1
|
Le TT, Choi HI, Kim JW, Yun JH, Lee YH, Jeon EJ, Kwon KK, Cho DH, Choi DY, Park SB, Yoon HR, Lee J, Sim EJ, Lee YJ, Kim HS. Cas9-mediated gene-editing frequency in microalgae is doubled by harnessing the interaction between importin α and phytopathogenic NLSs. Proc Natl Acad Sci U S A 2025; 122:e2415072122. [PMID: 40030016 PMCID: PMC11912399 DOI: 10.1073/pnas.2415072122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
Pathogen-derived nuclear localization signals (NLSs) enable vigorous nuclear invasion in the host by the virulence proteins harboring them. Herein, inspired by the robust nuclear import mechanism, we show that NLSs originating from the plant infection-associated Agrobacterium proteins VirD2 and VirE2 can be incorporated into the Cas9 system as efficient nuclear delivery enhancers, thereby improving the low gene-editing frequency in a model microalga, Chlamydomonas reinhardtii, caused by poor nuclear localization of the bulky nuclease. Prior to evaluation of the NLSs, IPA1 (Cre04.g215850) was first defined in the alga as the nuclear import-related importin alpha (Impα) that serves as a counterpart adaptor protein of the NLSs, based on extensive in silico analyses considering the protein's sequence, tertiary folding behavior, and structural basis when interacting with a well-studied SV40TAg NLS. Through precursive affinity explorations, we reproducibly found that the NLSs mediated the binding between the Cas9 and Impα with nM affinities and visually confirmed that the fusion of the NLSs strictly localized the peptide-bearing cargoes in the microalgal nucleus without compensating for their cleavage ability. When employed in a real-world application, the VirD2 NLS increases the mutation frequency (~1.12 × 10-5) over 2.4-fold compared to an archetypal SV40TAg NLS (~0.46 × 10-5) when fused with Cas9. We demonstrate the cross-species versatility of the Impα-dependent strategy by successfully applying it to an industrial alga, Chlorella Sp. HS2. This work, focused on affinity augmentation, provides insights into increasing the frequency of gene editing, which can be advantageously used in programmable mutagenesis with broad applicability.
Collapse
Affiliation(s)
- Trang Thi Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Hong Il Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Ji Won Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon-si, Gyeonggi-do16419, South Korea
| | - Yoon Hyeok Lee
- Design AI Lab, AI Center Samsung Electronics, Suwon-si, Gyeonggi-do16678, South Korea
| | - Eun Jung Jeon
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Kil Koang Kwon
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Dong-Yun Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Su-Bin Park
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Hyang Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Jeongmi Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Bio-Molecular Science, University of Science and Technology, Daejeon34113, South Korea
| | - Eun Jeong Sim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| |
Collapse
|
2
|
Mori A, Nakagawa S, Suzuki T, Suzuki T, Gaudin V, Matsuura T, Ikeda Y, Tamura K. The importin α proteins IMPA1, IMPA2, and IMPA4 play redundant roles in suppressing autoimmunity in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17203. [PMID: 39658755 DOI: 10.1111/tpj.17203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Proteins in the importin α (IMPA) family play pivotal roles in intracellular nucleocytoplasmic transport. Arabidopsis thaliana possesses nine IMPA members, with diverse tissue-specific expression patterns. Among these nine IMPAs, IMPA1, IMPA2, and IMPA4 cluster together phylogenetically, suggesting potential functional redundancy. To explore this redundancy, we analyzed single and multiple T-DNA mutants for these genes and discovered severe growth defects in the impa1 impa2 impa4 triple knockout mutant but not in the single or double mutants. Complementation with IMPA1, IMPA2, or IMPA4 fused to green fluorescent protein (GFP) rescued the growth defects observed in the impa1 impa2 impa4 mutant, indicating the functional redundancy of these three IMPAs. The IMPA-GFP fusion proteins were localized in the nucleus and nuclear envelope, suggesting their involvement in nucleocytoplasmic transport processes. Comparative transcriptomics revealed that salicylic acid (SA)-responsive genes were significantly upregulated in the impa1 impa2 impa4 triple mutant. Consistent with this observation, impa1 impa2 impa4 mutant plants accumulated SA and reactive oxygen species to high levels compared with wild-type plants. We also found enhanced resistance to the anthracnose pathogen Colletotrichum higginsianum in the impa1 impa2 impa4 mutants, suggesting that defense responses were constitutively activated in the impa1 impa2 impa4 mutant. Our findings shed light on the redundant roles of IMPA1, IMPA2, and IMPA4 in suppressing the autoimmune responses and suggest avenues of research to clarify their potentially unique roles.
Collapse
Affiliation(s)
- Airi Mori
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Shitomi Nakagawa
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Toshiyuki Suzuki
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Valérie Gaudin
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| |
Collapse
|
3
|
Ahmad B, Lerma-Reyes R, Mukherjee T, Nguyen HV, Weber AL, Cummings EE, Schulze WX, Comer JR, Schrick K. Nuclear localization of Arabidopsis HD-Zip IV transcription factor GLABRA2 is driven by importin α. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6441-6461. [PMID: 39058342 DOI: 10.1093/jxb/erae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
GLABRA2 (GL2), a class IV homeodomain leucine-zipper (HD-Zip IV) transcription factor from Arabidopsis, is a developmental regulator of specialized cell types in the epidermis. GL2 contains a monopartite nuclear localization sequence (NLS) that is conserved in most HD-Zip IV members across the plants. We demonstrate that NLS mutations affect nuclear transport and result in a loss-of-function phenotypes. NLS fusions to enhanced yellow fluorescent protein (EYFP) show that it is sufficient for nuclear localization in roots and trichomes. Despite partial overlap of the NLS with the homeodomain, genetic dissection indicates that nuclear localization and DNA binding are separable functions. Affinity purification of GL2 from plants followed by MS-based proteomics identified importin α (IMPα) isoforms as potential GL2 interactors. NLS structural prediction and molecular docking studies with IMPα-3 revealed major interacting residues. Cytosolic yeast two-hybrid assays and co-immunoprecipitation experiments with recombinant proteins verified NLS-dependent interactions between GL2 and several IMPα isoforms. IMPα triple mutants (impα-1,2,3) exhibit abnormal trichome formation and defects in GL2 nuclear localization in trichomes, consistent with tissue-specific and redundant functions of IMPα isoforms. Taken together, our findings provide mechanistic evidence for IMPα-dependent nuclear localization of GL2 in Arabidopsis, a process that is critical for cell type differentiation of the epidermis.
Collapse
Affiliation(s)
- Bilal Ahmad
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ruben Lerma-Reyes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Thiya Mukherjee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - Hieu V Nguyen
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Audra L Weber
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Emily E Cummings
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Jeffrey R Comer
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
4
|
Wang L, Zhang K, Wang Z, Yang J, Kang G, Liu Y, You L, Wang X, Jin H, Wang D, Guo T. Appropriate reduction of importin-α gene expression enhances yellow dwarf disease resistance in common wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:572-586. [PMID: 37855813 PMCID: PMC10893941 DOI: 10.1111/pbi.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
Barley yellow dwarf viruses (BYDVs) cause widespread damage to global cereal crops. Here we report a novel strategy for elevating resistance to BYDV infection. The 17K protein, a potent virulence factor conserved in BYDVs, interacted with barley IMP-α1 and -α2 proteins that are nuclear transport receptors. Consistently, a nuclear localization signal was predicted in 17K, which was found essential for 17K to be transported into the nucleus and to interact with IMP-α1 and -α2. Reducing HvIMP-α1 and -α2 expression by gene silencing attenuated BYDV-elicited dwarfism, accompanied by a lowered nuclear accumulation of 17K. Among the eight common wheat CRISPR mutants with two to four TaIMP-α1 and -α2 genes mutated, the triple mutant α1aaBBDD /α2AAbbdd and the tetra-mutant α1aabbdd /α2AAbbDD displayed strong BYDV resistance without negative effects on plant growth under field conditions. The BYDV resistance exhibited by α1aaBBDD /α2AAbbdd and α1aabbdd /α2AAbbDD was correlated with decreased nuclear accumulation of 17K and lowered viral proliferation in infected plants. Our work uncovers the function of host IMP-α proteins in BYDV pathogenesis and generates the germplasm valuable for breeding BYDV-resistant wheat. Appropriate reduction of IMP-α gene expression may be broadly useful for enhancing antiviral resistance in agricultural crops and other economically important organisms.
Collapse
Affiliation(s)
- Lina Wang
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Kunpu Zhang
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- The Shennong LaboratoryZhengzhouHenanChina
| | - Zhaohui Wang
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Jin Yang
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Guozhang Kang
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Yan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Liyuan You
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- The Shennong LaboratoryZhengzhouHenanChina
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Huaibing Jin
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Daowen Wang
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- The Shennong LaboratoryZhengzhouHenanChina
| | - Tiancai Guo
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
5
|
Moraes IR, de Oliveira HC, Fontes MRM. Structural basis of nuclear transport for NEIL DNA glycosylases mediated by importin-alpha. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140974. [PMID: 38065227 DOI: 10.1016/j.bbapap.2023.140974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
NEIL glycosylases, including NEIL1, NEIL2, and NEIL3, play a crucial role in the base excision DNA repair pathway (BER). The classical importin pathway mediated by importin α/β and cargo proteins containing nuclear localization sequences (NLS) is the most common transport mechanism of DNA repair proteins to the nucleus. Previous studies have identified putative NLSs located at the C-terminus of NEIL3 and NEIL1. Crystallographic, bioinformatics, calorimetric (ITC), and fluorescence assays were used to investigate the interaction between NEIL1 and NEIL3 putative NLSs and importin-α (Impα). Our findings showed that NEIL3 contains a typical cNLS, with medium affinity for the major binding site of Impα. In contrast, crystallographic analysis of NEIL1 NLS revealed its binding to Impα, but with high B-factors and a lack of electron density at the linker region. ITC and fluorescence assays indicated no detectable affinity between NEIL1 NLS and Impα. These data suggest that NEIL1 NLS is a non-classical NLS with low affinity to Impα. Additionally, we compared the binding mode of NEIL3 and NEIL1 with Mus musculus Impα to human isoforms HsImpα1 and HsImpα3, which revealed interesting binding differences for HsImpα3 variant. NEIL3 is a classical medium affinity monopartite NLS, while NEIL1 is likely to be an unclassical low-affinity bipartite NLS. The base excision repair pathway is one of the primary systems involved in repairing DNA. Thus, understanding the mechanisms of nuclear transport of NEIL proteins is crucial for comprehending the role of these proteins in DNA repair and disease development.
Collapse
Affiliation(s)
- Ivan R Moraes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Hamine C de Oliveira
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil.
| |
Collapse
|
6
|
Ahmad B, Lerma-Reyes R, Mukherjee T, Nguyen HV, Weber AL, Schulze WX, Comer JR, Schrick K. Nuclear localization of HD-Zip IV transcription factor GLABRA2 is driven by Importin α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565550. [PMID: 37961624 PMCID: PMC10635128 DOI: 10.1101/2023.11.03.565550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
GLABRA2 (GL2), a class IV homeodomain leucine-zipper (HD-Zip IV) transcription factor (TF) from Arabidopsis , is a developmental regulator of specialized cell types in the epidermis. GL2 contains a putative monopartite nuclear localization sequence (NLS) partially overlapping with its homeodomain (HD). We demonstrate that NLS deletion or alanine substitution of its basic residues (KRKRKK) affects nuclear localization and results in a loss-of-function phenotype. Fusion of the predicted NLS (GTNKRKRKKYHRH) to the fluorescent protein EYFP is sufficient for its nuclear localization in roots and trichomes. The functional NLS is evolutionarily conserved in a distinct subset of HD-Zip IV members including PROTODERMAL FACTOR2 (PDF2). Despite partial overlap of the NLS with the HD, genetic dissection of the NLS from PDF2 indicates that nuclear localization and DNA binding are separable functions. Affinity purification of GL2 from plant tissues followed by mass spectrometry-based proteomics identified Importin α (IMPα) isoforms as potential GL2 interactors. NLS structural prediction and molecular docking studies with IMPα-3 revealed major interacting residues. Split-ubiquitin cytosolic yeast two-hybrid assays suggest interaction between GL2 and four IMPα isoforms from Arabidopsis. Direct interactions were verified in vitro by co-immunoprecipitation with recombinant proteins. IMPα triple mutants ( impα- 1,2,3 ) exhibit defects in EYFP:GL2 nuclear localization in trichomes but not in roots, consistent with tissue-specific and redundant functions of IMPα isoforms in Arabidopsis . Taken together, our findings provide mechanistic evidence for IMPα-dependent nuclear localization of GL2 and other HD-Zip IV TFs in plants. One sentence summary GLABRA2, a representative HD-Zip IV transcription factor from Arabidopsis , contains an evolutionarily conserved monopartite nuclear localization sequence that is recognized by Importin α for translocation to the nucleus, a process that is necessary for cell-type differentiation of the epidermis.
Collapse
|
7
|
Bhambid M, Dey V, Walunj S, Patankar S. Toxoplasma Gondii Importin α Shows Weak Auto-Inhibition. Protein J 2023:10.1007/s10930-023-10128-2. [PMID: 37284905 DOI: 10.1007/s10930-023-10128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Importin α is a nuclear transporter that binds to nuclear localization signals (NLSs), consisting of 7-20 positively charged amino acids found within cargo proteins. In addition to cargo binding, intramolecular interactions also occur within the importin α protein due to binding between the importin β-binding (IBB) domain and the NLS-binding sites, a phenomenon called auto-inhibition. The interactions causing auto-inhibition are driven by a stretch of basic residues, similar to an NLS, in the IBB domain. Consistent with this, importin α proteins that do not have some of these basic residues lack auto-inhibition; a naturally occurring example of such a protein is found in the apicomplexan parasite Plasmodium falciparum. In this report, we show that importin α from another apicomplexan parasite, Toxoplasma gondii, harbors basic residues (KKR) in the IBB domain and exhibits auto-inhibition. This protein has a long, unstructured hinge motif (between the IBB domain and the NLS-binding sites) that does not contribute to auto-inhibition. However, the IBB domain may have a higher propensity to form an α-helical structure, positioning the wild-type KKR motif in an orientation that results in weaker interactions with the NLS-binding site than a KRR mutant. We conclude that the importin α protein from T. gondii shows auto-inhibition, exhibiting a different phenotype from that of P. falciparum importin α. However, our data indicate that T. gondii importin α may have a low strength of auto-inhibition. We hypothesize that low levels of auto-inhibition may confer an advantage to these important human pathogens.
Collapse
Affiliation(s)
- Manasi Bhambid
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Vishakha Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Indiana University School of Medicine, Indianapolis, USA
| | - Sujata Walunj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
- IITB-Monash Research Academy, IIT Bombay, Mumbai, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
8
|
Harris W, Kim S, Vӧlz R, Lee YH. Nuclear effectors of plant pathogens: Distinct strategies to be one step ahead. MOLECULAR PLANT PATHOLOGY 2023; 24:637-650. [PMID: 36942744 DOI: 10.1111/mpp.13315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 05/18/2023]
Abstract
Nuclear effector proteins released by bacteria, oomycete, nematode, and fungi burden the global environment and crop yield. Microbial effectors are key weapons in the evolutionary arms race between plants and pathogens, vital in determining the success of pathogenic colonization. Secreted effectors undermine a multitude of host cellular processes depending on their target destination. Effectors are classified by their localization as either extracellular (apoplastic) or intracellular. Intracellular effectors can be further subclassified by their compartment such as the nucleus, cytoplasm or chloroplast. Nuclear effectors bring into question the role of the plant nucleus' intrinsic defence strategies and their vulnerability to effector-based manipulation. Nuclear effectors interfere with multiple nuclear processes including the epigenetic regulation of the host chromatin, the impairment of the trans-kingdom antifungal RNAi machinery, and diverse classes of immunity-associated host proteins. These effector-targeted pathways are widely conserved among different hosts and regulate a broad array of plant cellular processes. Thus, these nuclear sites constitute meaningful targets for effectors to subvert the plant defence system and acquire resources for pathogenic propagation. This review provides an extensive and comparative compilation of diverse plant microbe nuclear effector libraries, thereby highlighting the distinct and conserved mechanisms these effectors employ to modulate plant cellular processes for the pathogen's profit.
Collapse
Affiliation(s)
- William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ronny Vӧlz
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Che X, Splitt BL, Eckholm MT, Miller ND, Spalding EP. BRXL4-LAZY1 interaction at the plasma membrane controls Arabidopsis branch angle and gravitropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:211-224. [PMID: 36478485 PMCID: PMC10107345 DOI: 10.1111/tpj.16055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Gravitropism guides growth to shape plant architecture above and below ground. Mutations in LAZY1 impair stem gravitropism and cause less upright inflorescence branches (wider angles). The LAZY1 protein resides at the plasma membrane and in the nucleus. The plasma membrane pool is necessary and sufficient for setting branch angles. To investigate the molecular mechanism of LAZY1 function, we screened for LAZY1-interacting proteins in yeast. We identified BRXL4, a shoot-specific protein related to BREVIS RADIX. The BRXL4-LAZY1 interaction occurred at the plasma membrane in plant cells, and not detectably in the nucleus. Mutations in the C-terminus of LAZY1, but not other conserved regions, prevented the interaction. Opposite to lazy1, brxl4 mutants displayed faster gravitropism and more upright branches. Overexpressing BRXL4 produced strong lazy1 phenotypes. The apparent negative regulation of LAZY1 function is consistent with BRXL4 reducing LAZY1 expression or the amount of LAZY1 at the plasma membrane. Measurements indicated that both are true. LAZY1 mRNA was three-fold more abundant in brxl4 mutants and almost undetectable in BRXL4 overexpressors. Plasma membrane LAZY1 was higher and nuclear LAZY1 lower in brxl4 mutants compared with the wild type. To explain these results, we suggest that BRXL4 reduces the amount of LAZY1 at the plasma membrane where it functions in gravity signaling and promotes LAZY1 accumulation in the nucleus where it reduces LAZY1 expression, possibly by suppressing its own transcription. This explanation of how BRXL4 negatively regulates LAZY1 suggests ways to modify shoot system architecture for practical purposes.
Collapse
Affiliation(s)
- Ximing Che
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Bessie L. Splitt
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Magnus T. Eckholm
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Nathan D. Miller
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Edgar P. Spalding
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| |
Collapse
|
10
|
Jin L, Zhang G, Yang G, Dong J. Identification of the Karyopherin Superfamily in Maize and Its Functional Cues in Plant Development. Int J Mol Sci 2022; 23:ijms232214103. [PMID: 36430578 PMCID: PMC9699179 DOI: 10.3390/ijms232214103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Appropriate nucleo-cytoplasmic partitioning of proteins is a vital regulatory mechanism in phytohormone signaling and plant development. However, how this is achieved remains incompletely understood. The Karyopherin (KAP) superfamily is critical for separating the biological processes in the nucleus from those in the cytoplasm. The KAP superfamily is divided into Importin α (IMPα) and Importin β (IMPβ) families and includes the core components in mediating nucleocytoplasmic transport. Recent reports suggest the KAPs play crucial regulatory roles in Arabidopsis development and stress response by regulating the nucleo-cytoplasmic transport of members in hormone signaling. However, the KAP members and their associated molecular mechanisms are still poorly understood in maize. Therefore, we first identified seven IMPα and twenty-seven IMPβ genes in the maize genome and described their evolution traits and the recognition rules for substrates with nuclear localization signals (NLSs) or nuclear export signals (NESs) in plants. Next, we searched for the protein interaction partners of the ZmKAPs and selected the ones with Arabidopsis orthologs functioning in auxin biosynthesis, transport, and signaling to predict their potential function. Finally, we found that several ZmKAPs share similar expression patterns with their interacting proteins, implying their function in root development. Overall, this article focuses on the Karyopherin superfamily in maize and starts with this entry point by systematically comprehending the KAP-mediated nucleo-cytoplasmic transport process in plants, and then predicts the function of the ZmKAPs during maize development, with a perspective on a closely associated regulatory mechanism between the nucleo-cytoplasmic transport and the phytohormone network.
Collapse
Affiliation(s)
- Lu Jin
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guobin Zhang
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Guixiao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiaqiang Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
11
|
Lüdke D, Yan Q, Rohmann PFW, Wiermer M. NLR we there yet? Nucleocytoplasmic coordination of NLR-mediated immunity. THE NEW PHYTOLOGIST 2022; 236:24-42. [PMID: 35794845 DOI: 10.1111/nph.18359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat immune receptors (NLRs) perceive the activity of pathogen-secreted effector molecules that, when undetected, promote colonisation of hosts. Signalling from activated NLRs converges with and potentiates downstream responses from activated pattern recognition receptors (PRRs) that sense microbial signatures at the cell surface. Efficient signalling of both receptor branches relies on the host cell nucleus as an integration point for transcriptional reprogramming, and on the macromolecular transport processes that mediate the communication between cytoplasm and nucleoplasm. Studies on nuclear pore complexes (NPCs), the nucleoporin proteins (NUPs) that compose NPCs, and nuclear transport machinery constituents that control nucleocytoplasmic transport, have revealed that they play important roles in regulating plant immune responses. Here, we discuss the contributions of nucleoporins and nuclear transport receptor (NTR)-mediated signal transduction in plant immunity with an emphasis on NLR immune signalling across the nuclear compartment boundary and within the nucleus. We also highlight and discuss cytoplasmic and nuclear functions of NLRs and their signalling partners and further consider the potential implications of NLR activation and resistosome formation in both cellular compartments for mediating plant pathogen resistance and programmed host cell death.
Collapse
Affiliation(s)
- Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Qiqi Yan
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Philipp F W Rohmann
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| |
Collapse
|
12
|
Bioinformatics and Functional Analysis of a New Nuclear Localization Sequence of the Influenza A Virus Nucleoprotein. Cells 2022; 11:cells11192957. [PMID: 36230922 PMCID: PMC9563117 DOI: 10.3390/cells11192957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Influenza viruses deliver their genome into the nucleus of infected cells for replication. This process is mediated by the viral nucleoprotein (NP), which contains two nuclear localization sequences (NLSs): NLS1 at the N-terminus and a recently identified NLS2 (212GRKTR216). Through mutagenesis and functional studies, we demonstrated that NP must have both NLSs for an efficient nuclear import. As with other NLSs, there may be variations in the basic residues of NLS2 in different strains of the virus, which may affect the nuclear import of the viral genome. Although all NLS2 variants fused to the GFP mediated nuclear import of GFP, bioinformatics showed that 98.8% of reported NP sequences contained either the wild-type sequence 212GRKTR216 or 212GRRTR216. Bioinformatics analyses used to study the presence of NLS2 variants in other viral and nuclear proteins resulted in very low hits, with only 0.4% of human nuclear proteins containing putative NLS2. From these, we studied the nucleolar protein 14 (NOP14) and found that NLS2 does not play a role in the nuclear import of this protein but in its nucleolar localization. We also discovered a functional NLS at the C-terminus of NOP14. Our findings indicate that NLS2 is a highly conserved influenza A NP sequence.
Collapse
|
13
|
Xu X, Wang H, Liu J, Han S, Lin M, Guo Z, Chen X. OsWRKY62 and OsWRKY76 Interact with Importin α1s for Negative Regulation of Defensive Responses in Rice Nucleus. RICE (NEW YORK, N.Y.) 2022; 15:12. [PMID: 35184252 PMCID: PMC8859016 DOI: 10.1186/s12284-022-00558-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Background OsWRKY62 and OsWRKY76, two close members of WRKY transcription factors, function together as transcriptional repressors. OsWRKY62 is predominantly localized in the cytosol. What are the regulatory factors for OsWRKY62 nuclear translocation? Results In this study, we characterized the interaction of OsWRKY62 and OsWRKY76 with rice importin, OsIMα1a and OsIMα1b, for nuclear translocation. Chimeric OsWRKY62.1-GFP, which is predominantly localized in the cytoplasm, was translocated to the nucleus of Nicotiana benthamiana leaf cells in the presence of OsIMα1a or OsIMαΔIBB1a lacking the auto-inhibitory importin β-binding domain. OsIMαΔIBB1a interacted with the WRKY domain of OsWRKY62.1, which has specific bipartite positively charged concatenated amino acids functioning as a nuclear localization signal (NLS). Similarly, we found that OsIMαΔIBB1a interacted with the AvrPib effector of rice blast fungus Magnaporthe oryzae, which contains a scattered distribution of positively charged amino acids. Furthermore, we identified a nuclear export signal (NES) in OsWRKY62.1 that inhibited nuclear transportation. Overexpression of OsIMα1a or OsIMα1b enhanced resistance to M. oryzae, whereas knockout mutants decreased resistance to the pathogen. However, overexpressing both OsIMα1a and OsWRKY62.1 were slightly more susceptible to M. oryzae than OsWRKY62.1 alone. Ectopic overexpression of OsWRKY62.1-NES fused gene compromised the enhanced susceptibility of OsWRKY62.1 to M. oryzae. Conclusion These results revealed the existence of NLS and NES in OsWRKY62. OsWRKY62, OsWRKY76, and AvrPib effector translocate to nucleus in association with importin α1s through new types of nuclear localization signals for negatively regulating defense responses.
Collapse
Affiliation(s)
- Xiaohui Xu
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
- College of Modern Science and Technology, China Jiliang University, Hangzhou, 310018 China
| | - Han Wang
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Jiqin Liu
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Shuying Han
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Miaomiao Lin
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Zejian Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Xujun Chen
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
14
|
Jibiki K, Liu MY, Lei CS, Kodama TS, Kojima C, Fujiwara T, Yasuhara N. Biochemical propensity mapping for structural and functional anatomy of importin α IBB domain. Genes Cells 2021; 27:173-191. [PMID: 34954861 DOI: 10.1111/gtc.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022]
Abstract
Importin α has been described as a nuclear protein transport receptor that enables proteins synthesized in the cytoplasm to translocate into the nucleus. Besides its function in nuclear transport, an increasing number of studies have examined its non-nuclear transport functions. In both nuclear transport and non-nuclear transport, a functional domain called the IBB domain (importin β binding domain) plays a key role in regulating importin α behavior, and is a common interacting domain for multiple binding partners. However, it is not yet fully understood how the IBB domain interacts with multiple binding partners, which leads to the switching of importin α function. In this study, we have distinguished the location and propensities of amino acids important for each function of the importin α IBB domain by mapping the biochemical/physicochemical propensities of evolutionarily conserved amino acids of the IBB domain onto the structure associated with each function. We found important residues that are universally conserved for IBB functions across species and family members, in addition to those previously known, as well as residues that are presumed to be responsible for the differences in complex-forming ability among family members and for functional switching.
Collapse
Affiliation(s)
- Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Mo-Yan Liu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Chao-Sen Lei
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Takashi S Kodama
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Sita, Osaka, Japan
| | - Chojiro Kojima
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Sita, Osaka, Japan.,Graduate School of Engineering Science, Yokohama National University, Yokohama, kanagawa, Japan
| | - Toshimichi Fujiwara
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Sita, Osaka, Japan
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan.,Department of Biosciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
15
|
Structural and calorimetric studies reveal specific determinants for the binding of a high-affinity NLS to mammalian importin-alpha. Biochem J 2021; 478:2715-2732. [PMID: 34195786 DOI: 10.1042/bcj20210401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022]
Abstract
The classical nuclear import pathway is mediated by importin (Impα and Impβ), which recognizes the cargo protein by its nuclear localization sequence (NLS). NLSs have been extensively studied resulting in different proposed consensus; however, recent studies showed that exceptions may occur. This mechanism may be also dependent on specific characteristics of different Impα. Aiming to better understand the importance of specific residues from consensus and adjacent regions of NLSs, we studied different mutations of a high-affinity NLS complexed to Impα by crystallography and calorimetry. We showed that although the consensus sequence allows Lys or Arg residues at the second residue of a monopartite sequence, the presence of Arg is very important to its binding in major and minor sites of Impα. Mutations in the N or C-terminus (position P1 or P6) of the NLS drastically reduces their affinity to the receptor, which is corroborated by the loss of hydrogen bonds and hydrophobic interactions. Surprisingly, a mutation in the far N-terminus of the NLS led to an increase in the affinity for both binding sites, corroborated by the structure with an additional hydrogen bond. The binding of NLSs to the human variant Impα1 revealed that these are similar to those found in structures presented here. For human variant Impα3, the bindings are only relevant for the major site. This study increases understanding of specific issues sparsely addressed in previous studies that are important to the task of predicting NLSs, which will be relevant in the eventual design of synthetic NLSs.
Collapse
|
16
|
Lapham RA, Lee LY, Xhako E, Gómez EG, Nivya VM, Gelvin SB. Agrobacterium VirE2 Protein Modulates Plant Gene Expression and Mediates Transformation From Its Location Outside the Nucleus. FRONTIERS IN PLANT SCIENCE 2021; 12:684192. [PMID: 34149784 PMCID: PMC8213393 DOI: 10.3389/fpls.2021.684192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/10/2021] [Indexed: 05/27/2023]
Abstract
Agrobacterium effector protein VirE2 is important for plant transformation. VirE2 likely coats transferred DNA (T-DNA) in the plant cell and protects it from degradation. VirE2 localizes to the plant cytoplasm and interacts with several host proteins. Plant-expressed VirE2 can complement a virE2 mutant Agrobacterium strain to support transformation. We investigated whether VirE2 could facilitate transformation from a nuclear location by affixing to it a strong nuclear localization signal (NLS) sequence. Only cytoplasmic-, but not nuclear-localized, VirE2 could stimulate transformation. To investigate the ways VirE2 supports transformation, we generated transgenic Arabidopsis plants containing a virE2 gene under the control of an inducible promoter and performed RNA-seq and proteomic analyses before and after induction. Some differentially expressed plant genes were previously known to facilitate transformation. Knockout mutant lines of some other VirE2 differentially expressed genes showed altered transformation phenotypes. Levels of some proteins known to be important for transformation increased in response to VirE2 induction, but prior to or without induction of their corresponding mRNAs. Overexpression of some other genes whose proteins increased after VirE2 induction resulted in increased transformation susceptibility. We conclude that cytoplasmically localized VirE2 modulates both plant RNA and protein levels to facilitate transformation.
Collapse
Affiliation(s)
- Rachelle A. Lapham
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Eder Xhako
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Esteban Gañán Gómez
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Departamento de Ciencias Biológicas, Universidad EAFIT, Medellín, Colombia
| | - V. M. Nivya
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Department of Plant Science, School of Biological Science, Central University of Kerala, Kasaragod, India
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
17
|
Chen T, Peng J, Yin X, Li M, Xiang G, Wang Y, Lei Y, Xu Y. Importin-αs are required for the nuclear localization and function of the Plasmopara viticola effector PvAVH53. HORTICULTURE RESEARCH 2021; 8:46. [PMID: 33642571 PMCID: PMC7917100 DOI: 10.1038/s41438-021-00482-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 05/20/2023]
Abstract
Plant pathogenic oomycetes deliver a troop of effector proteins into the nucleus of host cells to manipulate plant cellular immunity and promote colonization. Recently, researchers have focused on identifying how effectors are transferred into the host cell nucleus, as well as the identity of the nuclear targets. In this study, we found that the RxLR effector PvAVH53 from the grapevine (Vitis vinifera) oomycete pathogen Plasmopara viticola physically interacts with grapevine nuclear import factor importin alphas (VvImpα and VvImpα4), localizes to the nucleus and triggers cell death when transiently expressed in tobacco (Nicotiana benthamiana) cells. Deletion of a nuclear localization signal (NLS) sequence from PvAVH53 or addition of a nuclear export signal (NES) sequence disrupted the nuclear localization of PvAVH53 and attenuated its ability to trigger cell death. Suppression of two tobacco importin-α genes, namely, NbImp-α1 and NbImp-α2, by virus-induced gene silencing (VIGS) also disrupted the nuclear localization and ability of PvAVH53 to induce cell death. Likewise, we transiently silenced the expression of VvImpα/α4 in grape through CRISPR/Cas13a, which has been reported to target RNA in vivo. Finally, we found that attenuating the expression of the Importin-αs genes resulted in increased susceptibility to the oomycete pathogen Phytophthora capsici in N. benthamiana and P. viticola in V. vinifera. Our results demonstrate that importin-αs are required for the nuclear localization and function of PvAVH53 and are essential for host innate immunity. The findings provide insight into the functions of importin-αs in grapevine against downy mildew.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Jing Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Meijie Li
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yan Lei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, 350013, Fuzhou, Fujian, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China.
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China.
| |
Collapse
|
18
|
Lüdke D, Roth C, Kamrad SA, Messerschmidt J, Hartken D, Appel J, Hörnich BF, Yan Q, Kusch S, Klenke M, Gunkel A, Wirthmueller L, Wiermer M. Functional requirement of the Arabidopsis importin-α nuclear transport receptor family in autoimmunity mediated by the NLR protein SNC1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:994-1009. [PMID: 33210758 DOI: 10.1111/tpj.15082] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 05/28/2023]
Abstract
IMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is one of nine importin-α isoforms in Arabidopsis that recruit nuclear localization signal-containing cargo proteins to the nuclear import machinery. IMP-α3/MOS6 is required genetically for full autoimmunity of the nucleotide-binding leucine-rich repeat immune receptor mutant snc1 (suppressor of npr1-1, constitutive 1) and MOS6 also contributes to basal disease resistance. Here, we investigated the contribution of the other importin-α genes to both types of immune responses, and we analyzed potential interactions of all importin-α isoforms with SNC1. By using reverse-genetic analyses in Arabidopsis and protein-protein interaction assays in Nicotiana benthamiana, we provide evidence that among the nine α-importins in Arabidopsis, IMP-α3/MOS6 is the main nuclear transport receptor of SNC1, and that IMP-α3/MOS6 is required selectively for autoimmunity of snc1 and basal resistance to mildly virulent Pseudomonas syringae in Arabidopsis.
Collapse
Affiliation(s)
- Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Charlotte Roth
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Sieglinde A Kamrad
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Jana Messerschmidt
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Denise Hartken
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Jonas Appel
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Bojan F Hörnich
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Qiqi Yan
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Stefan Kusch
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Melanie Klenke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Annette Gunkel
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Lennart Wirthmueller
- Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
- Molecular Biology of Plant-Microbe Interactions Research Group, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37077, Goettingen, Germany
| |
Collapse
|
19
|
Blunt EL, Shandler JA, Hughes EJ, Sussman H, Christopherson RC, Richards EJ. Coordination of NMCP1- and NMCP2-class proteins within the plant nucleoskeleton. Mol Biol Cell 2020; 31:2948-2958. [PMID: 33147115 PMCID: PMC7927195 DOI: 10.1091/mbc.e19-08-0464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Plants lack lamin proteins but contain a class of coiled-coil proteins that serve as analogues to form a laminal structure at the nuclear periphery. These nuclear matrix constituent proteins (NMCPs) play important roles in regulating nuclear morphology and are partitioned into two distinct groups. We investigated Arabidopsis NMCPs (called CRWNs) to study the interrelationship between the three NMCP1-type paralogues (CRWN1, 2, and 3) and the lone NMCP2-type paralogue, CRWN4. An examination of crwn mutants using protein immunoblots demonstrated that CRWN4 abundance depends on the presence of the NMCP1-type proteins, particularly CRWN1. The possibility that CRWN4 is coimported into the nucleus with nuclear localization signal (NLS)-bearing paralogues in the NMCP1-clade was discounted based on recovery of a crwn4-2 missense allele that disrupts a predicted NLS and lowers the abundance of CRWN4 in the nucleus. Further, a screen for mutations that suppress the effects of the crwn4-2 mutation led to the discovery of a missense allele, impa-1G146E, in one of the nine importin-α genes in the Arabidopsis genome. Our results indicate that the CRWN4 carries a functional NLS that interacts with canonic nuclear import machinery. Once imported, the level of CRWN4 within the nucleus is modulated by the abundance of NMCP1 proteins.
Collapse
Affiliation(s)
- Endia L Blunt
- Boyce Thompson Institute, Ithaca, NY 14853.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | | | | | | | - Eric J Richards
- Boyce Thompson Institute, Ithaca, NY 14853.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
20
|
Crystal structures of Uso1 membrane tether reveal an alternative conformation in the globular head domain. Sci Rep 2020; 10:9544. [PMID: 32533038 PMCID: PMC7293329 DOI: 10.1038/s41598-020-66480-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/17/2020] [Indexed: 11/09/2022] Open
Abstract
Membrane tethers play a critical role in organizing the complex molecular architecture of eukaryotic cells. Uso1 (yeast homolog of human p115) is essential for tethering in vesicle transport from ER to Golgi and interacts with Ypt1 GTPase. The N-terminal globular head domain of Uso1 is responsible for Ypt1 binding; however, the mechanism of tethering between ER transport vesicles and Golgi is unknown. Here, we determined two crystal structures for the Uso1 N-terminal head domain in two alternative conformations. The head domain of Uso1 exists as a monomer, as confirmed using size-exclusion chromatography coupled to multi-angle light scattering and analytical gel filtration. Although Uso1 consists of a right-handed α-solenoid, like that in mammalian homologs, the overall conformations of both Uso1 structures were not similar to previously known p115 structures, suggesting that it adopts alternative conformations. We found that the N- and C-terminal regions of the Uso1 head domain are connected by a long flexible linker, which may mediate conformational changes. To analyse the role of the alternative conformations of Uso1, we performed molecular docking of Uso1 with Ypt1, followed by a structural comparison. Taken together, we hypothesize that the alternative conformations of Uso1 regulate the precise docking of vesicles to Golgi.
Collapse
|
21
|
Fernandes CAH, Perez AM, Barros AC, Dreyer TR, da Silva MS, Morea EGO, Fontes MRM, Cano MIN. Dual cellular localization of the Leishmania amazonensis Rbp38 (LaRbp38) explains its affinity for telomeric and mitochondrial DNA. Biochimie 2019; 162:15-25. [PMID: 30930281 DOI: 10.1016/j.biochi.2019.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Rbp38 is a protein exclusively found in trypanosomatid parasites, including Leishmania amazonensis, the etiologic agent of tegumentar leishmaniasis in the Americas. The protein was first described as a Leishmania tarentolae mitochondrial RNA binding protein. Later, it was shown that the trypanosomes Rbp38 orthologues were exclusively found in the mitochondria and involved in the stabilization and replication of kinetoplast DNA (kDNA). In contrast, L. amazonensis Rbp38 (LaRbp38), co-purifies with telomerase activity and interacts not only with kDNA but also with telomeric DNA, although shares with its counterparts high sequence identity and a putative N-terminal mitochondrial targeting signal (MTS). To understand how LaRbp38 interacts both with nuclear and kDNA, we have first investigated its subcellular localization. Using hydroxy-urea synchronized L. amazonensis promastigotes we could show that LaRbp38 shuttles from mitochondria to the nucleus at late S and G2 phases. Further, we identified a non-classical nuclear localization signal (NLS) at LaRbp38 C-terminal that binds with importin alpha, a protein involved in the nuclear transport of several proteins. Also, we obtained LaRbp38 truncated forms among which, some of them also showed an affinity for both telomeric DNA and kDNA. Analysis of these truncated forms showed that LaRbp38 DNA-binding region is located between amino acid residues 95-235. Together, our findings strongly suggest that LaRbp38 is multifunctional with dual subcellular localization.
Collapse
Affiliation(s)
- Carlos A H Fernandes
- Department of Genetics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil; Department of Physics and Biophysics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Arina M Perez
- Department of Genetics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Andrea C Barros
- Department of Physics and Biophysics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Thiago R Dreyer
- Department of Physics and Biophysics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcelo S da Silva
- Laboratório Especial de Ciclo Cellular, (LECC), Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | - Edna Gicela O Morea
- Department of Genetics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcos R M Fontes
- Department of Physics and Biophysics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Maria Isabel N Cano
- Department of Genetics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
22
|
Hui S, Shi Y, Tian J, Wang L, Li Y, Wang S, Yuan M. TALE-carrying bacterial pathogens trap host nuclear import receptors for facilitation of infection of rice. MOLECULAR PLANT PATHOLOGY 2019; 20:519-532. [PMID: 30499169 PMCID: PMC6637887 DOI: 10.1111/mpp.12772] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many plant-pathogenic Xanthomonas rely on the secretion of virulence transcription activator-like effector (TALE) proteins into plant cells to activate plant susceptibility genes to cause disease. The process is dependent on the binding of TALEs to specific elements of host target gene promoters in the plant nucleus. However, it is unclear how TALEs, after injection into host cells, are transferred from the plant cytoplasm into the plant nucleus, which is the key step of successful pathogen infection. Here, we show that the host plant cytoplasm/nuclear shuttle proteins OsImpα1a and OsImpα1b are key components for infection by the TALE-carrying bacterial pathogens Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), the causal agents of bacterial leaf blight and bacterial leaf streak, respectively, in rice. Direct interaction between the second nuclear localization signal of TALEs of Xoo or Xoc and OsImpα1a or OsImpα1b is required for the transportation of TALEs into the nucleus. Conversely, suppression of the expression of OsImpα1a and OsImpα1b genes attenuates the shuttling of TALEs from the cytoplasm into the nucleus and the induction of susceptibility genes, thus improving the broad-spectrum disease resistance of rice to Xoo and Xoc. These results provide an applicable strategy for the improvement of resistance to TALE-carrying pathogens in rice by moderate suppression of the expression of plant nuclear import receptor proteins.
Collapse
Affiliation(s)
- Shugang Hui
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| | - Yarui Shi
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| | - Jingjing Tian
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| | - Li Wang
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| | - Yueyue Li
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
23
|
Chen C, Masi RD, Lintermann R, Wirthmueller L. Nuclear Import of Arabidopsis Poly(ADP-Ribose) Polymerase 2 Is Mediated by Importin-α and a Nuclear Localization Sequence Located Between the Predicted SAP Domains. FRONTIERS IN PLANT SCIENCE 2018; 9:1581. [PMID: 30455710 PMCID: PMC6230994 DOI: 10.3389/fpls.2018.01581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/10/2018] [Indexed: 05/17/2023]
Abstract
Proteins of the Poly(ADP-Ribose) Polymerase (PARP) family modify target proteins by covalent attachment of ADP-ribose moieties onto amino acid side chains. In Arabidopsis, PARP proteins contribute to repair of DNA lesions and modulate plant responses to various abiotic and biotic stressors. Arabidopsis PARP1 and PARP2 are nuclear proteins and given that their molecular weights exceed the diffusion limit of nuclear pore complexes, an active import mechanism into the nucleus is likely. Here we use confocal microscopy of fluorescent protein-tagged Arabidopsis PARP2 and PARP2 deletion constructs in combination with site-directed mutagenesis to identify a nuclear localization sequence in PARP2 that is required for nuclear import. We report that in co-immunoprecipitation assays PARP2 interacts with several isoforms of the importin-α group of nuclear transport adapters and that PARP2 binding to IMPORTIN-α2 is mediated by the identified nuclear localization sequence. Our results demonstrate that PARP2 is a cargo protein of the canonical importin-α/β nuclear import pathway.
Collapse
Affiliation(s)
| | | | | | - Lennart Wirthmueller
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
24
|
Contribution of the residue at position 4 within classical nuclear localization signals to modulating interaction with importins and nuclear targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1114-1129. [DOI: 10.1016/j.bbamcr.2018.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/08/2023]
|
25
|
Nuclear transport of the Neurospora crassa NIT-2 transcription factor is mediated by importin-α. Biochem J 2017; 474:4091-4104. [DOI: 10.1042/bcj20170654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Neurospora crassa NIT-2 transcription factor belongs to the GATA transcription factor family and plays a fundamental role in the regulation of nitrogen metabolism. Because NIT-2 acts by accessing DNA inside the nucleus, understanding the nuclear import process of NIT-2 is necessary to characterize its function. Thus, in the present study, NIT-2 nuclear transport was investigated using a combination of biochemical, cellular, and biophysical methods. A complemented strain that produced an sfGFP–NIT-2 fusion protein was constructed, and nuclear localization assessments were made under conditions that favored protein translocation to the nucleus. Nuclear translocation was also investigated using HeLa cells, which showed that the putative NIT-2 nuclear localization sequence (NLS; 915TISSKRQRRHSKS927) was recognized by importin-α and that subsequent transport occurred via the classical import pathway. The interaction between the N. crassa importin-α (NcImpα) and the NIT-2 NLS was quantified with calorimetric assays, leading to the observation that the peptide bound to two sites with different affinities, which is typical of a monopartite NLS sequence. The crystal structure of the NcImpα/NIT-2 NLS complex was solved and revealed that the NIT-2 peptide binds to NcImpα with the major NLS-binding site playing a primary role. This result contrasts other recent studies that suggested a major role for the minor NLS-binding site in importin-α from the α2 family, indicating that both sites can be used for different cargo proteins according to specific metabolic requirements.
Collapse
|
26
|
Roth C, Lüdke D, Klenke M, Quathamer A, Valerius O, Braus GH, Wiermer M. The truncated NLR protein TIR-NBS13 is a MOS6/IMPORTIN-α3 interaction partner required for plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:808-821. [PMID: 28901644 DOI: 10.1111/tpj.13717] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 05/28/2023]
Abstract
Importin-α proteins mediate the translocation of nuclear localization signal (NLS)-containing proteins from the cytoplasm into the nucleus through nuclear pore complexes (NPCs). Genetically, Arabidopsis IMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is required for basal plant immunity and constitutive disease resistance activated in autoimmune mutant snc1 (suppressor of npr1-1, constitutive 1), suggesting that MOS6 plays a role in the nuclear import of proteins involved in plant defense signaling. Here, we sought to identify and characterize defense-regulatory cargo proteins and interaction partners of MOS6. We conducted both in silico database analyses and affinity purification of functional epitope-tagged MOS6 from pathogen-challenged stable transgenic plants coupled with mass spectrometry. We show that among the 13 candidate MOS6 interactors we selected for further functional characterization, the TIR-NBS-type protein TN13 is required for resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 lacking the type-III effector proteins AvrPto and AvrPtoB. When expressed transiently in N. benthamiana leaves, TN13 co-immunoprecipitates with MOS6, but not with its closest homolog IMPORTIN-α6, and localizes to the endoplasmic reticulum (ER), consistent with a predicted N-terminal transmembrane domain in TN13. Our work uncovered the truncated NLR protein TN13 as a component of plant innate immunity that selectively binds to MOS6/IMPORTIN-α3 in planta. We speculate that the release of TN13 from the ER membrane in response to pathogen stimulus, and its subsequent nuclear translocation, is important for plant defense signal transduction.
Collapse
Affiliation(s)
- Charlotte Roth
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Daniel Lüdke
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Melanie Klenke
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Annalena Quathamer
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany
| | - Marcel Wiermer
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| |
Collapse
|
27
|
de Barros AC, Takeda AAS, Dreyer TR, Velazquez-Campoy A, Kobe B, Fontes MRM. DNA mismatch repair proteins MLH1 and PMS2 can be imported to the nucleus by a classical nuclear import pathway. Biochimie 2017; 146:87-96. [PMID: 29175432 DOI: 10.1016/j.biochi.2017.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/22/2017] [Indexed: 01/11/2023]
Abstract
MLH1 and PMS2 proteins form the MutLα heterodimer, which plays a major role in DNA mismatch repair (MMR) in humans. Mutations in MMR-related proteins are associated with cancer, especially with colon cancer. The N-terminal region of MutLα comprises the N-termini of PMS2 and MLH1 and, similarly, the C-terminal region of MutLα is composed by the C-termini of PMS2 and MLH1, and the two are connected by linker region. The nuclear localization sequences (NLSs) necessary for the nuclear transport of the two proteins are found in this linker region. However, the exact NLS sequences have been controversial, with different sequences reported, particularly for MLH1. The individual components are not imported efficiently, presumably due to their C-termini masking their NLSs. In order to gain insights into the nuclear transport of these proteins, we solved the crystal structures of importin-α bound to peptides corresponding to the supposed NLSs of MLH1 and PMS2 and performed isothermal titration calorimetry to study their binding affinities. Both putative MLH1 and PMS2 NLSs can bind to importin-α as monopartite NLSs, which is in agreement with some previous studies. However, MLH1-NLS has the highest affinity measured by a natural NLS peptide, suggesting a major role of MLH1 protein in nuclear import compared to PMS2. Finally, the role of MLH1 and PMS2 in the nuclear transport of the MutLα heterodimer is discussed.
Collapse
Affiliation(s)
- Andrea C de Barros
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Agnes A S Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Thiago R Dreyer
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint-Unit IQFR-CSIC-BIFI, University of Zaragoza, Zaragoza, Spain; Dep. of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain; Fundacion ARAID, Government of Aragon, Zaragoza, Spain
| | - Boštjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marcos R M Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| |
Collapse
|
28
|
Chaston JJ, Stewart AG, Christie M. Structural characterisation of TNRC6A nuclear localisation signal in complex with importin-alpha. PLoS One 2017; 12:e0183587. [PMID: 28837617 PMCID: PMC5570423 DOI: 10.1371/journal.pone.0183587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
The GW182/TNRC6 family of proteins are central scaffolds that link microRNA-associated Argonaute proteins to the cytoplasmic decay machinery for targeted mRNA degradation processes. Although nuclear roles for the GW182/TNRC6 proteins are unknown, recent reports have demonstrated nucleocytoplasmic shuttling activity that utilises the importin-α and importin-β transport receptors for nuclear translocation. Here we describe the structure of mouse importin-α in complex with the TNRC6A nuclear localisation signal peptide. We further show that the interactions observed between TNRC6A and importin-α are conserved between mouse and human complexes. Our results highlight the ability of monopartite cNLS sequences to maximise contacts at the importin-α major binding site, as well as regions outside the main binding cavities.
Collapse
Affiliation(s)
- Jessica J. Chaston
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Alastair Gordon Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Mary Christie
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Fang Y, Jang HS, Watson GW, Wellappili DP, Tyler BM. Distinctive Nuclear Localization Signals in the Oomycete Phytophthora sojae. Front Microbiol 2017; 8:10. [PMID: 28210240 PMCID: PMC5288373 DOI: 10.3389/fmicb.2017.00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/03/2017] [Indexed: 01/06/2023] Open
Abstract
To date, nuclear localization signals (NLSs) that target proteins to nuclei in oomycetes have not been defined, but have been assumed to be the same as in higher eukaryotes. Here, we use the soybean pathogen Phytophthora sojae as a model to investigate these sequences in oomycetes. By establishing a reliable in vivo NLS assay based on confocal microscopy, we found that many canonical monopartite and bipartite classical NLSs (cNLSs) mediated nuclear import poorly in P. sojae. We found that efficient localization of P. sojae nuclear proteins by cNLSs requires additional basic amino acids at distal sites or collaboration with other NLSs. We found that several representatives of another well-characterized NLS, proline-tyrosine NLS (PY-NLS) also functioned poorly in P. sojae. To characterize PY-NLSs in P. sojae, we experimentally defined the residues required by functional PY-NLSs in three P. sojae nuclear-localized proteins. These results showed that functional P. sojae PY-NLSs include an additional cluster of basic residues for efficient nuclear import. Finally, analysis of several highly conserved P. sojae nuclear proteins including ribosomal proteins and core histones revealed that these proteins exhibit a similar but stronger set of sequence requirements for nuclear targeting compared with their orthologs in mammals or yeast.
Collapse
Affiliation(s)
- Yufeng Fang
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia TechBlacksburg, VA, USA; Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
| | - Hyo Sang Jang
- Department of Environmental and Molecular Toxicology, Oregon State University Corvallis, OR, USA
| | - Gregory W Watson
- Molecular and Cellular Biology Program, Oregon State UniversityCorvallis, OR, USA; Biological and Population Health Sciences, Oregon State UniversityCorvallis, OR, USA
| | - Dulani P Wellappili
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University Corvallis, OR, USA
| | - Brett M Tyler
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia TechBlacksburg, VA, USA; Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
| |
Collapse
|
30
|
Sankhala RS, Lokareddy RK, Cingolani G. Divergent Evolution of Nuclear Localization Signal Sequences in Herpesvirus Terminase Subunits. J Biol Chem 2016; 291:11420-33. [PMID: 27033706 DOI: 10.1074/jbc.m116.724393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
The tripartite terminase complex of herpesviruses assembles in the cytoplasm of infected cells and exploits the host nuclear import machinery to gain access to the nucleus, where capsid assembly and genome-packaging occur. Here we analyzed the structure and conservation of nuclear localization signal (NLS) sequences previously identified in herpes simplex virus 1 (HSV-1) large terminase and human cytomegalovirus (HCMV) small terminase. We found a monopartite NLS at the N terminus of large terminase, flanking the ATPase domain, that is conserved only in α-herpesviruses. In contrast, small terminase exposes a classical NLS at the far C terminus of its helical structure that is conserved only in two genera of the β-subfamily and absent in α- and γ-herpesviruses. In addition, we predicted a classical NLS in the third terminase subunit that is partially conserved among herpesviruses. Bioinformatic analysis revealed that both location and potency of NLSs in terminase subunits evolved more rapidly than the rest of the amino acid sequence despite the selective pressure to keep terminase gene products active and localized in the nucleus. We propose that swapping NLSs among terminase subunits is a regulatory mechanism that allows different herpesviruses to regulate the kinetics of terminase nuclear import, reflecting a mechanism of virus:host adaptation.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Ravi K Lokareddy
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Gino Cingolani
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
31
|
Barros ACD, Takeda AAS, Dreyer TR, Velazquez-Campoy A, Kobe B, Fontes MRM. Structural and Calorimetric Studies Demonstrate that Xeroderma Pigmentosum Type G (XPG) Can Be Imported to the Nucleus by a Classical Nuclear Import Pathway via a Monopartite NLS Sequence. J Mol Biol 2016; 428:2120-31. [PMID: 26812207 DOI: 10.1016/j.jmb.2016.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 11/16/2022]
Abstract
Xeroderma pigmentosum type G (XPG) proteins are involved in DNA lesion recognition and promotion of nucleotide excision repair. Specific mutations in these proteins may lead to Cockayne syndrome, in which the patients may display severe developmental retardation and neurological abnormalities. No structural information is available for their spacer region or the C-terminal domain, which are important, respectively, for specific nucleotide excision repair activity and substrate specificity, as well as nuclear translocation. Immunofluorescence studies suggested two specific regions of the XPG C-terminus as potential bipartite nuclear localization sequences, which would be responsible for its translocation to the nucleus by the classical nuclear import pathway mediated by the importin-α (Impα). Thus, in order to test these hypotheses and gain insight into the structural basis for the nuclear import process for the XPG protein, we solved the crystal structures of complexes formed by the Impα and peptides corresponding to both putative nuclear localization signal (NLS) sequences (XPG1 and XPG2) and performed isothermal titration calorimetry assays to determine their binding affinities. Structural experiments confirm the binding of both NLS peptides to Impα but, unexpectedly, they bind to the receptor as monopartite NLSs. The isothermal titration calorimetry assays demonstrated that XPG1 and XPG2 peptides bind to two separate binding sites, but with high affinity to the major NLS-binding site of the Impα, resembling classical monopartite SV40 TAg NLS. The results lead to insights about what distinguishes monopartite and bipartite NLSs, as well as the differential roles of XPG1 and XPG2 NLSs in the nuclear localization of XPG.
Collapse
Affiliation(s)
- Andrea C de Barros
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, 18618-970 Brazil
| | - Agnes A S Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, 18618-970 Brazil
| | - Thiago R Dreyer
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, 18618-970 Brazil
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems, Joint-Unit Institute of Physical Chemistry "Rocasolano"-Consejo Superior de Investigaciones Científicas-Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, 50018, Spain; Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, 50018, Spain; Fundacion Agencia Aragonesa para la Investigación y el Desarrollo, Government of Aragon, Zaragoza, 50018, Spain
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marcos R M Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, 18618-970 Brazil.
| |
Collapse
|
32
|
Herud O, Weijers D, Lau S, Jürgens G. Auxin responsiveness of the MONOPTEROS-BODENLOS module in primary root initiation critically depends on the nuclear import kinetics of the Aux/IAA inhibitor BODENLOS. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:269-77. [PMID: 26714008 DOI: 10.1111/tpj.13108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 05/28/2023]
Abstract
Primary root formation in early embryogenesis of Arabidopsis thaliana is initiated with the specification of a single cell called hypophysis. This initial step requires the auxin-dependent release of the transcription factor MONOPTEROS (MP, also known as ARF5) from its inhibition by the Aux/IAA protein BODENLOS (BDL, also known as IAA12). Auxin-insensitive bdl mutant embryos and mp loss-of-function embryos fail to specify the hypophysis, giving rise to rootless seedlings. A suppressor screen of rootless bdl mutant seedlings yielded a mutation in the nuclear import receptor IMPORTIN-ALPHA 6 (IMPα6) that promoted primary root formation through rescue of the embryonic hypophysis defects, without causing additional phenotypic changes. Aux/IAA proteins are continually synthesized and degraded, which is essential for rapid transcriptional responses to changing auxin concentrations. Nuclear translocation of bdl:3×GFP was slowed down in impα6 mutants as measured by fluorescence recovery after photobleaching (FRAP) analysis, which correlated with the reduced inhibition of MP by bdl in transient expression assays in impα6 knock-down protoplasts. The MP-BDL module acts like an auxin-triggered genetic switch because MP activates its own expression as well as the expression of its inhibitor BDL. Using an established simulation model, we determined that the reduced nuclear translocation rate of BDL in impα6 mutant embryos rendered the auxin-triggered switch unstable, impairing the fast response to changes in auxin concentration. Our results suggest that the instability of the inhibitor BDL necessitates a fast nuclear uptake in order to reach the critical threshold level required for auxin responsiveness of the MP-BDL module in primary root initiation.
Collapse
Affiliation(s)
- Ole Herud
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Dolf Weijers
- Department of Developmental Genetics, Center for Plant Molecular Biology, University of Tübingen, Tübingen, 72076, Germany
| | - Steffen Lau
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Gerd Jürgens
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
- Department of Developmental Genetics, Center for Plant Molecular Biology, University of Tübingen, Tübingen, 72076, Germany
| |
Collapse
|
33
|
Christie M, Chang CW, Róna G, Smith KM, Stewart AG, Takeda AAS, Fontes MRM, Stewart M, Vértessy BG, Forwood JK, Kobe B. Structural Biology and Regulation of Protein Import into the Nucleus. J Mol Biol 2015; 428:2060-90. [PMID: 26523678 DOI: 10.1016/j.jmb.2015.10.023] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/16/2015] [Accepted: 10/24/2015] [Indexed: 11/28/2022]
Abstract
Proteins are translated in the cytoplasm, but many need to access the nucleus to perform their functions. Understanding how these nuclear proteins are transported through the nuclear envelope and how the import processes are regulated is therefore an important aspect of understanding cell function. Structural biology has played a key role in understanding the molecular events during the transport processes and their regulation, including the recognition of nuclear targeting signals by the corresponding receptors. Here, we review the structural basis of the principal nuclear import pathways and the molecular basis of their regulation. The pathways involve transport factors that are members of the β-karyopherin family, which can bind cargo directly (e.g., importin-β, transportin-1, transportin-3, importin-13) or through adaptor proteins (e.g., importin-α, snurportin-1, symportin-1), as well as unrelated transport factors such as Hikeshi, involved in the transport of heat-shock proteins, and NTF2, involved in the transport of RanGDP. Solenoid proteins feature prominently in these pathways. Nuclear transport factors recognize nuclear targeting signals on the cargo proteins, including the classical nuclear localization signals, recognized by the adaptor importin-α, and the PY nuclear localization signals, recognized by transportin-1. Post-translational modifications, particularly phosphorylation, constitute key regulatory mechanisms operating in these pathways.
Collapse
Affiliation(s)
- Mary Christie
- The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales Faculty of Medicine, Darlinghurst, NSW 2010, Australia
| | - Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gergely Róna
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Kate M Smith
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Alastair G Stewart
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Agnes A S Takeda
- Department of Physics and Biophysics, Institute of Biosciences, Universidade Estadual Paulista, Botucatu, São Paulo 18618-000, Brazil
| | - Marcos R M Fontes
- Department of Physics and Biophysics, Institute of Biosciences, Universidade Estadual Paulista, Botucatu, São Paulo 18618-000, Brazil
| | - Murray Stewart
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
34
|
Delaforge E, Milles S, Bouvignies G, Bouvier D, Boivin S, Salvi N, Maurin D, Martel A, Round A, Lemke EA, Ringkjøbing Jensen M, Hart DJ, Blackledge M. Large-Scale Conformational Dynamics Control H5N1 Influenza Polymerase PB2 Binding to Importin α. J Am Chem Soc 2015; 137:15122-34. [DOI: 10.1021/jacs.5b07765] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Elise Delaforge
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| | - Sigrid Milles
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| | - Guillaume Bouvignies
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| | - Denis Bouvier
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- Univ. Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
| | - Stephane Boivin
- Univ. Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Nicola Salvi
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| | - Damien Maurin
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| | - Anne Martel
- Institut Laue-Langevin, F-38044 Grenoble, France
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France
| | - Edward A. Lemke
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Malene Ringkjøbing Jensen
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| | - Darren J. Hart
- Univ. Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Martin Blackledge
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
| |
Collapse
|
35
|
Abstract
The Karyopherin-β family of proteins mediates nuclear transport of macromolecules. Nuclear versus cytoplasmic localization of proteins is often suggested by the presence of NLSs (nuclear localization signals) or NESs (nuclear export signals). Import-Karyopherin-βs or Importins bind to NLSs in their protein cargos to transport them through nuclear pore complexes into the nucleus. Until recently, only two classes of NLS had been biochemically and structurally characterized: the classical NLS, which is recognized by the Importin-α/β heterodimer and the PY-NLS (proline-tyrosine NLS), which is recognized by Karyopherin-β2 or Transportin-1. Structures of two other Karyopherin-βs, Kap121 and Transportin-SR2, in complex with their respective cargos were reported for the first time recently, revealing two new distinct classes of NLSs. The present paper briefly describes the classical NLS, reviews recent literature on the PY-NLS and provides in-depth reviews of the two newly discovered classes of NLSs that bind Kap121p and Transportin-SR respectively.
Collapse
|
36
|
Yang X, Ding F, Zhang L, Sheng Y, Zheng X, Wang Y. The importin α subunit PsIMPA1 mediates the oxidative stress response and is required for the pathogenicity of Phytophthora sojae. Fungal Genet Biol 2015; 82:108-15. [DOI: 10.1016/j.fgb.2015.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
|
37
|
Abstract
Gene-activating lipophilic compounds are carried into the nucleus when loaded on fatty-acid-binding proteins (FABP). Some of these proteins are recognized by the α-Karyopherin (Kapα) through its nuclear localization signal (NLS) consisting of three positive residues that are not in a continuous sequence. The Importin system can distinguish between FABP loaded with activating and non-activating compounds. In the present study, we introduced molecular dynamics as a tool for clarifying the mechanism by which FABP4, loaded with activating ligand (linoleate) is recognized by Kapα. In the first phase, we simulated the complex between KapαΔIBB (termed “Armadillo”) that was crystallized with two NLS hepta-peptides. The trajectory revealed that the crystal-structure orientation of the peptides is rapidly lost and new interactions dominate. Though, the NLS sequence of FABP4 is cryptic, since the functional residues are not in direct sequence, implicating more than one possible conformation. Therefore, four possible docked conformations were generated, in which the NLS of FABP4 is interacting with either the major or the minor sites of Kapα, and the N → C vectors are parallel or anti-parallel. Out of these four basic starting positions, only the FABP4-minor site complex exhibited a large number of contact points. In this complex, the FABP interacts with the minor and the major sites, suppressing the self-inhibitory interaction of the Kapα, rendering it free to react with Kapβ. Finally, we propose that the transportable conformation generated an extended hydrophobic domain which expanded out of the boundary of the FABP4, allowing the loaded linoleate to partially migrate out of the FABP into a joint complex in which the Kapα contributes part of a combined binding pocket.
Collapse
|
38
|
Bernardes NE, Takeda AAS, Dreyer TR, Freitas FZ, Bertolini MC, Fontes MRM. Structure of Importin-α from a Filamentous Fungus in Complex with a Classical Nuclear Localization Signal. PLoS One 2015; 10:e0128687. [PMID: 26091498 PMCID: PMC4474859 DOI: 10.1371/journal.pone.0128687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/29/2015] [Indexed: 01/07/2023] Open
Abstract
Neurospora crassa is a filamentous fungus that has been extensively studied as a model organism for eukaryotic biology, providing fundamental insights into cellular processes such as cell signaling, growth and differentiation. To advance in the study of this multicellular organism, an understanding of the specific mechanisms for protein transport into the cell nucleus is essential. Importin-α (Imp-α) is the receptor for cargo proteins that contain specific nuclear localization signals (NLSs) that play a key role in the classical nuclear import pathway. Structures of Imp-α from different organisms (yeast, rice, mouse, and human) have been determined, revealing that this receptor possesses a conserved structural scaffold. However, recent studies have demonstrated that the Impα mechanism of action may vary significantly for different organisms or for different isoforms from the same organism. Therefore, structural, functional, and biophysical characterization of different Impα proteins is necessary to understand the selectivity of nuclear transport. Here, we determined the first crystal structure of an Impα from a filamentous fungus which is also the highest resolution Impα structure already solved to date (1.75 Å). In addition, we performed calorimetric analysis to determine the affinity and thermodynamic parameters of the interaction between Imp-α and the classical SV40 NLS peptide. The comparison of these data with previous studies on Impα proteins led us to demonstrate that N. crassa Imp-α possess specific features that are distinct from mammalian Imp-α but exhibit important similarities to rice Imp-α, particularly at the minor NLS binding site.
Collapse
Affiliation(s)
- Natalia E. Bernardes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Agnes A. S. Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Thiago R. Dreyer
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Fernanda Z. Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | - Marcos R. M. Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
- * E-mail:
| |
Collapse
|
39
|
Lokareddy RK, Hapsari RA, van Rheenen M, Pumroy RA, Bhardwaj A, Steen A, Veenhoff LM, Cingolani G. Distinctive Properties of the Nuclear Localization Signals of Inner Nuclear Membrane Proteins Heh1 and Heh2. Structure 2015; 23:1305-1316. [PMID: 26051712 DOI: 10.1016/j.str.2015.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 01/13/2023]
Abstract
Targeting of ER-synthesized membrane proteins to the inner nuclear membrane (INM) has long been explained by the diffusion-retention model. However, several INM proteins contain non-classical nuclear localization signal (NLS) sequences, which, in a few instances, have been shown to promote importin α/β- and Ran-dependent translocation to the INM. Here, using structural and biochemical methods, we show that yeast INM proteins Heh2 and Src1/Heh1 contain bipartite import sequences that associate intimately with the minor NLS-binding pocket of yeast importin α and unlike classical NLSs efficiently displace the IBB domain in the absence of importin β. In vivo, the intimate interactions at the minor NLS-binding pocket make the h2NLS highly efficient at recruiting importin α at the ER and drive INM localization of endogenous Heh2. Thus, h1/h2NLSs delineate a novel class of super-potent, IBB-like membrane protein NLSs, distinct from classical NLSs found in soluble cargos and of general interest in biology.
Collapse
Affiliation(s)
- Ravi K Lokareddy
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10 Street, Philadelphia, PA 19107, USA
| | - Rizqiya A Hapsari
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Mathilde van Rheenen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ruth A Pumroy
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10 Street, Philadelphia, PA 19107, USA
| | - Anshul Bhardwaj
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10 Street, Philadelphia, PA 19107, USA
| | - Anton Steen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Gino Cingolani
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10 Street, Philadelphia, PA 19107, USA
| |
Collapse
|
40
|
Wirthmueller L, Roth C, Fabro G, Caillaud MC, Rallapalli G, Asai S, Sklenar J, Jones AME, Wiermer M, Jones JDG, Banfield MJ. Probing formation of cargo/importin-α transport complexes in plant cells using a pathogen effector. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:40-52. [PMID: 25284001 PMCID: PMC4350430 DOI: 10.1111/tpj.12691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 05/17/2023]
Abstract
Importin-αs are essential adapter proteins that recruit cytoplasmic proteins destined for active nuclear import to the nuclear transport machinery. Cargo proteins interact with the importin-α armadillo repeat domain via nuclear localization sequences (NLSs), short amino acids motifs enriched in Lys and Arg residues. Plant genomes typically encode several importin-α paralogs that can have both specific and partially redundant functions. Although some cargos are preferentially imported by a distinct importin-α it remains unknown how this specificity is generated and to what extent cargos compete for binding to nuclear transport receptors. Here we report that the effector protein HaRxL106 from the oomycete pathogen Hyaloperonospora arabidopsidis co-opts the host cell's nuclear import machinery. We use HaRxL106 as a probe to determine redundant and specific functions of importin-α paralogs from Arabidopsis thaliana. A crystal structure of the importin-α3/MOS6 armadillo repeat domain suggests that five of the six Arabidopsis importin-αs expressed in rosette leaves have an almost identical NLS-binding site. Comparison of the importin-α binding affinities of HaRxL106 and other cargos in vitro and in plant cells suggests that relatively small affinity differences in vitro affect the rate of transport complex formation in vivo. Our results suggest that cargo affinity for importin-α, sequence variation at the importin-α NLS-binding sites and tissue-specific expression levels of importin-αs determine formation of cargo/importin-α transport complexes in plant cells.
Collapse
Affiliation(s)
- Lennart Wirthmueller
- The Sainsbury LaboratoryNorwich Research Park, Norwich, NR4 7UH, UK
- Department of Biological Chemistry, John Innes CentreNorwich Research Park, Norwich, NR4 7UH, UK
| | - Charlotte Roth
- Department of Plant Cell Biology, Georg-August-UniversityJulia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Georgina Fabro
- The Sainsbury LaboratoryNorwich Research Park, Norwich, NR4 7UH, UK
| | | | | | - Shuta Asai
- The Sainsbury LaboratoryNorwich Research Park, Norwich, NR4 7UH, UK
| | - Jan Sklenar
- The Sainsbury LaboratoryNorwich Research Park, Norwich, NR4 7UH, UK
| | | | - Marcel Wiermer
- Department of Plant Cell Biology, Georg-August-UniversityJulia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | | | - Mark J Banfield
- Department of Biological Chemistry, John Innes CentreNorwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
41
|
Chang CW, Williams SJ, Couñago RM, Kobe B. Structural basis of interaction of bipartite nuclear localization signal from Agrobacterium VirD2 with rice importin-α. MOLECULAR PLANT 2014; 7:1061-1064. [PMID: 24503158 DOI: 10.1093/mp/ssu014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld 4072, Australia
| | - Simon J Williams
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld 4072, Australia
| | - Rafael Miguez Couñago
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
42
|
Bernardes NE, Takeda AAS, Freitas FZ, Bertolini MC, Fontes MRM. Crystallization and preliminary X-ray crystallographic analysis of importin-α from Neurospora crassa. Acta Crystallogr F Struct Biol Commun 2014; 70:501-4. [PMID: 24699749 PMCID: PMC3976073 DOI: 10.1107/s2053230x14005068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/05/2014] [Indexed: 01/18/2023] Open
Abstract
Importin-α recognizes cargo proteins that contain classical nuclear localization sequences (NLS) and, in complex with importin-β, is able to translocate nuclear proteins through the nuclear pore complex. The filamentous fungus Neurospora crassa is a well studied organism that has been widely used as a model organism for fundamental aspects of eukaryotic biology, and is important for understanding the specific mechanisms of protein transport to the cell nucleus. In this work, the crystallization and preliminary X-ray diffraction analysis of importin-α from N. crassa (IMPα-Nc) complexed with a classical NLS peptide (SV40 NLS) are reported. IMPα-Nc-SV40 NLS crystals diffracted X-rays to 2.0 Å resolution and the structure was solved by molecular-replacement techniques, leading to a monomeric structure. The observation of the electron-density map indicated the presence of SV40 NLSs interacting at both the minor and major NLS-binding sites of the protein.
Collapse
Affiliation(s)
- Natalia E. Bernardes
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Agnes A. S. Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Fernanda Z. Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP – Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP – Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Marcos R. M. Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu, SP, Brazil
| |
Collapse
|
43
|
Design rules for selective binding of nuclear localization signals to minor site of importin α. PLoS One 2014; 9:e91025. [PMID: 24609064 PMCID: PMC3946659 DOI: 10.1371/journal.pone.0091025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/06/2014] [Indexed: 11/19/2022] Open
Abstract
Selectivity is a critical issue in molecular recognition. However, design rules that underlie selectivity are often not well understood. Here, we studied five classical nuclear localization signals (NLSs) that contain the motif KRx(W/F/Y)xxAF and selectively bind to the minor site of importin α. The selectivity for the minor site is dissected by building structural models for the NLS-importin α complexes and analyzing the positive design and negative design in the NLSs. In our models, the KR residues of the motif occupy the P1’ and P2’ pockets of importin α, respectively, forming hydrogen-bonding and cation-π interactions. The aromatic residue at the P4’ position plays dual roles in the selectivity for the minor site: by forming π-stacking with W357 of importin α to reinforce the minor-site binding; and by clashing with the P5 pocket in the major binding site. The F residue at the P8’ position occupies a deep pocket, providing additional stabilization. The P7’ position sits on a saddle next to the P8’ pocket and hence requires a small residue; the A residue fulfills this requirement. The principal ideas behind these blind predictions turn out to be correct in an evaluation against subsequently available X-ray structures for the NLS-importin α complexes, but some details are incorrect. These results illustrate that the selectivity for the minor site can be achieved via a variety of design rules.
Collapse
|
44
|
Tamura K, Hara-Nishimura I. Functional insights of nucleocytoplasmic transport in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:118. [PMID: 24765097 PMCID: PMC3980095 DOI: 10.3389/fpls.2014.00118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/12/2014] [Indexed: 05/19/2023]
Abstract
Plant nucleocytoplasmic transport beyond the nuclear envelope is important not only for basic cellular functions but also for growth, development, hormonal signaling, and responses to environmental stimuli. Key components of this transport system include nuclear transport receptors and nucleoporins. The functional and physical interactions between receptors and the nuclear pore in the nuclear membrane are indispensable for nucleocytoplasmic transport. Recently, several groups have reported various plant mutants that are deficient in factors involved in nucleocytoplasmic transport. Here, we summarize the current state of knowledge about nucleocytoplasmic transport in plants, and we review the plant-specific regulation and roles of this process in plants.
Collapse
Affiliation(s)
| | - Ikuko Hara-Nishimura
- *Correspondence: Ikuko Hara-Nishimura, Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan e-mail:
| |
Collapse
|
45
|
Roman N, Christie M, Swarbrick CMD, Kobe B, Forwood JK. Structural characterisation of the nuclear import receptor importin alpha in complex with the bipartite NLS of Prp20. PLoS One 2013; 8:e82038. [PMID: 24339986 PMCID: PMC3858281 DOI: 10.1371/journal.pone.0082038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/20/2013] [Indexed: 11/30/2022] Open
Abstract
The translocation of macromolecules into the nucleus is a fundamental eukaryotic process, regulating gene expression, cell division and differentiation, but which is impaired in a range of significant diseases including cancer and viral infection. The import of proteins into the nucleus is generally initiated by a specific, high affinity interaction between nuclear localisation signals (NLSs) and nuclear import receptors in the cytoplasm, and terminated through the disassembly of these complexes in the nucleus. For classical NLSs (cNLSs), this import is mediated by the importin-α (IMPα) adaptor protein, which in turn binds to IMPβ to mediate translocation of nuclear cargo across the nuclear envelope. The interaction and disassembly of import receptor:cargo complexes is reliant on the differential localisation of nucleotide bound Ran across the envelope, maintained in its low affinity, GDP-bound form in the cytoplasm, and its high affinity, GTP-bound form in the nucleus. This in turn is maintained by the differential localisation of Ran regulating proteins, with RanGAP in the cytoplasm maintaining Ran in its GDP-bound form, and RanGEF (Prp20 in yeast) in the nucleus maintaining Ran in its GTP-bound form. Here, we describe the 2.1 Å resolution x-ray crystal structure of IMPα in complex with the NLS of Prp20. We observe 1,091 Å2 of buried surface area mediated by an extensive array of contacts involving residues on armadillo repeats 2-7, utilising both the major and minor NLS binding sites of IMPα to contact bipartite NLS clusters 17RAKKMSK23 and 3KR4, respectively. One notable feature of the major site is the insertion of Prp20NLS Ala18 between the P0 and P1 NLS sites, noted in only a few classical bipartite NLSs. This study provides a detailed account of the binding mechanism enabling Prp20 interaction with the nuclear import receptor, and additional new information for the interaction between IMPα and cargo.
Collapse
Affiliation(s)
- Noelia Roman
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Mary Christie
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Crystall M. D. Swarbrick
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Jade K. Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- * E-mail:
| |
Collapse
|
46
|
Chang CW, Couñago RM, Williams SJ, Boden M, Kobe B. The distribution of different classes of nuclear localization signals (NLSs) in diverse organisms and the utilization of the minor NLS-binding site inplantnuclear import factor importin-α. PLANT SIGNALING & BEHAVIOR 2013; 8:25976. [PMID: 24270630 PMCID: PMC4091121 DOI: 10.4161/psb.25976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 05/29/2023]
Abstract
The specific recognition between the import receptor importin-α and the nuclear localization signals (NLSs) is crucial to ensure the selective transport of cargoes into the nucleus. NLSs contain 1 or 2 clusters of positively charged amino acids, which usually bind to the major (monopartite NLSs) or both minor and major NLS-binding sites (bipartite NLSs). In our recent study, we determined the structure of importin-α1a from rice (Oryza sativa), and made 2 observations that suggest an increased utilization of the minor NLS-binding site in this protein. First, unlike the mammalian protein, both the major and minor NLS-binding sites are auto-inhibited in the unliganded rice protein. Second, we showed that NLSs of the "plant-specific" class preferentially bind to the minor NLS-binding site of rice importin-α. Here, we show that a distinct group of "minor site-specific" NLSs also bind to the minor site of the rice protein. We further show a greater enrichment of proteins containing these "plant-specific" and "minor site-specific" NLSs in the rice proteome. However, the analysis of the distribution of different classes of NLSs in diverse eukaryotes shows that in all organisms, the minor site-specific NLSs are much less prevalent than the classical monopartite and bipartite NLSs.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience; University of Queensland; Brisbane, QLD Australia
- Australian Infectious Diseases Research Centre; University of Queensland; Brisbane, QLD Australia
| | - Rafael Miguez Couñago
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience; University of Queensland; Brisbane, QLD Australia
- Australian Infectious Diseases Research Centre; University of Queensland; Brisbane, QLD Australia
| | - Simon J Williams
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience; University of Queensland; Brisbane, QLD Australia
- Australian Infectious Diseases Research Centre; University of Queensland; Brisbane, QLD Australia
| | - Mikael Boden
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience; University of Queensland; Brisbane, QLD Australia
- School of Information Technology and Electrical Engineering; University of Queensland; Brisbane, QLD Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience; University of Queensland; Brisbane, QLD Australia
- Australian Infectious Diseases Research Centre; University of Queensland; Brisbane, QLD Australia
| |
Collapse
|
47
|
Chang CW, Couñago RM, Williams SJ, Bodén M, Kobe B. Distinctive conformation of minor site-specific nuclear localization signals bound to importin-α. Traffic 2013; 14:1144-54. [PMID: 23910026 DOI: 10.1111/tra.12098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 11/30/2022]
Abstract
Nuclear localization signals (NLSs) contain one or two clusters of basic residues and are recognized by the import receptor importin-α. There are two NLS-binding sites (major and minor) on importin-α and the major NLS-binding site is considered to be the primary binding site. Here, we used crystallographic and biochemical methods to investigate the binding between importin-α and predicted 'minor site-specific' NLSs: four peptide library-derived peptides, and the NLS from mouse RNA helicase II/Guα. The crystal structures reveal that these atypical NLSs indeed preferentially bind to the minor NLS-binding site. Unlike previously characterized NLSs, the C-terminal residues of these NLSs form an α-helical turn, stabilized by internal H-bond and cation-π interactions between the aromatic residues from the NLSs and the positively charged residues from importin-α. This helical turn sterically hinders binding at the major NLS-binding site, explaining the minor-site preference. Our data suggest the sequence RXXKR[K/X][F/Y/W]XXAF as the optimal minor NLS-binding site-specific motif, which may help identify novel proteins with atypical NLSs.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld, 4072, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld, 4072, Australia
| | | | | | | | | |
Collapse
|
48
|
Wirthmueller L, Roth C, Banfield MJ, Wiermer M. Hop-on hop-off: importin-α-guided tours to the nucleus in innate immune signaling. FRONTIERS IN PLANT SCIENCE 2013; 4:149. [PMID: 23734157 PMCID: PMC3659281 DOI: 10.3389/fpls.2013.00149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/02/2013] [Indexed: 05/19/2023]
Abstract
Nuclear translocation of immune regulatory proteins and signal transducers is an essential process in animal and plant defense signaling against pathogenic microbes. Import of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors termed importins, typically dimers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complex. Here, we review recent reports of importin-α cargo specificity and mutant phenotypes in plant- and animal-microbe interactions. Using homology modeling of the NLS-binding cleft of nine predicted Arabidopsis α-importins and analyses of their gene expression patterns, we discuss functional redundancy and specialization within this transport receptor family. In addition, we consider how pathogen effector proteins that promote infection by manipulating host cell nuclear processes might compete with endogenous cargo proteins for nuclear uptake.
Collapse
Affiliation(s)
- Lennart Wirthmueller
- Department of Biological Chemistry, John Innes Centre, Norwich Research ParkNorwich, UK
- *Correspondence: Lennart Wirthmueller, Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK. e-mail: ; Marcel Wiermer, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany. e-mail:
| | - Charlotte Roth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Georg-August-University GöttingenGöttingen, Germany
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research ParkNorwich, UK
| | - Marcel Wiermer
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Georg-August-University GöttingenGöttingen, Germany
- *Correspondence: Lennart Wirthmueller, Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK. e-mail: ; Marcel Wiermer, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany. e-mail:
| |
Collapse
|