1
|
Ten Tusscher KH. Computational modeling of plant root development: the art and the science. THE NEW PHYTOLOGIST 2025. [PMID: 40269551 DOI: 10.1111/nph.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
Plant root development, like any developmental process, arises from the interplay between processes like gene expression, cell-cell signaling, cell growth and division, and tissue mechanics, which unfold over a wide range of temporal and spatial scales. Computational models are uniquely suited to integrate these different processes and spatio-temporal scales to investigate how their interplay determines developmental outcomes and have become part of mainstream plant developmental research. Still, for non-modeling experts, it often remains unclear how models are built, why a particular modeling approach was chosen, and how to interpret and value model outcomes. This review attempts to explain the science behind the art of model building, illustrating the simplifications that are often made to keep models simple to understand and when these are and are not justified. Similarly, it discusses when it is safe to ignore certain processes like growth or tissue mechanics and when it is not. Additionally, this review discusses a range of major breakthrough modeling articles. Their approaches are linked to classical concepts and models in developmental biology like the French flag positional information gradient of Lewis Wolpert and the repetitive patterning mechanism proposed by Turing, in addition to highlighting the lessons they taught us on plant root development.
Collapse
Affiliation(s)
- Kirsten H Ten Tusscher
- Experimental and Computational Plant Development, IEB, Department of Biology, Utrecht University, Winthontlaan 30C, 3526 KV, Utrecht, the Netherlands
- Theoretical Biology, IBB, Department of Biology, Utrecht University, Winthontlaan 30C, 3526 KV, Utrecht, the Netherlands
| |
Collapse
|
2
|
Safdar M, Park S, Kim W, Kim D, Lee S, Kim YO, Kim J. Ultra-Tiny Scale Topographical Cues Direct Arabidopsis Root Growth and Development. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17476-17491. [PMID: 40045712 DOI: 10.1021/acsami.4c19726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Plant growth involves intricate processes, including cell division, expansion, and tissue organization, necessitating innovative technologies that emulate native cell-microenvironment interactions. Herein, we introduce ultra-tiny topographical cues (e.g., patterned micro/nanoscale substrates) that mimic micronanofiber structures found in the plant cell wall. We cultured Arabidopsis on unique cell wall-inspired ultra-tiny cues within specialized chambers that positively influenced various physiological aspects compared to a flat surface. Specifically, we observed bidirectional behavior, favoring maximum primary root growth and thickness on sparse features (e.g., 5 μm) and induced predominant anisotropic root alignment on dense features (e.g., 400-800 nm), with alignment decreasing monotonically as the feature size increased. Additionally, RNA sequencing revealed distinct molecular mechanisms underlying Arabidopsis root growth dynamics in response to these ultra-tiny cues, demonstrating modulation of specific genes involved in root development. Collectively, our findings highlight the potential of ultra-tiny cues to modulate gene expression and plant growth dynamics, offering innovative approaches to enhance agricultural productivity sustainably through feature-size-dependent interactions.
Collapse
Affiliation(s)
- Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dream Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shinyull Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Moore S, Liu J, Chen C, Lindsey K. Necessity for modeling hormonal crosstalk in arabidopsis root development? TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00043-3. [PMID: 40082164 DOI: 10.1016/j.tplants.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/16/2025]
Abstract
Hormones play vital roles in plant root development. Mathematical models have been employed to study hormone functions. However, models developed by different research groups focus on different aspects of hormones and therefore cannot be used to study root growth as an integrative system that involves the functions of all hormones. To use modeling to study root development, the crosstalk nature of hormones requires the further development of mathematical models to understand their interplay in the context of diverse experimental data. This opinion article discusses what new insights can be developed by modeling hormonal crosstalk beyond experimental data. We propose that one integrative model should be developed to integrate all experimental data for elucidating root growth.
Collapse
Affiliation(s)
- Simon Moore
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Chunli Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
4
|
Ibañes M. Modeling Arabidopsis root growth and development. PLANT PHYSIOLOGY 2025; 197:kiaf045. [PMID: 40036788 PMCID: PMC11878784 DOI: 10.1093/plphys/kiaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/03/2024] [Indexed: 03/06/2025]
Abstract
Modeling has been used to explore various aspects of primary root development and growth in Arabidopsis thaliana, thanks to enormous advances in the genetic and biochemical bases of cell division, cell growth and differentiation, and, more recently, progress in measuring these processes. Modeling has facilitated the characterization of the regulations involved in these processes and the system properties that they confer. Recently, the mechanical-physical properties of root growth have started to be determined with the help of modeling. Here we review recent progress in modeling approaches used to examine root development and growth, from the transcriptional and signaling regulation of cell decisions to the mechanical basis of morphogenesis, and we highlight common features and future challenges.
Collapse
Affiliation(s)
- Marta Ibañes
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Kong C, Yang Y, Qi T, Zhang S. Predictive genetic circuit design for phenotype reprogramming in plants. Nat Commun 2025; 16:715. [PMID: 39820378 PMCID: PMC11739397 DOI: 10.1038/s41467-025-56042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Plants, with intricate molecular networks for environmental adaptation, offer groundbreaking potential for reprogramming with predictive genetic circuits. However, realizing this goal is challenging due to the long cultivation cycle of plants, as well as the lack of reproducible, quantitative methods and well-characterized genetic parts. Here, we establish a rapid (~10 days), quantitative, and predictive framework in plants. A group of orthogonal sensors, modular synthetic promoters, and NOT gates are constructed and quantitatively characterized. A predictive model is developed to predict the designed circuits' behavior accurately. Our versatile and robust framework, validated by constructing 21 two-input circuits with high prediction accuracy (R2 = 0.81), enables multi-state phenotype control in both Arabidopsis thaliana and Nicotiana benthamiana in response to chemical inducers. Our study achieves predictable design and application of synthetic circuits in plants, offering valuable tools for the rapid engineering of plant traits in biotechnology and agriculture.
Collapse
Affiliation(s)
- Ci Kong
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Life Science Academy, Beijing, China
| | - Yin Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tiancong Qi
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuyi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Kuang X, Chen H, Xiang J, Zeng J, Liu Q, Su Y, Huang C, Wang R, Lin W, Huang Z. HDC1 Promotes Primary Root Elongation by Regulating Auxin and K + Homeostasis in Response to Low-K + Stress. BIOLOGY 2025; 14:57. [PMID: 39857288 PMCID: PMC11762372 DOI: 10.3390/biology14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Plants frequently encounter relatively low and fluctuating potassium (K+) concentrations in soil, with roots serving as primary responders to this stress. Histone modifications, such as de-/acetylation, can function as epigenetic markers of stress-inducible genes. However, the signaling network between histone modifications and low-K+ (LK) response pathways remains unclear. This study investigated the regulatory role of Histone Deacetylase Complex 1 (HDC1) in primary root growth of Arabidopsis thaliana under K+ deficiency stress. Using a hdc1-2 mutant line, we observed that HDC1 positively regulated root growth under LK conditions. Compared to wild-type (WT) plants, the hdc1-2 mutant exhibited significantly inhibited primary root growth under LK conditions, whereas HDC1-overexpression lines displayed opposite phenotypes. No significant differences were observed under HK conditions. Further analysis revealed that the inhibition of hdc1-2 on root growth was due to reduced apical meristem cell proliferation rather than cell elongation. Notably, the root growth of hdc1-2 showed reduced sensitivity compared to WT after auxin treatment under LK conditions. HDC1 may regulate root growth by affecting auxin polar transport and subsequent auxin signaling, as evidenced by the altered expression of auxin transport genes. Moreover, the organ-specific RT-qPCR analyses unraveled that HDC1 negatively regulates the expression of CBL-CIPK-K+ channel-related genes such as CBL1, CBL2, CBL3, AKT1, and TPK1, thereby establishing a molecular link between histone deacetylation, auxin signaling, and CBLs-CIPKs pathway in response to K+ deficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wanhuang Lin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.K.); (H.C.); (J.X.); (J.Z.); (Q.L.); (Y.S.); (C.H.); (R.W.)
| | - Zhigang Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.K.); (H.C.); (J.X.); (J.Z.); (Q.L.); (Y.S.); (C.H.); (R.W.)
| |
Collapse
|
7
|
Cavalleri A, Astori C, Truskina J, Cucinotta M, Farcot E, Chrysanthou E, Xu X, Muino JM, Kaufmann K, Kater MM, Vernoux T, Weijers D, Bennett MJ, Bhosale R, Bishopp A, Colombo L. Auxin-dependent post-translational regulation of MONOPTEROS in the Arabidopsis root. Cell Rep 2024; 43:115083. [PMID: 39675001 DOI: 10.1016/j.celrep.2024.115083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Auxin plays a pivotal role in plant development by activating AUXIN RESPONSE FACTORs (ARFs). Under low auxin levels, ARF activity is inhibited by interacting with Aux/IAAs. Aux/IAAs are degraded when the cellular auxin concentration increases, causing the release of ARF inhibition. Here, we show that levels of the ARF5/MONOPTEROS (MP) protein are regulated in a cell-type-specific and isoform-dependent manner. We find that the stability of MP isoforms is differentially controlled depending on the auxin level. The canonical MP isoform is degraded by the proteasome in root tissues with low auxin levels. While auxin sharpens the MP localization domain in roots, it does not do so in ovules or embryos. Our research highlights a mechanism for providing spatial control of auxin signaling capacity. Together with recent advances in understanding the tissue-specific expression and post-transcriptional modification of auxin signaling components, these results provide insights into understanding how auxin can elicit so many distinct responses.
Collapse
Affiliation(s)
- Alex Cavalleri
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Chiara Astori
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Jekaterina Truskina
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Mara Cucinotta
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Etienne Farcot
- School of Mathematical Sciences, University of Nottingham, NG7 2RD Nottingham, UK
| | - Elina Chrysanthou
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Xiaocai Xu
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Jose M Muino
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Martin M Kater
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6700 ET Wageningen, the Netherlands
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Rahul Bhosale
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Anthony Bishopp
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Lucia Colombo
- Departiment of BioScience, University of Milan, 20133 Milano, Italy.
| |
Collapse
|
8
|
Janacek DP, Kolb M, Schulz L, Mergner J, Kuster B, Glanc M, Friml J, Ten Tusscher K, Schwechheimer C, Hammes UZ. Transport properties of canonical PIN-FORMED proteins from Arabidopsis and the role of the loop domain in auxin transport. Dev Cell 2024; 59:3259-3271.e4. [PMID: 39413780 DOI: 10.1016/j.devcel.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/06/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
The phytohormone auxin is polarly transported in plants by PIN-FORMED (PIN) transporters and controls virtually all growth and developmental processes. Canonical PINs possess a long, largely disordered cytosolic loop. Auxin transport by canonical PINs is activated by loop phosphorylation by certain kinases. The structure of the PIN transmembrane domains was recently determined, their transport properties remained poorly characterized, and the role of the loop in the transport process was unclear. Here, we determined the quantitative kinetic parameters of auxin transport mediated by Arabidopsis PINs to mathematically model auxin distribution in roots and to test these predictions in vivo. Using chimeras between transmembrane and loop domains of different PINs, we demonstrate a strong correlation between transport parameters and physiological output, indicating that the loop domain is not only required to activate PIN-mediated auxin transport, but it has an additional role in the transport process by a currently unknown mechanism.
Collapse
Affiliation(s)
- Dorina P Janacek
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Martina Kolb
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Lukas Schulz
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Julia Mergner
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich, 85954 Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich, 85954 Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Kirsten Ten Tusscher
- Computational Developmental Biology, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
9
|
Geisler M, Dreyer I. An auxin homeostat allows plant cells to establish and control defined transmembrane auxin gradients. THE NEW PHYTOLOGIST 2024; 244:1422-1436. [PMID: 39279032 DOI: 10.1111/nph.20120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/25/2024] [Indexed: 09/18/2024]
Abstract
Extracellular auxin maxima and minima are important to control plant developmental programs. Auxin gradients are provided by the concerted action of proteins from the three major plasma membrane (PM) auxin transporter classes AUX1/LAX, PIN and ATP-BINDING CASSETTE subfamily B (ABCB) transporters. But neither genetic nor biochemical nor modeling approaches have been able to reliably assign the individual roles and interplay of these transporter types. Based on the thermodynamic properties of the transporters, we show here by mathematical modeling and computational simulations that the concerted action of different auxin transporter types allows the adjustment of specific transmembrane auxin gradients. The dynamic flexibility of the 'auxin homeostat' comes at the cost of an energy-consuming 'auxin cycling' across the membrane. An unexpected finding was that potential functional ABCB-PIN synchronization appears to allow an optimization of the trade-off between the speed of PM auxin gradient adjustment on the one hand and ATP consumption and disturbance of general anion homeostasis on the other. In conclusion, our analyses provide fundamental insights into the thermodynamic constraints and flexibility of transmembrane auxin transport in plants.
Collapse
Affiliation(s)
- Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Ingo Dreyer
- Faculty of Engineering, Electrical Signaling in Plants (ESP) Laboratory - Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, Talca, CL-3460000, Chile
| |
Collapse
|
10
|
Agrawal R, Thakur P, Singh A, Panchal P, Thakur JK. Mediator complex: an important regulator of root system architecture. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5521-5530. [PMID: 38881317 DOI: 10.1093/jxb/erae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/15/2024] [Indexed: 06/18/2024]
Abstract
Mediator, a multiprotein complex, is an important component of the transcription machinery. In plants, the latest studies have established that it functions as a signal processor that conveys transcriptional signals from transcription factors to RNA polymerase II. Mediator has been found to be involved in different developmental and stress-adaptation conditions, ranging from embryo, root, and shoot development to flowering and senescence, and also in responses to different biotic and abiotic stresses. In the last decade, significant progress has been made in understanding the role of Mediator subunits in root development. They have been shown to transcriptionally regulate development of almost all the components of the root system architecture-primary root, lateral roots, and root hairs. They also have a role in nutrient acquisition by the root. In this review, we discuss all the known functions of Mediator subunits during root development. We also highlight the role of Mediator as a nodal point for processing different hormone signals that regulate root morphogenesis and growth.
Collapse
Affiliation(s)
- Rekha Agrawal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Pallabi Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Amrita Singh
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Poonam Panchal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Jitendra Kumar Thakur
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
11
|
Mira MM, Hill RD, Stasolla C. Low-oxygen-induced root bending is altered by phytoglobin1 through mediation of ethylene response factors (ERFs) and auxin signaling. PLANTA 2024; 260:54. [PMID: 39012577 DOI: 10.1007/s00425-024-04482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
MAIN CONCLUSION phytoglobin1 positively regulates root bending in hypoxic Arabidopsis roots through regulation of ethylene response factors and auxin transport. Hypoxia-induced root bending is known to be mediated by the redundant activity of the group VII ethylene response factors (ERFVII) RAP2.12 and HRE2, causing changes in polar auxin transport (PAT). Here, we show that phytoglobin1 (Pgb1), implicated in hypoxic adaptation through scavenging of nitric oxide (NO), can alter root direction under low oxygen. Hypoxia-induced bending is exaggerated in roots over-expressing Pgb1 and attenuated in those where the gene is suppressed. These effects were attributed to Pgb1 repressing both RAP2.12 and HRE2. Expression, immunological and genetic data place Pgb1 upstream of RAP2.12 and HRE2 in the regulation of root bending in oxygen-limiting environments. The attenuation of slanting in Pgb1-suppressing roots was associated with depletion of auxin activity at the root tip because of depression in PAT, while exaggeration of root bending in Pgb1-over-expressing roots with the retention of auxin activity. Changes in PIN2 distribution patterns, suggestive of redirection of auxin movement during hypoxia, might contribute to the differential root bending responses of the transgenic lines. In the end, Pgb1, by regulating NO levels, controls the expression of 2 ERFVIIs which, in a cascade, modulate PAT and, therefore, root bending.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
12
|
Moore S, Jervis G, Topping JF, Chen C, Liu J, Lindsey K. A predictive model for ethylene-mediated auxin and cytokinin patterning in the Arabidopsis root. PLANT COMMUNICATIONS 2024; 5:100886. [PMID: 38504522 PMCID: PMC11287175 DOI: 10.1016/j.xplc.2024.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
The interaction between auxin and cytokinin is important in many aspects of plant development. Experimental measurements of both auxin and cytokinin concentration and reporter gene expression clearly show the coexistence of auxin and cytokinin concentration patterning in Arabidopsis root development. However, in the context of crosstalk among auxin, cytokinin, and ethylene, little is known about how auxin and cytokinin concentration patterns simultaneously emerge and how they regulate each other in the Arabidopsis root. This work utilizes a wide range of experimental observations to propose a mechanism for simultaneous patterning of auxin and cytokinin concentrations. In addition to revealing the regulatory relationships between auxin and cytokinin, this mechanism shows that ethylene signaling is an important factor in achieving simultaneous auxin and cytokinin patterning, while also predicting other experimental observations. Combining the mechanism with a realistic in silico root model reproduces experimental observations of both auxin and cytokinin patterning. Predictions made by the mechanism can be compared with a variety of experimental observations, including those obtained by our group and other independent experiments reported by other groups. Examples of these predictions include patterning of auxin biosynthesis rate, changes in PIN1 and PIN2 patterns in pin3,4,7 mutants, changes in cytokinin patterning in the pls mutant, PLS patterning, and various trends in different mutants. This research reveals a plausible mechanism for simultaneous patterning of auxin and cytokinin concentrations in Arabidopsis root development and suggests a key role for ethylene pattern integration.
Collapse
Affiliation(s)
- Simon Moore
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - George Jervis
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Jennifer F Topping
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Chunli Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
13
|
García-Gómez ML, Ten Tusscher K. Multi-scale mechanisms driving root regeneration: From regeneration competence to tissue repatterning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38824611 DOI: 10.1111/tpj.16860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
Plants possess an outstanding capacity to regenerate enabling them to repair damages caused by suboptimal environmental conditions, biotic attacks, or mechanical damages impacting the survival of these sessile organisms. Although the extent of regeneration varies greatly between localized cell damage and whole organ recovery, the process of regeneration can be subdivided into a similar sequence of interlinked regulatory processes. That is, competence to regenerate, cell fate reprogramming, and the repatterning of the tissue. Here, using root tip regeneration as a paradigm system to study plant regeneration, we provide a synthesis of the molecular responses that underlie both regeneration competence and the repatterning of the root stump. Regarding regeneration competence, we discuss the role of wound signaling, hormone responses and synthesis, and rapid changes in gene expression observed in the cells close to the cut. Then, we consider how this rapid response is followed by the tissue repatterning phase, where cells experience cell fate changes in a spatial and temporal order to recreate the lost stem cell niche and columella. Lastly, we argue that a multi-scale modeling approach is fundamental to uncovering the mechanisms underlying root regeneration, as it allows to integrate knowledge of cell-level gene expression, cell-to-cell transport of hormones and transcription factors, and tissue-level growth dynamics to reveal how the bi-directional feedbacks between these processes enable self-organized repatterning of the root apex.
Collapse
Affiliation(s)
- Monica L García-Gómez
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Experimental and Computational Plant Development Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- CropXR Institute, Utrecht, The Netherlands
- Translational Plant Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Experimental and Computational Plant Development Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- CropXR Institute, Utrecht, The Netherlands
| |
Collapse
|
14
|
Cowling CL, Homayouni AL, Callwood JB, McReynolds MR, Khor J, Ke H, Draves MA, Dehesh K, Walley JW, Strader LC, Kelley DR. ZmPILS6 is an auxin efflux carrier required for maize root morphogenesis. Proc Natl Acad Sci U S A 2024; 121:e2313216121. [PMID: 38781209 PMCID: PMC11145266 DOI: 10.1073/pnas.2313216121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Plant root systems play a pivotal role in plant physiology and exhibit diverse phenotypic traits. Understanding the genetic mechanisms governing root growth and development in model plants like maize is crucial for enhancing crop resilience to drought and nutrient limitations. This study focused on identifying and characterizing ZmPILS6, an annotated auxin efflux carrier, as a key regulator of various crown root traits in maize. ZmPILS6-modified roots displayed reduced network area and suppressed lateral root formation, which are desirable traits for the "steep, cheap, and deep" ideotype. The research revealed that ZmPILS6 localizes to the endoplasmic reticulum and plays a vital role in controlling the spatial distribution of indole-3-acetic acid (IAA or "auxin") in primary roots. The study also demonstrated that ZmPILS6 can actively efflux IAA when expressed in yeast. Furthermore, the loss of ZmPILS6 resulted in significant proteome remodeling in maize roots, particularly affecting hormone signaling pathways. To identify potential interacting partners of ZmPILS6, a weighted gene coexpression analysis was performed. Altogether, this research contributes to the growing knowledge of essential genetic determinants governing maize root morphogenesis, which is crucial for guiding agricultural improvement strategies.
Collapse
Affiliation(s)
- Craig L. Cowling
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | | | - Jodi B. Callwood
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Maxwell R. McReynolds
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Jasper Khor
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Haiyan Ke
- Botany and Plant Sciences Department, University of California, Riverside, CA92521
| | - Melissa A. Draves
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Katayoon Dehesh
- Botany and Plant Sciences Department, University of California, Riverside, CA92521
| | - Justin W. Walley
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | | | - Dior R. Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| |
Collapse
|
15
|
Azarova DS, Omelyanchuk NA, Mironova VV, Zemlyanskaya EV, Lavrekha VV. DyCeModel: a tool for 1D simulation for distribution of plant hormones controlling tissue patterning. Vavilovskii Zhurnal Genet Selektsii 2023; 27:890-897. [PMID: 38213710 PMCID: PMC10777285 DOI: 10.18699/vjgb-23-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 01/13/2024] Open
Abstract
To study the mechanisms of growth and development, it is necessary to analyze the dynamics of the tissue patterning regulators in time and space and to take into account their effect on the cellular dynamics within a tissue. Plant hormones are the main regulators of the cell dynamics in plant tissues; they form gradients and maxima and control molecular processes in a concentration-dependent manner. Here, we present DyCeModel, a software tool implemented in MATLAB for one-dimensional simulation of tissue with a dynamic cellular ensemble, where changes in hormone (or other active substance) concentration in the cells are described by ordinary differential equations (ODEs). We applied DyCeModel to simulate cell dynamics in plant meristems with different cellular structures and demonstrated that DyCeModel helps to identify the relationships between hormone concentration and cellular behaviors. The tool visualizes the simulation progress and presents a video obtained during the calculation. Importantly, the tool is capable of automatically adjusting the parameters by fitting the distribution of the substance concentrations predicted in the model to experimental data taken from the microscopic images. Noteworthy, DyCeModel makes it possible to build models for distinct types of plant meristems with the same ODEs, recruiting specific input characteristics for each meristem. We demonstrate the tool's efficiency by simulation of the effect of auxin and cytokinin distributions on tissue patterning in two types of Arabidopsis thaliana stem cell niches: the root and shoot apical meristems. The resulting models represent a promising framework for further study of the role of hormone-controlled gene regulatory networks in cell dynamics.
Collapse
Affiliation(s)
- D S Azarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Omelyanchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V V Mironova
- Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, the Netherlands
| | - E V Zemlyanskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - V V Lavrekha
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
16
|
Skalický V, Antoniadi I, Pěnčík A, Chamrád I, Lenobel R, Kubeš MF, Zatloukal M, Žukauskaitė A, Strnad M, Ljung K, Novák O. Fluorescence-activated multi-organelle mapping of subcellular plant hormone distribution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1825-1841. [PMID: 37682018 DOI: 10.1111/tpj.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Auxins and cytokinins are two major families of phytohormones that control most aspects of plant growth, development and plasticity. Their distribution in plants has been described, but the importance of cell- and subcellular-type specific phytohormone homeostasis remains undefined. Herein, we revealed auxin and cytokinin distribution maps showing their different organelle-specific allocations within the Arabidopsis plant cell. To do so, we have developed Fluorescence-Activated multi-Organelle Sorting (FAmOS), an innovative subcellular fractionation technique based on flow cytometric principles. FAmOS allows the simultaneous sorting of four differently labelled organelles based on their individual light scatter and fluorescence parameters while ensuring hormone metabolic stability. Our data showed different subcellular distribution of auxin and cytokinins, revealing the formation of phytohormone gradients that have been suggested by the subcellular localization of auxin and cytokinin transporters, receptors and metabolic enzymes. Both hormones showed enrichment in vacuoles, while cytokinins were also accumulated in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Vladimír Skalický
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Martin F Kubeš
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| |
Collapse
|
17
|
Song X, Yu Y, Zhu J, Li C. BRIP1 and BRIP2 maintain root meristem by affecting auxin-mediated regulation. PLANTA 2023; 259:8. [PMID: 38019301 DOI: 10.1007/s00425-023-04283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
MAIN CONCLUSION This study reveals that mutations in BRIP1/2 subunits of the BAS complex disrupt root meristem development by decreasing PIN genes expression, affecting auxin transport, and downregulating essential root genes PLT. Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes play vital roles in plant development. BRAHMA-interacting proteins1 (BRIP1) and BRIP2 are subunits of BRAHMA (BRM)-associated SWI/SNF complex (BAS) in plants; however, their role and underlying regulatory mechanism in root development are still unknown. Here, we show that brip1 brip2 double mutants have a significantly shortened root meristem and an irregular arrangement in a portion of the root stem cell niche. The mutations in BRIP1 and BRIP2 cause decreased expression of the PIN-FORMED (PIN) genes, which in turn reduces the transport of auxin at the root tip, leading to the disruption of the accurate establishment of normal auxin concentration gradients in the stem cells. Chromatin immunoprecipitation (ChIP) experiments indicated that BRIP1 and BRIP2 directly bind to the PINs. Furthermore, we found a significant down-regulation in the expression of key root development genes, PLETHORA (PLT), in brip1 brip2. The brip1 brip2 plt1 plt2 quadruple mutations do not show further exacerbation in the short-root phenotype compared to plt1 plt2 double mutants. Using a dexamethasone (DEX)-inducible PLT2 transgenic line, we showed that acute overexpression of PLT2 partially rescues root meristem defects of brip1 brip2, suggesting that BRIP1 and BRIP2 act in part through the PLT1/2 pathway. Taken together, our results identify the critical role and the underlying mechanism of BRIP1/2 in maintaining the development of root meristem through the regulation of auxin output and expression of PLTs.
Collapse
Affiliation(s)
- Xin Song
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiameng Zhu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
18
|
Gélinas-Marion A, Eléouët MP, Cook SD, Vander Schoor JK, Abel SAG, Nichols DS, Smith JA, Hofer JMI, Ross JJ. Plant Development in the Garden Pea as Revealed by Mutations in the Crd/PsYUC1 Gene. Genes (Basel) 2023; 14:2115. [PMID: 38136938 PMCID: PMC10742580 DOI: 10.3390/genes14122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/28/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
In common with other plant species, the garden pea (Pisum sativum) produces the auxin indole-3-acetic acid (IAA) from tryptophan via a single intermediate, indole-3-pyruvic acid (IPyA). IPyA is converted to IAA by PsYUC1, also known as Crispoid (Crd). Here, we extend our understanding of the developmental processes affected by the Crd gene by examining the phenotypic effects of crd gene mutations on leaves, flowers, and roots. We show that in pea, Crd/PsYUC1 is important for the initiation and identity of leaflets and tendrils, stamens, and lateral roots. We also report on aspects of auxin deactivation in pea.
Collapse
Affiliation(s)
- Ariane Gélinas-Marion
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| | - Morgane P. Eléouët
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK;
| | - Sam D. Cook
- Department of Chemistry, Umea University, Linnaeus vag 10, Kemi A3, 901 87 Umea, Sweden;
| | - Jacqueline K. Vander Schoor
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| | - Steven A. G. Abel
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| | - David S. Nichols
- Central Science Laboratory, University of Tasmania, Sandy Bay, Hobart 7001, Australia;
| | - Jason A. Smith
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| | - Julie M. I. Hofer
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK;
| | - John J. Ross
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| |
Collapse
|
19
|
Huang M, Chen J, Yang X, Zheng Y, Ma Y, Sun K, Han N, Bian H, Qiu T, Wang J. A unique mutation in PIN-FORMED1 and a genetic pathway for reduced sensitivity of Arabidopsis roots to N-1-naphthylphthalamic acid. PHYSIOLOGIA PLANTARUM 2023; 175:e14120. [PMID: 38148206 DOI: 10.1111/ppl.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
The small chemical N-1-naphthylphthalamic acid (NPA) has long been used as a polar auxin transport inhibitor. Recent biochemical and structural investigations have revealed that this molecule competes with the auxin IAA (indole-3-acetic acid) inside the PIN-FORMED auxin efflux carriers. However, the existence of any mutations in PIN family proteins capable of uncoupling the docking of IAA from NPA remains unclear. We report that Arabidopsis thaliana seedlings overexpressing SMALL AUXIN UP RNA 41 were hypersensitive to NPA-induced root elongation inhibition. We mutagenized this line to improve the genetic screening efficiency for NPA hyposensitivity mutants. Using bulked segregation analysis and mapping-by-sequencing assessment of these mutants, we identified a core genetic pathway for NPA-induced root elongation inhibition, including genes required for auxin biosynthesis, transportation, and signaling. To evaluate specific changes of auxin signaling activity in mutant roots before and after NPA treatment, the DR5::GFP/DR5::YFP markers were introduced and observed. Most importantly, we discovered a unique mutation in the PIN1 protein, substituting a proline residue with leucine at position 584, leading to a loss of NPA sensitivity while keeping the auxin efflux capacity. Transforming the null mutant pin1-201 with the PIN1::PIN1P584L -GFP fusion construct rescued the PIN1 function and provided NPA hyposensitivity. The proline residue is predicted to be adjacent to a hinge in the middle region of the ninth transmembrane helix of PIN1 and is conserved from moss to higher plants. Our work may bring new insights into the engineering of NPA-resistant PINs for auxin biology studies.
Collapse
Affiliation(s)
- Minhua Huang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Chen
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xinxing Yang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanyan Zheng
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Ma
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Junhui Wang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Kiradjiev KB, Band LR. Multiscale Asymptotic Analysis Reveals How Cell Growth and Subcellular Compartments Affect Tissue-Scale Hormone Transport. Bull Math Biol 2023; 85:101. [PMID: 37702758 PMCID: PMC10499980 DOI: 10.1007/s11538-023-01199-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Determining how cell-scale processes lead to tissue-scale patterns is key to understanding how hormones and morphogens are distributed within biological tissues and control developmental processes. In this article, we use multiscale asymptotic analysis to derive a continuum approximation for hormone transport in a long file of cells to determine how subcellular compartments and cell growth and division affect tissue-scale hormone transport. Focusing our study on plant tissues, we begin by presenting a discrete multicellular ODE model tracking the hormone concentration in each cell's cytoplasm, subcellular vacuole, and surrounding apoplast, represented by separate compartments in the cell-file geometry. We allow the cells to grow at a rate that can depend both on space and time, accounting for both cytoplasmic and vacuolar expansion. Multiscale asymptotic analysis enables us to systematically derive the corresponding continuum model, obtaining an effective reaction-advection-diffusion equation and revealing how the effective diffusivity, effective advective velocity, and the effective sink term depend on the parameters in the cell-scale model. The continuum approximation reveals how subcellular compartments, such as vacuoles, can act as storage vessels, that significantly alter the effective properties of hormone transport, such as the effective diffusivity and the induced effective velocity. Furthermore, we show how cell growth and spatial variance across cell lengths affect the effective diffusivity and the induced effective velocity, and how these affect the tissue-scale hormone distribution. In particular, we find that cell growth naturally induces an effective velocity in the direction of growth, whereas spatial variance across cell lengths induces effective velocity due to the presence of an extra compartment, such as the apoplast and the vacuole, and variations in the relative sizes between the compartments across the file of cells. It is revealed that hormone transport is faster across cells of decreasing lengths than cells with increasing lengths. We also investigate the effect of cell division on transport dynamics, assuming that each cell divides as soon as it doubles in size, and find that increasing the time between successive cell divisions decreases the growth rate, which enhances the effect of cell division in slowing hormone transport. Motivated by recent experimental discoveries, we discuss particular applications for transport of gibberellic acid (GA), an important growth hormone, within the Arabidopsis root. The model reveals precisely how membrane proteins that mediate facilitated GA transport affect the effective tissue-scale transport. However, the results are general enough to be relevant to other plant hormones, or other substances that are transported in a similar way in any type of cells.
Collapse
Affiliation(s)
- K B Kiradjiev
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - L R Band
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
21
|
Marconi M, Wabnik K. Computer models of cell polarity establishment in plants. PLANT PHYSIOLOGY 2023; 193:42-53. [PMID: 37144853 PMCID: PMC10469401 DOI: 10.1093/plphys/kiad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Plant development is a complex task, and many processes involve changes in the asymmetric subcellular distribution of cell components that strongly depend on cell polarity. Cell polarity regulates anisotropic growth and polar localization of membrane proteins and helps to identify the cell's position relative to its neighbors within an organ. Cell polarity is critical in a variety of plant developmental processes, including embryogenesis, cell division, and response to external stimuli. The most conspicuous downstream effect of cell polarity is the polar transport of the phytohormone auxin, which is the only known hormone transported in a polar fashion in and out of cells by specialized exporters and importers. The biological processes behind the establishment of cell polarity are still unknown, and researchers have proposed several models that have been tested using computer simulations. The evolution of computer models has progressed in tandem with scientific discoveries, which have highlighted the importance of genetic, chemical, and mechanical input in determining cell polarity and regulating polarity-dependent processes such as anisotropic growth, protein subcellular localization, and the development of organ shapes. The purpose of this review is to provide a comprehensive overview of the current understanding of computer models of cell polarity establishment in plants, focusing on the molecular and cellular mechanisms, the proteins involved, and the current state of the field.
Collapse
Affiliation(s)
- Marco Marconi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
22
|
Serre NBC, Wernerová D, Vittal P, Dubey SM, Medvecká E, Jelínková A, Petrášek J, Grossmann G, Fendrych M. The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface pH profile. eLife 2023; 12:e85193. [PMID: 37449525 PMCID: PMC10414970 DOI: 10.7554/elife.85193] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Plant roots navigate in the soil environment following the gravity vector. Cell divisions in the meristem and rapid cell growth in the elongation zone propel the root tips through the soil. Actively elongating cells acidify their apoplast to enable cell wall extension by the activity of plasma membrane AHA H+-ATPases. The phytohormone auxin, central regulator of gravitropic response and root development, inhibits root cell growth, likely by rising the pH of the apoplast. However, the role of auxin in the regulation of the apoplastic pH gradient along the root tip is unclear. Here, we show, by using an improved method for visualization and quantification of root surface pH, that the Arabidopsis thaliana root surface pH shows distinct acidic and alkaline zones, which are not primarily determined by the activity of AHA H+-ATPases. Instead, the distinct domain of alkaline pH in the root transition zone is controlled by a rapid auxin response module, consisting of the AUX1 auxin influx carrier, the AFB1 auxin co-receptor, and the CNCG14 calcium channel. We demonstrate that the rapid auxin response pathway is required for an efficient navigation of the root tip.
Collapse
Affiliation(s)
- Nelson BC Serre
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Daša Wernerová
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
- Institute of Cell and Interaction Biology, Heinrich-Heine-University DüsseldorfDüsseldorfGermany
| | - Pruthvi Vittal
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Shiv Mani Dubey
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Eva Medvecká
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Adriana Jelínková
- Institute of Experimental Botany, Czech Academy of SciencesPragueCzech Republic
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
- Institute of Experimental Botany, Czech Academy of SciencesPragueCzech Republic
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine-University DüsseldorfDüsseldorfGermany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich-Heine-University DüsseldorfDüsseldorfGermany
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| |
Collapse
|
23
|
Pitsili E, Rodriguez-Trevino R, Ruiz-Solani N, Demir F, Kastanaki E, Dambire C, de Pedro-Jové R, Vercammen D, Salguero-Linares J, Hall H, Mantz M, Schuler M, Tuominen H, Van Breusegem F, Valls M, Munné-Bosch S, Holdsworth MJ, Huesgen PF, Rodriguez-Villalon A, Coll NS. A phloem-localized Arabidopsis metacaspase (AtMC3) improves drought tolerance. THE NEW PHYTOLOGIST 2023. [PMID: 37320971 DOI: 10.1111/nph.19022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
Increasing drought phenomena pose a serious threat to agricultural productivity. Although plants have multiple ways to respond to the complexity of drought stress, the underlying mechanisms of stress sensing and signaling remain unclear. The role of the vasculature, in particular the phloem, in facilitating inter-organ communication is critical and poorly understood. Combining genetic, proteomic and physiological approaches, we investigated the role of AtMC3, a phloem-specific member of the metacaspase family, in osmotic stress responses in Arabidopsis thaliana. Analyses of the proteome in plants with altered AtMC3 levels revealed differential abundance of proteins related to osmotic stress pointing into a role of the protein in water-stress-related responses. Overexpression of AtMC3 conferred drought tolerance by enhancing the differentiation of specific vascular tissues and maintaining higher levels of vascular-mediated transportation, while plants lacking the protein showed an impaired response to drought and inability to respond effectively to the hormone abscisic acid. Overall, our data highlight the importance of AtMC3 and vascular plasticity in fine-tuning early drought responses at the whole plant level without affecting growth or yield.
Collapse
Affiliation(s)
- Eugenia Pitsili
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Flanders Institute for Biotechnology, Ghent University, 9052, Ghent, Belgium
| | - Ricardo Rodriguez-Trevino
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Nerea Ruiz-Solani
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), Department of Chemistry, University of Cologne, Medical Faculty and University Hospital, Institute of Biochemistry, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Elizabeth Kastanaki
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Charlene Dambire
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Roger de Pedro-Jové
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Dominique Vercammen
- Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Flanders Institute for Biotechnology, Ghent University, 9052, Ghent, Belgium
| | - Jose Salguero-Linares
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Hardy Hall
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), Department of Chemistry, University of Cologne, Medical Faculty and University Hospital, Institute of Biochemistry, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Martin Schuler
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden
| | - Frank Van Breusegem
- Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Flanders Institute for Biotechnology, Ghent University, 9052, Ghent, Belgium
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Department of Genetics, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
- Institute of Research in Biodiversity (IRBio-UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | | | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), Department of Chemistry, University of Cologne, Medical Faculty and University Hospital, Institute of Biochemistry, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Antia Rodriguez-Villalon
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain
| |
Collapse
|
24
|
Sidhu JS, Ajmera I, Arya S, Lynch JP. RootSlice-A novel functional-structural model for root anatomical phenotypes. PLANT, CELL & ENVIRONMENT 2023; 46:1671-1690. [PMID: 36708192 DOI: 10.1111/pce.14552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Root anatomy is an important determinant of root metabolic costs, soil exploration, and soil resource capture. Root anatomy varies substantially within and among plant species. RootSlice is a multicellular functional-structural model of root anatomy developed to facilitate the analysis and understanding of root anatomical phenotypes. RootSlice can capture phenotypically accurate root anatomy in three dimensions of different root classes and developmental zones, of both monocotyledonous and dicotyledonous species. Several case studies are presented illustrating the capabilities of the model. For maize nodal roots, the model illustrated the role of vacuole expansion in cell elongation; and confirmed the individual and synergistic role of increasing root cortical aerenchyma and reducing the number of cortical cell files in reducing root metabolic costs. Integration of RootSlice for different root zones as the temporal properties of the nodal roots in the whole-plant and soil model OpenSimRoot/maize enabled the multiscale evaluation of root anatomical phenotypes, highlighting the role of aerenchyma formation in enhancing the utility of cortical cell files for improving plant performance over varying soil nitrogen supply. Such integrative in silico approaches present avenues for exploring the fitness landscape of root anatomical phenotypes.
Collapse
Affiliation(s)
- Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Ishan Ajmera
- Department of Plant Science, The Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Sankalp Arya
- Department of Plant Science, The Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, State College, Pennsylvania, USA
| |
Collapse
|
25
|
Binenbaum J, Wulff N, Camut L, Kiradjiev K, Anfang M, Tal I, Vasuki H, Zhang Y, Sakvarelidze-Achard L, Davière JM, Ripper D, Carrera E, Manasherova E, Ben Yaakov S, Lazary S, Hua C, Novak V, Crocoll C, Weinstain R, Cohen H, Ragni L, Aharoni A, Band LR, Achard P, Nour-Eldin HH, Shani E. Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis. NATURE PLANTS 2023; 9:785-802. [PMID: 37024660 PMCID: PMC7615257 DOI: 10.1038/s41477-023-01391-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) transporters required for GA and abscisic acid (ABA) translocation. We demonstrate that NPF2.14 is a subcellular GA/ABA transporter, presumably the first to be identified in plants, facilitating GA and ABA accumulation in the root endodermis to regulate suberization. Further, NPF2.12 and NPF2.13, closely related proteins, are plasma membrane-localized GA and ABA importers that facilitate shoot-to-root GA12 translocation, regulating endodermal hormone accumulation. This work reveals that GA is required for root suberization and that GA and ABA can act non-antagonistically. We demonstrate how the clade of transporters mediates hormone flow with cell-file-specific vacuolar storage at the phloem unloading zone, and slow release of hormone to induce suberin formation in the maturation zone.
Collapse
Affiliation(s)
- Jenia Binenbaum
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Nikolai Wulff
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lucie Camut
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Kristian Kiradjiev
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Iris Tal
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Himabindu Vasuki
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Lali Sakvarelidze-Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Dagmar Ripper
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Shir Ben Yaakov
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Shani Lazary
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Chengyao Hua
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Vlastimil Novak
- Plant Nutrients and Food Quality Research Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Christoph Crocoll
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Laura Ragni
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Leah R Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| | - Hussam Hassan Nour-Eldin
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
26
|
Wang H, Lu Z, Xu Y, Zhang J, Han L, Chai M, Wang ZY, Yang X, Lu S, Tong J, Xiao L, Wen J, Mysore KS, Zhou C. Roles of very long-chain fatty acids in compound leaf patterning in Medicago truncatula. PLANT PHYSIOLOGY 2023; 191:1751-1770. [PMID: 36617225 PMCID: PMC10022625 DOI: 10.1093/plphys/kiad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Plant cuticles are composed of hydrophobic cuticular waxes and cutin. Very long-chain fatty acids (VLCFAs) are components of epidermal waxes and the plasma membrane and are involved in organ morphogenesis. By screening a barrelclover (Medicago truncatula) mutant population tagged by the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified two types of mutants with unopened flower phenotypes, named unopened flower1 (uof1) and uof2. Both UOF1 and UOF2 encode enzymes that are involved in the biosynthesis of VLCFAs and cuticular wax. Comparative analysis of the mutants indicated that the mutation in UOF1, but not UOF2, leads to the increased number of leaflets in M. truncatula. UOF1 was specifically expressed in the outermost cell layer (L1) of the shoot apical meristem (SAM) and leaf primordia. The uof1 mutants displayed defects in VLCFA-mediated plasma membrane integrity, resulting in the disordered localization of the PIN-FORMED1 (PIN1) ortholog SMOOTH LEAF MARGIN1 (SLM1) in M. truncatula. Our work demonstrates that the UOF1-mediated biosynthesis of VLCFAs in L1 is critical for compound leaf patterning, which is associated with the polarization of the auxin efflux carrier in M. truncatula.
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Shiyou Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Jiangqi Wen
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Kirankumar S Mysore
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| |
Collapse
|
27
|
Zhao R, Li N, Lin Q, Li M, Shen X, Peng Y, Du Y, Ning Q, Li Y, Zhan J, Yang F, Xu F, Zhang Z, Liu L. ZmBET5L1 inhibits primary root growth and decreases osmotic stress tolerance by mediating vesicle aggregation and tethering in maize. PLANT, CELL & ENVIRONMENT 2023; 46:975-990. [PMID: 36515184 DOI: 10.1111/pce.14517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Improving osmotic stress tolerance is critical to help crops to thrive and maintain high yields in adverse environments. Here, we characterized a core subunit of the transport protein particle (TRAPP) complex, ZmBET5L1, in maize using knowledge-driven data mining and genome editing. We found that ZmBET5L1 can interact with TRAPP I complex subunits and act as a tethering factor to mediate vesicle aggregation and targeting from the endoplasmic reticulum to the Golgi apparatus. ZmBET5L1 knock-out increased the primary root elongation rate under 20% polyethylene glycol-simulated osmotic stress and the survival rate under drought stress compared to wild-type seedlings. In addition, we found that ZmBET5L1 moderates PIN1 polar localization and auxin flow to maintain normal root growth. ZmBET5L1 knock-out optimized auxin flow to the lateral side of the root and promoted its growth to generate a robust root, which may be related to improved osmotic stress tolerance. Together, these findings demonstrate that ZmBET5L1 inhibits primary root growth and decreases osmotic stress tolerance by regulating vesicle transport and auxin distribution. This study has improved our understanding of the role of tethering factors in response to abiotic stresses and identified desirable variants for breeding osmotic stress tolerance in maize.
Collapse
Affiliation(s)
- Ran Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Nan Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qianrun Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Manfei Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaomeng Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yanfang Du
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Shandong, Tai-An, China
| | - Qiang Ning
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yunfu Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jimin Zhan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fang Xu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Lin Q, Gong J, Zhang Z, Meng Z, Wang J, Wang S, Sun J, Gu X, Jin Y, Wu T, yan N, Wang Y, Kai L, Jiang J, Qi S. The Arabidopsis thaliana trehalose-6-phosphate phosphatase gene AtTPPI regulates primary root growth and lateral root elongation. FRONTIERS IN PLANT SCIENCE 2023; 13:1088278. [PMID: 36714693 PMCID: PMC9880472 DOI: 10.3389/fpls.2022.1088278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Roots are the main organs through which plants absorb water and nutrients. As the key phytohormone involved in root growth, auxin functions in plant environmental responses by modulating auxin synthesis, distribution and polar transport. The Arabidopsis thaliana trehalose-6-phosphate phosphatase gene AtTPPI can improve root architecture, and tppi1 mutants have significantly shortened primary roots. However, the mechanism underlying the short roots of the tppi1 mutant and the upstream signaling pathway and downstream genes regulated by AtTPPI are unclear. Here, we demonstrated that the AtTPPI gene could promote auxin accumulation in AtTPPI-overexpressing plants. By comparing the transcriptomic data of tppi1 and wild-type roots, we found several upregulations of auxin-related genes, including GH3.3, GH3.9 and GH3.12, may play an important role in the AtTPPI gene-mediated auxin transport signaling pathway, ultimately leading to changes in auxin content and primary root length. Moreover, increased AtTPPI expression can regulate primary root growth and lateral root elongation under different concentration of nitrate conditions. Overall, constitutive expression of AtTPPI increased auxin contents and improved lateral root elongation, constituting a new method for improving the nitrogen utilization efficiency of plants.
Collapse
Affiliation(s)
- Qingfang Lin
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jiaxin Gong
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zhiliang Zhang
- Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zizi Meng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jianyong Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Song Wang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Jing Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xu Gu
- Technical Services and Sales Department, Zhengzhou Xuanyuan Biotechnology Co. LTD, Zhengzhou, Henan, China
| | - Yuting Jin
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Tong Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Nuo yan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yuxin Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jihong Jiang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Shilian Qi
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
29
|
Großeholz R, Wanke F, Rohr L, Glöckner N, Rausch L, Scholl S, Scacchi E, Spazierer AJ, Shabala L, Shabala S, Schumacher K, Kummer U, Harter K. Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root. eLife 2022; 11:e73031. [PMID: 36069528 PMCID: PMC9525061 DOI: 10.7554/elife.73031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/03/2022] [Indexed: 11/13/2022] Open
Abstract
Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elongation remains open. Here, we combined computational modeling with quantitative cell physiology to understand the dynamics of the plasma membrane (PM)-localized BR response pathway during the initiation of cellular responses in the epidermis of the Arabidopsis root tip that are be linked to cell elongation. The model, consisting of ordinary differential equations, comprises the BR-induced hyperpolarization of the PM, the acidification of the apoplast and subsequent cell wall swelling. We demonstrate that the competence of the root epidermal cells for the BR response predominantly depends on the amount and activity of H+-ATPases in the PM. The model further predicts that an influx of cations is required to compensate for the shift of positive charges caused by the apoplastic acidification. A potassium channel was subsequently identified and experimentally characterized, fulfilling this function. Thus, we established the landscape of components and parameters for physiological processes potentially linked to cell elongation, a central process in plant development.
Collapse
Affiliation(s)
- Ruth Großeholz
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- BioQuant, Heidelberg UniversityHeidelbergGermany
| | - Friederike Wanke
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Leander Rohr
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Nina Glöckner
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Luiselotte Rausch
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Stefan Scholl
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Emanuele Scacchi
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
- Department of Ecological and biological Science, Tuscia UniversityViterboItaly
| | | | - Lana Shabala
- Tasmanian Institute for Agriculture, University of TasmaniaHobartAustralia
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of TasmaniaHobartAustralia
- International Research Centre for Environmental Membrane Biology, Foshan UniversityFoshanChina
| | - Karin Schumacher
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Ursula Kummer
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- BioQuant, Heidelberg UniversityHeidelbergGermany
| | - Klaus Harter
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| |
Collapse
|
30
|
Mellor NL, Voß U, Ware A, Janes G, Barrack D, Bishopp A, Bennett MJ, Geisler M, Wells DM, Band LR. Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux. THE PLANT CELL 2022; 34:2309-2327. [PMID: 35302640 PMCID: PMC9134068 DOI: 10.1093/plcell/koac086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/10/2022] [Indexed: 05/11/2023]
Abstract
Members of the B family of membrane-bound ATP-binding cassette (ABC) transporters represent key components of the auxin efflux machinery in plants. Over the last two decades, experimental studies have shown that modifying ATP-binding cassette sub-family B (ABCB) expression affects auxin distribution and plant phenotypes. However, precisely how ABCB proteins transport auxin in conjunction with the more widely studied family of PIN-formed (PIN) auxin efflux transporters is unclear, and studies using heterologous systems have produced conflicting results. Here, we integrate ABCB localization data into a multicellular model of auxin transport in the Arabidopsis thaliana root tip to predict how ABCB-mediated auxin transport impacts organ-scale auxin distribution. We use our model to test five potential ABCB-PIN regulatory interactions, simulating the auxin dynamics for each interaction and quantitatively comparing the predictions with experimental images of the DII-VENUS auxin reporter in wild-type and abcb single and double loss-of-function mutants. Only specific ABCB-PIN regulatory interactions result in predictions that recreate the experimentally observed DII-VENUS distributions and long-distance auxin transport. Our results suggest that ABCBs enable auxin efflux independently of PINs; however, PIN-mediated auxin efflux is predominantly through a co-dependent efflux where co-localized with ABCBs.
Collapse
Affiliation(s)
| | | | - Alexander Ware
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - George Janes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Duncan Barrack
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Anthony Bishopp
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Malcolm J Bennett
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Darren M Wells
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | |
Collapse
|
31
|
Tang S, Shahriari M, Xiang J, Pasternak T, Igolkina A, Aminizade S, Zhi H, Gao Y, Roodbarkelari F, Sui Y, Jia G, Wu C, Zhang L, Zhao L, Li X, Meshcheryakov G, Samsonova M, Diao X, Palme K, Teale W. The role of AUX1 during lateral root development in the domestication of the model C4 grass Setaria italica. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2021-2034. [PMID: 34940828 DOI: 10.1093/jxb/erab556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
C4 photosynthesis increases the efficiency of carbon fixation by spatially separating high concentrations of molecular oxygen from Rubisco. The specialized leaf anatomy required for this separation evolved independently many times. The morphology of C4 root systems is also distinctive and adapted to support high rates of photosynthesis; however, little is known about the molecular mechanisms that have driven the evolution of C4 root system architecture. Using a mutant screen in the C4 model plant Setaria italica, we identify Siaux1-1 and Siaux1-2 as root system architecture mutants. Unlike in S. viridis, AUX1 promotes lateral root development in S. italica. A cell by cell analysis of the Siaux1-1 root apical meristem revealed changes in the distribution of cell volumes in all cell layers and a dependence of the frequency of protophloem and protoxylem strands on SiAUX1. We explore the molecular basis of the role of SiAUX1 in seedling development using an RNAseq analysis of wild-type and Siaux1-1 plants and present novel targets for SiAUX1-dependent gene regulation. Using a selection sweep and haplotype analysis of SiAUX1, we show that Hap-2412TT in the promoter region of SiAUX1 is an allele which is associated with lateral root number and has been strongly selected for during Setaria domestication.
Collapse
Affiliation(s)
- Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mojgan Shahriari
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Jishan Xiang
- Academy of Agricultural Sciences/Key Laboratory of Regional Ecological Protection & Agricultural and Animal Husbandry Development, Chifeng University, Chifeng, 024000, Inner Mongolia, China
| | - Taras Pasternak
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Anna Igolkina
- Department of Computational Biology, Center for Advanced Studies, St. Petersburg State Polytechnic University, St. Petersburg, 195259, Russia
| | | | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanzhu Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Farshad Roodbarkelari
- Institute of Biology III, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linlin Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Georgy Meshcheryakov
- Department of Computational Biology, Center for Advanced Studies, St. Petersburg State Polytechnic University, St. Petersburg, 195259, Russia
| | - Maria Samsonova
- Department of Computational Biology, Center for Advanced Studies, St. Petersburg State Polytechnic University, St. Petersburg, 195259, Russia
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Klaus Palme
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
- Centre of Biological Systems Analysis and BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - William Teale
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| |
Collapse
|
32
|
PIN3 from Liriodendron May Function in Inflorescence Development and Root Elongation. FORESTS 2022. [DOI: 10.3390/f13040568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Auxin, the first discovered phytohormone, is important for the growth and development of plants through the establishment of homeostasis and asymmetry. Here, we cloned the auxin transporter gene PIN-FORMED3 (PIN3) from the valuable timber tree hybrid Liriodendron (Liriodendron chinense × Liriodendron tulipifera). The gene contained a complete open reading frame of 1917 bp that encoded 638 amino acids. Phylogenetic analysis indicated that LhPIN3 exhibited the highest sequence similarity to the PIN3 of Vitis vinifera. Quantitative real-time PCR analysis showed that LhPIN3 was broadly expressed across different tissues/organs of Liriodendron, with the highest expression level in the roots. Heterologous overexpression of LhPIN3 in Arabidopsis thaliana caused considerable phenotypic changes, such as the root length and number of flowers. Genetic complementation of Arabidopsis pin1 mutants by LhPIN3, driven by the cauliflower mosaic virus 35S promoter, fully restored the root length and number of flowers of the pin1 mutant. Overall, our findings reveal that LhPIN3 has similar capacities to regulate the root length and number of flowers of Arabidopsis with AtPIN1.
Collapse
|
33
|
Templalexis D, Tsitsekian D, Liu C, Daras G, Šimura J, Moschou P, Ljung K, Hatzopoulos P, Rigas S. Potassium transporter TRH1/KUP4 contributes to distinct auxin-mediated root system architecture responses. PLANT PHYSIOLOGY 2022; 188:1043-1060. [PMID: 34633458 PMCID: PMC8825323 DOI: 10.1093/plphys/kiab472] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 05/09/2023]
Abstract
In plants, auxin transport and development are tightly coupled, just as hormone and growth responses are intimately linked in multicellular systems. Here we provide insights into uncoupling this tight control by specifically targeting the expression of TINY ROOT HAIR 1 (TRH1), a member of plant high-affinity potassium (K+)/K+ uptake/K+ transporter (HAK/KUP/KT) transporters that facilitate K+ uptake by co-transporting protons, in Arabidopsis root cell files. Use of this system pinpointed specific root developmental responses to acropetal versus basipetal auxin transport. Loss of TRH1 function shows TRHs and defective root gravitropism, associated with auxin imbalance in the root apex. Cell file-specific expression of TRH1 in the central cylinder rescued trh1 root agravitropism, whereas positional TRH1 expression in peripheral cell layers, including epidermis and cortex, restored trh1 defects. Applying a system-level approach, the role of RAP2.11 and ROOT HAIR DEFECTIVE-LIKE 5 transcription factors (TFs) in root hair development was verified. Furthermore, ERF53 and WRKY51 TFs were overrepresented upon restoration of root gravitropism supporting involvement in gravitropic control. Auxin has a central role in shaping root system architecture by regulating multiple developmental processes. We reveal that TRH1 jointly modulates intracellular ionic gradients and cell-to-cell polar auxin transport to drive root epidermal cell differentiation and gravitropic response. Our results indicate the developmental importance of HAK/KUP/KT proton-coupled K+ transporters.
Collapse
Affiliation(s)
- Dimitris Templalexis
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Dikran Tsitsekian
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-756 61, Sweden
| | - Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Panagiotis Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-756 61, Sweden
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion GR 70 013, Greece
- Department of Biology, University of Crete, Heraklion GR 71 500, Greece
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | | | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
- Author for communication:
| |
Collapse
|
34
|
Rutten J, van den Berg T, Tusscher KT. Modeling Auxin Signaling in Roots: Auxin Computations. Cold Spring Harb Perspect Biol 2022; 14:a040089. [PMID: 34001532 PMCID: PMC8805645 DOI: 10.1101/cshperspect.a040089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin signaling and patterning is an inherently complex process, involving polarized auxin transport, metabolism, and signaling, its effect on developmental zones, as well as growth rates, and the feedback between all these different aspects. This complexity has led to an important role for computational modeling in unraveling the multifactorial roles of auxin in plant developmental and adaptive processes. Here we discuss the basic ingredients of auxin signaling and patterning models for root development as well as a series of key modeling studies in this area. These modeling studies have helped elucidate how plants use auxin signaling to compute the size of their root meristem, the direction in which to grow, and when and where to form lateral roots. Importantly, these models highlight how auxin, through patterning of and collaborating with other factors, can fulfill all these roles simultaneously.
Collapse
Affiliation(s)
- Jaap Rutten
- Computational Developmental Biology Group, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Thea van den Berg
- Computational Developmental Biology Group, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
35
|
Collis H, Band LR, Fozard JA, Ghetiu T, Wilson MH, Mellor NL, Bennett MJ, Owen MR. The Virtual Root : Mathematical Modeling of Auxin Transport in the Arabidopsis Root Tip Using the Open-Source Software SimuPlant. Methods Mol Biol 2022; 2395:147-164. [PMID: 34822153 DOI: 10.1007/978-1-0716-1816-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hormone signals like auxin play a critical role controlling plant growth and development. Determining the mechanisms that regulate auxin distribution in cells and tissues is a vital step in understanding this hormone's role during plant development. Recent mathematical models have enabled us to understand the essential role that auxin influx and efflux carriers play in auxin transport in the Arabidopsis root tip (Band et al., Plant Cell 26(3):862-875, 2014; Grieneisen et al., Nature 449(7165):1008-1013, 2007; van den Berg et al., Development 143(18):3350-3362, 2016). In this chapter, we describe SimuPlant: The Virtual Root (SimuPlant, University of Nottingham. https://www.simuplant.org/ . Accessed 20 Sept 2019); an open source software suite, built using the OpenAlea (Pradal et al., Funct Plant Biol 35(10):751-760, 2008) framework, that is designed to simulate vertex-based models in real plant tissue geometries. We provide guidance on how to install SimuPlant, run 2D auxin transport models in the Arabidopsis root tip, manipulate parameters, and visualize model outputs.SimuPlant features a graphical user interface (GUI) designed to allow users with no programming experience to simulate auxin dynamics within the Arabidopsis root tip. Within the user interface, users of SimuPlant can select from a range of model assumptions and can choose to manipulate model and simulation parameter values. Users can then investigate how their choices affect the predicted distribution of auxin in the Arabidopsis root tip. The results of the model simulations are shown visually within the root geometry and can be exported and saved as PNG image files.
Collapse
Affiliation(s)
- Heather Collis
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - Leah R Band
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK.
| | - John A Fozard
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Michael H Wilson
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Nathan L Mellor
- Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Malcolm J Bennett
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Markus R Owen
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
36
|
Marconi M, Gallemi M, Benkova E, Wabnik K. A coupled mechano-biochemical model for cell polarity guided anisotropic root growth. eLife 2021; 10:72132. [PMID: 34723798 PMCID: PMC8716106 DOI: 10.7554/elife.72132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Plants develop new organs to adjust their bodies to dynamic changes in the environment. How independent organs achieve anisotropic shapes and polarities is poorly understood. To address this question, we constructed a mechano-biochemical model for Arabidopsis root meristem growth that integrates biologically plausible principles. Computer model simulations demonstrate how differential growth of neighboring tissues results in the initial symmetry-breaking leading to anisotropic root growth. Furthermore, the root growth feeds back on a polar transport network of the growth regulator auxin. Model, predictions are in close agreement with in vivo patterns of anisotropic growth, auxin distribution, and cell polarity, as well as several root phenotypes caused by chemical, mechanical, or genetic perturbations. Our study demonstrates that the combination of tissue mechanics and polar auxin transport organizes anisotropic root growth and cell polarities during organ outgrowth. Therefore, a mobile auxin signal transported through immobile cells drives polarity and growth mechanics to coordinate complex organ development.
Collapse
Affiliation(s)
- Marco Marconi
- CBGP Centro de Biotecnologia y Genomica de Plantas UPM-INIA, Pozuelo de Alarcón, Spain
| | - Marcal Gallemi
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Krzysztof Wabnik
- CBGP Centro de Biotecnologia y Genomica de Plantas UPM-INIA, Pozuelo de Alarcón, Spain
| |
Collapse
|
37
|
Deslauriers SD, Spalding EP. Electrophysiological study of Arabidopsis ABCB4 and PIN2 auxin transporters: Evidence of auxin activation and interaction enhancing auxin selectivity. PLANT DIRECT 2021; 5:e361. [PMID: 34816076 PMCID: PMC8595762 DOI: 10.1002/pld3.361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/21/2021] [Indexed: 05/25/2023]
Abstract
Polar auxin transport through plant tissue strictly requires polarly localized PIN proteins and uniformly distributed ABCB proteins. A functional synergy between the two types of membrane protein where their localizations overlap may create the degree of asymmetric auxin efflux required to produce polar auxin transport. We investigated this possibility by expressing ABCB4 and PIN2 in human embryonic kidney cells and measuring whole-cell ionic currents with the patch-clamp technique and CsCl-based electrolytes. ABCB4 activity was 1.81-fold more selective for Cl- over Cs+ and for PIN2 the value was 2.95. We imposed auxin gradients and determined that ABCB4 and PIN2 were 12-fold more permeable to the auxin anion (IAA-) than Cl-. This measure of the intrinsic selectivity of the transport pathway was 21-fold when ABCB4 and PIN2 were co-expressed. If this increase occurs in plants, it could explain why asymmetric PIN localization is not sufficient to create polar auxin flow. Some form of co-action or synergy between ABCB4 and PIN2 that increases IAA- selectivity at the cell face where both occur may be important. We also found that auxin stimulated ABCB4 activity, which may contribute to a self-reinforcement of auxin transport known as canalization.
Collapse
Affiliation(s)
- Stephen D. Deslauriers
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Division of Science and MathUniversity of MinnesotaMorrisMNUSA
| | | |
Collapse
|
38
|
Rowe JH, Jones AM. Focus on biosensors: Looking through the lens of quantitative biology. QUANTITATIVE PLANT BIOLOGY 2021; 2:e12. [PMID: 37077214 PMCID: PMC10095858 DOI: 10.1017/qpb.2021.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
In recent years, plant biologists interested in quantifying molecules and molecular events in vivo have started to complement reporter systems with genetically encoded fluorescent biosensors (GEFBs) that directly sense an analyte. Such biosensors can allow measurements at the level of individual cells and over time. This information is proving valuable to mathematical modellers interested in representing biological phenomena in silico, because improved measurements can guide improved model construction and model parametrisation. Advances in synthetic biology have accelerated the pace of biosensor development, and the simultaneous expression of spectrally compatible biosensors now allows quantification of multiple nodes in signalling networks. For biosensors that directly respond to stimuli, targeting to specific cellular compartments allows the observation of differential accumulation of analytes in distinct organelles, bringing insights to reactive oxygen species/calcium signalling and photosynthesis research. In conjunction with improved image analysis methods, advances in biosensor imaging can help close the loop between experimentation and mathematical modelling.
Collapse
Affiliation(s)
- James H. Rowe
- Sainsbury Laboratory, Cambridge University, Cambridge, United Kingdom
| | | |
Collapse
|
39
|
Han H, Adamowski M, Qi L, Alotaibi SS, Friml J. PIN-mediated polar auxin transport regulations in plant tropic responses. THE NEW PHYTOLOGIST 2021; 232:510-522. [PMID: 34254313 DOI: 10.1111/nph.17617] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/03/2021] [Indexed: 05/27/2023]
Abstract
Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underlie differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, as well as the crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment.
Collapse
Affiliation(s)
- Huibin Han
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
- Research Center for Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Maciek Adamowski
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Linlin Qi
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Saqer S Alotaibi
- Department of Biotechnology, Taif University, PO Box 11099, Taif, 21944, Kingdom of Saudi Arabia
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| |
Collapse
|
40
|
Band LR. Auxin fluxes through plasmodesmata. THE NEW PHYTOLOGIST 2021; 231:1686-1692. [PMID: 34053083 DOI: 10.1111/nph.17517] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/29/2021] [Indexed: 05/27/2023]
Abstract
Characterising the processes that control auxin dynamics is essential to understanding how auxin regulates plant development. Over recent years, several studies have investigated auxin diffusion through plasmodesmata, characterising this cell-to-cell diffusion and demonstrating that it affects auxin distributions. Furthermore, studies have shown that plasmodesmatal auxin diffusion affects developmental processes, including phototropism, lateral root emergence and leaf hyponasty. This short Tansley Insight review describes how these studies have contributed to our understanding of auxin dynamics and discusses potential future directions in this area.
Collapse
Affiliation(s)
- Leah R Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
41
|
van den Berg T, Yalamanchili K, de Gernier H, Santos Teixeira J, Beeckman T, Scheres B, Willemsen V, Ten Tusscher K. A reflux-and-growth mechanism explains oscillatory patterning of lateral root branching sites. Dev Cell 2021; 56:2176-2191.e10. [PMID: 34343477 DOI: 10.1016/j.devcel.2021.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/19/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Modular, repetitive structures are a key component of complex multicellular body plans across the tree of life. Typically, these structures are prepatterned by temporal oscillations in gene expression or signaling. Although a clock-and-wavefront mechanism was identified and plant leaf phyllotaxis arises from a Turing-type patterning for vertebrate somitogenesis and arthropod segmentation, the mechanism underlying lateral root patterning has remained elusive. To resolve this enigma, we combined computational modeling with in planta experiments. Intriguingly, auxin oscillations automatically emerge in our model from the interplay between a reflux-loop-generated auxin loading zone and stem-cell-driven growth dynamics generating periodic cell-size variations. In contrast to the clock-and-wavefront mechanism and Turing patterning, the uncovered mechanism predicts both frequency and spacing of lateral-root-forming sites to positively correlate with root meristem growth. We validate this prediction experimentally. Combined, our model and experimental results support that a reflux-and-growth patterning mechanism underlies lateral root priming.
Collapse
Affiliation(s)
- Thea van den Berg
- Computational Developmental Biology, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Kavya Yalamanchili
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Hugues de Gernier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Joana Santos Teixeira
- Computational Developmental Biology, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ben Scheres
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands; Rijk Zwaan Breeding B.V., Department of Biotechnology, Eerste Kruisweg 9, 4793 RS Fijnaart, the Netherlands
| | - Viola Willemsen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Kirsten Ten Tusscher
- Computational Developmental Biology, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
42
|
ten Tusscher KH. What remains of the evidence for auxin feedback on PIN polarity patterns? PLANT PHYSIOLOGY 2021; 186:804-807. [PMID: 33760101 PMCID: PMC8195499 DOI: 10.1093/plphys/kiab118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/20/2021] [Indexed: 05/29/2023]
Abstract
In light of recent findings, the feedback between auxin and PIN that plays a major role in models for self-organized auxin patterning requires revisiting.
Collapse
Affiliation(s)
- Kirsten H ten Tusscher
- Department of Theoretical Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
43
|
Loshchilov I, Del Dottore E, Mazzolai B, Floreano D. Conditions for the emergence of circumnutations in plant roots. PLoS One 2021; 16:e0252202. [PMID: 34038485 PMCID: PMC8153425 DOI: 10.1371/journal.pone.0252202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/11/2021] [Indexed: 11/28/2022] Open
Abstract
The plant root system shows remarkably complex behaviors driven by environmental cues and internal dynamics, whose interplay remains largely unknown. A notable example is circumnutation growth movements, which are growth oscillations from side to side of the root apex. Here we describe a model capable of replicating root growth behaviors, which we used to analyze the role of circumnuntations, revealing their emergence I) under gravitropic stress, as a combination of signal propagation and sensitivity to the signal carriers; II) as a result of the interplay between gravitropic and thigmotropic responses; and III) as a behavioral strategy to detect and react to resource gradients. The latter function requires the presence of a hypothetical internal oscillator whose parameters are regulated by the perception of environmental resources.
Collapse
Affiliation(s)
- Ilya Loshchilov
- Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Barbara Mazzolai
- Center for Micro-Biorobotics, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Dario Floreano
- Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
44
|
Rüscher D, Corral JM, Carluccio AV, Klemens PAW, Gisel A, Stavolone L, Neuhaus HE, Ludewig F, Sonnewald U, Zierer W. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3688-3703. [PMID: 33712830 PMCID: PMC8096603 DOI: 10.1093/jxb/erab106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Cassava storage roots are among the most important root crops worldwide, and represent one of the most consumed staple foods in sub-Saharan Africa. The vegetatively propagated tropical shrub can form many starchy tuberous roots from its stem. These storage roots are formed through the activation of secondary root growth processes. However, the underlying genetic regulation of storage root development is largely unknown. Here we report distinct structural and transcriptional changes occurring during the early phases of storage root development. A pronounced increase in auxin-related transcripts and the transcriptional activation of secondary growth factors, as well as a decrease in gibberellin-related transcripts were observed during the early stages of secondary root growth. This was accompanied by increased cell wall biosynthesis, most notably increased during the initial xylem expansion within the root vasculature. Starch storage metabolism was activated only after the formation of the vascular cambium. The formation of non-lignified xylem parenchyma cells and the activation of starch storage metabolism coincided with increased expression of the KNOX/BEL genes KNAT1, PENNYWISE, and POUND-FOOLISH, indicating their importance for proper xylem parenchyma function.
Collapse
Affiliation(s)
- David Rüscher
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - José María Corral
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Anna Vittoria Carluccio
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Patrick A W Klemens
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Andreas Gisel
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Biomedical Technologies, CNR, Bari, Italy
| | - Livia Stavolone
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - H Ekkehard Neuhaus
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Frank Ludewig
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Present address: KWS Saat SE, Grimsehlstraße 31, D-37574 Einbeck, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Wolfgang Zierer
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Correspondence:
| |
Collapse
|
45
|
Rüscher D, Corral JM, Carluccio AV, Klemens PAW, Gisel A, Stavolone L, Neuhaus HE, Ludewig F, Sonnewald U, Zierer W. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. JOURNAL OF EXPERIMENTAL BOTANY 2021. [PMID: 33712830 DOI: 10.5061/dryad.0cfxpnw0t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cassava storage roots are among the most important root crops worldwide, and represent one of the most consumed staple foods in sub-Saharan Africa. The vegetatively propagated tropical shrub can form many starchy tuberous roots from its stem. These storage roots are formed through the activation of secondary root growth processes. However, the underlying genetic regulation of storage root development is largely unknown. Here we report distinct structural and transcriptional changes occurring during the early phases of storage root development. A pronounced increase in auxin-related transcripts and the transcriptional activation of secondary growth factors, as well as a decrease in gibberellin-related transcripts were observed during the early stages of secondary root growth. This was accompanied by increased cell wall biosynthesis, most notably increased during the initial xylem expansion within the root vasculature. Starch storage metabolism was activated only after the formation of the vascular cambium. The formation of non-lignified xylem parenchyma cells and the activation of starch storage metabolism coincided with increased expression of the KNOX/BEL genes KNAT1, PENNYWISE, and POUND-FOOLISH, indicating their importance for proper xylem parenchyma function.
Collapse
Affiliation(s)
- David Rüscher
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - José María Corral
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Anna Vittoria Carluccio
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Patrick A W Klemens
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Andreas Gisel
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Biomedical Technologies, CNR, Bari, Italy
| | - Livia Stavolone
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - H Ekkehard Neuhaus
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Frank Ludewig
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Wolfgang Zierer
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| |
Collapse
|
46
|
Rutten JP, Ten Tusscher KH. Bootstrapping and Pinning down the Root Meristem; the Auxin-PLT-ARR Network Unites Robustness and Sensitivity in Meristem Growth Control. Int J Mol Sci 2021; 22:ijms22094731. [PMID: 33946960 PMCID: PMC8125115 DOI: 10.3390/ijms22094731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
After germination, the meristem of the embryonic plant root becomes activated, expands in size and subsequently stabilizes to support post-embryonic root growth. The plant hormones auxin and cytokinin, together with master transcription factors of the PLETHORA (PLT) family have been shown to form a regulatory network that governs the patterning of this root meristem. Still, which functional constraints contributed to shaping the dynamics and architecture of this network, has largely remained unanswered. Using a combination of modeling approaches we reveal how the interplay between auxin and PLTs enables meristem activation in response to above-threshold stimulation, while its embedding in a PIN-mediated auxin reflux loop ensures localized PLT transcription and thereby, a finite meristem size. We furthermore demonstrate how this constrained PLT transcriptional domain enables independent control of meristem size and division rates, further supporting a division of labor between auxin and PLT. We subsequently reveal how the weaker auxin antagonism of the earlier active Arabidopsis response regulator 12 (ARR12) may arise from the absence of a DELLA protein interaction domain. Our model indicates that this reduced strength is essential to prevent collapse in the early stages of meristem expansion while at later stages the enhanced strength of Arabidopsis response regulator 1 (ARR1) is required for sufficient meristem size control. Summarizing, our work indicates that functional constraints significantly contribute to shaping the auxin-cytokinin-PLT regulatory network.
Collapse
|
47
|
Harnvanichvech Y, Gorelova V, Sprakel J, Weijers D. The Arabidopsis embryo as a quantifiable model for studying pattern formation. QUANTITATIVE PLANT BIOLOGY 2021; 2:e3. [PMID: 37077211 PMCID: PMC10095805 DOI: 10.1017/qpb.2021.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 05/03/2023]
Abstract
Phenotypic diversity of flowering plants stems from common basic features of the plant body pattern with well-defined body axes, organs and tissue organisation. Cell division and cell specification are the two processes that underlie the formation of a body pattern. As plant cells are encased into their cellulosic walls, directional cell division through precise positioning of division plane is crucial for shaping plant morphology. Since many plant cells are pluripotent, their fate establishment is influenced by their cellular environment through cell-to-cell signaling. Recent studies show that apart from biochemical regulation, these two processes are also influenced by cell and tissue morphology and operate under mechanical control. Finding a proper model system that allows dissecting the relationship between these aspects is the key to our understanding of pattern establishment. In this review, we present the Arabidopsis embryo as a simple, yet comprehensive model of pattern formation compatible with high-throughput quantitative assays.
Collapse
Affiliation(s)
- Yosapol Harnvanichvech
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Vera Gorelova
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
48
|
Sun W, Yu H, Ma Z, Yuan Y, Wang S, Yan J, Xu X, Chen H. Molecular Evolution and Local Root Heterogeneous Expression of the Chenopodium quinoa ARF Genes Provide Insights into the Adaptive Domestication of Crops in Complex Environments. J Mol Evol 2021; 89:287-301. [PMID: 33755734 DOI: 10.1007/s00239-021-10005-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/10/2021] [Indexed: 01/15/2023]
Abstract
Auxin response factors (ARFs) influence plant growth and development via the coupling of basic biological processes. However, the evolution, expansion, and regulatory mechanisms of ARFs in the domesticated crop quinoa after artificial selection remain elusive. In this study, we systematically identified 30 Chenopodium quinoa ARFs (CqARFs). In this typical domesticated crop, ARFs divided into three subfamilies are subjected to strong purification selection and have a highly conserved evolutionary pattern. Polyploidy is the primary reason for the expansion of the ARF family after quinoa domestication. The expression patterns of CqARFs in different tissues have been differentiated, and CqARF2, 5, 9 and 10 from class A have the characteristics of local heterogeneous expression in different regions of roots, which may be the key factors for crops to respond in complex environments. Overall, we examined the evolution and expansion of ARFs in representative domesticated crops using the genome, transcriptome, and molecular biology and discovered a class A ARF-centered heterogeneous expression network that played an important role in auxin signaling and environmental responses. We provide new insights into how ARFs promote domesticated crop adaptation to artificial selection by polyploid expansion.
Collapse
Affiliation(s)
- Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Haomiao Yu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Zhaotang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Major Crop Diseases and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuan Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Sijiao Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Xinran Xu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
49
|
Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing. Nat Commun 2021; 12:1657. [PMID: 33712581 PMCID: PMC7954861 DOI: 10.1038/s41467-021-21802-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
Auxin is a key regulator of plant growth and development. Local auxin biosynthesis and intercellular transport generates regional gradients in the root that are instructive for processes such as specification of developmental zones that maintain root growth and tropic responses. Here we present a toolbox to study auxin-mediated root development that features: (i) the ability to control auxin synthesis with high spatio-temporal resolution and (ii) single-cell nucleus tracking and morphokinetic analysis infrastructure. Integration of these two features enables cutting-edge analysis of root development at single-cell resolution based on morphokinetic parameters under normal growth conditions and during cell-type-specific induction of auxin biosynthesis. We show directional auxin flow in the root and refine the contributions of key players in this process. In addition, we determine the quantitative kinetics of Arabidopsis root meristem skewing, which depends on local auxin gradients but does not require PIN2 and AUX1 auxin transporter activities. Beyond the mechanistic insights into root development, the tools developed here will enable biologists to study kinetics and morphology of various critical processes at the single cell-level in whole organisms.
Collapse
|
50
|
Savina MS, Mironova VV. PlantLayout pipeline to model tissue patterning. Vavilovskii Zhurnal Genet Selektsii 2021; 24:102-107. [PMID: 33659787 PMCID: PMC7716512 DOI: 10.18699/vj20.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To study the mechanisms underlying developmental pattern formation in a tissue, one needs to analyze the dynamics of the regulators in time and space across the tissue of a specific architecture. This problem is essential for the developmental regulators (morphogens) that distribute over the tissues anisotropically, forming there maxima and gradients and guiding cellular processes in a dose-dependent manner. Here we present the PlantLayout pipeline for MATLAB software, which facilitates the computational studies of tissue patterning. With its help, one can build a structural model of a two-dimensional tissue, embed it into a mathematical model in ODEs, perform numerical simulations, and visualize the obtained results - everything on the same platform. As a result, one can study the concentration dynamics of developmental regulators over the cell layout reconstructed from the real tissue. PlantLayout allows studying the dynamics and the output of gene networks guided by the developmental regulator in specific cells. The gene networks could be different for different cell types. One of the obstacles that PlantLayout removes semi-automatically is the determination of the cell wall orientation which is relevant when cells in the tissue have a polarity. Additionally, PlantLayout allows automatically extracting other quantitative and qualitative features of the cells and the cell walls, which might help in the modeling of a developmental pattern, such as the length and the width of the cell walls, the set of the neighboring cells, cell volume and cell perimeter. We demonstrate PlantLayout performance on the model of phytohormone auxin distribution over the plant root tip.
Collapse
Affiliation(s)
- M S Savina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V V Mironova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|