1
|
Williams-Carrier R, Chotewutmontri P, Perkel S, Rojas M, Belcher S, Barkan A. The psbA open reading frame acts in cis to toggle HCF173 from an activator to a repressor for light-regulated psbA translation in plants. THE PLANT CELL 2025; 37:koaf047. [PMID: 40073200 PMCID: PMC11983388 DOI: 10.1093/plcell/koaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025]
Abstract
The D1 subunit of photosystem II is subject to photooxidative damage. Photodamaged D1 must be replaced with nascent D1 to maintain photosynthesis. In plant chloroplasts, D1 photodamage regulates D1 synthesis by modulating translation initiation on psbA mRNA encoding D1, but the underlying mechanisms are unknown. Analyses of reporter constructs in transplastomic tobacco (Nicotiana tabacum) showed that the psbA translational regulator HCF173 activates via a cis-element in the psbA 5'-UTR. However, the psbA UTRs are not sufficient to program light-regulated translation. Instead, the psbA open reading frame represses translation initiation in cis, and D1 photodamage relieves this repression. HCF173 remains bound to the psbA 5'-UTR in the dark and truncation of HCF173 prevents repression in the dark, implicating HCF173 as a mediator of repression. We propose a model that accounts for these and prior observations, which is informed by structures of the Complex I assembly factor CIA30/NDUFAF1. We posit that D1 photodamage relieves a repressive cotranslational interaction between nascent D1 and HCF173's CIA30 domain, that the photosystem II assembly factor HCF136 promotes this repressive interaction, and that these events toggle HCF173 between activating and repressive conformations on psbA mRNA. These findings elucidate a translational rheostat that optimizes photosynthesis in response to shifting light conditions.
Collapse
Affiliation(s)
| | | | - Sarah Perkel
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405, USA
| | - Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405, USA
| | - Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405, USA
| |
Collapse
|
2
|
Hess WR, Wilde A, Mullineaux CW. Does mRNA targeting explain gene retention in chloroplasts? TRENDS IN PLANT SCIENCE 2025; 30:147-155. [PMID: 39443276 DOI: 10.1016/j.tplants.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
During their evolution from cyanobacteria, plastids have relinquished most of their genes to the host cell nucleus, but have retained a core set of genes that are transcribed and translated within the organelle. Previous explanations have included incompatible codon or base composition, problems importing certain proteins across the double membrane, or the need for tight regulation in concert with the redox status of the electron transport chain. In this opinion article we propose the 'mRNA targeting hypothesis'. Studies in cyanobacteria suggest that mRNAs encoding core photosynthetic proteins have features that are crucial for membrane targeting and coordination of early steps in complex assembly. We propose that the requirement for intimate involvement of mRNA molecules at the thylakoid surface explains the retention of core photosynthetic genes in chloroplasts.
Collapse
Affiliation(s)
- Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Kwok van der Giezen F, Honkanen S, Colas des Francs-Small C, Bond C, Small I. Applications of Synthetic Pentatricopeptide Repeat Proteins. PLANT & CELL PHYSIOLOGY 2024; 65:503-515. [PMID: 38035801 PMCID: PMC11094755 DOI: 10.1093/pcp/pcad150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
RNA-binding proteins play integral roles in the regulation of essential processes in cells and as such are attractive targets for engineering to manipulate gene expression at the RNA level. Expression of transcripts in chloroplasts and mitochondria is heavily regulated by pentatricopeptide repeat (PPR) proteins. The diverse roles of PPR proteins and their naturally modular architecture make them ideal candidates for engineering. Synthetic PPR proteins are showing great potential to become valuable tools for controlling the expression of plastid and mitochondrial transcripts. In this review, by 'synthetic', we mean both rationally modified natural PPR proteins and completely novel proteins designed using the principles learned from their natural counterparts. We focus on the many different applications of synthetic PPR proteins, covering both their use in basic research to learn more about protein-RNA interactions and their use to achieve specific outcomes in RNA processing and the control of gene expression. We describe the challenges associated with the design, construction and deployment of synthetic PPR proteins and provide perspectives on how they might be assembled and used in future biotechnology applications.
Collapse
Affiliation(s)
- Farley Kwok van der Giezen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charles Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Kafri M, Patena W, Martin L, Wang L, Gomer G, Ergun SL, Sirkejyan AK, Goh A, Wilson AT, Gavrilenko SE, Breker M, Roichman A, McWhite CD, Rabinowitz JD, Cross FR, Wühr M, Jonikas MC. Systematic identification and characterization of genes in the regulation and biogenesis of photosynthetic machinery. Cell 2023; 186:5638-5655.e25. [PMID: 38065083 PMCID: PMC10760936 DOI: 10.1016/j.cell.2023.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Photosynthesis is central to food production and the Earth's biogeochemistry, yet the molecular basis for its regulation remains poorly understood. Here, using high-throughput genetics in the model eukaryotic alga Chlamydomonas reinhardtii, we identify with high confidence (false discovery rate [FDR] < 0.11) 70 poorly characterized genes required for photosynthesis. We then enable the functional characterization of these genes by providing a resource of proteomes of mutant strains, each lacking one of these genes. The data allow assignment of 34 genes to the biogenesis or regulation of one or more specific photosynthetic complexes. Further analysis uncovers biogenesis/regulatory roles for at least seven proteins, including five photosystem I mRNA maturation factors, the chloroplast translation factor MTF1, and the master regulator PMR1, which regulates chloroplast genes via nuclear-expressed factors. Our work provides a rich resource identifying regulatory and functional genes and placing them into pathways, thereby opening the door to a system-level understanding of photosynthesis.
Collapse
Affiliation(s)
- Moshe Kafri
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lance Martin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gillian Gomer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sabrina L Ergun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Arthur K Sirkejyan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Audrey Goh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia E Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michal Breker
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Asael Roichman
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Frederick R Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
5
|
Chaux F, Jarrige D, Rodrigues-Azevedo M, Bujaldon S, Caspari OD, Ozawa SI, Drapier D, Vallon O, Choquet Y, de Vitry C. Chloroplast ATP synthase biogenesis requires peripheral stalk subunits AtpF and ATPG and stabilization of atpE mRNA by OPR protein MDE1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1582-1599. [PMID: 37824282 DOI: 10.1111/tpj.16448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023]
Abstract
Chloroplast ATP synthase contains subunits of plastid and nuclear genetic origin. To investigate the coordinated biogenesis of this complex, we isolated novel ATP synthase mutants in the green alga Chlamydomonas reinhardtii by screening for high light sensitivity. We report here the characterization of mutants affecting the two peripheral stalk subunits b and b', encoded respectively by the atpF and ATPG genes, and of three independent mutants which identify the nuclear factor MDE1, required to stabilize the chloroplast-encoded atpE mRNA. Whole-genome sequencing revealed a transposon insertion in the 3'UTR of ATPG while mass spectrometry shows a small accumulation of functional ATP synthase in this knock-down ATPG mutant. In contrast, knock-out ATPG mutants, obtained by CRISPR-Cas9 gene editing, fully prevent ATP synthase function and accumulation, as also observed in an atpF frame-shift mutant. Crossing ATP synthase mutants with the ftsh1-1 mutant of the major thylakoid protease identifies AtpH as an FTSH substrate, and shows that FTSH significantly contributes to the concerted accumulation of ATP synthase subunits. In mde1 mutants, the absence of atpE transcript fully prevents ATP synthase biogenesis and photosynthesis. Using chimeric atpE genes to rescue atpE transcript accumulation, we demonstrate that MDE1, a novel octotricopeptide repeat (OPR) protein, genetically targets the atpE 5'UTR. In the perspective of the primary endosymbiosis (~1.5 Gy), the recruitment of MDE1 to its atpE target exemplifies a nucleus/chloroplast interplay that evolved rather recently, in the ancestor of the CS clade of Chlorophyceae, ~300 My ago.
Collapse
Affiliation(s)
- Frédéric Chaux
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Domitille Jarrige
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Marcio Rodrigues-Azevedo
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Sandrine Bujaldon
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Oliver D Caspari
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Shin-Ichiro Ozawa
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Dominique Drapier
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Catherine de Vitry
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| |
Collapse
|
6
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
7
|
Li N, Wong WS, Feng L, Wang C, Wong KS, Zhang N, Yang W, Jiang Y, Jiang L, He JX. The thylakoid membrane protein NTA1 is an assembly factor of the cytochrome b 6f complex essential for chloroplast development in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100509. [PMID: 36560880 PMCID: PMC9860185 DOI: 10.1016/j.xplc.2022.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The cytochrome b6f (Cyt b6f) complex is a multisubunit protein complex in chloroplast thylakoid membranes required for photosynthetic electron transport. Here we report the isolation and characterization of the new tiny albino 1 (nta1) mutant in Arabidopsis, which has severe defects in Cyt b6f accumulation and chloroplast development. Gene cloning revealed that the nta1 phenotype was caused by disruption of a single nuclear gene, NTA1, which encodes an integral thylakoid membrane protein conserved across green algae and plants. Overexpression of NTA1 completely rescued the nta1 phenotype, and knockout of NTA1 in wild-type plants recapitulated the mutant phenotype. Loss of NTA1 function severely impaired the accumulation of multiprotein complexes related to photosynthesis in thylakoid membranes, particularly the components of Cyt b6f. NTA1 was shown to directly interact with four subunits (Cyt b6/PetB, PetD, PetG, and PetN) of Cyt b6f through the DUF1279 domain and C-terminal sequence to mediate their assembly. Taken together, our results identify NTA1 as a new and key regulator of chloroplast development that plays essential roles in assembly of the Cyt b6f complex by interacting with multiple Cyt b6f subunits.
Collapse
Affiliation(s)
- Na Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wing Shing Wong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Lei Feng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chunming Wang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - King Shing Wong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Nianhui Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wei Yang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Liwen Jiang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
8
|
Wietrzynski W, Traverso E, Wollman FA, Wostrikoff K. The state of oligomerization of Rubisco controls the rate of synthesis of the Rubisco large subunit in Chlamydomonas reinhardtii. THE PLANT CELL 2021; 33:1706-1727. [PMID: 33625514 PMCID: PMC8254502 DOI: 10.1093/plcell/koab061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/12/2021] [Indexed: 05/22/2023]
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is present in all photosynthetic organisms and is a key enzyme for photosynthesis-driven life on Earth. Its most prominent form is a hetero-oligomer in which small subunits (SSU) stabilize the core of the enzyme built from large subunits (LSU), yielding, after a chaperone-assisted multistep assembly process, an LSU8SSU8 hexadecameric holoenzyme. Here we use Chlamydomonas reinhardtii and a combination of site-directed mutants to dissect the multistep biogenesis pathway of Rubisco in vivo. We identify assembly intermediates, in two of which LSU are associated with the RAF1 chaperone. Using genetic and biochemical approaches we further unravel a major regulation process during Rubisco biogenesis, in which LSU translation is controlled by its ability to assemble with the SSU, via the mechanism of control by epistasy of synthesis (CES). Altogether this leads us to propose a model whereby the last assembly intermediate, an LSU8-RAF1 complex, provides the platform for SSU binding to form the Rubisco enzyme, and when SSU is not available, converts to a key regulatory form that exerts negative feedback on the initiation of LSU translation.
Collapse
Affiliation(s)
- Wojciech Wietrzynski
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, 75005 Paris, France
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Eleonora Traverso
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, 75005 Paris, France
| | - Francis-André Wollman
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, 75005 Paris, France
| | - Katia Wostrikoff
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, 75005 Paris, France
| |
Collapse
|
9
|
Macedo-Osorio KS, Martínez-Antonio A, Badillo-Corona JA. Pas de Trois: An Overview of Penta-, Tetra-, and Octo-Tricopeptide Repeat Proteins From Chlamydomonas reinhardtii and Their Role in Chloroplast Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:775366. [PMID: 34868174 PMCID: PMC8635915 DOI: 10.3389/fpls.2021.775366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
Penta-, Tetra-, and Octo-tricopeptide repeat (PPR, TPR, and OPR) proteins are nucleus-encoded proteins composed of tandem repeats of 35, 34, and 38-40 amino acids, respectively. They form helix-turn-helix structures that interact with mRNA or other proteins and participate in RNA stabilization, processing, maturation, and act as translation enhancers of chloroplast and mitochondrial mRNAs. These helical repeat proteins are unevenly present in plants and algae. While PPR proteins are more abundant in plants than in algae, OPR proteins are more abundant in algae. In Arabidopsis, maize, and rice there have been 450, 661, and 477 PPR proteins identified, respectively, which contrasts with only 14 PPR proteins identified in Chlamydomonas reinhardtii. Likewise, more than 120 OPR proteins members have been predicted from the nuclear genome of C. reinhardtii and only one has been identified in Arabidopsis thaliana. Due to their abundance in land plants, PPR proteins have been largely characterized making it possible to elucidate their RNA-binding code. This has even allowed researchers to generate engineered PPR proteins with defined affinity to a particular target, which has served as the basis to develop tools for gene expression in biotechnological applications. However, fine elucidation of the helical repeat proteins code in Chlamydomonas is a pending task. In this review, we summarize the current knowledge on the role PPR, TPR, and OPR proteins play in chloroplast gene expression in the green algae C. reinhardtii, pointing to relevant similarities and differences with their counterparts in plants. We also recapitulate on how these proteins have been engineered and shown to serve as mRNA regulatory factors for biotechnological applications in plants and how this could be used as a starting point for applications in algae.
Collapse
Affiliation(s)
- Karla S. Macedo-Osorio
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City, México
- Biological Engineering Laboratory, Genetic Engineering Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional-Unidad Irapuato, Irapuato, México
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, México City, México
- *Correspondence: Karla S. Macedo-Osorio,
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional-Unidad Irapuato, Irapuato, México
| | - Jesús A. Badillo-Corona
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City, México
- Jesús A. Badillo-Corona,
| |
Collapse
|
10
|
Bertgen L, Mühlhaus T, Herrmann JM. Clingy genes: Why were genes for ribosomal proteins retained in many mitochondrial genomes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148275. [PMID: 32712152 DOI: 10.1016/j.bbabio.2020.148275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 11/18/2022]
Abstract
Why mitochondria still retain their own genome is a puzzle given the enormous effort to maintain a mitochondrial translation machinery. Most mitochondrially encoded proteins are membrane-embedded subunits of the respiratory chain. Their hydrophobicity presumably impedes their import into mitochondria. However, many mitochondrial genomes also encode protein subunits of the mitochondrial ribosome. These proteins lack transmembrane domains and hydrophobicity cannot explain why their genes remained in mitochondria. In this review, we provide an overview about mitochondrially encoded subunits of mitochondrial ribosomes of fungi, plants and protists. Moreover, we discuss and evaluate different hypotheses which were put forward to explain why (ribosomal) proteins remained mitochondrially encoded. It seems likely that the synthesis of ribosomal proteins in the mitochondrial matrix is used to regulate the assembly of the mitochondrial ribosome within mitochondria and to avoid problems that mitochondrial proteins might pose for cytosolic proteostasis and for the assembly of cytosolic ribosomes.
Collapse
Affiliation(s)
- Lea Bertgen
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 23, 67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany.
| |
Collapse
|
11
|
Carrera-Pacheco SE, Hankamer B, Oey M. Light and heat-shock mediated TDA1 overexpression as a tool for controlled high-yield recombinant protein production in Chlamydomonas reinhardtii chloroplasts. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Ozawa SI, Cavaiuolo M, Jarrige D, Kuras R, Rutgers M, Eberhard S, Drapier D, Wollman FA, Choquet Y. The OPR Protein MTHI1 Controls the Expression of Two Different Subunits of ATP Synthase CFo in Chlamydomonas reinhardtii. THE PLANT CELL 2020; 32:1179-1203. [PMID: 31988263 PMCID: PMC7145495 DOI: 10.1105/tpc.19.00770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 05/19/2023]
Abstract
In the green alga Chlamydomonas (Chlamydomonas r einhardtii), chloroplast gene expression is tightly regulated posttranscriptionally by gene-specific trans-acting protein factors. Here, we report the identification of the octotricopeptide repeat protein MTHI1, which is critical for the biogenesis of chloroplast ATP synthase oligomycin-sensitive chloroplast coupling factor. Unlike most trans-acting factors characterized so far in Chlamydomonas, which control the expression of a single gene, MTHI1 targets two distinct transcripts: it is required for the accumulation and translation of atpH mRNA, encoding a subunit of the selective proton channel, but it also enhances the translation of atpI mRNA, which encodes the other subunit of the channel. MTHI1 targets the 5' untranslated regions of both the atpH and atpI genes. Coimmunoprecipitation and small RNA sequencing revealed that MTHI1 binds specifically a sequence highly conserved among Chlorophyceae and the Ulvale clade of Ulvophyceae at the 5' end of triphosphorylated atpH mRNA. A very similar sequence, located ∼60 nucleotides upstream of the atpI initiation codon, was also found in some Chlorophyceae and Ulvale algae species and is essential for atpI mRNA translation in Chlamydomonas. Such a dual-targeted trans-acting factor provides a means to coregulate the expression of the two proton hemi-channels.
Collapse
Affiliation(s)
- Shin-Ichiro Ozawa
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Marina Cavaiuolo
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Domitille Jarrige
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Richard Kuras
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Mark Rutgers
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Stephan Eberhard
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Dominique Drapier
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Francis-André Wollman
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
13
|
Assembly of Mitochondrial Complex I Requires the Low-Complexity Protein AMC1 in Chlamydomonas reinhardtii. Genetics 2020; 214:895-911. [PMID: 32075865 DOI: 10.1534/genetics.120.303029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/05/2020] [Indexed: 11/18/2022] Open
Abstract
Complex I is the first enzyme involved in the mitochondrial electron transport chain. With >40 subunits of dual genetic origin, the biogenesis of complex I is highly intricate and poorly understood. We used Chlamydomonas reinhardtii as a model system to reveal factors involved in complex I biogenesis. Two insertional mutants, displaying a complex I assembly defect characterized by the accumulation of a 700 kDa subcomplex, were analyzed. Genetic analyses showed these mutations were allelic and mapped to the gene AMC1 (Cre16.g688900) encoding a low-complexity protein of unknown function. The complex I assembly and activity in the mutant was restored by complementation with the wild-type gene, confirming AMC1 is required for complex I biogenesis. The N terminus of AMC1 targets a reporter protein to yeast mitochondria, implying that AMC1 resides and functions in the Chlamydomonas mitochondria. Accordingly, in both mutants, loss of AMC1 function results in decreased abundance of the mitochondrial nd4 transcript, which encodes the ND4 membrane subunit of complex I. Loss of ND4 in a mitochondrial nd4 mutant is characterized by a membrane arm assembly defect, similar to that exhibited by loss of AMC1. These results suggest AMC1 is required for the production of mitochondrially-encoded complex I subunits, specifically ND4. We discuss the possible modes of action of AMC1 in mitochondrial gene expression and complex I biogenesis.
Collapse
|
14
|
Rochaix JD. The Dynamics of the Photosynthetic Apparatus in Algae. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Viola S, Cavaiuolo M, Drapier D, Eberhard S, Vallon O, Wollman FA, Choquet Y. MDA1, a nucleus-encoded factor involved in the stabilization and processing of the atpA transcript in the chloroplast of Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1033-1047. [PMID: 30809889 DOI: 10.1111/tpj.14300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
In Chlamydomonas reinhardtii, chloroplast gene expression is tightly regulated post-transcriptionally by gene-specific trans-acting protein factors. Here, we report the molecular identification of an OctotricoPeptide Repeat (OPR) protein, MDA1, which governs the maturation and accumulation of the atpA transcript, encoding subunit α of the chloroplast ATP synthase. As does TDA1, another OPR protein required for the translation of the atpA mRNA, MDA1 targets the atpA 5'-untranslated region (UTR). Unexpectedly, it binds within a region of approximately 100 nt in the middle of the atpA 5'-UTR, at variance with the stabilization factors characterized so far, which bind to the 5'-end of their target mRNA to protect it from 5' → 3' exonucleases. It binds the same region as TDA1, with which it forms a high-molecular-weight complex that also comprises the atpA mRNA. This complex dissociates upon translation, promoting degradation of the atpA mRNA. We suggest that atpA transcripts, once translated, enter the degradation pathway because they cannot reassemble with MDA1 and TDA1, which preferentially bind to de novo transcribed mRNAs.
Collapse
Affiliation(s)
- Stefania Viola
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Marina Cavaiuolo
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Dominique Drapier
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Stephan Eberhard
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Olivier Vallon
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Francis-André Wollman
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Yves Choquet
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
16
|
Jiang J, Chai X, Manavski N, Williams-Carrier R, He B, Brachmann A, Ji D, Ouyang M, Liu Y, Barkan A, Meurer J, Zhang L, Chi W. An RNA Chaperone-Like Protein Plays Critical Roles in Chloroplast mRNA Stability and Translation in Arabidopsis and Maize. THE PLANT CELL 2019; 31:1308-1327. [PMID: 30962391 PMCID: PMC6588297 DOI: 10.1105/tpc.18.00946] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/19/2019] [Accepted: 04/07/2019] [Indexed: 05/18/2023]
Abstract
A key characteristic of chloroplast gene expression is the predominance of posttranscriptional control via numerous nucleus-encoded RNA binding factors. Here, we explored the essential roles of the S1-domain-containing protein photosynthetic electron transfer B (petB)/ petD Stabilizing Factor (BSF) in the stabilization and translation of chloroplast mRNAs. BSF binds to the intergenic region of petB-petD, thereby stabilizing 3' processed petB transcripts and stimulating petD translation. BSF also binds to the 5' untranslated region of petA and activates its translation. BSF displayed nucleic-acid-melting activity in vitro, and its absence induces structural changes to target RNAs in vivo, suggesting that BSF functions as an RNA chaperone to remodel RNA structure. BSF physically interacts with the pentatricopeptide repeat protein Chloroplast RNA Processing 1 (AtCRP1) and the ribosomal release factor-like protein Peptide chain Release Factor 3 (PrfB3), whose established RNA ligands overlap with those of BSF. In addition, PrfB3 stimulated the RNA binding ability of BSF in vitro. We propose that BSF and PrfB3 cooperatively reduce the formation of secondary RNA structures within target mRNAs and facilitate AtCRP1 binding. The translation activation function of BSF for petD is conserved in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays), but that for petA operates specifically in Arabidopsis. Our study sheds light on the mechanisms by which RNA binding proteins cooperatively regulate mRNA stability and translation in chloroplasts.
Collapse
Affiliation(s)
- Jingjing Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nikolay Manavski
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology, 82152 Planegg-Martinsried, Germany
| | | | - Baoye He
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yini Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Jörg Meurer
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology, 82152 Planegg-Martinsried, Germany
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Zoschke R, Bock R. Chloroplast Translation: Structural and Functional Organization, Operational Control, and Regulation. THE PLANT CELL 2018; 30:745-770. [PMID: 29610211 PMCID: PMC5969280 DOI: 10.1105/tpc.18.00016] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 05/20/2023]
Abstract
Chloroplast translation is essential for cellular viability and plant development. Its positioning at the intersection of organellar RNA and protein metabolism makes it a unique point for the regulation of gene expression in response to internal and external cues. Recently obtained high-resolution structures of plastid ribosomes, the development of approaches allowing genome-wide analyses of chloroplast translation (i.e., ribosome profiling), and the discovery of RNA binding proteins involved in the control of translational activity have greatly increased our understanding of the chloroplast translation process and its regulation. In this review, we provide an overview of the current knowledge of the chloroplast translation machinery, its structure, organization, and function. In addition, we summarize the techniques that are currently available to study chloroplast translation and describe how translational activity is controlled and which cis-elements and trans-factors are involved. Finally, we discuss how translational control contributes to the regulation of chloroplast gene expression in response to developmental, environmental, and physiological cues. We also illustrate the commonalities and the differences between the chloroplast and bacterial translation machineries and the mechanisms of protein biosynthesis in these two prokaryotic systems.
Collapse
Affiliation(s)
- Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
18
|
Legen J, Ruf S, Kroop X, Wang G, Barkan A, Bock R, Schmitz-Linneweber C. Stabilization and translation of synthetic operon-derived mRNAs in chloroplasts by sequences representing PPR protein-binding sites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:8-21. [PMID: 29418028 DOI: 10.1111/tpj.13863] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 05/08/2023]
Abstract
The chloroplast is a prime target for genetic engineering in plants, offering various advantages over nuclear transformation. For example, chloroplasts allow the expression of polycistronic transcripts and thus to engineer complex metabolic pathways. Each cistron within such a longer transcript needs its own expression elements. Within the 5'-UTR, such expression elements are needed for stabilizing mRNAs and for translation of the downstream reading frame. One of the few effective expression elements used so far in transplastomic approaches is the intercistronic expression element (IEE). The IEE is derived from the psbT-psbH intergenic region and includes a target sequence of the RNA binding protein HCF107. We here show that excessive expression of the IEE can lead to specific defects of endogenous chloroplast mRNA stabilization, likely via depletion of HCF107. Key players in chloroplast transcript stabilization and translation are pentatricopeptide repeat (PPR) proteins, which are structurally related to HCF107. PPR proteins that stabilize mRNAs leave behind short RNA footprints that are indicators of their activity. We identified such sRNAs in tobacco, and demonstrate that they are sufficient to stabilize and stimulate translation of mRNAs from synthetic dicistronic transgenes in chloroplasts. Thus, minimal sequence elements are generally adequate to support key steps in chloroplast gene expression, i.e. RNA stability and translation. Furthermore, our analysis expands the repertoire of available expression elements to facilitate the assembly and expression of multi-gene ensembles in the chloroplast.
Collapse
Affiliation(s)
- Julia Legen
- Institut für Biologie, Humboldt-Universität Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, Berlin, 10115, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Xenia Kroop
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Gongwei Wang
- Institut für Biologie, Humboldt-Universität Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, Berlin, 10115, Germany
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | | |
Collapse
|
19
|
Cline SG, Laughbaum IA, Hamel PP. CCS2, an Octatricopeptide-Repeat Protein, Is Required for Plastid Cytochrome c Assembly in the Green Alga Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28824661 DOI: 10.3389/fpls.2017.0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In bacteria and energy generating organelles, c-type cytochromes are a class of universal electron carriers with a heme cofactor covalently linked via one or two thioether bonds to a heme binding site. The covalent attachment of heme to apocytochromes is a catalyzed process, taking place via three evolutionarily distinct assembly pathways (Systems I, II, III). System II was discovered in the green alga Chlamydomonas reinhardtii through the genetic analysis of the ccs mutants (cytochrome csynthesis), which display a block in the apo- to holo- form conversion of cytochrome f and c6, the thylakoid lumen resident c-type cytochromes functioning in photosynthesis. Here we show that the gene corresponding to the CCS2 locus encodes a 1,719 amino acid polypeptide and identify the molecular lesions in the ccs2-1 to ccs2-5 alleles. The CCS2 protein displays seven degenerate amino acid repeats, which are variations of the octatricopeptide-repeat motif (OPR) recently recognized in several nuclear-encoded proteins controlling the maturation, stability, or translation of chloroplast transcripts. A plastid site of action for CCS2 is inferred from the finding that GFP fused to the first 100 amino acids of the algal protein localizes to chloroplasts in Nicotiana benthamiana. We discuss the possible functions of CCS2 in the heme attachment reaction.
Collapse
Affiliation(s)
- Sara G Cline
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| | - Isaac A Laughbaum
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
| | - Patrice P Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| |
Collapse
|
20
|
Cline SG, Laughbaum IA, Hamel PP. CCS2, an Octatricopeptide-Repeat Protein, Is Required for Plastid Cytochrome c Assembly in the Green Alga Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2017; 8:1306. [PMID: 28824661 PMCID: PMC5541062 DOI: 10.3389/fpls.2017.01306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/12/2017] [Indexed: 05/19/2023]
Abstract
In bacteria and energy generating organelles, c-type cytochromes are a class of universal electron carriers with a heme cofactor covalently linked via one or two thioether bonds to a heme binding site. The covalent attachment of heme to apocytochromes is a catalyzed process, taking place via three evolutionarily distinct assembly pathways (Systems I, II, III). System II was discovered in the green alga Chlamydomonas reinhardtii through the genetic analysis of the ccs mutants (cytochrome csynthesis), which display a block in the apo- to holo- form conversion of cytochrome f and c6, the thylakoid lumen resident c-type cytochromes functioning in photosynthesis. Here we show that the gene corresponding to the CCS2 locus encodes a 1,719 amino acid polypeptide and identify the molecular lesions in the ccs2-1 to ccs2-5 alleles. The CCS2 protein displays seven degenerate amino acid repeats, which are variations of the octatricopeptide-repeat motif (OPR) recently recognized in several nuclear-encoded proteins controlling the maturation, stability, or translation of chloroplast transcripts. A plastid site of action for CCS2 is inferred from the finding that GFP fused to the first 100 amino acids of the algal protein localizes to chloroplasts in Nicotiana benthamiana. We discuss the possible functions of CCS2 in the heme attachment reaction.
Collapse
Affiliation(s)
- Sara G. Cline
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| | - Isaac A. Laughbaum
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
| | - Patrice P. Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
- *Correspondence: Patrice P. Hamel,
| |
Collapse
|
21
|
Chotewutmontri P, Barkan A. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize. PLoS Genet 2016; 12:e1006106. [PMID: 27414025 PMCID: PMC4945096 DOI: 10.1371/journal.pgen.1006106] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/13/2016] [Indexed: 11/18/2022] Open
Abstract
Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery does not generally discriminate between edited and unedited RNAs. However, editing of ACG to AUG at the rpl2 start codon is essential for translation initiation, demonstrating that ACG does not serve as a start codon in maize chloroplasts.
Collapse
Affiliation(s)
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
22
|
Zhang L, Duan Z, Zhang J, Peng L. BIOGENESIS FACTOR REQUIRED FOR ATP SYNTHASE 3 Facilitates Assembly of the Chloroplast ATP Synthase Complex. PLANT PHYSIOLOGY 2016; 171:1291-306. [PMID: 27208269 PMCID: PMC4902607 DOI: 10.1104/pp.16.00248] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/12/2016] [Indexed: 05/04/2023]
Abstract
Thylakoid membrane-localized chloroplast ATP synthases use the proton motive force generated by photosynthetic electron transport to produce ATP from ADP. Although it is well known that the chloroplast ATP synthase is composed of more than 20 proteins with α3β3γ1ε1δ1I1II1III14IV1 stoichiometry, its biogenesis process is currently unclear. To unravel the molecular mechanisms underlying the biogenesis of chloroplast ATP synthase, we performed extensive screening for isolating ATP synthase mutants in Arabidopsis (Arabidopsis thaliana). In the recently identified bfa3 (biogenesis factors required for ATP synthase 3) mutant, the levels of chloroplast ATP synthase subunits were reduced to approximately 25% of wild-type levels. In vivo labeling analysis showed that assembly of the CF1 component of chloroplast ATP synthase was less efficient in bfa3 than in the wild type, indicating that BFA3 is required for CF1 assembly. BFA3 encodes a chloroplast stromal protein that is conserved in higher plants, green algae, and a few species of other eukaryotic algae, and specifically interacts with the CF1β subunit. The BFA3 binding site was mapped to a region in the catalytic site of CF1β. Several residues highly conserved in eukaryotic CF1β are crucial for the BFA3-CF1β interaction, suggesting a coevolutionary relationship between BFA3 and CF1β. BFA3 appears to function as a molecular chaperone that transiently associates with unassembled CF1β at its catalytic site and facilitates subsequent association with CF1α during assembly of the CF1 subcomplex of chloroplast ATP synthase.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Z., Z.D., J.Z., L.P.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (L.Z., Z.D.)
| | - Zhikun Duan
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Z., Z.D., J.Z., L.P.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (L.Z., Z.D.)
| | - Jiao Zhang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Z., Z.D., J.Z., L.P.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (L.Z., Z.D.)
| | - Lianwei Peng
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Z., Z.D., J.Z., L.P.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (L.Z., Z.D.)
| |
Collapse
|
23
|
PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis. Cell Discov 2016; 2:16003. [PMID: 27462450 PMCID: PMC4870678 DOI: 10.1038/celldisc.2016.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/27/2016] [Indexed: 11/14/2022] Open
Abstract
The biogenesis of photosystem I (PSI), cytochrome b6f (Cytb6f) and NADH dehydrogenase (NDH) complexes relies on the spatially and temporally coordinated expression and translation of both nuclear and chloroplast genes. Here we report the identification of photosystem biogenesis regulator 1 (PBR1), a nuclear-encoded chloroplast RNA-binding protein that regulates the concerted biogenesis of NDH, PSI and Cytb6f complexes. We identified Ycf1, one of the two largest chloroplast genome-encoded open reading frames as the direct downstream target protein of PBR1. Biochemical and molecular analyses reveal that PBR1 regulates Ycf1 translation by directly binding to its mRNA. Surprisingly, we further demonstrate that relocation of the chloroplast gene Ycf1 fused with a plastid-transit sequence to the nucleus bypasses the requirement of PBR1 for Ycf1 translation, which sufficiently complements the defects in biogenesis of NDH, PSI and Cytb6f complexes in PBR1-deficient plants. Remarkably, the nuclear-encoded PBR1 tightly controls the expression of the chloroplast gene Ycf1 at the translational level, which is sufficient to sustain the coordinated biogenesis of NDH, PSI and Cytb6f complexes as a whole. Our findings provide deep insights into better understanding of how a predominant nuclear-encoded factor can act as a migratory mediator and undergoes selective translational regulation of the target plastid gene in controlling biogenesis of photosynthetic complexes.
Collapse
|
24
|
Douchi D, Qu Y, Longoni P, Legendre-Lefebvre L, Johnson X, Schmitz-Linneweber C, Goldschmidt-Clermont M. A Nucleus-Encoded Chloroplast Phosphoprotein Governs Expression of the Photosystem I Subunit PsaC in Chlamydomonas reinhardtii. THE PLANT CELL 2016; 28:1182-99. [PMID: 27113776 PMCID: PMC4904667 DOI: 10.1105/tpc.15.00725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 04/25/2016] [Indexed: 05/05/2023]
Abstract
The nucleo-cytoplasmic compartment exerts anterograde control on chloroplast gene expression through numerous proteins that intervene at posttranscriptional steps. Here, we show that the maturation of psaC mutant (mac1) of Chlamydomonas reinhardtii is defective in photosystem I and fails to accumulate psaC mRNA. The MAC1 locus encodes a member of the Half-A-Tetratricopeptide (HAT) family of super-helical repeat proteins, some of which are involved in RNA transactions. The Mac1 protein localizes to the chloroplast in the soluble fraction. MAC1 acts through the 5' untranslated region of psaC transcripts and is required for their stability. Small RNAs that map to the 5'end of psaC RNA in the wild type but not in the mac1 mutant are inferred to represent footprints of MAC1-dependent protein binding, and Mac1 expressed in bacteria binds RNA in vitro. A coordinate response to iron deficiency, which leads to dismantling of the photosynthetic electron transfer chain and in particular of photosystem I, also causes a decrease of Mac1. Overexpression of Mac1 leads to a parallel increase in psaC mRNA but not in PsaC protein, suggesting that Mac1 may be limiting for psaC mRNA accumulation but that other processes regulate protein accumulation. Furthermore, Mac 1 is differentially phosphorylated in response to iron availability and to conditions that alter the redox balance of the electron transfer chain.
Collapse
Affiliation(s)
- Damien Douchi
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Yujiao Qu
- Institute of Biology, Molecular Genetics, Humboldt University of Berlin, D-10115 Berlin, Germany
| | - Paolo Longoni
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Linnka Legendre-Lefebvre
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Xenie Johnson
- Unité Mixte de Recherche 7141, CNRS/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
25
|
Zoschke R, Watkins KP, Miranda RG, Barkan A. The PPR-SMR protein PPR53 enhances the stability and translation of specific chloroplast RNAs in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:594-606. [PMID: 26643268 PMCID: PMC4777676 DOI: 10.1111/tpj.13093] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 05/09/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are helical repeat proteins that bind RNA and influence gene expression in mitochondria and chloroplasts. Several PPR proteins in plants harbor a carboxy-terminal small-MutS-related (SMR) domain, but the functions of the SMR appendage are unknown. To address this issue, we studied a maize PPR-SMR protein denoted PPR53 (GRMZM2G438524), which is orthologous to the Arabidopsis protein SOT1 (AT5G46580). Null ppr53 alleles condition a chlorotic, seedling-lethal phenotype and a reduction in plastid ribosome content. Plastome-wide transcriptome and translatome analyses revealed strong defects in the expression of the ndhA and rrn23 genes, which were superimposed on secondary effects resulting from a decrease in plastid ribosome content. Transcripts with processed 5'-ends mapping approximately 70 nucleotides upstream of rrn23 and ndhA are absent in ppr53 mutants, and the translational efficiency of the residual ndhA mRNAs is reduced. Recombinant PPR53 binds with high affinity and specificity to the 5' proximal region of the PPR53-dependent 23S rRNA, suggesting that PPR53 protects this RNA via a barrier mechanism similar to that described for several PPR proteins lacking SMR motifs. However, recombinant PPR53 did not bind with high affinity to the ndhA 5' untranslated region, suggesting that PPR53's RNA-stabilization and translation-enhancing effects at the ndhA locus involve the participation of other factors.
Collapse
Affiliation(s)
- Reimo Zoschke
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | | | - Rafael G. Miranda
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
26
|
De Marchis F, Bellucci M, Pompa A. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:603-14. [PMID: 26031839 PMCID: PMC11388822 DOI: 10.1111/pbi.12405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/20/2015] [Accepted: 04/25/2015] [Indexed: 06/04/2023]
Abstract
Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast.
Collapse
Affiliation(s)
- Francesca De Marchis
- Research Division of Perugia, Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Michele Bellucci
- Research Division of Perugia, Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Andrea Pompa
- Research Division of Perugia, Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| |
Collapse
|
27
|
Lefebvre-Legendre L, Reifschneider O, Kollipara L, Sickmann A, Wolters D, Kück U, Goldschmidt-Clermont M. A pioneer protein is part of a large complex involved in trans-splicing of a group II intron in the chloroplast of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:57-69. [PMID: 26611495 DOI: 10.1111/tpj.13089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 05/08/2023]
Abstract
Splicing of organellar introns requires the activity of numerous nucleus-encoded factors. In the chloroplast of Chlamydomonas reinhardtii, maturation of psaA mRNA encoding photosystem I subunit A involves two steps of trans-splicing. The exons, located on three separate transcripts, are flanked by sequences that fold to form the conserved structures of two group II introns. A fourth transcript contributes to assembly of the first intron, which is thus tripartite. The raa7 mutant (RNA maturation of psaA 7) is deficient in trans-splicing of the second intron of psaA, and may be rescued by transforming the chloroplast genome with an intron-less version of psaA. Using mapped-based cloning, we identify the RAA7 locus, which encodes a pioneer protein with no previously known protein domain or motif. The Raa7 protein, which is not associated with membranes, localizes to the chloroplast. Raa7 is a component of a large complex and co-sediments in sucrose gradients with the previously described splicing factors Raa1 and Raa2. Based on tandem affinity purification of Raa7 and mass spectrometry, Raa1 and Raa2 were identified as interacting partners of Raa7. Yeast two-hybrid experiments indicate that the interaction of Raa7 with Raa1 and Raa2 may be direct. We conclude that Raa7 is a component of a multimeric complex that is required for trans-splicing of the second intron of psaA. The characterization of this psaA trans-splicing complex is also of interest from an evolutionary perspective because the nuclear spliceosomal introns are thought to derive from group II introns, with which they show mechanistic and structural similarity.
Collapse
Affiliation(s)
- Linnka Lefebvre-Legendre
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | - Olga Reifschneider
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften- ISAS - e.V., Otto Hahn Straße 6b, Dortmund, 44227, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften- ISAS - e.V., Otto Hahn Straße 6b, Dortmund, 44227, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
- Medizinische Fakultät, Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Dirk Wolters
- Department of Analytical Chemistry, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| |
Collapse
|
28
|
Wang F, Johnson X, Cavaiuolo M, Bohne AV, Nickelsen J, Vallon O. Two Chlamydomonas OPR proteins stabilize chloroplast mRNAs encoding small subunits of photosystem II and cytochrome b6 f. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:861-73. [PMID: 25898982 DOI: 10.1111/tpj.12858] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/17/2015] [Accepted: 04/09/2015] [Indexed: 05/08/2023]
Abstract
In plants and algae, chloroplast gene expression is controlled by nucleus-encoded proteins that bind to mRNAs in a specific manner, stabilizing mRNAs or promoting their splicing, editing, or translation. Here, we present the characterization of two mRNA stabilization factors of the green alga Chlamydomonas reinhardtii, which both belong to the OctotricoPeptide Repeat (OPR) family. MCG1 is necessary to stabilize the petG mRNA, encoding a small subunit of the cytochrome b6 f complex, while MBI1 stabilizes the psbI mRNA, coding for a small subunit of photosystem II. In the mcg1 mutant, the small RNA footprint corresponding to the 5'-end of the petG transcript is reduced in abundance. In both cases, the absence of the small subunit perturbs assembly of the cognate complex. Whereas PetG is essential for formation of a functional cytochrome b6 f dimer, PsbI appears partly dispensable as a low level of PSII activity can still be measured in its absence. Thus, nuclear control of chloroplast gene expression is not only exerted on the major core subunits of the complexes, but also on small subunits with a single transmembrane helix. While OPR proteins have thus far been involved in translation or trans-splicing of plastid mRNAs, our results expand the potential roles of this repeat family to their stabilization.
Collapse
Affiliation(s)
- Fei Wang
- UMR 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, 75005, France
- Biozentrum Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| | - Xenie Johnson
- UMR 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, 75005, France
| | - Marina Cavaiuolo
- UMR 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, 75005, France
| | - Alexandra-Viola Bohne
- Biozentrum Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| | - Joerg Nickelsen
- Biozentrum Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| | - Olivier Vallon
- UMR 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, 75005, France
| |
Collapse
|
29
|
Sun Y, Zerges W. Translational regulation in chloroplasts for development and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:809-20. [PMID: 25988717 DOI: 10.1016/j.bbabio.2015.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/13/2015] [Accepted: 05/10/2015] [Indexed: 11/16/2022]
Abstract
Chloroplast genomes encode 100-200 proteins which function in photosynthesis, the organellar genetic system, and other pathways and processes. These proteins are synthesized by a complete translation system within the chloroplast, with bacterial-type ribosomes and translation factors. Here, we review translational regulation in chloroplasts, focusing on changes in translation rates which occur in response to requirements for proteins encoded by the chloroplast genome for development and homeostasis. In addition, we delineate the developmental and physiological contexts and model organisms in which translational regulation in chloroplasts has been studied. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
Affiliation(s)
- Yi Sun
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada
| | - William Zerges
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
30
|
Schöttler MA, Tóth SZ, Boulouis A, Kahlau S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2373-400. [PMID: 25540437 DOI: 10.1093/jxb/eru495] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During plant development and in response to fluctuating environmental conditions, large changes in leaf assimilation capacity and in the metabolic consumption of ATP and NADPH produced by the photosynthetic apparatus can occur. To minimize cytotoxic side reactions, such as the production of reactive oxygen species, photosynthetic electron transport needs to be adjusted to the metabolic demand. The cytochrome b6f complex and chloroplast ATP synthase form the predominant sites of photosynthetic flux control. Accordingly, both respond strongly to changing environmental conditions and metabolic states. Usually, their contents are strictly co-regulated. Thereby, the capacity for proton influx into the lumen, which is controlled by electron flux through the cytochrome b6f complex, is balanced with proton efflux through ATP synthase, which drives ATP synthesis. We discuss the environmental, systemic, and metabolic signals triggering the stoichiometry adjustments of ATP synthase and the cytochrome b6f complex. The contribution of transcriptional and post-transcriptional regulation of subunit synthesis, and the importance of auxiliary proteins required for complex assembly in achieving the stoichiometry adjustments is described. Finally, current knowledge on the stability and turnover of both complexes is summarized.
Collapse
Affiliation(s)
- Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alix Boulouis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sabine Kahlau
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
31
|
Boulouis A, Drapier D, Razafimanantsoa H, Wostrikoff K, Tourasse NJ, Pascal K, Girard-Bascou J, Vallon O, Wollman FA, Choquet Y. Spontaneous dominant mutations in chlamydomonas highlight ongoing evolution by gene diversification. THE PLANT CELL 2015; 27:984-1001. [PMID: 25804537 PMCID: PMC4558696 DOI: 10.1105/tpc.15.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/10/2015] [Accepted: 03/05/2015] [Indexed: 05/04/2023]
Abstract
We characterized two spontaneous and dominant nuclear mutations in the unicellular alga Chlamydomonas reinhardtii, ncc1 and ncc2 (for nuclear control of chloroplast gene expression), which affect two octotricopeptide repeat (OPR) proteins encoded in a cluster of paralogous genes on chromosome 15. Both mutations cause a single amino acid substitution in one OPR repeat. As a result, the mutated NCC1 and NCC2 proteins now recognize new targets that we identified in the coding sequences of the chloroplast atpA and petA genes, respectively. Interaction of the mutated proteins with these targets leads to transcript degradation; however, in contrast to the ncc1 mutation, the ncc2 mutation requires on-going translation to promote the decay of the petA mRNA. Thus, these mutants reveal a mechanism by which nuclear factors act on chloroplast mRNAs in Chlamydomonas. They illustrate how diversifying selection can allow cells to adapt the nuclear control of organelle gene expression to environmental changes. We discuss these data in the wider context of the evolution of regulation by helical repeat proteins.
Collapse
Affiliation(s)
- Alix Boulouis
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Dominique Drapier
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Hélène Razafimanantsoa
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Katia Wostrikoff
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Nicolas J Tourasse
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Kevin Pascal
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Jacqueline Girard-Bascou
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Francis-André Wollman
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
32
|
Lefebvre-Legendre L, Choquet Y, Kuras R, Loubéry S, Douchi D, Goldschmidt-Clermont M. A nucleus-encoded chloroplast protein regulated by iron availability governs expression of the photosystem I subunit PsaA in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2015; 167:1527-40. [PMID: 25673777 PMCID: PMC4378161 DOI: 10.1104/pp.114.253906] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The biogenesis of the photosynthetic electron transfer chain in the thylakoid membranes requires the concerted expression of genes in the chloroplast and the nucleus. Chloroplast gene expression is subjected to anterograde control by a battery of nucleus-encoded proteins that are imported in the chloroplast, where they mostly intervene at posttranscriptional steps. Using a new genetic screen, we identify a nuclear mutant that is required for expression of the PsaA subunit of photosystem I (PSI) in the chloroplast of Chlamydomonas reinhardtii. This mutant is affected in the stability and translation of psaA messenger RNA. The corresponding gene, TRANSLATION OF psaA1 (TAA1), encodes a large protein with two domains that are thought to mediate RNA binding: an array of octatricopeptide repeats (OPR) and an RNA-binding domain abundant in apicomplexans (RAP) domain. We show that as expected for its function, TAA1 is localized in the chloroplast. It was previously shown that when mixotrophic cultures of C. reinhardtii (which use both photosynthesis and mitochondrial respiration for growth) are shifted to conditions of iron limitation, there is a strong decrease in the accumulation of PSI and that this is rapidly reversed when iron is resupplied. Under these conditions, TAA1 protein is also down-regulated through a posttranscriptional mechanism and rapidly reaccumulates when iron is restored. These observations reveal a concerted regulation of PSI and of TAA1 in response to iron availability.
Collapse
Affiliation(s)
- Linnka Lefebvre-Legendre
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Yves Choquet
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Richard Kuras
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Sylvain Loubéry
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Damien Douchi
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| |
Collapse
|
33
|
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK. Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:337-51. [PMID: 25711437 DOI: 10.1111/tpj.12806] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 05/21/2023]
Abstract
Chlamydomonas reinhardtii is a unicellular green alga that is a key model organism in the study of photosynthesis and oxidative stress. Here we describe the large-scale generation of a population of insertional mutants that have been screened for phenotypes related to photosynthesis and the isolation of 459 flanking sequence tags from 439 mutants. Recent phylogenomic analysis has identified a core set of genes, named GreenCut2, that are conserved in green algae and plants. Many of these genes are likely to be central to the process of photosynthesis, and they are over-represented by sixfold among the screened insertional mutants, with insertion events isolated in or adjacent to 68 of 597 GreenCut2 genes. This enrichment thus provides experimental support for functional assignments based on previous bioinformatic analysis. To illustrate one of the uses of the population, a candidate gene approach based on genome position of the flanking sequence of the insertional mutant CAL027_01_20 was used to identify the molecular basis of the classical C. reinhardtii mutation ac17. These mutations were shown to affect the gene PDH2, which encodes a subunit of the plastid pyruvate dehydrogenase complex. The mutants and associated flanking sequence data described here are publicly available to the research community, and they represent one of the largest phenotyped collections of algal insertional mutants to date.
Collapse
Affiliation(s)
- Rachel M Dent
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Jalal A, Schwarz C, Schmitz-Linneweber C, Vallon O, Nickelsen J, Bohne AV. A small multifunctional pentatricopeptide repeat protein in the chloroplast of Chlamydomonas reinhardtii. MOLECULAR PLANT 2015; 8:412-26. [PMID: 25702521 DOI: 10.1016/j.molp.2014.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 05/21/2023]
Abstract
Organellar biogenesis is mainly regulated by nucleus-encoded factors, which act on various steps of gene expression including RNA editing, processing, splicing, stabilization, and translation initiation. Among these regulatory factors, pentatricopeptide repeat (PPR) proteins form the largest family of RNA binding proteins, with hundreds of members in flowering plants. In striking contrast, the genome of the unicellular green alga Chlamydomonas reinhardtii encodes only 14 such proteins. In this study, we analyzed PPR7, the smallest and most highly expressed PPR protein in C. reinhardtii. Green fluorescent protein-based localization and gel-filtration analysis revealed that PPR7 forms a part of a high-molecular-weight ribonucleoprotein complex in the chloroplast stroma. RIP-chip analysis of PPR7-bound RNAs demonstrated that the protein associates with a diverse set of chloroplast transcripts in vivo, i.e. rrnS, psbH, rpoC2, rbcL, atpA, cemA-atpH, tscA, and atpI-psaJ. Furthermore, the investigation of PPR7 RNAi strains revealed that depletion of PPR7 results in a light-sensitive phenotype, accompanied by altered levels of its target RNAs that are compatible with the defects in their maturation or stabilization. PPR7 is thus an unusual type of small multifunctional PPR protein, which interacts, probably in conjunction with other RNA binding proteins, with numerous target RNAs to promote a variety of post-transcriptional events.
Collapse
Affiliation(s)
- Abdullah Jalal
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | - Christian Schwarz
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | | | - Olivier Vallon
- UMR7141 CNRS/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Jörg Nickelsen
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | - Alexandra-Viola Bohne
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
35
|
Young REB, Purton S. Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: a strategy for the isolation of nuclear mutations that affect chloroplast gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:915-25. [PMID: 25234691 PMCID: PMC4282525 DOI: 10.1111/tpj.12675] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/04/2014] [Accepted: 09/16/2014] [Indexed: 05/09/2023]
Abstract
Negative selectable markers are useful tools for forward-genetic screens aimed at identifying trans-acting factors that are required for expression of specific genes. Transgenic lines harbouring the marker fused to a gene element, such as a promoter, may be mutagenized to isolate loss-of-function mutants able to survive under selection. Such a strategy allows the molecular dissection of factors that are essential for expression of the gene. Expression of individual chloroplast genes in plants and algae typically requires one or more nuclear-encoded factors that act at the post-transcriptional level, often through interaction with the 5' UTR of the mRNA. To study such nuclear control further, we have developed the Escherichia coli cytosine deaminase gene codA as a conditional negative selectable marker for use in the model green alga Chlamydomonas reinhardtii. We show that a codon-optimized variant of codA with three amino acid substitutions confers sensitivity to 5-fluorocytosine (5-FC) when expressed in the chloroplast under the control of endogenous promoter/5' UTR elements from the photosynthetic genes psaA or petA. UV mutagenesis of the psaA transgenic line allowed recovery of 5-FC-resistant, photosynthetically deficient lines harbouring mutations in the nuclear gene for the factor TAA1 that is required for psaA translation. Similarly, the petA line was used to isolate mutants of the petA mRNA stability factor MCA1 and the translation factor TCA1. The codA marker may be used to identify critical residues in known nuclear factors and to aid the discovery of additional factors required for expression of chloroplast genes.
Collapse
Affiliation(s)
- Rosanna E B Young
- Algal Research Group, Institute of Structural and Molecular Biology, University College LondonGower Street, London, WC1E 6BT, UK
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College LondonGower Street, London, WC1E 6BT, UK
| |
Collapse
|
36
|
Levey T, Westhoff P, Meierhoff K. Expression of a nuclear-encoded psbH gene complements the plastidic RNA processing defect in the PSII mutant hcf107 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:292-304. [PMID: 25081859 DOI: 10.1111/tpj.12632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
The helical-repeat RNA-binding protein HCF107 is required for processing, stabilization and translation of plastid-encoded psbH mRNA. The psbH gene encodes a small, hydrophilic subunit of the PSII complex and is part of the plastidic psbB-psbT-psbH-petB-petD transcription unit. In Arabidopsis hcf107 mutants, only trace amounts of PSII proteins can be detected. Beside drastically reduced synthesis of PsbH, the synthesis of CP47 was also reduced in these mutants, although the corresponding psbB transcripts accumulate to wild type levels. This situation raises the question, whether the reduction of CP47 is a direct consequence of the mutation, based on targeting of HCF107 to the psbB mRNA, or a secondary affect due to the absent PsbH. To clarify this issue we introduced a chimeric psbH construct comprising a sequence encoding a chloroplast transit peptide into the hcf107-2 background. We found that the nucleus-localized psbH was able to complement the mutant defect resulting in photoautotrophic plants. The PSII proteins CP47 and D1 accumulated to barely half of the wild type level. Further experiments showed that cytosolically synthesized PsbH was imported into chloroplasts and assembled into PSII complexes. Using this approach, we showed that the tetratricopeptide repeat protein HCF107 of Arabidopsis is only responsible for expression of PsbH and not for synthesis of CP47. In addition the data suggest the necessity of the small, one-helix membrane spanning protein PsbH for the accumulation of CP47 in higher plants.
Collapse
Affiliation(s)
- Tatjana Levey
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
37
|
Hojka M, Thiele W, Tóth SZ, Lein W, Bock R, Schöttler MA. Inducible Repression of Nuclear-Encoded Subunits of the Cytochrome b6f Complex in Tobacco Reveals an Extraordinarily Long Lifetime of the Complex. PLANT PHYSIOLOGY 2014; 165:1632-1646. [PMID: 24963068 PMCID: PMC4119044 DOI: 10.1104/pp.114.243741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/24/2014] [Indexed: 05/18/2023]
Abstract
The biogenesis of the cytochrome b6f complex in tobacco (Nicotiana tabacum) seems to be restricted to young leaves, suggesting a high lifetime of the complex. To directly determine its lifetime, we employed an ethanol-inducible RNA interference (RNAi) approach targeted against the essential nuclear-encoded Rieske protein (PetC) and the small M subunit (PetM), whose function in higher plants is unknown. Young expanding leaves of both PetM and PetC RNAi transformants bleached rapidly and developed necroses, while mature leaves, whose photosynthetic apparatus was fully assembled before RNAi induction, stayed green. In line with these phenotypes, cytochrome b6f complex accumulation and linear electron transport capacity were strongly repressed in young leaves of both RNAi transformants, showing that the M subunit is as essential for cytochrome b6f complex accumulation as the Rieske protein. In mature leaves, all photosynthetic parameters were indistinguishable from the wild type even after 14 d of induction. As RNAi repression of PetM and PetC was highly efficient in both young and mature leaves, these data indicate a lifetime of the cytochrome b6f complex of at least 1 week. The switch-off of cytochrome b6f complex biogenesis in mature leaves may represent part of the first dedicated step of the leaf senescence program.
Collapse
Affiliation(s)
- Marta Hojka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfgang Lein
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
38
|
Johnson X, Steinbeck J, Dent RM, Takahashi H, Richaud P, Ozawa SI, Houille-Vernes L, Petroutsos D, Rappaport F, Grossman AR, Niyogi KK, Hippler M, Alric J. Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of ΔATpase pgr5 and ΔrbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2014; 165:438-52. [PMID: 24623849 PMCID: PMC4012601 DOI: 10.1104/pp.113.233593] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/07/2014] [Indexed: 05/18/2023]
Abstract
The Chlamydomonas reinhardtii proton gradient regulation5 (Crpgr5) mutant shows phenotypic and functional traits similar to mutants in the Arabidopsis (Arabidopsis thaliana) ortholog, Atpgr5, providing strong evidence for conservation of PGR5-mediated cyclic electron flow (CEF). Comparing the Crpgr5 mutant with the wild type, we discriminate two pathways for CEF and determine their maximum electron flow rates. The PGR5/proton gradient regulation-like1 (PGRL1) ferredoxin (Fd) pathway, involved in recycling excess reductant to increase ATP synthesis, may be controlled by extreme photosystem I acceptor side limitation or ATP depletion. Here, we show that PGR5/PGRL1-Fd CEF functions in accordance with an ATP/redox control model. In the absence of Rubisco and PGR5, a sustained electron flow is maintained with molecular oxygen instead of carbon dioxide serving as the terminal electron acceptor. When photosynthetic control is decreased, compensatory alternative pathways can take the full load of linear electron flow. In the case of the ATP synthase pgr5 double mutant, a decrease in photosensitivity is observed compared with the single ATPase-less mutant that we assign to a decreased proton motive force. Altogether, our results suggest that PGR5/PGRL1-Fd CEF is most required under conditions when Fd becomes overreduced and photosystem I is subjected to photoinhibition. CEF is not a valve; it only recycles electrons, but in doing so, it generates a proton motive force that controls the rate of photosynthesis. The conditions where the PGR5 pathway is most required may vary in photosynthetic organisms like C. reinhardtii from anoxia to high light to limitations imposed at the level of carbon dioxide fixation.
Collapse
|
39
|
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97405;
| | | |
Collapse
|
40
|
Wei L, Derrien B, Gautier A, Houille-Vernes L, Boulouis A, Saint-Marcoux D, Malnoë A, Rappaport F, de Vitry C, Vallon O, Choquet Y, Wollman FA. Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation in Chlamydomonas reinhardtii. THE PLANT CELL 2014; 26:353-72. [PMID: 24474630 PMCID: PMC3963581 DOI: 10.1105/tpc.113.120121] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/04/2013] [Accepted: 01/10/2014] [Indexed: 05/18/2023]
Abstract
Starving microalgae for nitrogen sources is commonly used as a biotechnological tool to boost storage of reduced carbon into starch granules or lipid droplets, but the accompanying changes in bioenergetics have been little studied so far. Here, we report that the selective depletion of Rubisco and cytochrome b6f complex that occurs when Chlamydomonas reinhardtii is starved for nitrogen in the presence of acetate and under normoxic conditions is accompanied by a marked increase in chlororespiratory enzymes, which converts the photosynthetic thylakoid membrane into an intracellular matrix for oxidative catabolism of reductants. Cytochrome b6f subunits and most proteins specifically involved in their biogenesis are selectively degraded, mainly by the FtsH and Clp chloroplast proteases. This regulated degradation pathway does not require light, active photosynthesis, or state transitions but is prevented when respiration is impaired or under phototrophic conditions. We provide genetic and pharmacological evidence that NO production from intracellular nitrite governs this degradation pathway: Addition of a NO scavenger and of two distinct NO producers decrease and increase, respectively, the rate of cytochrome b6f degradation; NO-sensitive fluorescence probes, visualized by confocal microscopy, demonstrate that nitrogen-starved cells produce NO only when the cytochrome b6f degradation pathway is activated.
Collapse
Affiliation(s)
- Lili Wei
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Benoit Derrien
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Arnaud Gautier
- École Normale Supérieure,
Département de Chimie, Unité Mixte de Recherche, CNRS–Ecole
Normale Supérieure–Université Pierre et Marie Curie 8640,
75231 Paris Cedex 05, France
| | - Laura Houille-Vernes
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Alix Boulouis
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Denis Saint-Marcoux
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Alizée Malnoë
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Fabrice Rappaport
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Catherine de Vitry
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Francis-André Wollman
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
41
|
Hertel S, Zoschke R, Neumann L, Qu Y, Axmann IM, Schmitz-Linneweber C. Multiple checkpoints for the expression of the chloroplast-encoded splicing factor MatK. PLANT PHYSIOLOGY 2013; 163:1686-98. [PMID: 24174638 PMCID: PMC3850197 DOI: 10.1104/pp.113.227579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/24/2013] [Indexed: 05/08/2023]
Abstract
The chloroplast genome of land plants contains only a single gene for a splicing factor, Maturase K (MatK). To better understand the regulation of matK gene expression, we quantitatively investigated the expression of matK across tobacco (Nicotiana tabacum) development at the transcriptional, posttranscriptional, and protein levels. We observed striking discrepancies of MatK protein and matK messenger RNA levels in young tissue, suggestive of translational regulation or altered protein stability. We furthermore found increased matK messenger RNA stability in mature tissue, while other chloroplast RNAs tested showed little changes. Finally, we quantitatively measured MatK-intron interactions and found selective changes in the interaction of MatK with specific introns during plant development. This is evidence for a direct role of MatK in the regulation of chloroplast gene expression via splicing. We furthermore modeled a simplified matK gene expression network mathematically. The model reflects our experimental data and suggests future experimental perturbations to pinpoint regulatory checkpoints.
Collapse
Affiliation(s)
| | | | | | - Yujiao Qu
- Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, D-10115 Berlin, Germany (S.H., I.M.A.); and
- Molecular Genetics, Institute of Biology, Humboldt-University Berlin, D-10115 Berlin, Germany (R.Z., L.N., Y.Q., C.S.-L.)
| | - Ilka M. Axmann
- Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, D-10115 Berlin, Germany (S.H., I.M.A.); and
- Molecular Genetics, Institute of Biology, Humboldt-University Berlin, D-10115 Berlin, Germany (R.Z., L.N., Y.Q., C.S.-L.)
| | | |
Collapse
|
42
|
Abstract
Using the repeat finding algorithm FT-Rep, we have identified 154 pentatricopeptide repeat (PPR) proteins in nine fully sequenced genomes from green algae (with a total of 1201 repeats) and grouped them in 47 orthologous groups. All data are available in a database, PPRdb, accessible online at http://giavap-genomes.ibpc.fr/ppr. Based on phylogenetic trees generated from the repeats, we propose evolutionary scenarios for PPR proteins. Two PPRs are clearly conserved in the entire green lineage: MRL1 is a stabilization factor for the rbcL mRNA, while HCF152 binds in plants to the psbH-petB intergenic region. MCA1 (the stabilization factor for petA) and PPR7 (a short PPR also acting on chloroplast mRNAs) are conserved across the entire Chlorophyta. The other PPRs are clade-specific, with evidence for gene losses, duplications, and horizontal transfer. In some PPR proteins, an additional domain found at the C terminus provides clues as to possible functions. PPR19 and PPR26 possess a methyltransferase_4 domain suggesting involvement in RNA guanosine methylation. PPR18 contains a C-terminal CBS domain, similar to the CBSPPR1 protein found in nucleoids. PPR16, PPR29, PPR37, and PPR38 harbor a SmR (MutS-related) domain similar to that found in land plants pTAC2, GUN1, and SVR7. The PPR-cyclins PPR3, PPR4, and PPR6, in addition, contain a cyclin domain C-terminal to their SmR domain. PPR31 is an unusual PPR-cyclin containing at its N terminus an OctotricoPeptide Repeat (OPR) and a RAP domain. We consider the possibility that PPR proteins with a SmR domain can introduce single-stranded nicks in the plastid chromosome.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- UMR 7141 CNRS/UPMC; Institut de Biologie Physico-Chimique; F-75005 Paris, France
| | - Yves Choquet
- UMR 7141 CNRS/UPMC; Institut de Biologie Physico-Chimique; F-75005 Paris, France
| | - Olivier Vallon
- UMR 7141 CNRS/UPMC; Institut de Biologie Physico-Chimique; F-75005 Paris, France
| |
Collapse
|
43
|
Abstract
PPR proteins form a huge family in flowering plants and are involved in RNA maturation in plastids and mitochondria. These proteins are sequence-specific RNA-binding proteins that recruit the machinery of RNA processing. We summarize progress in the research on the functional mechanisms of divergent RNA maturation and on the mechanism by which RNA sequences are recognized. We further focus on two topics. RNA editing is an enigmatic process of RNA maturation in organelles, in which members of the PLS subfamily contribute to target site recognition. As the first topic, we speculate on why the PLS subfamily was selected by the RNA editing machinery. Second, we discuss how the regulation of plastid gene expression contributes to efficient photosynthesis. Although the molecular functions of PPR proteins have been studied extensively, information on the physiological significance of regulation by these proteins remains very limited.
Collapse
Affiliation(s)
| | - Sota Fujii
- Graduate School of Science; Kyoto University; Kyoto, Japan
| |
Collapse
|
44
|
Zoschke R, Qu Y, Zubo YO, Börner T, Schmitz-Linneweber C. Mutation of the pentatricopeptide repeat-SMR protein SVR7 impairs accumulation and translation of chloroplast ATP synthase subunits in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2013; 126:403-14. [PMID: 23076438 DOI: 10.1007/s10265-012-0527-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/19/2012] [Indexed: 05/21/2023]
Abstract
RNA processing, RNA editing, RNA splicing and translational activation of RNAs are essential post-transcriptional steps in chloroplast gene expression. Typically, the factors mediating those processes are nuclear encoded and post-translationally imported into the chloroplasts. In land plants, members of the large pentatricopeptide repeat (PPR) protein family are required for individual steps in chloroplast RNA processing. Interestingly, a subgroup of PPR proteins carries a C-terminal small MutS related (SMR) domain. Here we analyzed the consequences of mutations in the SVR7 gene, which encodes a PPR-SMR protein, in Arabidopsis thaliana. We demonstrate that SVR7 mutations lead to a specific reduction in chloroplast ATP synthase levels. Furthermore, we found aberrant transcript patterns for ATP synthase coding mRNAs in svr7 mutants. Finally, a reduced ribosome association of atpB/E and rbcL mRNAs in svr7 mutants suggests the involvement of the PPR-SMR protein SVR7 in translational activation of these mRNAs. We describe that the function of SVR7 in translation has expanded relative to its maize ortholog ATP4. The results provide evidence for a relaxed functional conservation of this PPR-SMR protein in eudicotyledonous and monocotyledonous plants, thus adding to the knowledge about the function and evolution of PPR-SMR proteins.
Collapse
Affiliation(s)
- Reimo Zoschke
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
45
|
Fontanesi F. Mechanisms of mitochondrial translational regulation. IUBMB Life 2013; 65:397-408. [PMID: 23554047 DOI: 10.1002/iub.1156] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/31/2013] [Indexed: 11/11/2022]
Abstract
The mitochondrial oxidative phosphorylation system is formed by multimeric enzymes. In the yeast Saccharomyces cerevisiae, the bc1 complex, cytochrome c oxidase and the F1 FO ATP synthase contain subunits of dual genetic origin. It has been recently established that key subunits of these enzymes, translated on mitochondrial ribosomes, are the subjects of assembly-dependent translational regulation. This type of control of gene expression plays a pivotal role in optimizing the biogenesis of mitochondrial respiratory membranes by coordinating protein synthesis and complex assembly and by limiting the accumulation of potentially harmful assembly intermediates. Here, the author will discuss the mechanisms governing translational regulation in yeast mitochondria in the light of the most recent discoveries in the field.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
46
|
Yukawa M, Sugiura M. Additional pathway to translate the downstream ndhK cistron in partially overlapping ndhC-ndhK mRNAs in chloroplasts. Proc Natl Acad Sci U S A 2013; 110:5701-6. [PMID: 23509265 PMCID: PMC3619338 DOI: 10.1073/pnas.1219914110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chloroplast NAD(P)H dehydrogenase (NDH) C (ndhC) and ndhK genes partially overlap and are cotranscribed in many plants. We previously reported that the tobacco ndhC/K genes are translationally coupled but produce NdhC and NdhK, subunits of the NDH complex, in similar amounts. Generally, translation of the downstream cistron in overlapping mRNAs is very low. Hence, these findings suggested that the ndhK cistron is translated not only from the ndhC 5'UTR but also by an additional pathway. Using an in vitro translation system from tobacco chloroplasts, we report here that free ribosomes enter, with formylmethionyl-tRNA(fMet), at an internal AUG start codon that is located in frame in the middle of the upstream ndhC cistron, translate the 3' half of the ndhC cistron, reach the ndhK start codon, and that, at that point, some ribosomes resume ndhK translation. We detected a peptide corresponding to a 57-amino-acid product encoded by the sequence from the internal AUG to the ndhC stop codon. We propose a model in which the internal initiation site AUG is not designed for synthesizing a functional isoform but for delivering additional ribosomes to the ndhK cistron to produce NdhK in the amount required for the assembly of the NDH complex. This pathway is a unique type of translation to produce protein in the needed amount with the cost of peptide synthesis.
Collapse
Affiliation(s)
- Maki Yukawa
- Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan; and
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Masahiro Sugiura
- Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan; and
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
47
|
Suzuki Y, Makino A. Translational downregulation of RBCL is operative in the coordinated expression of Rubisco genes in senescent leaves in rice. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1145-52. [PMID: 23349140 PMCID: PMC3580822 DOI: 10.1093/jxb/ers398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Rubisco gene expression was examined in detail in rice (Oryza sativa L.) leaves at different positions, i.e. expanding, mature, and senescent leaves. Rubisco small subunit (RBCS) synthesis and RBCS mRNA levels were maximal in expanding leaves and gradually became lower in mature and senescent leaves, with declines in those of the large subunit (RBCL) being relatively slower. The amount of synthesized RBCL per unit level of RBCL mRNA and polysome loading of RBCL mRNA declined in senescent leaves, whereas such phenomena were not observed for RBCS. These results suggested that gene expression of RBCL is downregulated at the level of its translation when a balance between RBCL and RBCS expression is disturbed by leaf senescence. It has been suggested that RBCS protein is a positive regulator for RBCL mRNA level in expanding rice leaves, as judged from their stoichiometric relationship in RBCS transgenic rice plants. However, the ratio of the RBCL mRNA level to the amount of synthesized RBCS in senescent leaves was significantly higher than that in expanding leaves. Therefore, it is suggested that the decline in RBCL mRNA level in senescent leaves is not fully accounted for by that in the amount of synthesized RBCS. Effects of other factors such as the stability of RBCL mRNA may come into play.
Collapse
MESH Headings
- Cell Death
- Down-Regulation
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant
- Oryza/enzymology
- Oryza/genetics
- Oryza/growth & development
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plant Leaves/growth & development
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Polyribosomes/enzymology
- Polyribosomes/genetics
- Polyribosomes/metabolism
- Protein Biosynthesis
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Ribulose-Bisphosphate Carboxylase/genetics
- Ribulose-Bisphosphate Carboxylase/metabolism
Collapse
Affiliation(s)
- Yuji Suzuki
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan.
| | | |
Collapse
|
48
|
Caroca R, Howell KA, Hasse C, Ruf S, Bock R. Design of chimeric expression elements that confer high-level gene activity in chromoplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:368-79. [PMID: 23004223 DOI: 10.1111/tpj.12031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 05/05/2023]
Abstract
Non-green plastids, such as chromoplasts, generally have much lower activity of gene expression than chloroplasts in photosynthetically active tissues. Suppression of plastid genes in non-green tissues occurs through a complex interplay of transcriptional and translational control, with the contribution of regulation of transcript abundance versus translational activity being highly variable between genes. Here, we have investigated whether the low expression of the plastid genome in chromoplasts results from inherent limitations in gene expression capacity, or can be overcome by designing appropriate combinations of promoters and translation initiation signals in the 5' untranslated region (5'-UTR). We constructed chimeric expression elements that combine promoters and 5'-UTRs from plastid genes, which are suppressed during chloroplast-to-chromoplast conversion in Solanum lycopersicum (tomato) fruit ripening, either just at the translational level or just at the level of mRNA accumulation. These chimeric expression elements were introduced into the tomato plastid genome by stable chloroplast transformation. We report the identification of promoter-UTR combinations that confer high-level gene expression in chromoplasts of ripe tomato fruits, resulting in the accumulation of reporter protein GFP to up to 1% of total cellular protein. Our work demonstrates that non-green plastids are capable of expressing genes to high levels. Moreover, the chimeric cis-elements for chromoplasts developed here are widely applicable in basic and applied research using transplastomic methods.
Collapse
Affiliation(s)
- Rodrigo Caroca
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
49
|
Lyska D, Meierhoff K, Westhoff P. How to build functional thylakoid membranes: from plastid transcription to protein complex assembly. PLANTA 2013; 237:413-28. [PMID: 22976450 PMCID: PMC3555230 DOI: 10.1007/s00425-012-1752-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/10/2012] [Indexed: 05/06/2023]
Abstract
Chloroplasts are the endosymbiotic descendants of cyanobacterium-like prokaryotes. Present genomes of plant and green algae chloroplasts (plastomes) contain ~100 genes mainly encoding for their transcription-/translation-machinery, subunits of the thylakoid membrane complexes (photosystems II and I, cytochrome b (6) f, ATP synthase), and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Nevertheless, proteomic studies have identified several thousand proteins in chloroplasts indicating that the majority of the plastid proteome is not encoded by the plastome. Indeed, plastid and host cell genomes have been massively rearranged in the course of their co-evolution, mainly through gene loss, horizontal gene transfer from the cyanobacterium/chloroplast to the nucleus of the host cell, and the emergence of new nuclear genes. Besides structural components of thylakoid membrane complexes and other (enzymatic) complexes, the nucleus provides essential factors that are involved in a variety of processes inside the chloroplast, like gene expression (transcription, RNA-maturation and translation), complex assembly, and protein import. Here, we provide an overview on regulatory factors that have been described and characterized in the past years, putting emphasis on mechanisms regulating the expression and assembly of the photosynthetic thylakoid membrane complexes.
Collapse
Affiliation(s)
- Dagmar Lyska
- Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| | | | | |
Collapse
|
50
|
Hotto AM, Germain A, Stern DB. Plastid non-coding RNAs: emerging candidates for gene regulation. TRENDS IN PLANT SCIENCE 2012; 17:737-44. [PMID: 22981395 DOI: 10.1016/j.tplants.2012.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/27/2012] [Accepted: 08/05/2012] [Indexed: 05/08/2023]
Abstract
Recent advances in transcriptomics and bioinformatics, specifically strand-specific RNA sequencing, have allowed high-throughput, comprehensive detection of low-abundance transcripts typical of the non-coding RNAs studied in bacteria and eukaryotes. Before this, few plastid non-coding RNAs (pncRNAs) had been identified, and even fewer had been investigated for any functional role in gene regulation. Relaxed plastid transcription initiation and termination result in full transcription of both chloroplast DNA strands. Following this, post-transcriptional processing produces a pool of metastable RNA species, including distinct pncRNAs. Here we review pncRNA biogenesis and possible functionality, and speculate that this RNA class may have an underappreciated role in plastid gene regulation.
Collapse
Affiliation(s)
- Amber M Hotto
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | |
Collapse
|