulate Root Development. Int J Mol Sci 2025; 26:2995. [PMID: 40243669 PMCID: PMC11989010 DOI: 10.3390/ijms26072995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Like phytohormones, peptide hormones participate in many cellular processes, participate in intercellular communications, and are involved in signal transmission. The system of intercellular communications based on peptide-receptor interactions plays a critical role in the development and functioning of plants. One of the most important molecules are reactive oxygen species (ROS). ROS participate in signaling processes and intercellular communications, including the development of the root system. ROS are recognized as active regulators of cell division and differentiation, which depend on the oxidation-reduction balance. The stem cell niche and the size of the root meristem are maintained by the intercellular interactions and signaling networks of peptide hormone and ROS. Therefore, peptides and ROS can interact with each other both directly and indirectly and function as regulators of cellular processes. Peptides and ROS regulate cell division and stem cell differentiation through a negative feedback mechanism. In this review, we focused on the molecular mechanisms regulating the development of the main root, lateral roots, and nodules, in which peptides and ROS participate.
Collapse
|
4
|
Wang M, He F, Zhang W, Du C, Wang L, Sui J, Li F. SYNTAXIN OF PLANTS132 Regulates Root Meristem Activity and Stem Cell Niche Maintenance via RGF-PLT Pathways. Int J Mol Sci 2025; 26:2123. [PMID: 40076746 PMCID: PMC11900091 DOI: 10.3390/ijms26052123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Root growth and development are contingent upon continuous cell division and differentiation in root tips. In this study, we found that the knockdown of the syntaxin gene SYNTAXIN OF PLANTS132 (SYP132) in Arabidopsis thaliana resulted in a significant reduction in root meristem activity and disruption of root stem cell niche (SCN) identity. The SYP132 knockdown mutant exhibits a compromised SCN characterized by an increased number of quiescent center (QC) cells, abnormal columella stem cells (CSCs), reduced meristem size, and subsequent inhibition of root growth. In syp132, vesicle transport of PIN proteins is disrupted, leading to altered auxin distribution and decreased expression of the auxin-response transcription factors PLETHORA 1 (PLT1) and PLETHORA 2 (PLT2). Furthermore, the transcription level of the precursor of root meristem growth factor 1 (RGF1) is also modified in syp132. The reduction in PLT2 transcription and protein levels along with defects in the root SCN are partially rescued by the application of synthesized RGF1. This finding suggests that both the auxin-PLT and RGF-PLT pathways are interconnected through SYP132-mediated vesicle transport. Collectively, our findings indicate that SYP132 regulates the PLT pathway to maintain the root stem cell niche (SCN) in an RGF1-dependent manner.
Collapse
Affiliation(s)
- Mingjing Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Wei Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chong Du
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Linlin Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Jia Sui
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| |
Collapse
|
5
|
Jiang X, Zeng X, Xu M, Li M, Zhang F, He F, Yang T, Wang C, Gao T, Long R, Yang Q, Kang J. The whole-genome dissection of root system architecture provides new insights for the genetic improvement of alfalfa ( Medicago sativa L.). HORTICULTURE RESEARCH 2025; 12:uhae271. [PMID: 39807345 PMCID: PMC11725648 DOI: 10.1093/hr/uhae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/13/2024] [Indexed: 01/16/2025]
Abstract
Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.50) between root dry weight (RDW) and alfalfa dry weight under normal conditions (N_DW). A genome-wide association study (GWAS) was performed using 1 303 374 single-nucleotide polymorphisms (SNPs) to explore the relationships between RSA traits. Sixty significant SNPs (-log 10 (P) ≥ 5) were identified, with genes within the 50 kb upstream and downstream ranges primarily enriched in GO terms related to root development, hormone synthesis, and signaling, as well as morphological development. Further analysis identified 19 high-confidence candidate genes, including AUXIN RESPONSE FACTORs (ARFs), LATERAL ORGAN BOUNDARIES-DOMAIN (LBD), and WUSCHEL-RELATED HOMEOBOX (WOX). We verified that the forage dry weight under both normal and drought conditions exhibited significant differences among materials with different numbers of favorable haplotypes. Alfalfa containing more favorable haplotypes exhibited higher forage yields, whereas favorable haplotypes were not subjected to human selection during alfalfa breeding. Genomic prediction (GP) utilized SNPs from GWAS and machine learning for each RSA trait, achieving prediction accuracies ranging from 0.70 for secondary root position (SRP) to 0.80 for root length (RL), indicating robust predictive capability across the assessed traits. These findings provide new insights into the genetic underpinnings of root development in alfalfa, potentially informing future breeding strategies aimed at improving yield.
Collapse
Affiliation(s)
- Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Xiangcui Zeng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Ming Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China, 266109
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China, 750000
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China, 010000
| | - Chuan Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China, 750000
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China, 750000
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| |
Collapse
|
6
|
Kononenko NV, Fedoreyeva LI. Peptide AEDL and Glutathione Stimulates Root Development Nicotiana tabacum. Int J Mol Sci 2024; 26:289. [PMID: 39796141 PMCID: PMC11720632 DOI: 10.3390/ijms26010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Reactive oxygen species (ROS) are essential molecules involved in intercellular communication, signal transduction, and metabolic processes. Abiotic stresses cause the accumulation of excess ROS in plant cells. The issue of regulating the antioxidant protection of plants using natural and synthetic compounds with antioxidant activity still remains one of the most important and relevant areas of fundamental and applied research. Glutathione (GSH) plays an important role in the stress resistance and redox homeostasis of plant cells and effectively protects the cell from the stress-induced generation of ROS. An increase in the GSH content in plant cells can contribute to an increase in plant resistance to various types of stressors. We have shown that growing Nicotiana tabacum in the presence of tetrapeptide AEDL (AlaGluAspLeu) contributes to an increase in the GSH content by 3.24 times. At the same time, the tobacco plant was more developed, especially its root system. A scheme of the mechanism behind the regulation of the redox balance in the stem cell niche and the participation of the AEDL and GSH peptides in the regulation of the fate of stem cells was proposed.
Collapse
|
7
|
Su J, Liu Y, Han F, Gao F, Gan F, Huang K, Li Z. ROS, an Important Plant Growth Regulator in Root Growth and Development: Functional Genes and Mechanism. BIOLOGY 2024; 13:1033. [PMID: 39765700 PMCID: PMC11673109 DOI: 10.3390/biology13121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Roots are fundamental to the growth, development, and survival of plants. Beyond anchoring the plant, roots absorb water and nutrients, supporting the plant's ability to grow and function normally. Root systems, originating from the apical meristem, exhibit significant diversity depending on the plant species. ROS are byproducts of aerobic metabolism, present in both above- and below-ground plant tissues. While ROS were once considered merely harmful byproducts of oxygen metabolism, they are now recognized as critical signaling molecules that regulate plant growth and development. Under stress conditions, plants produce elevated levels of ROS, which can inhibit growth. However, moderate ROS levels act as signals that integrate various regulatory pathways, contributing to normal plant development. However, there is still a lack of comprehensive and systematic research on how ROS precisely regulate root growth and development. This review provides an overview of ROS production pathways and their regulatory mechanisms in plants, with a particular focus on their influence on root development.
Collapse
Affiliation(s)
- Jialin Su
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuxin Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyi Gan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Hastwell AH, Chu X, Liu Y, Ferguson BJ. The parallel narrative of RGF/GLV/CLEL peptide signalling. TRENDS IN PLANT SCIENCE 2024; 29:1342-1355. [PMID: 39322488 DOI: 10.1016/j.tplants.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/27/2024]
Abstract
Plant peptide families share distinct characteristics, and many members are in homologous signalling pathways controlling development and responses to external signals. The root meristem growth factor (RGF) peptides/GOLVEN (GLV)/CLAVATA3-ESR-related like (CLEL) are a family of short signalling peptides that are derived from a precursor protein and undergo post-translational modifications. Their role in root meristem development is well established and recent efforts have identified subtilase processing pathways and several downstream signalling components. This discovery has enabled the convergence of previously distinct pathways and enhanced our understanding of plant developmental processes. Here, we review the structure-function relationship of RGF peptides, the post-translational modification pathways, and the downstream signalling mechanisms and highlight components of these pathways that are known in non-RGF-mediated pathways.
Collapse
Affiliation(s)
- April H Hastwell
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Xitong Chu
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhan Liu
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Brett J Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
9
|
Zhang D, Di Q, Gui J, Li Q, Mysore KS, Wen J, Luo L, Yu L. Tyrosylprotein Sulfotransferase Positively Regulates Symbiotic Nodulation and Root Growth. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39286964 DOI: 10.1111/pce.15154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Posttranslational tyrosine sulfation of peptides and proteins is catalysed by tyrosylprotein sulfotransferases (TPSTs). In Arabidopsis, tyrosine sulfation is essential for the activities of peptide hormones, such as phytosulfokine (PSK) and root meristem growth factor (RGF). Here, we identified a TPST-encoding gene, MtTPST, from model legume Medicago truncatula. MtTPST expression was detected in all organs, with the highest level in root nodules. A promoter:GUS assay revealed that MtTPST was highly expressed in the root apical meristem, nodule primordium and nodule apical meristem. The loss-of-function mutant mttpst exhibited a stunted phenotype with short roots and reduced nodule number and size. Application of both of the sulfated peptides PSK and RGF3 partially restored the defective root length of mttpst. The reduction in symbiotic nodulation in mttpst was partially recovered by treatment with sulfated PSK peptide. MtTPST-PSK module functions downstream of the Nod factor signalling to promote nodule initiation via regulating accumulation and/or signalling of cytokinin and auxin. Additionally, the small-nodule phenotype of mttpst, which resulted from decreased apical meristematic activity, was partially complemented by sulfated RGF3 treatment. Together, these results demonstrate that MtTPST, through its substrates PSK, RGF3 and other sulfated peptide(s), positively regulates nodule development and root growth.
Collapse
Affiliation(s)
- Danping Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qi Di
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jinshan Gui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Qiong Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Li Luo
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Li C, Huang L, Huang Y, Kuang M, Wu Y, Ma Z, Fu X. Fine-mapping of a major QTL controlling plant height by BSA-seq and transcriptome sequencing in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:217. [PMID: 39249496 DOI: 10.1007/s00122-024-04714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024]
Abstract
KEY MESSAGE GhSOT (GH_D05G3950) plays a negative role in regulating plant height development by modulating the GA signaling. Plant height is an important indicator affecting mechanical harvesting for cotton. Therefore, understanding the genes associated with the plant height is crucial for cotton breeding and production. In this study, we used bulk segregant analysis sequencing to identify a new quantitative trait locu (QTL) called qPH5.1, which is linked to plant height. Local QTL mapping using seven kompetitive allele-specific PCR (KASP) markers and linkage analysis successfully narrowed down qPH5.1 to ~ 0.34 Mb region harbored five candidate genes. Subsequently, RNA sequencing (RNA-seq) analysis and examination of expression patterns revealed that GhSOT exhibited the highest likelihood of being the candidate gene responsible for the plant height at this locus. Seven SNP site variations were identified in the GhSOT promoter between the two parents, and Luciferase experiments confirmed that the promoter of GhSOT from cz3 enhances downstream gene expression more effectively. Additionally, suppression of GhSOT in cz3 resulted in the restoration of plant height, further emphasizing the functional significance of this gene. Application of exogenous gibberellin acid (GA) significantly restored plant height in cz3, as demonstrated by RNA-seq analysis and exogenous hormone treatment, which revealed alterations in genes associated with GA signaling pathways. These results reveal GhSOT is a key gene controlling plant height, which may affect plant height by regulating GA signaling.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, 071000, China
| | - Longyu Huang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Hainan Seed Industry Laboratory, Sanya, 572025, China
| | - Yiwen Huang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Meng Kuang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuzhen Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, 071000, China.
| | - Xiaoqiong Fu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
11
|
He L, Wu L, Li J. Sulfated peptides and their receptors: Key regulators of plant development and stress adaptation. PLANT COMMUNICATIONS 2024; 5:100918. [PMID: 38600699 PMCID: PMC11211552 DOI: 10.1016/j.xplc.2024.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Four distinct types of sulfated peptides have been identified in Arabidopsis thaliana. These peptides play crucial roles in regulating plant development and stress adaptation. Recent studies have revealed that Xanthomonas and Meloidogyne can secrete plant-like sulfated peptides, exploiting the plant sulfated peptide signaling pathway to suppress plant immunity. Over the past three decades, receptors for these four types of sulfated peptides have been identified, all of which belong to the leucine-rich repeat receptor-like protein kinase subfamily. A number of regulatory proteins have been demonstrated to play important roles in their corresponding signal transduction pathways. In this review, we comprehensively summarize the discoveries of sulfated peptides and their receptors, mainly in Arabidopsis thaliana. We also discuss their known biological functions in plant development and stress adaptation. Finally, we put forward a number of questions for reference in future studies.
Collapse
Affiliation(s)
- Liming He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liangfan Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Alrajhi A, Alharbi S, Beecham S, Alotaibi F. Regulation of root growth and elongation in wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1397337. [PMID: 38835859 PMCID: PMC11148372 DOI: 10.3389/fpls.2024.1397337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024]
Abstract
Currently, the control of rhizosphere selection on farms has been applied to achieve enhancements in phenotype, extending from improvements in single root characteristics to the dynamic nature of entire crop systems. Several specific signals, regulatory elements, and mechanisms that regulate the initiation, morphogenesis, and growth of new lateral or adventitious root species have been identified, but much more work remains. Today, phenotyping technology drives the development of root traits. Available models for simulation can support all phenotyping decisions (root trait improvement). The detection and use of markers for quantitative trait loci (QTLs) are effective for enhancing selection efficiency and increasing reproductive genetic gains. Furthermore, QTLs may help wheat breeders select the appropriate roots for efficient nutrient acquisition. Single-nucleotide polymorphisms (SNPs) or alignment of sequences can only be helpful when they are associated with phenotypic variation for root development and elongation. Here, we focus on major root development processes and detail important new insights recently generated regarding the wheat genome. The first part of this review paper discusses the root morphology, apical meristem, transcriptional control, auxin distribution, phenotyping of the root system, and simulation models. In the second part, the molecular genetics of the wheat root system, SNPs, TFs, and QTLs related to root development as well as genome editing (GE) techniques for the improvement of root traits in wheat are discussed. Finally, we address the effect of omics strategies on root biomass production and summarize existing knowledge of the main molecular mechanisms involved in wheat root development and elongation.
Collapse
Affiliation(s)
- Abdullah Alrajhi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- Sustainable Infrastructure and Resource Management, University of South Australia, University of South Australia Science, Technology, Engineering, and Mathematics (UniSA STEM), Mawson Lakes, SA, Australia
| | - Saif Alharbi
- The National Research and Development Center for Sustainable Agriculture (Estidamah), Riyadh, Saudi Arabia
| | - Simon Beecham
- Sustainable Infrastructure and Resource Management, University of South Australia, University of South Australia Science, Technology, Engineering, and Mathematics (UniSA STEM), Mawson Lakes, SA, Australia
| | - Fahad Alotaibi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Zeng J, Geng X, Zhao Z, Zhou W. Tipping the balance: The dynamics of stem cell maintenance and stress responses in plant meristems. CURRENT OPINION IN PLANT BIOLOGY 2024; 78:102510. [PMID: 38266375 DOI: 10.1016/j.pbi.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/24/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
Plant meristems contain pools of dividing stem cells that produce new organs for plant growth and development. Environmental factors, including biotic and abiotic stresses and nutrient availability, affect meristem activity and thus the architecture of roots and shoots; understanding how meristems react to changing environmental conditions will shed light on how plants optimize nutrient acquisition and acclimate to different environmental conditions. This review highlights recent exciting advances in this field, mainly in Arabidopsis. We discuss the signaling pathways, genetic regulators, and molecular mechanisms involved in the response of plant meristems to environmental and nutrient cues, and compare the similarities and differences of stress responses between the shoot and root apical meristems.
Collapse
Affiliation(s)
- Jian Zeng
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Xin Geng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhong Zhao
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Zhang H, Rong Z, Li Y, Yin Z, Lu C, Zhao H, Kong L, Meng L, Ding X. NIT24 and NIT29-mediated IAA synthesis of Xanthomonas oryzae pv. oryzicola suppresses immunity and boosts growth in rice. MOLECULAR PLANT PATHOLOGY 2024; 25:e13409. [PMID: 38069667 PMCID: PMC10788589 DOI: 10.1111/mpp.13409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Auxin plays a pivotal role in the co-evolution of plants and microorganisms. Xanthomonas oryzae pv. oryzicola (Xoc) stands as a significant factor that affects rice yield and quality. However, the current understanding of Xoc's capability for indole 3-acetic acid (IAA) synthesis and its mechanistic implications remains elusive. In this study, we performed a comprehensive genomic analysis of Xoc strain RS105, leading to the identification of two nitrilase enzyme family (NIT) genes, designated as AKO15524.1 and AKO15829.1, subsequently named NIT24 and NIT29, respectively. Our investigation unveiled that the deletion of NIT24 and NIT29 resulted in a notable reduction in IAA synthesis capacity within RS105, thereby impacting extracellular polysaccharide production. This deficiency was partially ameliorated through exogenous IAA supplementation. The study further substantiated that NIT24 and NIT29 have nitrilase activity and the ability to catalyse IAA production in vitro. The lesion length and bacterial population statistics experiments confirmed that NIT24 and NIT29 positively regulated the pathogenicity of RS105, suggesting that NIT24 and NIT29 may regulate Xoc invasion by affecting IAA synthesis. Furthermore, our analysis corroborated mutant strains, RS105_ΔNIT24 and RS105_ΔNIT29, which elicited the outbreak of reactive oxygen species, the deposition of callose and the upregulation of defence-related gene expression in rice. IAA exerted a significant dampening effect on the immune responses incited by these mutant strains in rice. In addition, the absence of NIT24 and NIT29 affected the growth-promoting effect of Xoc on rice. This implies that Xoc may promote rice growth by secreting IAA, thus providing a more suitable microenvironment for its own colonization. In summary, our study provides compelling evidence for the existence of a nitrilase-dependent IAA biosynthesis pathway in Xoc. IAA synthesis-related genes promote Xoc colonization by inhibiting rice immune defence response and affecting rice growth by increasing IAA content in Xoc.
Collapse
Affiliation(s)
- Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Zixuan Rong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Lingguang Kong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Lun Meng
- Shike Modern Agriculture Investment Co., LtdHezeChina
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| |
Collapse
|
15
|
Zhang H, Mu Y, Zhang H, Yu C. Maintenance of stem cell activity in plant development and stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1302046. [PMID: 38155857 PMCID: PMC10754534 DOI: 10.3389/fpls.2023.1302046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Stem cells residing in plant apical meristems play an important role during postembryonic development. These stem cells are the wellspring from which tissues and organs of the plant emerge. The shoot apical meristem (SAM) governs the aboveground portions of a plant, while the root apical meristem (RAM) orchestrates the subterranean root system. In their sessile existence, plants are inextricably bound to their environment and must adapt to various abiotic stresses, including osmotic stress, drought, temperature fluctuations, salinity, ultraviolet radiation, and exposure to heavy metal ions. These environmental challenges exert profound effects on stem cells, potentially causing severe DNA damage and disrupting the equilibrium of reactive oxygen species (ROS) and Ca2+ signaling in these vital cells, jeopardizing their integrity and survival. In response to these challenges, plants have evolved mechanisms to ensure the preservation, restoration, and adaptation of the meristematic stem cell niche. This enduring response allows plants to thrive in their habitats over extended periods. Here, we presented a comprehensive overview of the cellular and molecular intricacies surrounding the initiation and maintenance of the meristematic stem cell niche. We also delved into the mechanisms employed by stem cells to withstand and respond to abiotic stressors.
Collapse
Affiliation(s)
- Huankai Zhang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yangwei Mu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Caiyu Yu
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| |
Collapse
|
16
|
Smet W, Blilou I. A blast from the past: Understanding stem cell specification in plant roots using laser ablation. QUANTITATIVE PLANT BIOLOGY 2023; 4:e14. [PMID: 38034417 PMCID: PMC10685261 DOI: 10.1017/qpb.2023.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 12/02/2023]
Abstract
In the Arabidopsis root, growth is sustained by the meristem. Signalling from organiser cells, also termed the quiescent centre (QC), is essential for the maintenance and replenishment of the stem cells. Here, we highlight three publications from the founder of the concept of the stem cell niche in Arabidopsis and a pioneer in unravelling regulatory modules governing stem cell specification and maintenance, as well as tissue patterning in the root meristem: Ben Scheres. His research has tremendously impacted the plant field. We have selected three publications from the Scheres legacy, which can be considered a breakthrough in the field of plant developmental biology. van den Berg et al. (1995) and van den Berg et al. (1997) uncovered that positional information-directed patterning. Sabatini et al. (1999), discovered that auxin maxima determine tissue patterning and polarity. We describe how simple but elegant experimental designs have provided the foundation of our current understanding of the functioning of the root meristem.
Collapse
Affiliation(s)
- Wouter Smet
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ikram Blilou
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Hao R, Zhou W, Li J, Luo M, Scheres B, Guo Y. On salt stress, PLETHORA signaling maintains root meristems. Dev Cell 2023; 58:1657-1669.e5. [PMID: 37480843 DOI: 10.1016/j.devcel.2023.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/02/2023] [Accepted: 06/30/2023] [Indexed: 07/24/2023]
Abstract
Salt stress is one of the unfavorable environmental factors to affect plants. Salinity represses root growth, resulting in reduced biomass of agricultural plants. Little is known about how plants maintain root growth to counteract salt stress. The AP2-domain transcription factors PLETHORA1/2 (PLT1/2) act as master regulators in root meristem maintenance in Arabidopsis. In this study, we report that the salt overly sensitive (SOS) pathway component SOS2 regulates PLT1/2 at the post-transcriptional level. Salt-activated SOS2 interacts and phosphorylates PLT1/2 through their conserved C-terminal motifs to stabilize PLT1/2, critical for root apical meristem maintenance under salt stress. The phospho-mimetic version of PLT1/2 restored meristem and primary root length reduction of sos2-2 and plt1-4 plt2-2 mutants on salt treatment. Moreover, SOS2-mediated PLT1/2 phosphorylation improves root growth recovery after salt stress alleviation. We identify a SOS2-PLT1/2 core protein module that is required for protecting primary root growth and meristem maintenance from salt stress.
Collapse
Affiliation(s)
- Rong Hao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jingrui Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Manqing Luo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ben Scheres
- Laboratory of Plant Developmental Biology, Wageningen University and Research, 6708 PB Wageningen, the Netherlands; Rijk Zwaan R&D, 4793 RS Fijnaart, the Netherlands
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Rani R, Raza G, Ashfaq H, Rizwan M, Razzaq MK, Waheed MQ, Shimelis H, Babar AD, Arif M. Genome-wide association study of soybean ( Glycine max [L.] Merr.) germplasm for dissecting the quantitative trait nucleotides and candidate genes underlying yield-related traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1229495. [PMID: 37636105 PMCID: PMC10450938 DOI: 10.3389/fpls.2023.1229495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is one of the most significant crops in the world in terms of oil and protein. Owing to the rising demand for soybean products, there is an increasing need for improved varieties for more productive farming. However, complex correlation patterns among quantitative traits along with genetic interactions pose a challenge for soybean breeding. Association studies play an important role in the identification of accession with useful alleles by locating genomic sites associated with the phenotype in germplasm collections. In the present study, a genome-wide association study was carried out for seven agronomic and yield-related traits. A field experiment was conducted in 2015/2016 at two locations that include 155 diverse soybean germplasm. These germplasms were genotyped using SoySNP50K Illumina Infinium Bead-Chip. A total of 51 markers were identified for node number, plant height, pods per plant, seeds per plant, seed weight per plant, hundred-grain weight, and total yield using a multi-locus linear mixed model (MLMM) in FarmCPU. Among these significant SNPs, 18 were putative novel QTNs, while 33 co-localized with previously reported QTLs. A total of 2,356 genes were found in 250 kb upstream and downstream of significant SNPs, of which 17 genes were functional and the rest were hypothetical proteins. These 17 candidate genes were located in the region of 14 QTNs, of which ss715580365, ss715608427, ss715632502, and ss715620131 are novel QTNs for PH, PPP, SDPP, and TY respectively. Four candidate genes, Glyma.01g199200, Glyma.10g065700, Glyma.18g297900, and Glyma.14g009900, were identified in the vicinity of these novel QTNs, which encode lsd one like 1, Ergosterol biosynthesis ERG4/ERG24 family, HEAT repeat-containing protein, and RbcX2, respectively. Although further experimental validation of these candidate genes is required, several appear to be involved in growth and developmental processes related to the respective agronomic traits when compared with their homologs in Arabidopsis thaliana. This study supports the usefulness of association studies and provides valuable data for functional markers and investigating candidate genes within a diverse germplasm collection in future breeding programs.
Collapse
Affiliation(s)
- Reena Rani
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Ghulam Raza
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Hamza Ashfaq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Rizwan
- Plant Breeding and Genetics Division, Nuclear Institute of Agriculture (NIA), Tando Jam, Pakistan
| | - Muhammad Khuram Razzaq
- Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Qandeel Waheed
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Hussein Shimelis
- School of Agricultural, Earth and Environmental Sciences, African Centre for Crop Improvement, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Allah Ditta Babar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Arif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
19
|
Zhao H, Sun N, Huang L, Qian R, Lin X, Sun C, Zhu Y. Azospirillum brasilense activates peroxidase-mediated cell wall modification to inhibit root cell elongation. iScience 2023; 26:107144. [PMID: 37534167 PMCID: PMC10391928 DOI: 10.1016/j.isci.2023.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
The molecular mechanism of beneficial bacterium Azospirillum brasilense-mediated root developmental remain elusive. A. brasilense elicited extensively transcriptional changes but inhibited primary root elongation in Arabidopsis. By analyzing root cell type-specific developmental markers, we demonstrated that A. brasilense affected neither overall organization nor cell division of primary root meristem. The cessation of primary root resulted from reduction of cell elongation, which is probably because of bacterially activated peroxidase that will lead to cell wall cross-linking at consuming of H2O2. The activated peroxidase combined with downregulated cell wall loosening enzymes consequently led to cell wall thickness, whereas inhibiting peroxidase restored root growth under A. brasilense inoculation. We further showed that peroxidase activity was probably promoted by cadaverine secreted by A. brasilense. These results suggest that A. brasilense inhibits root elongation by activating peroxidase and inducing cell wall modification in Arabidopsis, in which cadaverine released by A. brasilense is a potential signal compound.
Collapse
Affiliation(s)
- Hongcheng Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Qian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongguan Zhu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
20
|
Xu K, Jourquin J, Xu X, De Smet I, Fernandez AI, Beeckman T. Dynamic GOLVEN-ROOT GROWTH FACTOR 1 INSENSITIVE signaling in the root cap mediates root gravitropism. PLANT PHYSIOLOGY 2023; 192:256-273. [PMID: 36747317 PMCID: PMC10152645 DOI: 10.1093/plphys/kiad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 05/03/2023]
Abstract
Throughout the exploration of the soil, roots interact with their environment and adapt to different conditions. Directional root growth is guided by asymmetric molecular patterns but how these become established or are dynamically regulated is poorly understood. Asymmetric gradients of the phytohormone auxin are established during root gravitropism, mainly through directional transport mediated by polarized auxin transporters. Upon gravistimulation, PIN-FORMED2 (PIN2) is differentially distributed and accumulates at the lower root side to facilitate asymmetric auxin transport up to the elongation zone where it inhibits cell elongation. GOLVEN (GLV) peptides function in gravitropism by affecting PIN2 abundance in epidermal cells. In addition, GLV signaling through ROOT GROWTH FACTOR 1 INSENSITIVE (RGI) receptors regulates root apical meristem maintenance. Here, we show that GLV-RGI signaling in these 2 processes in Arabidopsis (Arabidopsis thaliana) can be mapped to different cells in the root tip and that, in the case of gravitropism, it operates mainly in the lateral root cap (LRC) to maintain PIN2 levels at the plasma membrane (PM). Furthermore, we found that GLV signaling upregulates the phosphorylation level of PIN2 in an RGI-dependent manner. In addition, we demonstrated that the RGI5 receptor is asymmetrically distributed in the LRC and accumulates in the lower side of the LRC after gravistimulation. Asymmetric GLV-RGI signaling in the root cap likely accounts for differential PIN2 abundance at the PM to temporarily support auxin transport up to the elongation zone, thereby representing an additional level of control on the asymmetrical auxin flux to mediate differential growth of the root.
Collapse
Affiliation(s)
- Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Ana I Fernandez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| |
Collapse
|
21
|
Fedoreyeva LI. Molecular Mechanisms of Regulation of Root Development by Plant Peptides. PLANTS (BASEL, SWITZERLAND) 2023; 12:1320. [PMID: 36987008 PMCID: PMC10053774 DOI: 10.3390/plants12061320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Peptides perform many functions, participating in the regulation of cell differentiation, regulating plant growth and development, and also involved in the response to stress factors and in antimicrobial defense. Peptides are an important class biomolecules for intercellular communication and in the transmission of various signals. The intercellular communication system based on the ligand-receptor bond is one of the most important molecular bases for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The intercellular communication system based on the receptor-ligand is one of the most important molecular foundations for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The identification of peptide hormones, their interaction with receptors, and the molecular mechanisms of peptide functioning are important for understanding the mechanisms of both intercellular communications and for regulating plant development. In this review, we drew attention to some peptides involved in the regulation of root development, which implement this regulation by the mechanism of a negative feedback loop.
Collapse
Affiliation(s)
- Larisa I Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia
| |
Collapse
|
22
|
Liu C, Mentzelopoulou A, Muhammad A, Volkov A, Weijers D, Gutierrez-Beltran E, Moschou PN. An actin remodeling role for Arabidopsis processing bodies revealed by their proximity interactome. EMBO J 2023; 42:e111885. [PMID: 36741000 PMCID: PMC10152145 DOI: 10.15252/embj.2022111885] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Cellular condensates can comprise membrane-less ribonucleoprotein assemblies with liquid-like properties. These cellular condensates influence various biological outcomes, but their liquidity hampers their isolation and characterization. Here, we investigated the composition of the condensates known as processing bodies (PBs) in the model plant Arabidopsis thaliana through a proximity-biotinylation proteomics approach. Using in situ protein-protein interaction approaches, genetics and high-resolution dynamic imaging, we show that processing bodies comprise networks that interface with membranes. Surprisingly, the conserved component of PBs, DECAPPING PROTEIN 1 (DCP1), can localize to unique plasma membrane subdomains including cell edges and vertices. We characterized these plasma membrane interfaces and discovered a developmental module that can control cell shape. This module is regulated by DCP1, independently from its role in decapping, and the actin-nucleating SCAR-WAVE complex, whereby the DCP1-SCAR-WAVE interaction confines and enhances actin nucleation. This study reveals an unexpected function for a conserved condensate at unique membrane interfaces.
Collapse
Affiliation(s)
- Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Andriani Mentzelopoulou
- Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Amna Muhammad
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.,University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Andriy Volkov
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Emilio Gutierrez-Beltran
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Seville, Spain.,Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.,Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| |
Collapse
|
23
|
Luo X, Xu J, Zheng C, Yang Y, Wang L, Zhang R, Ren X, Wei S, Aziz U, Du J, Liu W, Tan W, Shu K. Abscisic acid inhibits primary root growth by impairing ABI4-mediated cell cycle and auxin biosynthesis. PLANT PHYSIOLOGY 2023; 191:265-279. [PMID: 36047837 PMCID: PMC9806568 DOI: 10.1093/plphys/kiac407] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 06/01/2023]
Abstract
Cell cycle progression and the phytohormones auxin and abscisic acid (ABA) play key roles in primary root growth, but how ABA mediates the transcription of cell cycle-related genes and the mechanism of crosstalk between ABA and auxin requires further research. Here, we report that ABA inhibits primary root growth by regulating the ABA INSENSITIVE4 (ABI4)-CYCLIN-DEPENDENT KINASE B2;2 (CDKB2;2)/CYCLIN B1;1 (CYCB1;1) module-mediated cell cycle as well as auxin biosynthesis in Arabidopsis (Arabidopsis thaliana). ABA induced ABI4 transcription in the primary root tip, and the abi4 mutant showed an ABA-insensitive phenotype in primary root growth. Compared with the wild type (WT), the meristem size and cell number of the primary root in abi4 increased in response to ABA. Further, the transcription levels of several cell-cycle positive regulator genes, including CDKB2;2 and CYCB1;1, were upregulated in abi4 primary root tips. Subsequent chromatin immunoprecipitation (ChIP)-seq, ChIP-qPCR, and biochemical analysis revealed that ABI4 repressed the expression of CDKB2;2 and CYCB1;1 by physically interacting with their promoters. Genetic analysis demonstrated that overexpression of CDKB2;2 or CYCB1;1 fully rescued the shorter primary root phenotype of ABI4-overexpression lines, and consistently, abi4/cdkb2;2-cr or abi4/cycb1;1-cr double mutations largely rescued the ABA-insensitive phenotype of abi4 with regard to primary root growth. The expression levels of DR5promoter-GFP and PIN1promoter::PIN1-GFP in abi4 primary root tips were significantly higher than those in WT after ABA treatment, with these changes being consistent with changes in auxin concentration and expression patterns of auxin biosynthesis genes. Taken together, these findings indicated that ABA inhibits primary root growth through ABI4-mediated cell cycle and auxin-related regulatory pathways.
Collapse
Affiliation(s)
- Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jiahui Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chuan Zheng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingzeng Yang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Ranran Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Xiaotong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Shaowei Wei
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Usman Aziz
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Junbo Du
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Weiguo Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Weiming Tan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
24
|
Ma J, Li Q, Zhang L, Cai S, Liu Y, Lin J, Huang R, Yu Y, Wen M, Xu T. High auxin stimulates callus through SDG8-mediated histone H3K36 methylation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2425-2437. [PMID: 36250442 DOI: 10.1111/jipb.13387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Callus induction, which results in fate transition in plant cells, is considered as the first and key step for plant regeneration. This process can be stimulated in different tissues by a callus-inducing medium (CIM), which contains a high concentration of phytohormone auxin. Although a few key regulators for callus induction have been identified, the multiple aspects of the regulatory mechanism driven by high levels of auxin still need further investigation. Here, we find that high auxin induces callus through a H3K36 histone methylation-dependent mechanism, which requires the methyltransferase SET DOMAIN GROUP 8 (SDG8). During callus induction, the increased auxin accumulates SDG8 expression through a TIR1/AFBs-based transcriptional regulation. SDG8 then deposits H3K36me3 modifications on the loci of callus-related genes, including a master regulator WOX5 and the cell proliferation-related genes, such as CYCB1.1. This epigenetic regulation in turn is required for the transcriptional activation of these genes during callus formation. These findings suggest that the massive transcriptional reprogramming for cell fate transition by auxin during callus formation requires epigenetic modifications including SDG8-mediated histone H3K36 methylation. Our results provide insight into the coordination between auxin signaling and epigenetic regulation during fundamental processes in plant development.
Collapse
Affiliation(s)
- Jun Ma
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Li
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Lei Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sen Cai
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Liu
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juncheng Lin
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongfeng Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongqiang Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingzhang Wen
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Tongda Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
25
|
Dharmateja P, Yadav R, Kumar M, Babu P, Jain N, Mandal PK, Pandey R, Shrivastava M, Gaikwad KB, Bainsla NK, Tomar V, Sugumar S, Saifi N, Ranjan R. Genome-wide association studies reveal putative QTLs for physiological traits under contrasting phosphorous conditions in wheat (Triticum aestivum L.). Front Genet 2022; 13:984720. [DOI: 10.3389/fgene.2022.984720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
A Genome-wide association (GWAS) study was conducted for phosphorous (P)-use responsive physiological traits in bread wheat at the seedling stage under contrasting P regimes. A panel of 158 diverse advanced breeding lines and released varieties, and a set of 10,800 filtered single nucleotide polymorphism (SNP) markers were used to study marker-trait associations over the eight shoot traits. Principle component analysis separated the two environments (P regimes) because of the differential response of the traits indicating the essentiality of the separate breeding programmes for each environment. Significant variations for genotypic, environmental, and genotype × environment (GEI) effects were observed for all the traits in the combined analysis of variance with moderately high broad sense heritability traits (0.50–0.73). With the different algorithms of association mapping viz., BLINK, FarmCPU, and MLM, 38 unique QTLs under non-limiting P (NLP) and 45 QTLs for limiting P (LP) conditions for various shoot traits were identified. Some of these QTLs were captured by all three algorithms. Interestingly, a Q.iari.dt.sdw.1 on chromosome 1D was found to explain the significant variations in three important physiological traits under non-limiting phosphorus (NLP) conditions. We identified the putative candidate genes for QTLs namely Q.iari.dt.chl.1, Q.iari.dt.sdw.16, Q.iari.dt.sdw.9 and Q.iari.dt.tpc.1 which are potentially involved in the mechanism regulating phosphorus use efficiency through improved P absorption due to improved root architectural traits and better mobilization such as sulfotransferase involved in postembryonic root development, WALLS ARE THIN1 (WAT1), a plant-specific protein that facilitates auxin export; lectin receptor-like kinase essentially involved in plant development, stress response during germination and lateral root development and F-box component of the SKP-Cullin-F box E3 ubiquitin ligase complex and strigolactone signal perception. Expression profiling of putative genes located in identified genomic regions against the wheat expression atlas revealed their significance based on the expression of these genes for stress response and growth development processes in wheat. Our results thus provide an important insight into understanding the genetic basis for improving PUE under phosphorus stress conditions and can shape the future breeding programme by developing and integrating molecular markers for these difficult-to-score important traits.
Collapse
|
26
|
He Q, Yuan R, Zhang T, An F, Wang N, Lan J, Wang X, Zhang Z, Pan Y, Wang X, Zhang J, Guo D, Qin G. Arabidopsis TIE1 and TIE2 transcriptional repressors dampen cytokinin response during root development. SCIENCE ADVANCES 2022; 8:eabn5057. [PMID: 36083905 PMCID: PMC9462699 DOI: 10.1126/sciadv.abn5057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Cytokinin plays critical roles in root development. Cytokinin signaling depends on activation of key transcription factors known as type B Arabidopsis response regulators (ARRs). However, the mechanisms underlying the finely tuned regulation of type B ARR activity remain unclear. In this study, we demonstrate that the ERF-associated amphiphilic repression (EAR) motif-containing protein TCP interactor containing ear motif protein2 (TIE2) forms a negative feedback loop to finely tune the activity of type B ARRs during root development. Disruption of TIE2 and its close homolog TIE1 causes severely shortened roots. TIE2 interacts with type B ARR1 and represses transcription of ARR1 targets. The cytokinin response is correspondingly enhanced in tie1-1 tie2-1. We further show that ARR1 positively regulates TIE1 and TIE2 by directly binding to their promoters. Our findings demonstrate that TIEs play key roles in controlling plant development and reveal an important negative feedback regulation mechanism for cytokinin signaling.
Collapse
|
27
|
Liu L, Song W, Huang S, Jiang K, Moriwaki Y, Wang Y, Men Y, Zhang D, Wen X, Han Z, Chai J, Guo H. Extracellular pH sensing by plant cell-surface peptide-receptor complexes. Cell 2022; 185:3341-3355.e13. [PMID: 35998629 DOI: 10.1016/j.cell.2022.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
The extracellular pH is a vital regulator of various biological processes in plants. However, how plants perceive extracellular pH remains obscure. Here, we report that plant cell-surface peptide-receptor complexes can function as extracellular pH sensors. We found that pattern-triggered immunity (PTI) dramatically alkalinizes the acidic extracellular pH in root apical meristem (RAM) region, which is essential for root meristem growth factor 1 (RGF1)-mediated RAM growth. The extracellular alkalinization progressively inhibits the acidic-dependent interaction between RGF1 and its receptors (RGFRs) through the pH sensor sulfotyrosine. Conversely, extracellular alkalinization promotes the alkaline-dependent binding of plant elicitor peptides (Peps) to its receptors (PEPRs) through the pH sensor Glu/Asp, thereby promoting immunity. A domain swap between RGFR and PEPR switches the pH dependency of RAM growth. Thus, our results reveal a mechanism of extracellular pH sensing by plant peptide-receptor complexes and provide insights into the extracellular pH-mediated regulation of growth and immunity in the RAM.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China; Max-Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Wen Song
- Max-Planck Institute for Plant Breeding Research, Cologne 50829, Germany; Institute of Biochemistry, University of Cologne, Cologne 50923, Germany; Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shijia Huang
- Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kai Jiang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China; SUSTech Academy for Advanced and Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yoshitaka Moriwaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yichuan Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yongfan Men
- Research Laboratory of Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Dan Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xing Wen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zhifu Han
- Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jijie Chai
- Max-Planck Institute for Plant Breeding Research, Cologne 50829, Germany; Institute of Biochemistry, University of Cologne, Cologne 50923, Germany; Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
28
|
Zhu CQ, Wei Q, Hu WJ, Kong YL, Xiang XJ, Zhang H, Cao XC, Zhu LF, Liu J, Tian WH, Jin QY, Zhang JH. Unearthing the alleviatory mechanisms of hydrogen sulfide in aluminum toxicity in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:133-144. [PMID: 35490639 DOI: 10.1016/j.plaphy.2022.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen sulfide (H2S) improves aluminum (Al) resistance in rice, however, the underlying mechanism remains unclear. In the present study, treatment with 30-μM Al significantly inhibited rice root growth and increased the total Al content, apoplastic and cytoplasm Al concentration in the rice roots. However, pretreatment with NaHS (H2S donor) reversed these negative effects. Pretreatment with NaHS significantly increased energy production under Al toxicity conditions, such as by increasing the content of ATP and nonstructural carbohydrates. In addition, NaHS stimulated the AsA-GSH cycle to decrease the peroxidation damage induced by Al toxicity. Pretreatment with NaHS significantly inhibited ethylene emissions in the rice and then inhibited pectin synthesis and increased the pectin methylation degree to reduce cell wall Al deposition. The phytohormones indole-3-acetic and brassinolide were also involved in the alleviation of Al toxicity by H2S. The transcriptome results further confirmed that H2S alleviates Al toxicity by increasing the pathways relating to material and energy metabolism, redox reactions, cell wall components, and signal transduction. These findings improve our understanding of how H2S affects rice responses to Al toxicity, which will facilitate further studies on crop safety.
Collapse
Affiliation(s)
- Chun Quan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - QianQian Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China; Anhui University, Hefei, Anhui Province, China
| | - Wen Jun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, China
| | - Ya Li Kong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | | | - Hui Zhang
- Agricultural Resources and Environment Institute, Jiangsu Academy of Agricultural Sciences, 210014, Jiangsu, PR China
| | - Xiao Chuang Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lian Feng Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jia Liu
- Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi Province, China
| | - Wen Hao Tian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Yu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jun Hua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
29
|
Ou Y, Tao B, Wu Y, Cai Z, Li H, Li M, He K, Gou X, Li J. Essential roles of SERKs in the ROOT MERISTEM GROWTH FACTOR-mediated signaling pathway. PLANT PHYSIOLOGY 2022; 189:165-177. [PMID: 35134233 PMCID: PMC9070818 DOI: 10.1093/plphys/kiac036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/05/2022] [Indexed: 05/08/2023]
Abstract
ROOT MERISTEM GROWTH FACTORs (RGFs), a group of peptide hormones, play key roles in root apical meristem development. In Arabidopsis (Arabidopsis thaliana), there are 11 members of RGFs, in which at least RGF1, RGF2, and RGF3 are expressed at the root tip and are involved in root stem cell niche maintenance. RGFs are perceived by five functionally redundant receptor-like protein kinases, RGF1 INSENSITIVE 1 (RGI1) to RGI5, to maintain the expression of two downstream APETALA 2 (AP2) transcription factor genes, PLETHORA 1 (PLT1) and PLT2, and to stabilize PLT2. RGI1 to RGI3 were also named RGF RECEPTOR 1 (RGFR1) to RGFR3, respectively. Although previous studies have suggested that BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and its paralogs, SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASEs (SERKs), may act as coreceptors of RGIs, comprehensive genetic and biochemical analyses have not been well documented. Here, we report that single, double, and triple mutants of SERKs show various degrees of short root phenotypes and insensitivity to exogenously applied RGF1. The interaction between RGIs and BAK1 and their mutual phosphorylation are RGF1 dependent. We also found that RGF1-induced MAPK activation relies on both RGIs and SERKs. We demonstrate that RGIs play redundant roles in regulating root apical meristem development. Therefore, we genetically and biochemically substantiated that SERKs, as coreceptors, play essential roles in the RGF1-mediated signaling pathway.
Collapse
Affiliation(s)
| | | | - Yujun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zeping Cai
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huiqiang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Author for correspondence:
| |
Collapse
|
30
|
Timilsina R, Kim Y, Park S, Park H, Park SJ, Kim JH, Park JH, Kim D, Park YI, Hwang D, Lee JC, Woo HR. ORESARA 15, a PLATZ transcription factor, controls root meristem size through auxin and cytokinin signalling-related pathways. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2511-2524. [PMID: 35139177 DOI: 10.1093/jxb/erac050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
An optimal size of post-embryonic root apical meristem (RAM) is achieved by a balance between cell division and differentiation. Despite extensive research, molecular mechanisms underlying the coordination of cell division and differentiation are still fragmentary. Here, we report that ORESARA 15 (ORE15), an Arabidopsis PLANT A/T-RICH SEQUENCE-AND ZINC-BINDING PROTEIN (PLATZ) transcription factor preferentially expressed in the RAM, determines RAM size. Primary root length, RAM size, cell division rate, and stem cell niche activity were reduced in an ore15 loss-of-function mutant but enhanced in an activation-tagged line overexpressing ORE15, compared with wild type. ORE15 forms mutually positive and negative feedback loops with auxin and cytokinin signalling, respectively. Collectively, our findings imply that ORE15 controls RAM size by mediating the antagonistic interaction between auxin and cytokinin signalling-related pathways.
Collapse
Affiliation(s)
- Rupak Timilsina
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Yongmin Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Sanghoon Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hyunsoo Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sung-Jin Park
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Ji-Hwan Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Doa Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Chan Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
31
|
Ortigosa F, Lobato-Fernández C, Shikano H, Ávila C, Taira S, Cánovas FM, Cañas RA. Ammonium regulates the development of pine roots through hormonal crosstalk and differential expression of transcription factors in the apex. PLANT, CELL & ENVIRONMENT 2022; 45:915-935. [PMID: 34724238 DOI: 10.1111/pce.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Ammonium is a prominent source of inorganic nitrogen for plant nutrition, but excessive amounts can be toxic for many species. However, most conifers are tolerant to ammonium, a relevant physiological feature of this ancient evolutionary lineage. For a better understanding of the molecular basis of this trait, ammonium-induced changes in the transcriptome of maritime pine (Pinus pinaster Ait.) root apex have been determined by laser capture microdissection and RNA sequencing. Ammonium promoted changes in the transcriptional profiles of multiple transcription factors, such as SHORT-ROOT, and phytohormone-related transcripts, such as ACO, involved in the development of the root meristem. Nano-PALDI-MSI and transcriptomic analyses showed that the distributions of IAA and CKs were altered in the root apex in response to ammonium nutrition. Taken together, the data suggest that this early response is involved in the increased lateral root branching and principal root growth, which characterize the long-term response to ammonium supply in pine. All these results suggest that ammonium induces changes in the root system architecture through the IAA-CK-ET phytohormone crosstalk and transcriptional regulation.
Collapse
Affiliation(s)
- Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - César Lobato-Fernández
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Hitomi Shikano
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Francisco M Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Rafael A Cañas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
- Integrative Molecular Biology Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| |
Collapse
|
32
|
Jourquin J, Fernandez AI, Parizot B, Xu K, Grunewald W, Mamiya A, Fukaki H, Beeckman T. Two phylogenetically unrelated peptide-receptor modules jointly regulate lateral root initiation via a partially shared signaling pathway in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 233:1780-1796. [PMID: 34913488 PMCID: PMC9302118 DOI: 10.1111/nph.17919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/04/2021] [Indexed: 05/06/2023]
Abstract
Peptide-receptor signaling is an important system for intercellular communication, regulating many developmental processes. A single process can be controlled by several distinct signaling peptides. However, since peptide-receptor modules are usually studied separately, their mechanistic interactions remain largely unexplored. Two phylogenetically unrelated peptide-receptor modules, GLV6/GLV10-RGI and TOLS2/PIP2-RLK7, independently described as inhibitors of lateral root initiation, show striking similarities between their expression patterns and gain- and loss-of-function phenotypes, suggesting a common function during lateral root spacing and initiation. The GLV6/GLV10-RGI and TOLS2/PIP2-RLK7 modules trigger similar transcriptional changes, likely in part via WRKY transcription factors. Their overlapping set of response genes includes PUCHI and PLT5, both required for the effect of GLV6/10, as well as TOLS2, on lateral root initiation. Furthermore, both modules require the activity of MPK6 and can independently trigger MPK3/MPK6 phosphorylation. The GLV6/10 and TOLS2/PIP2 signaling pathways seem to converge in the activation of MPK3/MPK6, leading to the induction of a similar transcriptional response in the same target cells, thereby regulating lateral root initiation through a (partially) common mechanism. Convergence of signaling pathways downstream of phylogenetically unrelated peptide-receptor modules adds an additional, and hitherto unrecognized, level of complexity to intercellular communication networks in plants.
Collapse
Affiliation(s)
- Joris Jourquin
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems BiologyVIB‐UGentGhent9052Belgium
| | - Ana Ibis Fernandez
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems BiologyVIB‐UGentGhent9052Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems BiologyVIB‐UGentGhent9052Belgium
| | - Ke Xu
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems BiologyVIB‐UGentGhent9052Belgium
| | - Wim Grunewald
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems BiologyVIB‐UGentGhent9052Belgium
| | - Akihito Mamiya
- Department of BiologyGraduate School of ScienceKobe UniversityKobe657‐8501Japan
| | - Hidehiro Fukaki
- Department of BiologyGraduate School of ScienceKobe UniversityKobe657‐8501Japan
| | - Tom Beeckman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems BiologyVIB‐UGentGhent9052Belgium
| |
Collapse
|
33
|
Chen Z, Sun J, Li D, Li P, He K, Ali F, Mi G, Chen F, Yuan L, Pan Q. Plasticity of root anatomy during domestication of a maize-teosinte derived population. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:139-153. [PMID: 34487165 DOI: 10.1093/jxb/erab406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Maize (Zea mays L.) has undergone profound changes in root anatomy for environmental adaptation during domestication. However, the genetic mechanism of plasticity of maize root anatomy during the domestication process remains unclear. In this study, high-resolution mapping was performed for nine root anatomical traits using a maize-teosinte population (mexicana × Mo17) across three environments. Large genetic variations were detected for different root anatomical traits. The cortex, stele, aerenchyma areas, xylem vessel number, and cortical cell number had large variations across three environments, indicating high plasticity. Sixteen quantitative trait loci (QTL) were identified, including seven QTL with QTL × environment interaction (EIQTL) for high plasticity traits and nine QTL without QTL × environment interaction (SQTL). Most of the root loci were consistent with shoot QTL depicting domestication signals. Combining transcriptome and genome-wide association studies revealed that AUXIN EFFLUX CARRIER PIN-FORMED LIKE 4 (ZmPILS4) serves as a candidate gene underlying a major QTL of xylem traits. The near-isogenic lines (NILs) with lower expression of ZmPILS4 had 18-24% more auxin concentration in the root tips and 8-15% more xylem vessels. Nucleotide diversity values analysis in the promoter region suggested that ZmPILS4 was involved in maize domestication and adaptation. These results revealed the potential genetic basis of root anatomical plasticity during domestication.
Collapse
Affiliation(s)
- Zhe Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Junli Sun
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Dongdong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225000, China
| | - Kunhui He
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Farhan Ali
- Cereal Crops Research Institute, Pirsabak Nowshera, Pakistan
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
34
|
Fang Y, Chang J, Shi T, Luo W, Ou Y, Wan D, Li J. Evolution of RGF/GLV/CLEL Peptide Hormones and Their Roles in Land Plant Growth and Regulation. Int J Mol Sci 2021; 22:ijms222413372. [PMID: 34948169 PMCID: PMC8708909 DOI: 10.3390/ijms222413372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Rooting is a key innovation during plant terrestrialization. RGFs/GLVs/CLELs are a family of secreted peptides, playing key roles in root stem cell niche maintenance and pattern formation. The origin of this peptide family is not well characterized. RGFs and their receptor genes, RGIs, were investigated comprehensively using phylogenetic and genetic analyses. We identified 203 RGF genes from 24 plant species, representing a variety of land plant lineages. We found that the RGF genes originate from land plants and expand via multiple duplication events. The lineage-specific RGF duplicates are retained due to their regulatory divergence, while a majority of RGFs experienced strong purifying selection in most land plants. Functional analysis indicated that RGFs and their receptor genes, RGIs, isolated from liverwort, tomato, and maize possess similar biological functions with their counterparts from Arabidopsis in root development. RGFs and RGIs are likely coevolved in land plants. Our studies shed light on the origin and functional conservation of this important peptide family in plant root development.
Collapse
Affiliation(s)
- Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Jinke Chang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Wenchun Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Yang Ou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Dongshi Wan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
- Correspondence: (D.W.); (J.L.)
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Correspondence: (D.W.); (J.L.)
| |
Collapse
|
35
|
Kaufmann C, Stührwohldt N, Sauter M. Tyrosylprotein sulfotransferase-dependent and -independent regulation of root development and signaling by PSK LRR receptor kinases in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5508-5521. [PMID: 34028532 PMCID: PMC8318253 DOI: 10.1093/jxb/erab233] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/20/2021] [Indexed: 05/13/2023]
Abstract
Tyrosine-sulfated peptides are key regulators of plant growth and development. The disulfated pentapeptide phytosulfokine (PSK) mediates growth via leucine-rich repeat receptor-like kinases, PSKR1 and PSKR2. PSK receptors (PSKRs) are part of a response module at the plasma membrane that mediates short-term growth responses, but downstream signaling of transcriptional regulation remains unexplored. In Arabidopsis, tyrosine sulfation is catalyzed by a single-copy gene (TPST; encoding tyrosylprotein sulfotransferase). We performed a microarray-based transcriptome analysis in the tpst-1 mutant background that lacks sulfated peptides to identify PSK-regulated genes and genes that are regulated by other sulfated peptides. Of the 169 PSK-regulated genes, several had functions in root growth and development, in agreement with shorter roots and a higher lateral root density in tpst-1. Further, tpst-1 roots developed higher numbers of root hairs, and PSK induced expression of WEREWOLF (WER), its paralog MYB DOMAIN PROTEIN 23 (MYB23), and At1g66800 that maintain non-hair cell fate. The tpst-1 pskr1-3 pskr2-1 mutant showed even shorter roots, and higher lateral root and root hair density than tpst-1, revealing unexpected synergistic effects of ligand and PSKR deficiencies. While residual activities may exist, overexpression of PSKR1 in the tpst-1 background induced root growth, suggesting that PSKR1 may be active in the absence of sulfated ligands.
Collapse
Affiliation(s)
- Christine Kaufmann
- Plant Developmental Biology and Physiology, University of Kiel, Kiel, Germany
| | - Nils Stührwohldt
- Plant Developmental Biology and Physiology, University of Kiel, Kiel, Germany
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Kiel, Germany
- Correspondence:
| |
Collapse
|
36
|
Wu B, Sun M, Zhang H, Yang D, Lin C, Khan I, Wang X, Zhang X, Nie G, Feng G, Yan Y, Li Z, Peng Y, Huang L. Transcriptome analysis revealed the regulation of gibberellin and the establishment of photosynthetic system promote rapid seed germination and early growth of seedling in pearl millet. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:94. [PMID: 33840392 PMCID: PMC8040237 DOI: 10.1186/s13068-021-01946-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Seed germination is the most important stage for the formation of a new plant. This process starts when the dry seed begins to absorb water and ends when the radicle protrudes. The germination rate of seed from different species varies. The rapid germination of seed from species that grow on marginal land allows seedlings to compete with surrounding species, which is also the guarantee of normal plant development and high yield. Pearl millet is an important cereal crop that is used worldwide, and it can also be used to extract bioethanol. Previous germination experiments have shown that pearl millet has a fast seed germination rate, but the molecular mechanisms behind pearl millet are unclear. Therefore, this study explored the expression patterns of genes involved in pearl millet growth from the germination of dry seed to the early growth stages. RESULTS Through the germination test and the measurement of the seedling radicle length, we found that pearl millet seed germinated after 24 h of swelling of the dry seed. Using transcriptome sequencing, we characterized the gene expression patterns of dry seed, water imbibed seed, germ and radicle, and found more differentially expressed genes (DEGs) in radicle than germ. Further analysis showed that different genome clusters function specifically at different tissues and time periods. Weighted gene co-expression network analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that many genes that positively regulate plant growth and development are highly enriched and expressed, especially the gibberellin signaling pathway, which can promote seed germination. We speculated that the activation of these key genes promotes the germination of pearl millet seed and the growth of seedlings. To verify this, we measured the content of gibberellin and found that the gibberellin content after seed imbibition rose sharply and remained at a high level. CONCLUSIONS In this study, we identified the key genes that participated in the regulation of seed germination and seedling growth. The activation of key genes in these pathways may contribute to the rapid germination and growth of seed and seedlings in pearl millet. These results provided new insight into accelerating the germination rate and seedling growth of species with slow germination.
Collapse
Affiliation(s)
- Bingchao Wu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Huan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Dan Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Chuang Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Yanhong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China.
| |
Collapse
|
37
|
Maekawa S, Yanagisawa S. Ribosome biogenesis factor OLI2 and its interactor BRX1-2 are associated with morphogenesis and lifespan extension in Arabidopsis thaliana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:117-125. [PMID: 34177331 PMCID: PMC8215454 DOI: 10.5511/plantbiotechnology.20.1224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 06/13/2023]
Abstract
Mutations that reduce the expression of ribosomal proteins (RPs) or limit the activity of ribosome biogenesis-related factors frequently cause physiological and morphological changes in Arabidopsis. Arabidopsis OLI2/NOP2A, a homolog of yeast Nop2, encodes a nucleolar methyltransferase that is required for the maturation of the 25S ribosomal RNA of the 60S large ribosomal subunit. Mutant oli2 plants exhibit pointed leaves and shortened primary roots. In this study, detailed phenotypic analysis of oli2 mutant and OLI2 overexpressor lines revealed a range of phenotypes. Seeds produced by oli2 mutant and OLI2 overexpressor plants were lighter and heavier than wild-type seeds, respectively. Seeds of the oli2 mutant also showed delayed germination, whereas seeds from the OLI2 overexpressor lines germinated earlier than the wild type. The oli2 mutant also had fewer and shorter lateral roots than the wild type. The lateral root development phenotype in the oli2 mutant was similar to that of auxin-related mutants, but was not enhanced by exogenously supplied auxin. Furthermore, the oli2 mutant and OLI2 overexpressor lines were hypersensitive and less sensitive to high concentrations of sugar, respectively. Split-GFP-based bimolecular fluorescence complementation analysis revealed that OLI2 interacted with a nucleolar protein, BRX1-2, which is involved in rRNA processing for the large ribosomal subunit. Moreover, overexpression of OLI2 and BRX1-2 caused similar morphological changes, including extension of plant lifespans. These results suggest that the functions of OLI2 and its interactor BRX1-2 are intimately associated with a range of developmental events in Arabidopsis.
Collapse
Affiliation(s)
- Shugo Maekawa
- Biotechnology Research Center, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
38
|
Hou XL, Chen WQ, Hou Y, Gong HQ, Sun J, Wang Z, Zhao H, Cao X, Song XF, Liu CM. DEAD-BOX RNA HELICASE 27 regulates microRNA biogenesis, zygote division, and stem cell homeostasis. THE PLANT CELL 2021; 33:66-84. [PMID: 33751089 PMCID: PMC8136522 DOI: 10.1093/plcell/koaa001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
After double fertilization, zygotic embryogenesis initiates a new life cycle, and stem cell homeostasis in the shoot apical meristem (SAM) and root apical meristem (RAM) allows plants to produce new tissues and organs continuously. Here, we report that mutations in DEAD-BOX RNA HELICASE 27 (RH27) affect zygote division and stem cell homeostasis in Arabidopsis (Arabidopsis thaliana). The strong mutant allele rh27-1 caused a zygote-lethal phenotype, while the weak mutant allele rh27-2 led to minor defects in embryogenesis and severely compromised stem cell homeostasis in the SAM and RAM. RH27 is expressed in embryos from the zygote stage, and in both the SAM and RAM, and RH27 is a nucleus-localized protein. The expression levels of genes related to stem cell homeostasis were elevated in rh27-2 plants, alongside down-regulation of their regulatory microRNAs (miRNAs). Further analyses of rh27-2 plants revealed reduced levels of a large subset of miRNAs and their pri-miRNAs in shoot apices and root tips. In addition, biochemical studies showed that RH27 associates with pri-miRNAs and interacts with miRNA-biogenesis components, including DAWDLE, HYPONASTIC LEAVES 1, and SERRATE. Therefore, we propose that RH27 is a component of the microprocessor complex and is critical for zygote division and stem cell homeostasis.
Collapse
Affiliation(s)
- Xiu-Li Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Qiang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifeng Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua-Qin Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heng Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofeng Cao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
39
|
Tu T, Zheng S, Ren P, Meng X, Zhao J, Chen Q, Li C. Coordinated cytokinin signaling and auxin biosynthesis mediates arsenate-induced root growth inhibition. PLANT PHYSIOLOGY 2021; 185:1166-1181. [PMID: 33793921 PMCID: PMC8133639 DOI: 10.1093/plphys/kiaa072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
Interactions between plant hormones and environmental signals are important for the maintenance of root growth plasticity under ever-changing environmental conditions. Here, we demonstrate that arsenate (AsV), the most prevalent form of arsenic (As) in nature, restrains elongation of the primary root through transcriptional regulation of local auxin biosynthesis genes in the root tips of Arabidopsis (Arabidopsis thaliana) plants. The ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1 (ASA1) and BETA SUBUNIT 1 (ASB1) genes encode enzymes that catalyze the conversion of chorismate to anthranilate (ANT) via the tryptophan-dependent auxin biosynthesis pathway. Our results showed that AsV upregulates ASA1 and ASB1 expression in root tips, and ASA1- and ASB1-mediated auxin biosynthesis is involved in AsV-induced root growth inhibition. Further investigation confirmed that AsV activates cytokinin signaling by stabilizing the type-B ARABIDOPSIS RESPONSE REGULATOR1 (ARR1) protein, which directly promotes the transcription of ASA1 and ASB1 genes by binding to their promoters. Genetic analysis revealed that ASA1 and ASB1 are epistatic to ARR1 in the AsV-induced inhibition of primary root elongation. Overall, the results of this study illustrate a molecular framework that explains AsV-induced root growth inhibition via crosstalk between two major plant growth regulators, auxin and cytokinin.
Collapse
Affiliation(s)
- Tianli Tu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Shuangshuang Zheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Panrong Ren
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwen Meng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jiuhai Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
- Author for communication: (Q.C.), (C.L.)
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Ou Y, Kui H, Li J. Receptor-like Kinases in Root Development: Current Progress and Future Directions. MOLECULAR PLANT 2021; 14:166-185. [PMID: 33316466 DOI: 10.1016/j.molp.2020.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 05/11/2023]
Abstract
Cell-to-cell and cell-to-environment communications are critical to the growth and development of plants. Cell surface-localized receptor-like kinases (RLKs) are mainly involved in sensing various extracellular signals to initiate their corresponding cellular responses. As important vegetative organs for higher plants to adapt to a terrestrial living situation, roots play a critical role for the survival of plants. It has been demonstrated that RLKs control many biological processes during root growth and development. In this review, we summarize several key regulatory processes during Arabidopsis root development in which RLKs play critical roles. We also put forward a number of relevant questions that are required to be explored in future studies.
Collapse
Affiliation(s)
- Yang Ou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
41
|
Chowdhury S, Ghosh S. Plant Stem Cell Biology. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Lavarenne J, Gonin M, Champion A, Javelle M, Adam H, Rouster J, Conejéro G, Lartaud M, Verdeil JL, Laplaze L, Sallaud C, Lucas M, Gantet P. Transcriptome profiling of laser-captured crown root primordia reveals new pathways activated during early stages of crown root formation in rice. PLoS One 2020; 15:e0238736. [PMID: 33211715 PMCID: PMC7676735 DOI: 10.1371/journal.pone.0238736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/22/2020] [Indexed: 12/04/2022] Open
Abstract
Crown roots constitute the main part of the rice root system. Several key genes involved in crown root initiation and development have been identified by functional genomics approaches. Nevertheless, these approaches are impaired by functional redundancy and mutant lethality. To overcome these limitations, organ targeted transcriptome analysis can help to identify genes involved in crown root formation and early development. In this study, we generated an atlas of genes expressed in developing crown root primordia in comparison with adjacent stem cortical tissue at three different developmental stages before emergence, using laser capture microdissection. We identified 3975 genes differentially expressed in crown root primordia. About 30% of them were expressed at the three developmental stages, whereas 10.5%, 19.5% and 12.8% were specifically expressed at the early, intermediate and late stages, respectively. Sorting them by functional ontology highlighted an active transcriptional switch during the process of crown root primordia formation. Cross-analysis with other rice root development-related datasets revealed genes encoding transcription factors, chromatin remodeling factors, peptide growth factors, and cell wall remodeling enzymes that are likely to play a key role during crown root primordia formation. This atlas constitutes an open primary data resource for further studies on the regulation of crown root initiation and development.
Collapse
Affiliation(s)
- Jérémy Lavarenne
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Mathieu Gonin
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Antony Champion
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Marie Javelle
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Hélène Adam
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Jacques Rouster
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Geneviève Conejéro
- CIRAD, UMR1334 AGAP, PHIV-MRI, Montpellier, France
- Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Marc Lartaud
- CIRAD, UMR1334 AGAP, PHIV-MRI, Montpellier, France
- Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Luc Verdeil
- CIRAD, UMR1334 AGAP, PHIV-MRI, Montpellier, France
- Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Laurent Laplaze
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Christophe Sallaud
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Mikael Lucas
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Pascal Gantet
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
- * E-mail:
| |
Collapse
|
43
|
Shao Y, Yu X, Xu X, Li Y, Yuan W, Xu Y, Mao C, Zhang S, Xu J. The YDA-MKK4/MKK5-MPK3/MPK6 Cascade Functions Downstream of the RGF1-RGI Ligand-Receptor Pair in Regulating Mitotic Activity in Root Apical Meristem. MOLECULAR PLANT 2020; 13:1608-1623. [PMID: 32916336 DOI: 10.1016/j.molp.2020.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/16/2020] [Accepted: 09/07/2020] [Indexed: 05/26/2023]
Abstract
The mitotic activity of root apical meristem (RAM) is critical to primary root growth and development. Previous studies have identified the roles of ROOT GROWTH FACTOR 1 (RGF1), a peptide ligand, and its receptors, RGF1 INSENSITIVEs (RGIs), a clade of five leucine-rich-repeat receptor-like kinases, in promoting cell division in the RAM, which determines the primary root length. However, the downstream signaling components remain elusive. In this study, we identify a complete mitogen-activated protein kinase (MAPK or MPK) cascade, composed of YDA, MKK4/MKK5, and MPK3/MPK6, that functions downstream of the RGF1-RGI ligand-receptor pair. Similar to the rgi1/2/3/4/5 quintuple mutant, loss-of-function mutants of MPK3 and MPK6, MKK4 and MKK5, or YDA show a short-root phenotype, which is associated with reduced mitotic activity and lower expression of PLETHORA 1 (PLT1)/PLT2 in the RAM. Furthermore, MPK3/MPK6 activation in response to exogenous RGF1 treatment is impaired in the rgi1/2/3/4/5 quintuple, yda single, and mkk4 mkk5 double mutants. Epistatic analyses demonstrated that the expression of constitutively active MKK4, MKK5, or YDA driven by the RGI2 promoter can rescue the short-root phenotype of the rgi1/2/3/4/5 mutant. Taken together, these results suggest that the YDA-MKK4/MKK5-MPK3/MPK6 cascade functions downstream of the RGF1-RGI ligand-receptor pair and upstream of PLT1/PLT2 to modulate the stem cell population and primary root growth in Arabidopsis.
Collapse
Affiliation(s)
- Yiming Shao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinxing Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuwen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenxin Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuqun Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
44
|
Zhai H, Zhang X, You Y, Lin L, Zhou W, Li C. SEUSS integrates transcriptional and epigenetic control of root stem cell organizer specification. EMBO J 2020; 39:e105047. [PMID: 32926464 PMCID: PMC7560201 DOI: 10.15252/embj.2020105047] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022] Open
Abstract
Proper regulation of homeotic gene expression is critical for stem cell fate in both plants and animals. In Arabidopsis thaliana, the WUSCHEL (WUS)-RELATED HOMEOBOX 5 (WOX5) gene is specifically expressed in a group of root stem cell organizer cells called the quiescent center (QC) and plays a central role in QC specification. Here, we report that the SEUSS (SEU) protein, homologous to the animal LIM-domain binding (LDB) proteins, assembles a functional transcriptional complex that regulates WOX5 expression and QC specification. SEU is physically recruited to the WOX5 promoter by the master transcription factor SCARECROW. Subsequently, SEU physically recruits the SET domain methyltransferase SDG4 to the WOX5 promoter, thus activating WOX5 expression. Thus, analogous to its animal counterparts, SEU acts as a multi-adaptor protein that integrates the actions of genetic and epigenetic regulators into a concerted transcriptional program to control root stem cell organizer specification.
Collapse
Affiliation(s)
- Huawei Zhai
- State Key Laboratory of Plant GenomicsNational Center for Plant Gene Research (Beijing)Institute of Genetics and Developmental BiologyInnovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaoyue Zhang
- State Key Laboratory of Plant GenomicsNational Center for Plant Gene Research (Beijing)Institute of Genetics and Developmental BiologyInnovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Yanrong You
- State Key Laboratory of Plant GenomicsNational Center for Plant Gene Research (Beijing)Institute of Genetics and Developmental BiologyInnovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Lihao Lin
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anShandong ProvinceChina
| | - Wenkun Zhou
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
- Frontier Science Center for Molecular Design and BreedingChina Agricultural UniversityBeijingChina
| | - Chuanyou Li
- State Key Laboratory of Plant GenomicsNational Center for Plant Gene Research (Beijing)Institute of Genetics and Developmental BiologyInnovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
45
|
Receptor-like protein kinase-mediated signaling in controlling root meristem homeostasis. ABIOTECH 2020; 1:157-168. [PMID: 36303569 PMCID: PMC9590551 DOI: 10.1007/s42994-020-00024-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/09/2020] [Indexed: 02/01/2023]
Abstract
Generation of the root greatly benefits higher plants living on land. Continuous root growth and development are achieved by the root apical meristem, which acts as a reservoir of stem cells. The stem cells, on the one hand, constantly renew themselves through cell division. On the other hand, they differentiate into functional cells to form diverse tissues of the root. The balance between the maintenance and consumption of the root apical meristem is governed by cell-to-cell communications. Receptor-like protein kinases (RLKs), a group of signaling molecules localized on the cell surface, have been implicated in sensing multiple endogenous and environmental signals for plant development and stress adaptation. Over the past two decades, various RLKs and their ligands have been revealed to participate in regulating root meristem homeostasis. In this review, we focus on the recent studies about RLK-mediated signaling in regulating the maintenance and consumption of the root apical meristem.
Collapse
|
46
|
Zhong Y, Xie J, Wen S, Wu W, Tan L, Lei M, Shi H, Zhu JK. TPST is involved in fructose regulation of primary root growth in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2020; 103:511-525. [PMID: 32279151 DOI: 10.1007/s11103-020-01006-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
TPST is involved in fructose signaling to regulate the root development and expression of genes in biological processes including auxin biosynthesis and accumulation in Arabidopsis. Sulfonation of proteins by tyrosine protein sulfotransferases (TPST) has been implicated in many important biological processes in eukaryotic organisms. Arabidopsis possesses a single TPST gene and its role in auxin homeostasis and root development has been reported. Here we show that the Arabidopsis tpst mutants are hypersensitive to fructose. In contrast to sucrose and glucose, fructose represses primary root growth of various ecotypes of Arabidopsis at low concentrations. RNA-seq analysis identified 636 differentially expressed genes (DEGs) in Col-0 seedlings in response to fructose verses glucose. GO and KEGG analyses of the DEGs revealed that fructose down-regulates genes involved in photosynthesis, glucosinolate biosynthesis and IAA biosynthesis, but up-regulates genes involved in the degradation of branched amino acids, sucrose starvation response, and dark response. The fructose responsive DEGs in the tpst mutant largely overlapped with that in Col-0, and most DEGs in tpst displayed larger changes than in Col-0. Interestingly, the fructose up-regulated DEGs includes genes encoding two AtTPST substrate proteins, Phytosulfokine 2 (PSK2) and Root Meristem Growth Factor 7 (RGF7). Synthesized peptides of PSK-α and RGF7 could restore the fructose hypersensitivity of tpst mutant plants. Furthermore, auxin distribution and accumulation at the root tip were affected by fructose and the tpst mutation. Our findings suggest that fructose serves as a signal to regulate the expression of genes involved in various biological processes including auxin biosynthesis and accumulation, and that modulation of auxin accumulation and distribution in roots by fructose might be partly mediated by the TPST substrate genes PSK-α and RGF7.
Collapse
Affiliation(s)
- Yingli Zhong
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| | - Jiyong Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Suzhen Wen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Wenwu Wu
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Li Tan
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
47
|
Wang J, Su Y, Kong X, Ding Z, Zhang XS. Initiation and maintenance of plant stem cells in root and shoot apical meristems. ABIOTECH 2020; 1:194-204. [PMID: 36303567 PMCID: PMC9590467 DOI: 10.1007/s42994-020-00020-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/07/2020] [Indexed: 11/27/2022]
Abstract
Plant stem cells are a small group of cells with a self-renewal capacity and serve as a steady supply of precursor cells to form new differentiated tissues and organs in plants. Root stem cells and shoot stem cells, which are located in the root apical meristem and in the shoot apical meristem, respectively, play a critical role in plant longitudinal growth. These stem cells in shoot and root apical meristems remain as pluripotent state throughout the lifespan of the plant and control the growth and development of plants. The molecular mechanisms of initiation and maintenance of plant stem cells have been extensively investigated. In this review, we mainly discuss how the plant phytohormones, such as auxin and cytokinin, coordinate with the key transcription factors to regulate plant stem cell initiation and maintenance in root and shoot apical meristems. In addition, we highlight the common regulatory mechanisms of both root and shoot apical meristems.
Collapse
Affiliation(s)
- Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237 Shandong China
| | - Yinghua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237 Shandong China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237 Shandong China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 Shandong China
| |
Collapse
|
48
|
Fernandez AI, Vangheluwe N, Xu K, Jourquin J, Claus LAN, Morales-Herrera S, Parizot B, De Gernier H, Yu Q, Drozdzecki A, Maruta T, Hoogewijs K, Vannecke W, Peterson B, Opdenacker D, Madder A, Nimchuk ZL, Russinova E, Beeckman T. GOLVEN peptide signalling through RGI receptors and MPK6 restricts asymmetric cell division during lateral root initiation. NATURE PLANTS 2020; 6:533-543. [PMID: 32393883 DOI: 10.1038/s41477-020-0645-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 03/24/2020] [Indexed: 05/26/2023]
Abstract
During lateral root initiation, lateral root founder cells undergo asymmetric cell divisions that generate daughter cells with different sizes and fates, a prerequisite for correct primordium organogenesis. An excess of the GLV6/RGF8 peptide disrupts these initial asymmetric cell divisions, resulting in more symmetric divisions and the failure to achieve lateral root organogenesis. Here, we show that loss-of-function GLV6 and its homologue GLV10 increase asymmetric cell divisions during lateral root initiation, and we identified three members of the RGF1 INSENSITIVE/RGF1 receptor subfamily as likely GLV receptors in this process. Through a suppressor screen, we found that MITOGEN-ACTIVATED PROTEIN KINASE6 is a downstream regulator of the GLV pathway. Our data indicate that GLV6 and GLV10 act as inhibitors of asymmetric cell divisions and signal through RGF1 INSENSITIVE receptors and MITOGEN-ACTIVATED PROTEIN KINASE6 to restrict the number of initial asymmetric cell divisions that take place during lateral root initiation.
Collapse
Affiliation(s)
- Ana I Fernandez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lucas Alves Neubus Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Stefania Morales-Herrera
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark, Leuven, Belgium
- VIB Center for Microbiology, Kasteelpark, Leuven, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hugues De Gernier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Qiaozhi Yu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Andrzej Drozdzecki
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Kurt Hoogewijs
- Department of Organic Chemistry and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Willem Vannecke
- Department of Organic Chemistry and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Brenda Peterson
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Davy Opdenacker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Annemieke Madder
- Department of Organic Chemistry and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
49
|
Zhang ML, Huang PP, Ji Y, Wang S, Wang SS, Li Z, Guo Y, Ding Z, Wu WH, Wang Y. KUP9 maintains root meristem activity by regulating K + and auxin homeostasis in response to low K. EMBO Rep 2020; 21:e50164. [PMID: 32250038 DOI: 10.15252/embr.202050164] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Potassium (K) is essential for plant growth and development. Here, we show that the KUP/HAK/KT K+ transporter KUP9 controls primary root growth in Arabidopsis thaliana. Under low-K+ conditions, kup9 mutants displayed a short-root phenotype that resulted from reduced numbers of root cells. KUP9 was highly expressed in roots and specifically expressed in quiescent center (QC) cells in root tips. The QC acts to maintain root meristem activity, and low-K+ conditions induced QC cell division in kup9 mutants, resulting in impaired root meristem activity. The short-root phenotype and enhanced QC cell division in kup9 mutants could be rescued by exogenous auxin treatment or by specifically increasing auxin levels in QC cells, suggesting that KUP9 affects auxin homeostasis in QC cells. Further studies showed that KUP9 mainly localized to the endoplasmic reticulum (ER), where it mediated K+ and auxin efflux from the ER lumen to the cytoplasm in QC cells under low-K+ conditions. These results demonstrate that KUP9 maintains Arabidopsis root meristem activity and root growth by regulating K+ and auxin homeostasis in response to low-K+ stress.
Collapse
Affiliation(s)
- Mei-Ling Zhang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pan-Pan Huang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuwei Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shao-Shuai Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
50
|
Song SK, Jang HU, Kim YH, Lee BH, Lee MM. Overexpression of three related root-cap outermost-cell-specific C2H2-type zinc-finger protein genes suppresses the growth of Arabidopsis in an EAR-motif-dependent manner. BMB Rep 2020. [PMID: 32172729 PMCID: PMC7118352 DOI: 10.5483/bmbrep.2020.53.3.286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The root meristem of Arabidopsis thaliana is protected by the root cap, the size of which is tightly regulated by the balance between the formative cell divisions and the dispersal of the outermost cells. We isolated an enhancer-tagged dominant mutant displaying the short and twisted root by the overexpression of ZINC-FINGER OF ARABIDOPSIS THALIANA1 (ZAT1) encoding an EAR motif-containing zinc-finger protein. The growth inhibition by ZAT1 was shared by ZAT4 and ZAT9, the ZAT1 homologues. The ZAT1 promoter was specifically active in the outermost cells of the root cap, in which ZAT1-GFP was localized when expressed by the ZAT1 promoter. The outermost cell-specific expression pattern of ZAT1 was not altered in the sombrero (smb) or smb bearskin1 (brn1) brn2 accumulating additional root-cap layers. In contrast, ZAT4-GFP and ZAT9- GFP fusion proteins were distributed to the inner root-cap cells in addition to the outermost cells where ZAT4 and ZAT9 promoters were active. Overexpression of ZAT1 induced the ectopic expression of PUTATIVE ASPARTIC PROTEASE3 involved in the programmed cell death. The EAR motif was essential for the growth inhibition by ZAT1. These results suggest that the three related ZATs might regulate the maturation of the outermost cells of the root cap.
Collapse
Affiliation(s)
- Sang-Kee Song
- Department of Biology, Chosun University, Gwangju 61452, Korea
| | - Hyeon-Ung Jang
- Department of Biology, Chosun University, Gwangju 61452, Korea
| | - Yo Han Kim
- Department of Biology, Chosun University, Gwangju 61452, Korea
| | - Bang Heon Lee
- Department of Biology, Chosun University, Gwangju 61452, Korea
| | - Myeong Min Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|