1
|
Sun Z, Wang X, Peng C, Dai L, Wang T, Zhang Y. Regulation of cytoskeleton dynamics and its interplay with force in plant cells. BIOPHYSICS REVIEWS 2024; 5:041307. [PMID: 39606182 PMCID: PMC11596143 DOI: 10.1063/5.0201899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
The plant cytoskeleton is an intricate network composed of actin filaments and microtubules. The cytoskeleton undergoes continuous dynamic changes that provide the basis for rapidly responding to intrinsic and extrinsic stimuli, including mechanical stress. Microtubules can respond to alterations of mechanical stress and reorient along the direction of maximal tensile stress in plant cells. The cytoskeleton can also generate driving force for cytoplasmic streaming, organelle movement, and vesicle transportation. In this review, we discuss the progress of how the plant cytoskeleton responds to mechanical stress. We also summarize the roles of the cytoskeleton in generating force that drive organelles and nuclear transportation in plant cells. Finally, some hypotheses concerning the link between the roles of the cytoskeleton in force response and organelle movement, as well as several key questions that remain to be addressed in the field, are highlighted.
Collapse
Affiliation(s)
- Zhenping Sun
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xueqing Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Chaoyong Peng
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Hao CH, Pang C, Yang LN, Xiong F, Li S. Myosin-binding protein 13 mediates primary seed dormancy via abscisic acid biosynthesis and signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2193-2206. [PMID: 39476328 DOI: 10.1111/tpj.17112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 12/11/2024]
Abstract
Dormancy is an essential characteristic that enables seeds to survive in unfavorable conditions while germinating when conditions are favorable. Myosin-binding proteins (MyoBs) assist in the movement of organelles along actin microfilaments by attaching to both organelles and myosins. In contrast to studies on yeast and metazoans, research on plant MyoBs is still in its early stages and primarily focuses on tip-growing cells. In this study, we found that Arabidopsis MyoB13 is highly expressed in dry mature seeds. The myob13 mutant, created using CRISPR/Cas9, exhibits a preharvest sprouting phenotype, which can be mitigated by after-ripening treatment, indicating that MyoB13 plays a positive role in primary seed dormancy. Furthermore, we show that MyoB13 negatively regulates ABA biosynthesis and signaling pathways. Notably, the expression of MyoB13 orthologs from maize and soybean can completely restore the phenotype of the Arabidopsis myob13 mutant, suggesting that the function of MyoB13 in ABA-induced seed dormancy is evolutionarily conserved. Therefore, the functional characterization of MyoB13 offers an additional genetic resource to help prevent vivipary in crop species.
Collapse
Affiliation(s)
- Cui-Hong Hao
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chen Pang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Li-Na Yang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Feng Xiong
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
3
|
Symonds K, Teresinski HJ, Hau B, Dwivedi V, Belausov E, Bar-Sinai S, Tominaga M, Haraguchi T, Sadot E, Ito K, Snedden WA. Functional characterization of calmodulin-like proteins, CML13 and CML14, as novel light chains of Arabidopsis class VIII myosins. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2313-2329. [PMID: 38280207 PMCID: PMC11272076 DOI: 10.1093/jxb/erae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Myosins are important motor proteins that associate with the actin cytoskeleton. Structurally, myosins function as heteromeric complexes where smaller light chains, such as calmodulin (CaM), bind to isoleucine-glutamine (IQ) domains in the neck region to facilitate mechano-enzymatic activity. We recently identified Arabidopsis CaM-like (CML) proteins CML13 and CML14 as interactors of proteins containing multiple IQ domains, including a myosin VIII. Here, we demonstrate that CaM, CML13, and CML14 bind the neck region of all four Arabidopsis myosin VIII isoforms. Among CMLs tested for binding to myosins VIIIs, CaM, CML13, and CML14 gave the strongest signals using in planta split-luciferase protein interaction assays. In vitro, recombinant CaM, CML13, and CML14 showed specific, high-affinity, calcium-independent binding to the IQ domains of myosin VIIIs. CaM, CML13, and CML14 co-localized to plasma membrane-bound puncta when co-expressed with red fluorescent protein-myosin fusion proteins containing IQ and tail domains of myosin VIIIs. In vitro actin motility assays using recombinant myosin VIIIs demonstrated that CaM, CML13, and CML14 function as light chains. Suppression of CML13 or CML14 expression using RNA silencing resulted in a shortened-hypocotyl phenotype, similar to that observed in a quadruple myosin mutant, myosin viii4KO. Collectively, our data indicate that Arabidopsis CML13 and CML14 are novel myosin VIII light chains.
Collapse
Affiliation(s)
- Kyle Symonds
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | | | - Bryan Hau
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | - Vikas Dwivedi
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Sefi Bar-Sinai
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Takeshi Haraguchi
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | - Einat Sadot
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | - Wayne A Snedden
- Department of Biology, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
4
|
Omata Y, Sato R, Mishiro-Sato E, Kano K, Ueda H, Hara-Nishimura I, Shimada TL. Lipid droplets in Arabidopsis thaliana leaves contain myosin-binding proteins and enzymes associated with furan-containing fatty acid biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1331479. [PMID: 38495375 PMCID: PMC10940516 DOI: 10.3389/fpls.2024.1331479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Lipid droplets (LDs) are lipid storage organelles in plant leaves and seeds. Seed LD proteins are well known, and their functions in lipid metabolism have been characterized; however, many leaf LD proteins remain to be identified. We therefore isolated LDs from leaves of the leaf LD-overaccumulating mutant high sterol ester 1 (hise1) of Arabidopsis thaliana by centrifugation or co-immunoprecipitation. We then performed LD proteomics by mass spectrometry and identified 3,206 candidate leaf LD proteins. In this study, we selected 31 candidate proteins for transient expression assays using a construct encoding the candidate protein fused with green fluorescent protein (GFP). Fluorescence microscopy showed that MYOSIN BINDING PROTEIN14 (MYOB14) and two uncharacterized proteins localized to LDs labeled with the LD marker. Subcellular localization analysis of MYOB family members revealed that MYOB1, MYOB2, MYOB3, and MYOB5 localized to LDs. LDs moved along actin filaments together with the endoplasmic reticulum. Co-immunoprecipitation of myosin XIK with MYOB2-GFP or MYOB14-GFP suggested that LD-localized MYOBs are involved in association with the myosin XIK-LDs. The two uncharacterized proteins were highly similar to enzymes for furan fatty acid biosynthesis in the photosynthetic bacterium Cereibacter sphaeroides, suggesting a relationship between LDs and furan fatty acid biosynthesis. Our findings thus reveal potential molecular functions of LDs and provide a valuable resource for further studies of the leaf LD proteome.
Collapse
Affiliation(s)
- Yuto Omata
- Faculty of Horticulture, Chiba University, Matsudo, Japan
| | - Reina Sato
- Faculty of Horticulture, Chiba University, Matsudo, Japan
| | - Emi Mishiro-Sato
- World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Keiko Kano
- World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | | - Takashi L. Shimada
- Faculty of Horticulture, Chiba University, Matsudo, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
- Research Center for Space Agriculture and Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
5
|
Cui X, Zou M, Li J. Basally distributed actin array drives embryonic hypocotyl elongation during the seed-to-seedling transition in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:191-206. [PMID: 37537721 DOI: 10.1111/nph.19149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
Seed germination is a vital developmental transition for the production of progeny by sexual reproduction in spermatophytes. The seed-to-seedling transition is predominately driven by hypocotyl cell elongation. However, the mechanism that underlies hypocotyl growth remains largely unknown. In this study, we characterized the actin array reorganization in embryonic hypocotyl epidermal cells. Live-cell imaging revealed a basally organized actin array formed during hypocotyl cell elongation. This polarized actin assembly is a barrel-shaped network, which comprises a backbone of longitudinally aligned actin cables and a fine actin cap linking these cables. We provide genetic evidence that the basal actin array formation requires formin-mediated actin polymerization and directional movement of actin filaments powered by myosin XIs. In fh1-1 and xi3ko mutants, actin filaments failed to reorganize into the basal actin array, and the hypocotyl cell elongation was inhibited compared with wild-type plants. Collectively, our work uncovers the molecular mechanisms for basal actin array assembly and demonstrates the connection between actin polarization and hypocotyl elongation during seed-to-seedling transition.
Collapse
Affiliation(s)
- Xuan Cui
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Minxia Zou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
6
|
Wang K, Yu W, Yu G, Zhang L, Xian L, Wei Y, Perez‐Sancho J, Xue H, Rufian JS, Zhuang H, Kwon C, Macho AP. A bacterial type III effector targets plant vesicle-associated membrane proteins. MOLECULAR PLANT PATHOLOGY 2023; 24:1154-1167. [PMID: 37278116 PMCID: PMC10423332 DOI: 10.1111/mpp.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
The soilborne bacterial pathogen Ralstonia solanacearum is one of the most destructive plant pathogens worldwide, and its infection process involves the manipulation of numerous plant cellular functions. In this work, we found that the R. solanacearum effector protein RipD partially suppressed different levels of plant immunity triggered by R. solanacearum elicitors, including specific responses triggered by pathogen-associated molecular patterns and secreted effectors. RipD localized in different subcellular compartments in plant cells, including vesicles, and its vesicular localization was enriched in cells undergoing R. solanacearum infection, suggesting that this specific localization may be particularly relevant during infection. Among RipD-interacting proteins, we identified plant vesicle-associated membrane proteins (VAMPs). We also found that overexpression of Arabidopsis thaliana VAMP721 and VAMP722 in Nicotiana benthamiana leaves promoted resistance to R. solanacearum, and this was abolished by the simultaneous expression of RipD, suggesting that RipD targets VAMPs to contribute to R. solanacearum virulence. Among proteins secreted in VAMP721/722-containing vesicles, CCOAOMT1 is an enzyme required for lignin biosynthesis, and mutation of CCOAOMT1 enhanced plant susceptibility to R. solanacearum. Altogether our results reveal the contribution of VAMPs to plant resistance against R. solanacearum and their targeting by a bacterial effector as a pathogen virulence strategy.
Collapse
Affiliation(s)
- Keke Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Lu Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Liu Xian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Jessica Perez‐Sancho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Jose S. Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Haiyan Zhuang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Chian Kwon
- Department of Molecular BiologyDankook UniversityCheonanSouth Korea
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
7
|
Christensen JR, Reck-Peterson SL. Hitchhiking Across Kingdoms: Cotransport of Cargos in Fungal, Animal, and Plant Cells. Annu Rev Cell Dev Biol 2022; 38:155-178. [PMID: 35905769 PMCID: PMC10967659 DOI: 10.1146/annurev-cellbio-120420-104341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.
Collapse
Affiliation(s)
- Jenna R Christensen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; ,
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; ,
- Department of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
8
|
Brueggeman JM, Windham IA, Nebenführ A. Nuclear movement in growing Arabidopsis root hairs involves both actin filaments and microtubules. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5388-5399. [PMID: 35554524 DOI: 10.1093/jxb/erac207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Nuclear migration during growth and development is a conserved phenomenon among many eukaryotic species. In Arabidopsis, movement of the nucleus is important for root hair growth, but the detailed mechanism behind this movement is not well known. Previous studies in different cell types have reported that the myosin XI-I motor protein is responsible for this nuclear movement by attaching to the nuclear transmembrane protein complex WIT1/WIT2. Here, we analyzed nuclear movement in growing root hairs of wild-type, myosin xi-i, and wit1 wit2 Arabidopsis lines in the presence of actin and microtubule-disrupting inhibitors to determine the individual effects of actin filaments and microtubules on nuclear movement. We discovered that forward nuclear movement during root hair growth can occur in the absence of myosin XI-I, suggesting the presence of an alternative actin-based mechanism that mediates rapid nuclear displacements. By quantifying nuclear movements with high temporal resolution during the initial phase of inhibitor treatment, we determined that microtubules work to dampen erratic nuclear movements during root hair growth. We also observed microtubule-dependent backwards nuclear movement when actin filaments were impaired in the absence of myosin XI-I, indicating the presence of complex interactions between the cytoskeletal arrays during nuclear movements in growing root hairs.
Collapse
Affiliation(s)
- Justin M Brueggeman
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Ian A Windham
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
9
|
Hong WJ, Kim EJ, Yoon J, Silva J, Moon S, Min CW, Cho LH, Kim ST, Park SK, Kim YJ, Jung KH. A myosin XI adaptor, TAPE, is essential for pollen tube elongation in rice. PLANT PHYSIOLOGY 2022; 190:562-575. [PMID: 35736513 PMCID: PMC9434255 DOI: 10.1093/plphys/kiac299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Pollen tube (PT) elongation is important for double fertilization in angiosperms and affects the seed-setting rate and, therefore, crop productivity. Compared to Arabidopsis (Arabidopsis thaliana L.), information on PT elongation in rice (Oryza sativa L.) is limited by the difficulty in obtaining homozygous mutants. In a screen of T-DNA insertional mutants, we identified a mutant in the Tethering protein of actomyosin transport in pollen tube elongation (TAPE) gene with an unusual segregation ratio by genotyping analysis. A CRISPR/Cas9 knockout mutant of TAPE that produced a short PT was sterile, and TAPE was expressed specifically in pollen grains. TAPE is a homolog of a myosin XI adaptor in Arabidopsis with three tetratricopeptide repeat and Phox and Bem1 protein domains. TAPE showed latrunculin B-sensitive, actin-dependent localization to the endoplasmic reticulum. Yeast two-hybrid screening and transcriptome analysis revealed that TAPE interacted with pollen-specific LIM protein 2b and elongation factor 1-alpha. Loss of TAPE affected transcription of 1,259 genes, especially genes related to cell organization, which were downregulated. In summary, TAPE encodes a myosin XI adaptor essential for rice PT elongation.
Collapse
Affiliation(s)
- Woo-Jong Hong
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eui-Jung Kim
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jinmi Yoon
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jeniffer Silva
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sunok Moon
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yu-Jin Kim
- Authors for correspondence: (Y.-J.K.); (K.-H.J.)
| | - Ki-Hong Jung
- Authors for correspondence: (Y.-J.K.); (K.-H.J.)
| |
Collapse
|
10
|
Sampaio M, Neves J, Cardoso T, Pissarra J, Pereira S, Pereira C. Coping with Abiotic Stress in Plants-An Endomembrane Trafficking Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030338. [PMID: 35161321 PMCID: PMC8838314 DOI: 10.3390/plants11030338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 05/30/2023]
Abstract
Plant cells face many changes through their life cycle and develop several mechanisms to cope with adversity. Stress caused by environmental factors is turning out to be more and more relevant as the human population grows and plant cultures start to fail. As eukaryotes, plant cells must coordinate several processes occurring between compartments and combine different pathways for protein transport to several cellular locations. Conventionally, these pathways begin at the ER, or endoplasmic reticulum, move through the Golgi and deliver cargo to the vacuole or to the plasma membrane. However, when under stress, protein trafficking in plants is compromised, usually leading to changes in the endomembrane system that may include protein transport through unconventional routes and alteration of morphology, activity and content of key organelles, as the ER and the vacuole. Such events provide the tools for cells to adapt and overcome the challenges brought on by stress. With this review, we gathered fragmented information on the subject, highlighting how such changes are processed within the endomembrane system and how it responds to an ever-changing environment. Even though the available data on this subject are still sparse, novel information is starting to untangle the complexity and dynamics of protein transport routes and their role in maintaining cell homeostasis under harsh conditions.
Collapse
Affiliation(s)
- Miguel Sampaio
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal; (M.S.); (J.P.)
| | - João Neves
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal; (J.N.); (T.C.)
| | - Tatiana Cardoso
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal; (J.N.); (T.C.)
| | - José Pissarra
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal; (M.S.); (J.P.)
| | - Susana Pereira
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal; (M.S.); (J.P.)
| | - Cláudia Pereira
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/nº, 4169-007 Porto, Portugal; (M.S.); (J.P.)
| |
Collapse
|
11
|
Arabidopsis thaliana myosin XIK is recruited to the Golgi through interaction with a MyoB receptor. Commun Biol 2021; 4:1182. [PMID: 34645991 PMCID: PMC8514473 DOI: 10.1038/s42003-021-02700-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/31/2021] [Indexed: 12/03/2022] Open
Abstract
Plant cell organelles are highly mobile and their positioning play key roles in plant growth, development and responses to changing environmental conditions. Movement is acto-myosin dependent. Despite controlling the dynamics of several organelles, myosin and myosin receptors identified so far in Arabidopsis thaliana generally do not localise to the organelles whose movement they control, raising the issue of how specificity is determined. Here we show that a MyoB myosin receptor, MRF7, specifically localises to the Golgi membrane and affects its movement. Myosin XI-K was identified as a putative MRF7 interactor through mass spectrometry analysis. Co-expression of MRF7 and XI-K tail triggers the relocation of XI-K to the Golgi, linking a MyoB/myosin complex to a specific organelle in Arabidopsis. FRET-FLIM confirmed the in vivo interaction between MRF7 and XI-K tail on the Golgi and in the cytosol, suggesting that myosin/myosin receptor complexes perhaps cycle on and off organelle membranes. This work supports a traditional mechanism for organelle movement where myosins bind to receptors and adaptors on the organelle membranes, allowing them to actively move on the actin cytoskeleton, rather than passively in the recently proposed cytoplasmic streaming model. Perico et al. use co-expression analysis and a FRET-FLIM approach to show that the Arabidopsis MyoB myosin receptor, MRF7, triggers the relocation of Myosin XI-K to the Golgi. As such, this study provides evidence for plant myosin recruitment and control of organelle movement.
Collapse
|
12
|
Zhang W, Huang L, Zhang C, Staiger CJ. Arabidopsis myosin XIK interacts with the exocyst complex to facilitate vesicle tethering during exocytosis. THE PLANT CELL 2021; 33:2454-2478. [PMID: 33871640 PMCID: PMC8364239 DOI: 10.1093/plcell/koab116] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/13/2021] [Indexed: 05/17/2023]
Abstract
Myosin motors are essential players in secretory vesicle trafficking and exocytosis in yeast and mammalian cells; however, similar roles in plants remain a matter for debate, at least for diffusely growing cells. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) myosin XIK, via its globular tail domain (GTD), participates in the vesicle tethering step of exocytosis through direct interactions with the exocyst complex. Specifically, myosin XIK GTD bound directly to several exocyst subunits in vitro and functional fluorescently tagged XIK colocalized with multiple exocyst subunits at plasma membrane (PM)-associated stationary foci. Moreover, genetic and pharmacological inhibition of myosin XI activity reduced the rate of appearance and lifetime of stationary exocyst complexes at the PM. By tracking single exocytosis events of cellulose synthase (CESA) complexes with high spatiotemporal resolution imaging and pair-wise colocalization of myosin XIK, exocyst subunits, and CESA6, we demonstrated that XIK associates with secretory vesicles earlier than exocyst and is required for the efficient localization and normal dynamic behavior of exocyst complex at the PM tethering site. This study reveals an important functional role for myosin XI in secretion and provides insights about the dynamic regulation of exocytosis in plants.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, USA
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, USA
- Author for correspondence:
| |
Collapse
|
13
|
Stephan L, Jakoby M, Das A, Koebke E, Hülskamp M. Unravelling the molecular basis of the dominant negative effect of myosin XI tails on P-bodies. PLoS One 2021; 16:e0252327. [PMID: 34038472 PMCID: PMC8153422 DOI: 10.1371/journal.pone.0252327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/13/2021] [Indexed: 11/30/2022] Open
Abstract
The directional movement and positioning of organelles and macromolecules is essential for regulating and maintaining cellular functions in eukaryotic cells. In plants, these processes are actin-based and driven by class XI myosins, which transport various cargos in a directed manner. As the analysis of myosin function is challenging due to high levels of redundancy, dominant negative acting truncated myosins have frequently been used to study intracellular transport processes. A comparison of the dominant negative effect of the coiled-coil domains and the GTD domains revealed a much stronger inhibition of P-body movement by the GTD domains. In addition, we show that the GTD domain does not inhibit P-body movement when driven by a hybrid myosin in which the GTD domain was replaced by DCP2. These data suggest that the dominant negative effect of myosin tails involves a competition of the GTD domains for cargo binding sites.
Collapse
Affiliation(s)
- Lisa Stephan
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Marc Jakoby
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Arijit Das
- Faculty of Medicine, Institute of Medical Statistics and Computational Biology & Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| | - Eva Koebke
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
- * E-mail:
| |
Collapse
|
14
|
Turowski VR, Ruiz DM, Nascimento AFZ, Millán C, Sammito MD, Juanhuix J, Cremonesi AS, Usón I, Giuseppe PO, Murakami MT. Structure of the class XI myosin globular tail reveals evolutionary hallmarks for cargo recognition in plants. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:522-533. [PMID: 33825712 DOI: 10.1107/s2059798321001583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/09/2021] [Indexed: 11/10/2022]
Abstract
The plant-specific class XI myosins (MyoXIs) play key roles at the molecular, cellular and tissue levels, engaging diverse adaptor proteins to transport cargoes along actin filaments. To recognize their cargoes, MyoXIs have a C-terminal globular tail domain (GTD) that is evolutionarily related to those of class V myosins (MyoVs) from animals and fungi. Despite recent advances in understanding the functional roles played by MyoXI in plants, the structure of its GTD, and therefore the molecular determinants for cargo selectivity and recognition, remain elusive. In this study, the first crystal structure of a MyoXI GTD, that of MyoXI-K from Arabidopsis thaliana, was elucidated at 2.35 Å resolution using a low-identity and fragment-based phasing approach in ARCIMBOLDO_SHREDDER. The results reveal that both the composition and the length of the α5-α6 loop are distinctive features of MyoXI-K, providing evidence for a structural stabilizing role for this loop, which is otherwise carried out by a molecular zipper in MyoV GTDs. The crystal structure also shows that most of the characterized cargo-binding sites in MyoVs are not conserved in plant MyoXIs, pointing to plant-specific cargo-recognition mechanisms. Notably, the main elements involved in the self-regulation mechanism of MyoVs are conserved in plant MyoXIs, indicating this to be an ancient ancestral trait.
Collapse
Affiliation(s)
- Valeria R Turowski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| | - Diego M Ruiz
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| | - Andrey F Z Nascimento
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer de Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Claudia Millán
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer de Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Massimo D Sammito
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Judith Juanhuix
- XALOC Beamline, Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Aline Sampaio Cremonesi
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| | - Isabel Usón
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer de Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Priscila O Giuseppe
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| | - Mario T Murakami
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| |
Collapse
|
15
|
Orr RG, Furt F, Warner EL, Agar EM, Garbarino JM, Cabral SE, Dubuke ML, Butt AM, Munson M, Vidali L. Rab-E and its interaction with myosin XI are essential for polarised cell growth. THE NEW PHYTOLOGIST 2021; 229:1924-1936. [PMID: 33098085 PMCID: PMC8168425 DOI: 10.1111/nph.17023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/12/2020] [Indexed: 05/07/2023]
Abstract
The fundamental process of polarised exocytosis requires the interconnected activity of molecular motors trafficking vesicular cargo within a dynamic cytoskeletal network. In plants, few mechanistic details are known about how molecular motors, such as myosin XI, associate with their secretory cargo to support the ubiquitous processes of polarised growth and cell division. Live-cell imaging coupled with targeted gene knockouts and a high-throughput RNAi assay enabled the first characterisation of the loss of Rab-E function. Yeast two-hybrid and subsequent in silico structural prediction uncovered a specific interaction between Rab-E and myosin XI that is conserved between P. patens and A. thaliana. Rab-E co-localises with myosin XI at sites of active exocytosis, and at the growing tip both proteins are spatiotemporally coupled. Rab-E is required for normal plant growth in P. patens and the rab-E and myosin XI phenotypes are rescued by A. thaliana's Rab-E1c and myosin XI-K/E, respectively. Both PpMyoXI and AtMyoXI-K interact with PpRabE14, and the interaction is specifically mediated by PpMyoXI residue V1422. This interaction is required for polarised growth. Our results suggest that the interaction of Rab-E and myosin XI is a conserved feature of polarised growth in plants.
Collapse
Affiliation(s)
- Robert G Orr
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Fabienne Furt
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Erin L Warner
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Erin M Agar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Jennifer M Garbarino
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Sarah E Cabral
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Michelle L Dubuke
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Allison M Butt
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| |
Collapse
|
16
|
Wang X, Sheng X, Tian X, Zhang Y, Li Y. Organelle movement and apical accumulation of secretory vesicles in pollen tubes of Arabidopsis thaliana depend on class XI myosins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1685-1697. [PMID: 33067901 DOI: 10.1111/tpj.15030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
F-actin and myosin XI play important roles in plant organelle movement. A few myosin XI genes in the genome of Arabidopsis are mainly expressed in mature pollen, which suggests that they may play a crucial role in pollen germination and pollen tube tip growth. In this study, a genetic complementation assay was conducted in a myosin xi-c (myo11c1) myosin xi-e (myo11c2) double mutant, and fluorescence labeling combined with microscopic observation was applied. We found that myosin XI-E (Myo11C2)-green fluorescent protein (GFP) restored the slow pollen tube growth and seed deficiency phenotypes of the myo11c1 myo11c2 double mutant and Myo11C2-GFP partially colocalized with mitochondria, peroxisomes and Golgi stacks. Furthermore, decreased mitochondrial movement and subapical accumulation were detected in myo11c1 myo11c2 double mutant pollen tubes. Fluorescence recovery after photobleaching experiments showed that the fluorescence recoveries of GFP-RabA4d and AtPRK1-GFP at the pollen tube tip of the myo11c1 myo11c2 double mutant were lower than those of the wild type were after photobleaching. These results suggest that Myo11C2 may be associated with mitochondria, peroxisomes and Golgi stacks, and play a crucial role in organelle movement and apical accumulation of secretory vesicles in pollen tubes of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xingjuan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaojing Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiulin Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
17
|
Kamal MM, Ishikawa S, Takahashi F, Suzuki K, Kamo M, Umezawa T, Shinozaki K, Kawamura Y, Uemura M. Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. Int J Mol Sci 2020; 21:E8631. [PMID: 33207747 PMCID: PMC7696906 DOI: 10.3390/ijms21228631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
Cold stress is one of the major factors limiting global crop production. For survival at low temperatures, plants need to sense temperature changes in the surrounding environment. How plants sense and respond to the earliest drop in temperature is still not clearly understood. The plasma membrane and its adjacent extracellular and cytoplasmic sites are the first checkpoints for sensing temperature changes and the subsequent events, such as signal generation and solute transport. To understand how plants respond to early cold exposure, we used a mass spectrometry-based phosphoproteomic method to study the temporal changes in protein phosphorylation events in Arabidopsis membranes during 5 to 60 min of cold exposure. The results revealed that brief cold exposures led to rapid phosphorylation changes in the proteins involved in cellular ion homeostasis, solute and protein transport, cytoskeleton organization, vesical trafficking, protein modification, and signal transduction processes. The phosphorylation motif and kinase-substrate network analysis also revealed that multiple protein kinases, including RLKs, MAPKs, CDPKs, and their substrates, could be involved in early cold signaling. Taken together, our results provide a first look at the cold-responsive phosphoproteome changes of Arabidopsis membrane proteins that can be a significant resource to understand how plants respond to an early temperature drop.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
| | - Shinnosuke Ishikawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Ko Suzuki
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Masaharu Kamo
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
18
|
Genome-Wide Identification and Comparative Analysis of Myosin Gene Family in Four Major Cotton Species. Genes (Basel) 2020; 11:genes11070731. [PMID: 32630134 PMCID: PMC7397272 DOI: 10.3390/genes11070731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Myosin protein as a molecular motor, binding with Actin, plays a significant role in various physiological activities such as cell division, movement, migration, and morphology; however, there are only a few studies on plant Myosin gene family, particularly in cotton. A total of 114 Myosin genes were found in Gossypium hirsutum, Gossypium barbadense, Gossypium raimondii, and Gossypium arboreum. All Myosins could be grouped into six groups, and for each group of these genes, similar gene structures are found. Study of evolution suggested that the whole genome duplications event occurring about 13-20 MYA (millions of years ago) is the key explanation for Myosins expanse in cotton. Cis-element and qPCR analysis revealed that plant hormones such as abscisic acid, methyl jasmonate, and salicylic acid can control the expression of Myosins. This research provides useful information on the function of Myosin genes in regulating plant growth, production, and fiber elongation for further studies.
Collapse
|
19
|
Vanous K, Lübberstedt T, Ibrahim R, Frei UK. MYO, a Candidate Gene for Haploid Induction in Maize Causes Male Sterility. PLANTS 2020; 9:plants9060773. [PMID: 32575668 PMCID: PMC7355785 DOI: 10.3390/plants9060773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
Doubled haploid technology is highly successful in maize breeding programs and is contingent on the ability of maize inducers to efficiently produce haploids. Knowledge of the genes involved in haploid induction is important for not only developing better maize inducers, but also to create inducers in other crops. The main quantitative trait loci involved in maize haploid induction are qhir1 and qhir8. The gene underlying qhir1 has been discovered and validated by independent research groups. Prior to initiation of this study, the gene associated with qhir8 had yet to be recognized. Therefore, this research focused on characterizing positional candidate genes underlying qhir8. Pursuing this goal, a strong candidate for qhir8, GRMZM2G435294 (MYO), was silenced by RNAi. Analysis of crosses with these heterozygous RNAi-transgenic lines for haploid induction rate revealed that the silencing of MYO significantly enhanced haploid induction rate by an average of 0.6% in the presence of qhir1. Recently, GRMZM2G465053 (ZmDMP) was identified by map-based gene isolation and shown to be responsible for qhir8. While our results suggest that MYO may contribute to haploid induction rate, results were inconsistent and only showing minor increases in haploid induction rate compared to ZmDMP. Instead, reciprocal crosses clearly revealed that the silencing of MYO causes male sterility.
Collapse
|
20
|
Bibeau JP, Furt F, Mousavi SI, Kingsley JL, Levine MF, Tüzel E, Vidali L. In vivo interactions between myosin XI, vesicles and filamentous actin are fast and transient in Physcomitrella patens. J Cell Sci 2020; 133:jcs.234682. [PMID: 31964706 DOI: 10.1242/jcs.234682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 01/07/2020] [Indexed: 12/25/2022] Open
Abstract
The actin cytoskeleton and active membrane trafficking machinery are essential for polarized cell growth. To understand the interactions between myosin XI, vesicles and actin filaments in vivo, we performed fluorescence recovery after photobleaching and showed that the dynamics of myosin XIa at the tip of the spreading earthmoss Physcomitrella patens caulonemal cells are actin-dependent and that 50% of myosin XI is bound to vesicles. To obtain single-particle information, we used variable-angle epifluorescence microscopy in protoplasts to demonstrate that protein myosin XIa and VAMP72-labeled vesicles localize in time and space over periods lasting only a few seconds. By tracking data with Hidden Markov modeling, we showed that myosin XIa and VAMP72-labeled vesicles exhibit short runs of actin-dependent directed transport. We also found that the interaction of myosin XI with vesicles is short-lived. Together, this vesicle-bound fraction, fast off-rate and short average distance traveled seem be crucial for the dynamic oscillations observed at the tip, and might be vital for regulation and recycling of the exocytosis machinery, while simultaneously promoting vesicle focusing and vesicle secretion at the tip, necessary for cell wall expansion.
Collapse
Affiliation(s)
- Jeffrey P Bibeau
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Fabienne Furt
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - S Iman Mousavi
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - James L Kingsley
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Max F Levine
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Erkan Tüzel
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA.,Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA.,Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA .,Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
21
|
Plant Lipid Bodies Traffic on Actin to Plasmodesmata Motorized by Myosin XIs. Int J Mol Sci 2020; 21:ijms21041422. [PMID: 32093159 PMCID: PMC7073070 DOI: 10.3390/ijms21041422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Late 19th-century cytologists observed tiny oil drops in shoot parenchyma and seeds, but it was discovered only in 1972 that they were bound by a half unit-membrane. Later, it was found that lipid bodies (LBs) arise from the endoplasmic reticulum. Seeds are known to be packed with static LBs, coated with the LB-specific protein OLEOSIN. As shown here, apices of Populustremula x P. tremuloides also express OLEOSIN genes and produce potentially mobile LBs. In developing buds, PtOLEOSIN (PtOLE) genes were upregulated, especially PtOLE6, concomitant with LB accumulation. To investigate LB mobility and destinations, we transformed Arabidopsis with PtOLE6-eGFP. We found that PtOLE6-eGFP fusion protein co-localized with Nile Red-stained LBs in all cell types. Moreover, PtOLE6-eGFP-tagged LBs targeted plasmodesmata, identified by the callose marker aniline blue. Pharmacological experiments with brefeldin, cytochalasin D, and oryzalin showed that LB-trafficking requires F-actin, implying involvement of myosin motors. In a triple myosin-XI knockout (xi-k/1/2), transformed with PtOLE6-eGFP, trafficking of PtOLE6-eGFP-tagged LBs was severely impaired, confirming that they move on F-actin, motorized by myosin XIs. The data reveal that LBs and OLEOSINs both function in proliferating apices and buds, and that directional trafficking of LBs to plasmodesmata requires the actomyosin system.
Collapse
|
22
|
Najeeb S, Ali J, Mahender A, Pang Y, Zilhas J, Murugaiyan V, Vemireddy LR, Li Z. Identification of main-effect quantitative trait loci (QTLs) for low-temperature stress tolerance germination- and early seedling vigor-related traits in rice ( Oryza sativa L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2020; 40:10. [PMID: 31975784 PMCID: PMC6944268 DOI: 10.1007/s11032-019-1090-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/12/2019] [Indexed: 05/09/2023]
Abstract
An attempt was made in the current study to identify the main-effect and co-localized quantitative trait loci (QTLs) for germination and early seedling growth traits under low-temperature stress (LTS) conditions in rice. The plant material used in this study was an early backcross population of 230 introgression lines (ILs) in BCIF7 generation derived from the Weed Tolerant Rice-1 (WTR-1) (as the recipient) and Haoannong (HNG) (as the donor). Genetic analyses of LTS tolerance revealed a total of 27 main-effect quantitative trait loci (M-QTLs) mapped on 12 chromosomes. These QTLs explained more than 10% of phenotypic variance (PV), and average PV of 12.71% while employing 704 high-quality SNP markers. Of these 27 QTLs distributed on 12 chromosomes, 11 were associated with low-temperature germination (LTG), nine with low-temperature germination stress index (LTGS), five with root length stress index (RLSI), and two with biomass stress index (BMSI) QTLs, shoot length stress index (SLSI) and root length stress index (RLSI), seven with seed vigor index (SVI), and single QTL with root length (RL). Among them, five significant major QTLs (qLTG(I) 1 , qLTGS(I) 1-2 , qLTG(I) 5 , qLTGS(I) 5 , and qLTG(I) 7 ) mapped on chromosomes 1, 5, and 7 were associated with LTG and LTGS traits and the PV explained ranged from 16 to 23.3%. The genomic regions of these QTLs were co-localized with two to six QTLs. Most of the QTLs were growth stage-specific and found to harbor QTLs governing multiple traits. Eight chromosomes had more than four QTLs and were clustered together and designated as promising LTS tolerance QTLs (qLTTs), as qLTT 1 , qLTT 2 , qLTT 3 , qLTT 5 , qLTT 6 , qLTT 8 , qLTT 9 , and qLTT 11 . A total of 16 putative candidate genes were identified in the major M-QTLs and co-localized QTL regions distributed on different chromosomes. Overall, these significant genomic regions of M-QTLs are responsible for multiple traits and this suggested that these could serve as the best predictors of LTS tolerance at germination and early seedling growth stages. Furthermore, it is necessary to fine-map these regions and to find functional markers for marker-assisted selection in rice breeding programs for cold tolerance.
Collapse
Affiliation(s)
- S. Najeeb
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Science & Technology (SKAUST), Khudwani, Kashmir 190025 India
| | - J. Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - A. Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - Y.L. Pang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018 People’s Republic of China
| | - J. Zilhas
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - V. Murugaiyan
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
- Plant Nutrition, Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, 53012 Bonn, Germany
| | - Lakshminarayana R. Vemireddy
- Department of Genetics and Plant Breeding, Sri Venkateswara Agricultural College, Acharya NG Ranga Agricultural University, Tirupati, Andhra Pradesh 517502 India
| | - Z. Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 People’s Republic of China
| |
Collapse
|
23
|
Flowers TJ, Glenn EP, Volkov V. Could vesicular transport of Na+ and Cl- be a feature of salt tolerance in halophytes? ANNALS OF BOTANY 2019; 123:1-18. [PMID: 30247507 PMCID: PMC6344095 DOI: 10.1093/aob/mcy164] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/10/2018] [Indexed: 05/18/2023]
Abstract
Background Halophytes tolerate external salt concentrations of 200 mm and more, accumulating salt concentrations of 500 mm and more in their shoots; some, recretohalophytes, excrete salt through glands on their leaves. Ions are accumulated in central vacuoles, but the pathway taken by these ions from the outside of the roots to the vacuoles inside the cells is poorly understood. Do the ions cross membranes through ion channels and transporters or move in vesicles, or both? Vesicular transport from the plasma membrane to the vacuole would explain how halophytes avoid the toxicity of high salt concentrations on metabolism. There is also a role for vesicles in the export of ions via salt glands. Scope and Methods We have collected data on the fluxes of sodium and chloride ions in halophytes, based on the weight of the transporting organs and on the membrane area across which the flux occurs; the latter range from 17 nmol m-2 s-1 to 4.2 μmol m-2 s-1 and values up to 1 μmol m-2 s-1 need to be consistent with whatever transport system is in operation. We have summarized the sizes and rates of turnover of vesicles in plants, where clathrin-independent vesicles are 100 nm or more in diameter and can merge with the plasma membrane at rates of 100 s-1. We gathered evidence for vesicular transport of ions in halophytes and evaluated whether vesicular transport could account for the observable fluxes. Conclusions There is strong evidence in favour of vesicular transport in plants and circumstantial evidence in favour of the movement of ions in vesicles. Estimated rates of vesicle turnover could account for ion transport at the lower reported fluxes (around 20 nmol m-2 s-1), but the higher fluxes may require vesicles of the order of 1 μm or more in diameter. The very high fluxes reported in some salt glands might be an artefact of the way they were measured.
Collapse
Affiliation(s)
- Timothy J Flowers
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia
| | - Edward P Glenn
- Environmental Research Laboratory of the University of Arizona, 1601 East, Airport Drive, Tucson, AZ, USA
| | - Vadim Volkov
- Faculty of Life Sciences and Computing, London Metropolitan University, London N7, UK
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
24
|
Ojangu EL, Ilau B, Tanner K, Talts K, Ihoma E, Dolja VV, Paves H, Truve E. Class XI Myosins Contribute to Auxin Response and Senescence-Induced Cell Death in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1570. [PMID: 30538710 PMCID: PMC6277483 DOI: 10.3389/fpls.2018.01570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/08/2018] [Indexed: 05/24/2023]
Abstract
The integrity and dynamics of actin cytoskeleton is necessary not only for plant cell architecture but also for membrane trafficking-mediated processes such as polar auxin transport, senescence, and cell death. In Arabidopsis, the inactivation of actin-based molecular motors, class XI myosins, affects the membrane trafficking and integrity of actin cytoskeleton, and thus causes defective plant growth and morphology, altered lifespan and reduced fertility. To evaluate the potential contribution of class XI myosins to the auxin response, senescence and cell death, we followed the flower and leaf development in the triple gene knockout mutant xi1 xi2 xik (3KO) and in rescued line stably expressing myosin XI-K:YFP (3KOR). Assessing the development of primary inflorescence shoots we found that the 3KO plants produced more axillary branches. Exploiting the auxin-dependent reporters DR5::GUS and IAA2::GUS, a significant reduction in auxin responsiveness was found throughout the development of the 3KO plants. Examination of the flower development of the plants stably expressing the auxin transporter PIN1::PIN1-GFP revealed partial loss of PIN1 polarization in developing 3KO pistils. Surprisingly, the stable expression of PIN1::PIN1-GFP significantly enhanced the semi-sterile phenotype of the 3KO plants. Further we investigated the localization of myosin XI-K:YFP in the 3KOR floral organs and revealed its expression pattern in floral primordia, developing pistils, and anther filaments. Interestingly, the XI-K:YFP and PIN1::PIN1-GFP shared partially overlapping but distinct expression patterns throughout floral development. Assessing the foliar development of the 3KO plants revealed increased rosette leaf production with signs of premature yellowing. Symptoms of the premature senescence correlated with massive loss of chlorophyll, increased cell death, early plasmolysis of epidermal cells, and strong up-regulation of the stress-inducible senescence-associated gene SAG13 in 3KO plants. Simultaneously, the reduced auxin responsiveness and premature leaf senescence were accompanied by significant anthocyanin accumulation in 3KO tissues. Collectively, our results provide genetic evidences that Arabidopsis class XI myosins arrange the flower morphogenesis and leaf longevity via contributing to auxin responses, leaf senescence, and cell death.
Collapse
Affiliation(s)
- Eve-Ly Ojangu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Birger Ilau
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Krista Tanner
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristiina Talts
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Eliis Ihoma
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Heiti Paves
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Erkki Truve
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
25
|
Haraguchi T, Ito K, Duan Z, Rula S, Takahashi K, Shibuya Y, Hagino N, Miyatake Y, Nakano A, Tominaga M. Functional Diversity of Class XI Myosins in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:2268-2277. [PMID: 30398666 PMCID: PMC6217714 DOI: 10.1093/pcp/pcy147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
Plant myosin XI acts as a motive force for cytoplasmic streaming through interacting with actin filaments within the cell. Arabidopsis thaliana (At) has 13 genes belonging to the myosin XI family. Previous reverse genetic approaches suggest that At myosin XIs are partially redundant, but are functionally diverse for their specific tasks within the plant. However, the tissue-specific expression and enzymatic properties of myosin XIs have to date been poorly understood, primarily because of the difficulty in cloning and expressing large myosin XI genes and proteins. In this study, we cloned full-length cDNAs and promoter regions for all 13 At myosin XIs and identified tissue-specific expression (using promoter-reporter assays) and motile and enzymatic activities (using in vitro assays). In general, myosins belonging to the same class have similar velocities and ATPase activities. However, the velocities and ATPase activities of the 13 At myosin XIs are significantly different and are classified broadly into three groups based on velocity (high group, medium group and low group). Interestingly, the velocity groups appear roughly correlated with the tissue-specific expression patterns. Generally, ubiquitously expressed At myosin XIs belong to the medium-velocity group, pollen-specific At myosin XIs belong to the high-velocity group and only one At myosin XI (XI-I) is classified as belonging to the low-velocity group. In this study, we demonstrated the diversity of the 13 myosin XIs in Arabidopsis at the molecular and tissue levels. Our results indicate that myosin XIs in higher plants have distinct motile and enzymatic activities adapted for their specific roles.
Collapse
Affiliation(s)
- Takeshi Haraguchi
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
| | - Zhongrui Duan
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Sa Rula
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
| | - Kento Takahashi
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, Japan
| | - Yuno Shibuya
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Nanako Hagino
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Yuko Miyatake
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Live Cell Super-Resolution Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
26
|
Perico C, Sparkes I. Plant organelle dynamics: cytoskeletal control and membrane contact sites. THE NEW PHYTOLOGIST 2018; 220:381-394. [PMID: 30078196 DOI: 10.1111/nph.15365] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/10/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 381 I. Introduction 381 II. Basic movement characteristics 382 III. Actin and associated motors, myosins, play a primary role in plant organelle movement and positioning 382 IV. Mechanisms of myosin recruitment: a tightly regulated system? 384 V. Microtubules, associated motors and interplay with actin 386 VI. Role of organelle interactions: tales of tethers 387 VII. Summary model to describe organelle movement in higher plants 390 VIII. Why is organelle movement important? 390 IX. Conclusions and future perspectives 391 Acknowledgements 391 References 391 SUMMARY: Organelle movement and positioning are correlated with plant growth and development. Movement characteristics are seemingly erratic yet respond to external stimuli including pathogens and light. Given these clear correlations, we still do not understand the specific roles that movement plays in these processes. There are few exceptions including organelle inheritance during cell division and photorelocation of chloroplasts to prevent photodamage. The molecular and biophysical components that drive movement can be broken down into cytoskeletal components, motor proteins and tethers, which allow organelles to physically interact with one another. Our understanding of these components and concepts has exploded over the past decade, with recent technological advances allowing an even more in-depth profiling. Here, we provide an overview of the cytoskeletal and tethering components and discuss the mechanisms behind organelle movement in higher plants.
Collapse
Affiliation(s)
- Chiara Perico
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Imogen Sparkes
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
27
|
Ishikawa K, Tamura K, Ueda H, Ito Y, Nakano A, Hara-Nishimura I, Shimada T. Synaptotagmin-Associated Endoplasmic Reticulum-Plasma Membrane Contact Sites Are Localized to Immobile ER Tubules. PLANT PHYSIOLOGY 2018; 178:641-653. [PMID: 30126867 PMCID: PMC6181054 DOI: 10.1104/pp.18.00498] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/01/2018] [Indexed: 05/23/2023]
Abstract
The plant endoplasmic reticulum (ER), which is morphologically divided into tubules and sheets, seems to flow continuously as a whole, but locally, mobile and immobile regions exist. In eukaryotes, the ER physically and functionally interacts with the plasma membrane (PM) at domains called ER-PM contact sites (EPCSs). Extended synaptotagmin family proteins are concentrated in the cortical ER to form one type of EPCS; however, it is unclear whether the localization of extended synaptotagmin corresponds to the EPCS and where in the cortical ER the EPCSs are formed. Here, we analyzed the spatiotemporal localization of SYNAPTOTAGMIN1 (SYT1), a synaptotagmin in Arabidopsis (Arabidopsis thaliana), to investigate the precise distribution of SYT1-associated EPCSs in the cortical ER. Three-dimensional imaging using superresolution confocal live imaging microscopy demonstrated that SYT1 was specifically localized to the ER-PM boundary. Time-lapse imaging revealed that SYT1 was distributed to immobile ER tubules, but not to mobile tubules. Moreover, SYT1 was frequently localized to the edges of ER sheets that were transformed into immobile ER tubules over time. A lower intracellular calcium ion concentration resulted in an increased EPCS area and disrupted the ER network. Finally, SYT1 deficiency caused a reduction of the immobile tubules and enlargement of the ER meshes. Taken together, our findings show that SYT1-associated EPCS are distributed to immobile tubules and play an important role in the formation of the tubular ER network. This provides important insight into the relationship between the function and dynamics/morphology of the cortical ER.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Yoko Ito
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, 33140 Villenave d'Ornon, France
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
28
|
Buschmann H. Myosin XI motors: back on the scene at the division machine. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2863-2866. [PMID: 29846674 PMCID: PMC5972558 DOI: 10.1093/jxb/ery143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article comments on: Abu-Abied M, Belausov E, Hagay S, Peremyslov V, Dolja V, Sadot E. 2018. Myosin XI-K is involved in root organogenesis, polar auxin transport and cell division. Journal of Experimental Botany 69, 2869–2881.
Collapse
Affiliation(s)
- Henrik Buschmann
- Botany Department, School of Biology and Chemistry, University of Osnabrück, Barbarastrasse, Osnabrück, Germany
| |
Collapse
|
29
|
Abu-Abied M, Belausov E, Hagay S, Peremyslov V, Dolja V, Sadot E. Myosin XI-K is involved in root organogenesis, polar auxin transport, and cell division. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2869-2881. [PMID: 29579267 PMCID: PMC5972647 DOI: 10.1093/jxb/ery112] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/20/2018] [Indexed: 05/11/2023]
Abstract
The interplay between myosin- and auxin-mediated processes was investigated by following root development in the triple myosin knockout mutant xi-k xi-1 xi-2 (3KO). It was found that the 3KO plants generated significantly more lateral and adventitious roots than the wild-type plants or the rescued plant line expressing functional myosin XI-K:yellow fluorescent protein (YFP; 3KOR). Using the auxin-dependent reporter DR5:venus, a significant change in the auxin gradient toward the root tip was found in 3KO plants, which correlated with the loss of polar localization of the auxin transporter PIN1 in the stele and with the increased number of stele cells with oblique cell walls. Interestingly, myosin XI-K:YFP was localized to the cell division apparatus in the root and shoot meristems. In anaphase and early telophase, XI-K:YFP was concentrated in the midzone and the forming cell plate. In late telophase, XI-K:YFP formed a ring that overlapped with the growing phragmoplast. Myosin receptors MyoB1 and MyoB2 that are highly expressed throughout the plant were undetectable in dividing cells, suggesting that the myosin function in cell division relies on distinct adaptor proteins. These results suggest that myosin XIs are involved in orchestrating root organogenesis via effects on polar distribution of auxin responses and on cell division.
Collapse
Affiliation(s)
- Mohamad Abu-Abied
- The Institute of Plant Sciences, The Volcani Center, ARO, HaMaccabim Road, Rishon LeZion, Israel
| | - Eduard Belausov
- The Institute of Plant Sciences, The Volcani Center, ARO, HaMaccabim Road, Rishon LeZion, Israel
| | - Sapir Hagay
- The Institute of Plant Sciences, The Volcani Center, ARO, HaMaccabim Road, Rishon LeZion, Israel
| | - Valera Peremyslov
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Valerian Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Einat Sadot
- The Institute of Plant Sciences, The Volcani Center, ARO, HaMaccabim Road, Rishon LeZion, Israel
- Correspondence:
| |
Collapse
|
30
|
Nebenführ A, Dixit R. Kinesins and Myosins: Molecular Motors that Coordinate Cellular Functions in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:329-361. [PMID: 29489391 PMCID: PMC6653565 DOI: 10.1146/annurev-arplant-042817-040024] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Kinesins and myosins are motor proteins that can move actively along microtubules and actin filaments, respectively. Plants have evolved a unique set of motors that function as regulators and organizers of the cytoskeleton and as drivers of long-distance transport of various cellular components. Recent progress has established the full complement of motors encoded in plant genomes and has revealed valuable insights into the cellular functions of many kinesin and myosin isoforms. Interestingly, several of the motors were found to functionally connect the two cytoskeletal systems and thereby to coordinate their activities. In this review, we discuss the available genetic, cell biological, and biochemical data for each of the plant kinesin and myosin families from the context of their subcellular mechanism of action as well as their physiological function in the whole plant. We particularly emphasize work that illustrates mechanisms by which kinesins and myosins coordinate the activities of the cytoskeletal system.
Collapse
Affiliation(s)
- Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA;
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130-4899, USA;
| |
Collapse
|
31
|
Petzold HE, Rigoulot SB, Zhao C, Chanda B, Sheng X, Zhao M, Jia X, Dickerman AW, Beers EP, Brunner AM. Identification of new protein-protein and protein-DNA interactions linked with wood formation in Populus trichocarpa. TREE PHYSIOLOGY 2018; 38:362-377. [PMID: 29040741 DOI: 10.1093/treephys/tpx121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Cellular processes, such as signal transduction and cell wall deposition, are organized by macromolecule interactions. Experimentally determined protein-protein interactions (PPIs) and protein-DNA interactions (PDIs) relevant to woody plant development are sparse. To begin to develop a Populus trichocarpa Torr. & A. Gray wood interactome, we applied the yeast-two-hybrid (Y2H) assay in different ways to enable the discovery of novel PPIs and connected networks. We first cloned open reading frames (ORFs) for 361 genes markedly upregulated in secondary xylem compared with secondary phloem and performed a binary Y2H screen with these proteins. By screening a xylem cDNA library for interactors of a subset of these proteins and then recapitulating the process by using a subset of the interactors as baits, we ultimately identified 165 PPIs involving 162 different ORFs. Thirty-eight transcription factors (TFs) included in our collection of P. trichocarpa wood ORFs were used in a Y1H screen for binding to promoter regions of three genes involved in lignin biosynthesis resulting in 40 PDIs involving 20 different TFs. The network incorporating both the PPIs and PDIs included 14 connected subnetworks, with the largest having 132 members. Protein-protein interactions and PDIs validated previous reports and also identified new candidate wood formation proteins and modules through their interactions with proteins and promoters known to be involved in secondary cell wall synthesis. Selected examples are discussed including a PPI between Mps one binder (MOB1) and a mitogen-activated protein kinase kinase kinase kinase (M4K) that was further characterized by assays confirming the PPI as well as its effect on subcellular localization. Mapping of published transcriptomic data showing developmentally detailed expression patterns across a secondary stem onto the network supported that the PPIs and PDIs are relevant to wood formation, and also illustrated that wood-associated interactions involve gene products that are not upregulated in secondary xylem.
Collapse
Affiliation(s)
- H Earl Petzold
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Chengsong Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bidisha Chanda
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
- US Vegetable Laboratory, Charleston, SC 29414, USA
| | - Xiaoyan Sheng
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mingzhe Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
- Agronomy College, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, PR China
| | - Xiaoyan Jia
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allan W Dickerman
- The Biocomplexity Institute at Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric P Beers
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
32
|
Ryan JM, Nebenführ A. Update on Myosin Motors: Molecular Mechanisms and Physiological Functions. PLANT PHYSIOLOGY 2018; 176:119-127. [PMID: 29162634 PMCID: PMC5761821 DOI: 10.1104/pp.17.01429] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/19/2017] [Indexed: 05/21/2023]
Abstract
Recent progress has revealed aspects of the molecular mechanisms that allow myosin motors to carry outtheir physiological functions.
Collapse
Affiliation(s)
- Jennifer M Ryan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840
| |
Collapse
|
33
|
Paez-Garcia A, Sparks JA, de Bang L, Blancaflor EB. Plant Actin Cytoskeleton: New Functions from Old Scaffold. PLANT CELL MONOGRAPHS 2018. [DOI: 10.1007/978-3-319-69944-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Junková P, Daněk M, Kocourková D, Brouzdová J, Kroumanová K, Zelazny E, Janda M, Hynek R, Martinec J, Valentová O. Mapping of Plasma Membrane Proteins Interacting With Arabidopsis thaliana Flotillin 2. FRONTIERS IN PLANT SCIENCE 2018; 9:991. [PMID: 30050548 PMCID: PMC6052134 DOI: 10.3389/fpls.2018.00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/19/2018] [Indexed: 05/08/2023]
Abstract
Arabidopsis flotillin 2 (At5g25260) belongs to the group of plant flotillins, which are not well characterized. In contrast, metazoan flotillins are well known as plasma membrane proteins associated with membrane microdomains that act as a signaling hub. The similarity of plant and metazoan flotillins, whose functions most likely consist of affecting other proteins via protein-protein interactions, determines the necessity of detecting their interacting partners in plants. Nevertheless, identifying the proteins that form complexes on the plasma membrane is a challenging task due to their low abundance and hydrophobic character. Here we present an approach for mapping Arabidopsis thaliana flotillin 2 plasma membrane interactors, based on the immunoaffinity purification of crosslinked and enriched plasma membrane proteins with mass spectrometry detection. Using this approach, 61 proteins were enriched in the AtFlot-GFP plasma membrane fraction, and 19 of them were proposed to be flotillin 2 interaction partners. Among our proposed partners of Flot2, proteins playing a role in the plant response to various biotic and abiotic stresses were detected. Additionally, the use of the split-ubiquitin yeast system helped us to confirm that plasma-membrane ATPase 1, early-responsive to dehydration stress protein 4, syntaxin-71, harpin-induced protein-like 3, hypersensitive-induced response protein 2 and two aquaporin isoforms interact with flotillin 2 directly. Based on the results of our study and the reported properties of Flot2 interactors, we propose that Flot2 complexes may be involved in plant-pathogen interactions, water transport and intracellular trafficking.
Collapse
Affiliation(s)
- Petra Junková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- *Correspondence: Petra Junková, ;
| | - Michal Daněk
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Daniela Kocourková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jitka Brouzdová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Kristýna Kroumanová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Enric Zelazny
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS–CEA–Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Martin Janda
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
35
|
Szymanski D, Staiger CJ. The Actin Cytoskeleton: Functional Arrays for Cytoplasmic Organization and Cell Shape Control. PLANT PHYSIOLOGY 2018; 176:106-118. [PMID: 29192029 PMCID: PMC5761824 DOI: 10.1104/pp.17.01519] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/29/2017] [Indexed: 05/18/2023]
Abstract
Functionally distinct actin filament arrays cluster organelles and define cellular scale flow patterns for secretion.
Collapse
Affiliation(s)
- Dan Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Christopher J Staiger
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
36
|
Aryal UK, McBride Z, Chen D, Xie J, Szymanski DB. Analysis of protein complexes in Arabidopsis leaves using size exclusion chromatography and label-free protein correlation profiling. J Proteomics 2017. [DOI: 10.1016/j.jprot.2017.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Mettbach U, Strnad M, Mancuso S, Baluška F. Immunogold-EM analysis reveal brefeldin a-sensitive clusters of auxin in Arabidopsis root apex cells. Commun Integr Biol 2017; 10:e1327105. [PMID: 28702129 PMCID: PMC5501221 DOI: 10.1080/19420889.2017.1327105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 04/29/2017] [Indexed: 11/05/2022] Open
Abstract
Immunogold electron microscopy (EM) study of Arabidopsis root apices analyzed using specific IAA antibody and high-pressure freeze fixation technique allowed, for the first time, vizualization of subcellular localization of IAA in cells assembled intactly within plant tissues. Our quantitative analysis reveals that there is considerable portion of IAA gold particles that clusters within vesicles and membraneous compartments in all root apex cells. There are clear tissue-specific and developmental differences of clustered IAA in root apices. These findings have significant consequences for our understanding of this small molecule which is controlling plant growth, development and behavior.
Collapse
Affiliation(s)
| | - M. Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czech Republic
| | - S. Mancuso
- Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy
| | | |
Collapse
|
38
|
Myosin-driven transport network in plants is functionally robust and distinctive. Proc Natl Acad Sci U S A 2017; 114:1756-1758. [PMID: 28179563 DOI: 10.1073/pnas.1700184114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Abstract
We investigate the myosin XI-driven transport network in Arabidopsis using protein-protein interaction, subcellular localization, gene knockout, and bioinformatics analyses. The two major groups of nodes in this network are myosins XI and their membrane-anchored receptors (MyoB) that, together, drive endomembrane trafficking and cytoplasmic streaming in the plant cells. The network shows high node connectivity and is dominated by generalists, with a smaller fraction of more specialized myosins and receptors. We show that interaction with myosins and association with motile vesicles are common properties of the MyoB family receptors. We identify previously uncharacterized myosin-binding proteins, putative myosin adaptors that belong to two unrelated families, with four members each (MadA and MadB). Surprisingly, MadA1 localizes to the nucleus and is rapidly transported to the cytoplasm, suggesting the existence of myosin XI-driven nucleocytoplasmic trafficking. In contrast, MadA2 and MadA3, as well as MadB1, partition between the cytosolic pools of motile endomembrane vesicles that colocalize with myosin XI-K and diffuse material that does not. Gene knockout analysis shows that MadB1-4 contribute to polarized root hair growth, phenocopying myosins, whereas MadA1-4 are redundant for this process. Phylogenetic analysis reveals congruent evolutionary histories of the myosin XI, MyoB, MadA, and MadB families. All these gene families emerged in green algae and show concurrent expansions via serial duplication in flowering plants. Thus, the myosin XI transport network increased in complexity and robustness concomitantly with the land colonization by flowering plants and, by inference, could have been a major contributor to this process.
Collapse
|
40
|
Griffing LR, Lin C, Perico C, White RR, Sparkes I. Plant ER geometry and dynamics: biophysical and cytoskeletal control during growth and biotic response. PROTOPLASMA 2017; 254:43-56. [PMID: 26862751 PMCID: PMC5216105 DOI: 10.1007/s00709-016-0945-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/13/2016] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum (ER) is an intricate and dynamic network of membrane tubules and cisternae. In plant cells, the ER 'web' pervades the cortex and endoplasm and is continuous with adjacent cells as it passes through plasmodesmata. It is therefore the largest membranous organelle in plant cells. It performs essential functions including protein and lipid synthesis, and its morphology and movement are linked to cellular function. An emerging trend is that organelles can no longer be seen as discrete membrane-bound compartments, since they can physically interact and 'communicate' with one another. The ER may form a connecting central role in this process. This review tackles our current understanding and quantification of ER dynamics and how these change under a variety of biotic and developmental cues.
Collapse
Affiliation(s)
- Lawrence R Griffing
- Biology Department, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - Congping Lin
- Mathematics Research Institute, Harrison Building, University of Exeter, Exeter, EX4 4QF, UK
| | - Chiara Perico
- Biosciences, CLES, Exeter University, Geoffrey Pope Building, Stocker Rd, Exeter, EX4 4QD, UK
| | - Rhiannon R White
- Biosciences, CLES, Exeter University, Geoffrey Pope Building, Stocker Rd, Exeter, EX4 4QD, UK
| | - Imogen Sparkes
- Biosciences, CLES, Exeter University, Geoffrey Pope Building, Stocker Rd, Exeter, EX4 4QD, UK.
| |
Collapse
|
41
|
Cao P, Renna L, Stefano G, Brandizzi F. SYP73 Anchors the ER to the Actin Cytoskeleton for Maintenance of ER Integrity and Streaming in Arabidopsis. Curr Biol 2016; 26:3245-3254. [DOI: 10.1016/j.cub.2016.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
|
42
|
Wang G, Wang G, Wang J, Du Y, Yao D, Shuai B, Han L, Tang Y, Song R. Comprehensive proteomic analysis of developing protein bodies in maize (Zea mays) endosperm provides novel insights into its biogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6323-6335. [PMID: 27789589 PMCID: PMC5181578 DOI: 10.1093/jxb/erw396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Prolamins, the major cereal seed storage proteins, are sequestered and accumulated in the lumen of the endoplasmic reticulum (ER), and are directly assembled into protein bodies (PBs). The content and composition of prolamins are the key determinants for protein quality and texture-related traits of the grain. Concomitantly, the PB-inducing fusion system provides an efficient target to produce therapeutic and industrial products in plants. However, the proteome of the native PB and the detailed mechanisms underlying its formation still need to be determined. We developed a method to isolate highly purified and intact PBs from developing maize endosperm and conducted proteomic analysis of intact PBs of zein, a class of prolamine protein found in maize. We thus identified 1756 proteins, which fall into five major categories: metabolic pathways, response to stimulus, transport, development, and growth, as well as regulation. By comparing the proteomes of crude and enriched extractions of PBs, we found substantial evidence for the following conclusions: (i) ribosomes, ER membranes, and the cytoskeleton are tightly associated with zein PBs, which form the peripheral border; (ii) zein RNAs are probably transported and localized to the PB-ER subdomain; and (iii) ER chaperones are essential for zein folding, quality control, and assembly into PBs. We futher confirmed that OPAQUE1 (O1) cannot directly interact with FLOURY1 (FL1) in yeast, suggesting that the interaction between myosins XI and DUF593-containing proteins is isoform-specific. This study provides a proteomic roadmap for dissecting zein PB biogenesis and reveals an unexpected diversity and complexity of proteins in PBs.
Collapse
Affiliation(s)
- Guifeng Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China, and
- Coordinated Crop Biology Research Center, Beijing 100193, P.R. China
| | - Gang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China, and
- Coordinated Crop Biology Research Center, Beijing 100193, P.R. China
| | - Jiajia Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China, and
| | - Yulong Du
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China, and
| | - Dongsheng Yao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China, and
| | - Bilian Shuai
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China, and
| | - Liang Han
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China, and
| | - Yuanping Tang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China, and
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China, and
- Coordinated Crop Biology Research Center, Beijing 100193, P.R. China
| |
Collapse
|
43
|
Geitmann A, Nebenführ A. Navigating the plant cell: intracellular transport logistics in the green kingdom. Mol Biol Cell 2016; 26:3373-8. [PMID: 26416952 PMCID: PMC4591683 DOI: 10.1091/mbc.e14-10-1482] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions.
Collapse
Affiliation(s)
- Anja Geitmann
- Department of Biological Sciences, Institut de recherche en biologie végétale, University of Montreal, Montreal, QC H1X 2B2, Canada
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840
| |
Collapse
|
44
|
Schroeder M, Tsuchiya T, He S, Eulgem T. Use of enhancer trapping to identify pathogen-induced regulatory events spatially restricted to plant-microbe interaction sites. MOLECULAR PLANT PATHOLOGY 2016; 17:388-97. [PMID: 26095625 PMCID: PMC6638459 DOI: 10.1111/mpp.12287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant genes differentially expressed during plant-pathogen interactions can be important for host immunity or can contribute to pathogen virulence. Large-scale transcript profiling studies, such as microarray- or mRNA-seq-based analyses, have revealed hundreds of genes that are differentially expressed during plant-pathogen interactions. However, transcriptional responses limited to a small number of cells at infection sites can be difficult to detect using these approaches, as they are under-represented in the whole-tissue datasets typically generated by such methods. This study examines the interactions between Arabidopsis thaliana (Arabidopsis) and the pathogenic oomycete Hyaloperonospora arabidopsidis (Hpa) by enhancer trapping to uncover novel plant genes involved in local infection responses. We screened a β-glucuronidase (GUS) reporter-based enhancer-trap population for expression patterns related to Hpa infection. Several independent lines exhibited GUS expression in leaf mesophyll cells surrounding Hpa structures, indicating a regulatory response to pathogen infection. One of these lines contained a single enhancer-trap insertion in an exon of At1g08800 (MyoB1, Myosin Binding Protein 1) and was subsequently found to exhibit reduced susceptibility to Hpa. Two additional Arabidopsis lines with T-DNA insertions in exons of MyoB1 also exhibited approximately 30% fewer spores than wild-type plants. This study demonstrates that our enhancer-trapping strategy can result in the identification of functionally relevant pathogen-responsive genes. Our results further suggest that MyoB1 either positively contributes to Hpa virulence or negatively affects host immunity against this pathogen.
Collapse
Affiliation(s)
- Mercedes Schroeder
- ChemGen, Integrative Graduate Education and Research Traineeship Program, University of California, Riverside, CA, 92521, USA
- Institute for Integrative Genome Biology, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Tokuji Tsuchiya
- Institute for Integrative Genome Biology, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Shuilin He
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Thomas Eulgem
- Institute for Integrative Genome Biology, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
45
|
Morton KJ, Jia S, Zhang C, Holding DR. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1381-96. [PMID: 26712829 PMCID: PMC4762381 DOI: 10.1093/jxb/erv532] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reduced prolamin (zein) accumulation and defective endoplasmic reticulum (ER) body formation occurs in maize opaque endosperm mutants opaque2 (o2), floury2 (fl2), defective endosperm*B30 (DeB30), and Mucronate (Mc), whereas other opaque mutants such as opaque1 (o1) and floury1 (fl1) are normal in these regards. This suggests that other factors contribute to kernel texture. A liquid chromatography approach coupled with tandem mass spectrometry (LC-MS/MS) proteomics was used to compare non-zein proteins of nearly isogenic opaque endosperm mutants. In total, 2762 proteins were identified that were enriched for biological processes such as protein transport and folding, amino acid biosynthesis, and proteolysis. Principal component analysis and pathway enrichment suggested that the mutants partitioned into three groups: (i) Mc, DeB30, fl2 and o2; (ii) o1; and (iii) fl1. Indicator species analysis revealed mutant-specific proteins, and highlighted ER secretory pathway components that were enriched in selected groups of mutants. The most significantly changed proteins were related to stress or defense and zein partitioning into the soluble fraction for Mc, DeB30, o1, and fl1 specifically. In silico dissection of the most significantly changed proteins revealed novel qualitative changes in lysine abundance contributing to the overall lysine increase and the nutritional rebalancing of the o2 and fl2 endosperm.
Collapse
Affiliation(s)
- Kyla J Morton
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, 1901 Vine Street, PO Box 880665, University of Nebraska, Lincoln, NE 68588-0665, USA
| | - Shangang Jia
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, 1901 Vine Street, PO Box 880665, University of Nebraska, Lincoln, NE 68588-0665, USA
| | - Chi Zhang
- School of Biological Sciences, Center for Plant Science Innovation, Beadle Center for Biotechnology, 1901 Vine Street, PO Box 880665, University of Nebraska, Lincoln, NE 68588-0665, USA
| | - David R Holding
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, 1901 Vine Street, PO Box 880665, University of Nebraska, Lincoln, NE 68588-0665, USA
| |
Collapse
|
46
|
Sparks JA, Kwon T, Renna L, Liao F, Brandizzi F, Blancaflor EB. HLB1 Is a Tetratricopeptide Repeat Domain-Containing Protein That Operates at the Intersection of the Exocytic and Endocytic Pathways at the TGN/EE in Arabidopsis. THE PLANT CELL 2016; 28:746-69. [PMID: 26941089 PMCID: PMC4826010 DOI: 10.1105/tpc.15.00794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 05/26/2023]
Abstract
The endomembrane system plays essential roles in plant development, but the proteome responsible for its function and organization remains largely uncharacterized in plants. Here, we identified and characterized the HYPERSENSITIVE TO LATRUNCULIN B1 (HLB1) protein isolated through a forward-genetic screen in Arabidopsis thaliana for mutants with heightened sensitivity to actin-disrupting drugs. HLB1 is a plant-specific tetratricopeptide repeat domain-containing protein of unknown function encoded by a single Arabidopsis gene. HLB1 associated with the trans-Golgi network (TGN)/early endosome (EE) and tracked along filamentous actin, indicating that it could link post-Golgi traffic with the actin cytoskeleton in plants. HLB1 was found to interact with the ADP-ribosylation-factor guanine nucleotide exchange factor, MIN7/BEN1 (HOPM INTERACTOR7/BREFELDIN A-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1) by coimmunoprecipitation. The min7/ben1 mutant phenocopied the mild root developmental defects and latrunculin B hypersensitivity of hlb1, and analyses of ahlb1/ min7/ben1 double mutant showed that hlb1 and min7/ben1 operate in common genetic pathways. Based on these data, we propose that HLB1 together with MIN7/BEN1 form a complex with actin to modulate the function of the TGN/EE at the intersection of the exocytic and endocytic pathways in plants.
Collapse
Affiliation(s)
- J Alan Sparks
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Taegun Kwon
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Luciana Renna
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Fuqi Liao
- Computing Services Department, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Federica Brandizzi
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| |
Collapse
|
47
|
Boot KJM, Hille SC, Libbenga KR, Peletier LA, van Spronsen PC, van Duijn B, Offringa R. Modelling the dynamics of polar auxin transport in inflorescence stems of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:649-666. [PMID: 26531101 PMCID: PMC4737066 DOI: 10.1093/jxb/erv471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The polar transport of the plant hormone auxin has been the subject of many studies, several involving mathematical modelling. Unfortunately, most of these models have not been experimentally verified. Here we present experimental measurements of long-distance polar auxin transport (PAT) in segments of inflorescence stems of Arabidopsis thaliana together with a descriptive mathematical model that was developed from these data. It is based on a general advection-diffusion equation for auxin density, as suggested by the chemiosmotic theory, but is extended to incorporate both immobilization of auxin and exchange with the surrounding tissue of cells involved in PAT, in order to account for crucial observations. We found that development of the present model assisted effectively in the analysis of experimental observations. As an example, we discuss the analysis of a quadruple mutant for all four AUX1/LAX1-LAX3 influx carriers genes. We found a drastic change in the parameters governing the exchange of PAT channels with the surrounding tissue, whereas the velocity was still of the order of magnitude of the wild type. In addition, the steady-state flux of auxin through the PAT system of the mutant did not exhibit a saturable component, as we found for the wild type, suggesting that the import carriers are responsible for the saturable component in the wild type. In the accompanying Supplementary data available at JXB online, we describe in more detail the data-driven development of the model, review and derive predictions from a mathematical model of the chemiosmotic theory, and explore relationships between parameters in our model and processes and parameters at the cellular level.
Collapse
Affiliation(s)
- Kees J M Boot
- Plant Biodynamics Laboratory, Institute of Biology Leiden, Leiden University, 2333 EB Leiden, The Netherlands Department of Molecular and Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 EB Leiden, The Netherlands
| | - Sander C Hille
- Plant Biodynamics Laboratory, Institute of Biology Leiden, Leiden University, 2333 EB Leiden, The Netherlands Mathematical Institute, Leiden University, 2333CA, Leiden, The Netherlands
| | - Kees R Libbenga
- Plant Biodynamics Laboratory, Institute of Biology Leiden, Leiden University, 2333 EB Leiden, The Netherlands
| | - Lambertus A Peletier
- Plant Biodynamics Laboratory, Institute of Biology Leiden, Leiden University, 2333 EB Leiden, The Netherlands Mathematical Institute, Leiden University, 2333CA, Leiden, The Netherlands
| | - Paulina C van Spronsen
- Department of Molecular and Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 EB Leiden, The Netherlands
| | - Bert van Duijn
- Plant Biodynamics Laboratory, Institute of Biology Leiden, Leiden University, 2333 EB Leiden, The Netherlands Fytagoras, 2333 EB Leiden, The Netherlands
| | - Remko Offringa
- Plant Biodynamics Laboratory, Institute of Biology Leiden, Leiden University, 2333 EB Leiden, The Netherlands Department of Molecular and Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 EB Leiden, The Netherlands
| |
Collapse
|
48
|
Talts K, Ilau B, Ojangu EL, Tanner K, Peremyslov VV, Dolja VV, Truve E, Paves H. Arabidopsis Myosins XI1, XI2, and XIK Are Crucial for Gravity-Induced Bending of Inflorescence Stems. FRONTIERS IN PLANT SCIENCE 2016; 7:1932. [PMID: 28066484 PMCID: PMC5174092 DOI: 10.3389/fpls.2016.01932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/05/2016] [Indexed: 05/18/2023]
Abstract
Myosins and actin filaments in the actomyosin system act in concert in regulating cell structure and dynamics and are also assumed to contribute to plant gravitropic response. To investigate the role of the actomyosin system in the inflorescence stem gravitropism, we used single and multiple mutants affecting each of the 17 Arabidopsis myosins of class VIII and XI. We show that class XI but not class VIII myosins are required for stem gravitropism. Simultaneous loss of function of myosins XI1, XI2, and XIK leads to impaired gravitropic bending that is correlated with altered growth, stiffness, and insufficient sedimentation of gravity sensing amyloplasts in stem endodermal cells. The gravitropic defect of the corresponding triple mutant xi1 xi2 xik could be rescued by stable expression of the functional XIK:YFP in the mutant background, indicating a role of class XI myosins in this process. Altogether, our results emphasize the critical contributions of myosins XI in stem gravitropism of Arabidopsis.
Collapse
Affiliation(s)
- Kristiina Talts
- Department of Gene Technology, Tallinn University of TechnologyTallinn, Estonia
- *Correspondence: Kristiina Talts,
| | - Birger Ilau
- Department of Gene Technology, Tallinn University of TechnologyTallinn, Estonia
| | - Eve-Ly Ojangu
- Department of Gene Technology, Tallinn University of TechnologyTallinn, Estonia
| | - Krista Tanner
- Department of Gene Technology, Tallinn University of TechnologyTallinn, Estonia
| | - Valera V. Peremyslov
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, CorvallisOR, USA
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, CorvallisOR, USA
| | - Erkki Truve
- Department of Gene Technology, Tallinn University of TechnologyTallinn, Estonia
| | - Heiti Paves
- Department of Gene Technology, Tallinn University of TechnologyTallinn, Estonia
| |
Collapse
|
49
|
Ueda H, Tamura K, Hara-Nishimura I. Functions of plant-specific myosin XI: from intracellular motility to plant postures. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:30-8. [PMID: 26432645 DOI: 10.1016/j.pbi.2015.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 05/02/2023]
Abstract
The plant-specific protein motor class myosin XI is known to function in rapid bulk flow of the cytoplasm (cytoplasmic streaming) and in organellar movements. Recent studies unveiled a wide range of physiological functions of myosin XI motors, from intracellular motility to organ movements. Arabidopsis thaliana has 13 members of myosin XI class. In vegetative organs, myosins XIk, XI1, and XI2 primarily contribute to dynamics and spatial configurations of endoplasmic reticulum that develops a tubular network in the cell periphery and thick strand-like structures in the inner cell regions. Myosin XI-i forms a nucleocytoplasmic linker and is responsible for nuclear movement and shape. In addition to these intracellular functions, myosin XIf together with myosin XIk is involved in the fundamental nature of plants; the actin-myosin XI cytoskeleton regulates organ straightening to adjust plant posture.
Collapse
Affiliation(s)
- Haruko Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
50
|
Ishikawa K, Hashimoto M, Namba S. Passive virus movements with organelle dynamics. Oncotarget 2015; 6:30437-8. [PMID: 26429865 PMCID: PMC4741536 DOI: 10.18632/oncotarget.5897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/25/2015] [Indexed: 12/04/2022] Open
Affiliation(s)
- Kazuya Ishikawa
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|