1
|
Díaz Suárez L, Inagaki H, Hirata H, Akimoto Y, Sakakibayashi K, Seino H, Ito M, Cao L, Nakabayashi K, Kato K, Onishi K. Fine-tuning of heading time by earliness per se effect due to multi-allelic variants in VRN-B3 locus of hexaploid wheat. PLANTA 2025; 261:97. [PMID: 40153070 DOI: 10.1007/s00425-025-04674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/12/2025] [Indexed: 03/30/2025]
Abstract
MAIN CONCLUSION Wheat VRN-B3 contains multi-allelic variants conferring earliness per se effects and can generate a new allele by recombining multiple alleles, highlighting its importance for the fine-tuning of heading time. Fine-tuning of heading time is required for breeding well-adapted varieties of wheat in regional environments. The VRN-B3 locus, which encodes the FT-B1 gene, is known as a vernalization gene. In this study, we analyzed two alleles in the VRN-B3 region: QHt-7B_Zen of a Japanese variety (Zenkouji-komugi) and QHt-7B_spelt of a spelt wheat strain (st. Rumania). Phenotypic evaluation of near-isogeneic lines (NILs) of 'Chinese Spring' (CS) under long-day (16 h) conditions showed that QHt-7B_Zen and QHt-7B_spelt conferred approximately 3.9 d earlier and 3.0 d later heading time compared with CS, respectively. Differences in heading times among NILs were also observed for fully vernalized plants under long-day conditions, indicating their earliness per se effect. Both QTLs behaved as single genes with incomplete dominant effects, and fine-mapping showed that FT-B1 was responsible for heading time. Droplet digital PCR analysis revealed that QHt-7B_Zen contained three copies of FT-B1, similar to the CS. QHt-7B_spelt had one FT-B1 copy with 14 substitutions, a 15 bp insertion in the 4.8 kb promoter region, and one amino acid substitution in the third exon, which could be designated as a novel allele, Vrn-B3f. Furthermore, a new allele with two FT-B1 copies conferring an intermediate heading time between the parents was created by the recombination of FT-B1 copies of CS and NIL for QHt-7B_spelt. Our findings indicate that fine-tuning heading time is possible through the versatility of the VRN-B3 locus, which can generate multi-allelic variants that have both vernalization and earliness per se effects in wheat.
Collapse
Affiliation(s)
- Lesly Díaz Suárez
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
- Centro de Investigaciones Agropecuarias (CIAP), Universidad Central "Marta Abreu" de Las Villas (UCLV), Carretera a Camajuaní Km 5 ½, 54830, Santa Clara, Cuba
| | - Hatsune Inagaki
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Hiroshi Hirata
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Yusuke Akimoto
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Kana Sakakibayashi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Honoka Seino
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Masaki Ito
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Liangzi Cao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Kazumi Nakabayashi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Kenji Kato
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Kita-Ku, Okayama, 700-8530, Japan
| | - Kazumitsu Onishi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
2
|
Xu X, He X, Zhang Q, Yang L. Genome-Wide Identification and Expression Pattern Analysis of Nuclear Factor Y B/C Genes in Pinus koraiensis, and Functional Identification of LEAFY COTYLEDON 1. PLANTS (BASEL, SWITZERLAND) 2025; 14:438. [PMID: 39943000 PMCID: PMC11819940 DOI: 10.3390/plants14030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
The nuclear factor Y (NF-Y) transcription factor is widely involved in various plant biological processes, such as embryogenesis, abscisic acid signaling, and abiotic stress responses. This study presents a comprehensive genome-wide identification and expression profile of transcription factors NF-YB and NF-YC in Pinus koraiensis. Eight NF-YB and seven NF-YC transcription factors were identified through bioinformatics analysis, including sequence alignment, phylogenetic tree construction, and conserved motif analysis. We evaluate the expression patterns of NF-YB/C genes in various tissues and somatic embryo maturation processes through the transcriptomics of ABA-treated tissues from multiple nutritional tissues, reproductive tissues, and somatic embryo maturation processes. The Leafy cotyledon1 (LEC1) gene belongs to the LEC1-type gene in the NF-YB family, numbered PkNF-YB7. In this study, we characterized the function of PkLEC1 during somatic embryonic development using genetic transformation techniques. The results indicate that PkNF-YB/C transcription factors are involved in the growth and development of nutritional tissues and reproductive organs, with specific high expression in PkNF-YB7 embryogenic callus, somatic embryos, zygotic embryos, and macropores. Most PkNF YB/C genes do not respond to ABA treatment during the maturation culture process. Compared with the absence of ABA, PkNF-YB8 was up-regulated in ABA treatment for one week (4.1 times) and two weeks (11.6 times). However, PkNF-YC5 was down-regulated in both one week (0.6 times) and two weeks (0.36 times) of culture, but the down-regulation trend was weakened in tissues treated with ABA (0.72-0.83 times). In addition, the promoter of PkNF YB/Cs was rich in elements that respond to various plant hormones, indicating their critical role in hormone pathways. The overexpression of PkLEC1 stimulated the generation of early somatic embryos from callus tissue with no potential for embryogenesis, enhancing the somatic embryogenesis ability of P. koraiensis callus tissue.
Collapse
Affiliation(s)
- Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.X.); (X.H.); (Q.Z.)
| | - Xin He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.X.); (X.H.); (Q.Z.)
| | - Qun Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.X.); (X.H.); (Q.Z.)
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.X.); (X.H.); (Q.Z.)
- College of Forestry, Beijing Forestry University, Beijing 100091, China
| |
Collapse
|
3
|
Yin X, Liu Y, Zhao H, Su Q, Zong J, Zhu X, Bao Y. GhCOL2 Positively Regulates Flowering by Activating the Transcription of GhHD3A in Upland Cotton (Gossypium hirsutum L.). Biochem Genet 2025; 63:298-314. [PMID: 38436815 DOI: 10.1007/s10528-024-10727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Plants have evolved sophisticated signaling networks to adjust flowering time, ensuring successful reproduction. Two crucial flowering regulators, FLOWERING LOCUS T (FT) and CONSTANS (CO), play pivotal roles in regulating flowering across various species. Previous studies have indicated that suppressing Gossypium hirsutum CONSTANS-LIKE 2 (GhCOL2), a homolog of Arabidopsis CO, leads to delayed flowering in cultivated cotton. However, the underlying regulatory mechanisms remain unknown. In this study, a yeast one-hybrid and dual-LUC expression assays were used to elucidate the molecular mechanism through which GhCOL2 regulates the transcription of GhHD3A. RT-qPCR was used to examine the expression of GhCOL2 and GhHD3A. Our findings reveal that GhCOL2 directly binds to CCACA cis-elements and atypical CORE (TGTGTATG) cis-elements in the promoter regions of HEADING DATE 3 A (HD3A), thereby activating GhHD3A transcription. Notably, GhCOL2 and GhHD3A exhibited high expression levels in the adult stage and low levels in the juvenile stage. Interestingly, the expression of GhCOL2 and GhHD3A varied significant between the two cotton varieties (Tx2094 and Maxxa). In summary, our study enhances the understanding of the molecular mechanism by which cotton GhCOL2-GhHD3A regulates flowering at the molecular level. Furthermore, it contributes to a broader comprehension of the GhCOL2-GhHD3A model in G. hirsutum.
Collapse
Affiliation(s)
- Xiaoyu Yin
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ye Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Hang Zhao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Qi Su
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Juan Zong
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Xueying Zhu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ying Bao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| |
Collapse
|
4
|
Liang Z, Huang Y, Hao Y, Song X, Zhu T, Liu C, Li C. The HISTONE ACETYLTRANSFERASE 1 interacts with CONSTANS to promote flowering in Arabidopsis. J Genet Genomics 2025:S1673-8527(25)00025-6. [PMID: 39855391 DOI: 10.1016/j.jgg.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Chromatin modifications, including histone acetylation, play essential roles in regulating flowering. The CBP/p300 family HISTONE ACETYLTRANSFERASE 1 (HAC1), which mediates histone acetylation, promotes the process of floral transition; however, the precise mechanism remains largely unclear. Specifically, how HAC1 is involved in the flowering regulatory network and which genes are the direct targets of HAC1 during flowering regulation are still unknown. In this study, we elucidated the critical function of HAC1 in promoting flowering via exerting active epigenetic markers at two key floral integrators, FT and SOC1, thereby regulating their expression to trigger the flowering process. We show that HAC1 physically interacts with CONSTANS (CO) in vivo and in vitro. Chromatin immunoprecipitation results indicate that HAC1 directly binds to the FT and SOC1 loci. Loss of HAC1 impairs CO-mediated transcriptional activation of FT and SOC1 in promoting flowering. Moreover, CO mutation leads to the decreased enrichment of HAC1 at FT and SOC1, indicating that CO recruits HAC1 to FT and SOC1. Finally, HAC1, as well as CO, is required for the elevated histone acetylation level at FT and SOC1. Taken together, our finding reveals that HAC1-mediated histone acetylation boots flowering via a CO-dependent activation of FT and SOC1.
Collapse
Affiliation(s)
- Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Yisui Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Yuanhao Hao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Chen Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
5
|
Gao C, Wei P, Xie Z, Zhang P, Tahir MM, Toktonazarovich TK, Shen Y, Zuo X, Mao J, Zhang D, Lv Y, Zhang X. Genomic identification of the NF-Y gene family in apple and functional analysis of MdNF-YB18 involved in flowering transition. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:4. [PMID: 39726978 PMCID: PMC11668704 DOI: 10.1007/s11032-024-01524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Apple is a crucial economic product extensively cultivated worldwide. Its production and quality are closely related to the floral transition, which is regulated by intricate molecular and environmental factors. Nuclear factor Y (NF-Y) is a transcription factor that is involved in regulating plant growth and development, with certain NF-Ys play significant roles in regulating flowering. However, there is little information available regarding NF-Ys and their role in apple flowering development. In the present study, 51 NF-Y proteins were identified and classified into three subfamilies, including 11 MdNF-YAs, 26 MdNF-YBs, and 14 MdNF-YCs, according to their structural and phylogenetic features. Further functional analysis focused on MdNF-YB18. Overexpression of MdNF-YB18 in Arabidopsis resulted in earlier flowering compared to the wild-type plants. Subcellular localization confirmed MdNF-YB18 was located in the nuclear. Interaction between MdNFY-B18 and MdNF-YC3/7 was demonstrated through yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Yeast one-hybrid (Y1H) and the dual-luciferase reporter assays showed MdNF-YB18 could bind the promoter of MdFT1 and activate its expression. Moreover, this activation was enhanced with the addition of MdNF-YC3 and MdNF-YC7. Additionally, MdNF-YB18 also could interact with MdCOLs (CONSTANS Like). This study lays the foundation for exploring the functional traits of MdNF-Y proteins, highlighting the crucial role of MdNF-YB18 in activating MdFT1 in Malus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01524-2.
Collapse
Affiliation(s)
- Cai Gao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Pengyan Wei
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Zushu Xie
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Pan Zhang
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Muhammad Mobeen Tahir
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | | | - Yawen Shen
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Xiya Zuo
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Jiangping Mao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Dong Zhang
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Yanrong Lv
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
| | - Xiaoyun Zhang
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China
- College of Agriculture, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003 Xinjiang China
| |
Collapse
|
6
|
Dias Lopes C, He X, Ariel F, Pereyra-Bistraín LI, Benhamed M. The MVPs (masterful versatile players): Chromatin factors as pivotal mediators between 3D genome organization and the response to environment. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102599. [PMID: 38991465 DOI: 10.1016/j.pbi.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
In recent years, the study of genome dynamics has become a prominent research field due to its influence on understanding the control of gene expression. The study of 3D genome organization has unveiled multiple mechanisms in orchestrating chromosome folding. Growing evidence reveals that these mechanisms are not only important for genome organization, but play a pivotal role in enabling plants to adapt to environmental stimuli. In this review, we provide an overview of the current knowledge concerning epigenetic factors and regulatory elements driving 3D genome dynamics and their responses to external stimuli. We discuss the most recent findings, previous evidence, and explore their implications for future research.
Collapse
Affiliation(s)
- Chloé Dias Lopes
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
| | - Xiaoning He
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
| | - Federico Ariel
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| | - Leonardo I Pereyra-Bistraín
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France; Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), F-91190, Gif-sur-Yvette, France.
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France; Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), F-91190, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Orsay, 91405, France.
| |
Collapse
|
7
|
Rani V, Singh VK, Joshi D, Singh R, Yadav D. Genome-wide identification of nuclear factor -Y (NF-Y) transcription factor family in finger millet reveals structural and functional diversity. Heliyon 2024; 10:e36370. [PMID: 39315219 PMCID: PMC11417175 DOI: 10.1016/j.heliyon.2024.e36370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
The Nuclear Factor Y (NF-Y) is one of the widely explored transcription factors (TFs) family for its potential role in regulating molecular mechanisms related to stress response and developmental processes. Finger millet (Eleusine coracana (L.) Gaertn) is a hardy and stress-tolerant crop where partial efforts have been made to characterize a few transcription factors. However, the NF-Y TF is still poorly explored and not well documented. The present study aims to identify and characterize NF-Y genes of finger millet using a bioinformatics approach. Genome mining revealed 57 EcNF-Y (Eleusine coracana Nuclear Factor-Y) genes in finger millet, comprising 18 NF-YA, 23 NF-YB, and 16 NF-YC genes. The gene organization, conserved motif, cis-regulatory elements, miRNA target sites, and three-dimensional structures of these NF-Ys were analyzed. The nucleotide substitution rate and gene duplication analysis showed the presence of 7 EcNF-YA, 10 EcNF-YB, and 8 EcNF-YC paralogous genes and revealed the possibilities of synonymous substitution and stabilizing selection during evolution. The role of NF-Ys of finger millet in abiotic stress tolerance was evident by the presence of relevant cis-elements such as ABRE (abscisic acid-responsive elements), DRE (dehydration-responsive element), MYB (myeloblastosis) or MYC (myelocytomatosis). Twenty-three isoforms of miR169, mainly targeting a single NF-Y gene, i.e., the EcNF-YA13 gene, were observed. This interaction could be targeted for finger millet improvement against Magnaporthe oryzae (blast fungus). Therefore, by this study, the putative functions related to biotic and abiotic stress tolerance for many of the EcNF-Y genes could be explored in finger millet.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Sandip University, Nashik, 422213, Maharashtra, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - D.C. Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, 263601, Uttarakhand, India
| | - Rajesh Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| |
Collapse
|
8
|
Lin C, Lan C, Li X, Xie W, Lin F, Liang Y, Tao Z. A pair of nuclear factor Y transcription factors act as positive regulators in jasmonate signaling and disease resistance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2042-2057. [PMID: 38953749 DOI: 10.1111/jipb.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
The plant hormone jasmonate (JA) regulates plant growth and immunity by orchestrating a genome-wide transcriptional reprogramming. In the resting stage, JASMONATE-ZIM DOMAIN (JAZ) proteins act as main repressors to regulate the expression of JA-responsive genes in the JA signaling pathway. However, the mechanisms underlying de-repression of JA-responsive genes in response to JA treatment remain elusive. Here, we report two nuclear factor Y transcription factors NF-YB2 and NF-YB3 (thereafter YB2 and YB3) play key roles in such de-repression in Arabidopsis. YB2 and YB3 function redundantly and positively regulate plant resistance against the necrotrophic pathogen Botrytis cinerea, which are specially required for transcriptional activation of a set of JA-responsive genes following inoculation. Furthermore, YB2 and YB3 modulated their expression through direct occupancy and interaction with histone demethylase Ref6 to remove repressive histone modifications. Moreover, YB2 and YB3 physically interacted with JAZ repressors and negatively modulated their abundance, which in turn attenuated the inhibition of JAZ proteins on the transcription of JA-responsive genes, thereby activating JA response and promoting disease resistance. Overall, our study reveals the positive regulators of YB2 and YB3 in JA signaling by positively regulating transcription of JA-responsive genes and negatively modulating the abundance of JAZ proteins.
Collapse
Affiliation(s)
- Chuyu Lin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chenghao Lan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoxiao Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Wei Xie
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 311400, China
| | - Yan Liang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Rychel-Bielska S, Bielski W, Surma A, Annicchiarico P, Belter J, Kozak B, Galek R, Harzic N, Książkiewicz M. A GWAS study highlights significant associations between a series of indels in a FLOWERING LOCUS T gene promoter and flowering time in white lupin (Lupinus albus L.). BMC PLANT BIOLOGY 2024; 24:722. [PMID: 39075363 PMCID: PMC11285409 DOI: 10.1186/s12870-024-05438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND White lupin (Lupinus albus L.) is a high-protein Old World grain legume with remarkable food and feed production interest. It is sown in autumn or early spring, depending on the local agroclimatic conditions. This study aimed to identify allelic variants associated with vernalization responsiveness, in order to improve our knowledge of legume flowering regulatory pathways and develop molecular selection tools for the desired phenology as required for current breeding and adaptation to the changing climate. RESULTS Some 120 white lupin accessions originating from a wide range of environments of Europe, Africa, and Asia were phenotyped under field conditions in three environments with different intensities of vernalization, namely, a Mediterranean and a subcontinental climate sites of Italy under autumn sowing, and a suboceanic climate site of France under spring sowing. Two hundred sixty-two individual genotypes extracted from them were phenotyped in a greenhouse under long-day photoperiod without vernalization. Phenology data, and marker data generated by Diversity Arrays Technology sequencing (DArT-seq) and by PCR-based screening targeting published quantitative trait loci (QTLs) from linkage map and newly identified insertion/deletion polymorphisms in the promoter region of the FLOWERING LOCUS T homolog, LalbFTc1 gene (Lalb_Chr14g0364281), were subjected to a genome-wide association study (GWAS). Population structure followed differences in phenology and isolation by distance pattern. The GWAS highlighted numerous loci significantly associated with flowering time, including four LalbFTc1 gene promoter deletions: 2388 bp and 2126 bp deletions at the 5' end, a 264 bp deletion in the middle and a 28 bp deletion at the 3' end of the promoter. Besides LalbFTc1 deletions, this set contained DArT-seq markers that matched previously published major QTLs in chromosomes Lalb_Chr02, Lalb_Chr13 and Lalb_Chr16, and newly discovered QTLs in other chromosomes. CONCLUSIONS This study highlighted novel QTLs for flowering time and validated those already published, thereby providing novel evidence on the convergence of FTc1 gene functional evolution into the vernalization pathway in Old World lupin species. Moreover, this research provided the set of loci specific for extreme phenotypes (the earliest or the latest) awaiting further implementation in marker-assisted selection for spring- or winter sowing.
Collapse
Affiliation(s)
- Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 24A, Wrocław, 50-363, Poland
| | - Wojciech Bielski
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, Poznan, 60-632, Poland
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznań, 60-479, Poland
| | - Anna Surma
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznań, 60-479, Poland
| | - Paolo Annicchiarico
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, Viale Piacenza 29, Lodi, 26900, Italy
| | - Jolanta Belter
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznań, 60-479, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 24A, Wrocław, 50-363, Poland
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 24A, Wrocław, 50-363, Poland
| | - Nathalie Harzic
- Cérience, 1 Allée de la Sapinière, Saint Sauvant, 86600, France
| | - Michał Książkiewicz
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznań, 60-479, Poland.
| |
Collapse
|
10
|
Hernández-Soriano L, Gálvez-Sandre L, Ávila de Dios E, Simpson J. How to awaken a sleeping giant: antagonistic expression of Flowering locus T homologs and elements of the age-related pathway are associated with the flowering transition in Agave tequilana. PLANT REPRODUCTION 2024; 37:111-132. [PMID: 38082036 PMCID: PMC11180032 DOI: 10.1007/s00497-023-00489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/08/2023] [Indexed: 06/16/2024]
Abstract
KEY MESSAGE Antagonistic expression of Flowering locus T proteins and the ageing pathway via miRNAs and sugar metabolism regulate the initiation of flowering in A. tequilana. Flowering in commercial plantations of Agave tequilana signals that plants are ready to harvest for tequila production. However, time of flowering is often unpredictable and a detailed understanding of the process would be beneficial in the field, for breeding and for the development of future research. This report describes the functional analysis of A. tequilana FLOWERING LOCUS T (FT) genes by heterologous expression in A. thaliana and in situ hybridization in agave plants. The gene structures of the Agave tequilana FT family are also described and putative regulatory promoter elements were identified. Most Agave species have monocarpic, perennial life cycles that can last over 25 years during which plants do not respond to the normal environmental signals which induce flowering, suggesting that the ageing pathway as described in Arabidopsis may play an important role in determining flowering time in these species. Elements of this pathway were analyzed and in silico data is presented that supports the regulation of SQUAMOSA PROMOTER BINDING LIKE proteins (SPL), APETALA2 (AP2) proteins and members of Plant Glycoside Hydrolase Family 32 (PGHF32) by interactions with miRNAs 156, 172 and 164 during the initiation of flowering in A. tequilana.
Collapse
Affiliation(s)
| | - Laura Gálvez-Sandre
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Guanajuato, Mexico
| | - Emmanuel Ávila de Dios
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Guanajuato, Mexico
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - June Simpson
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Guanajuato, Mexico.
| |
Collapse
|
11
|
Zhang D, Ji K, Wang J, Liu X, Zhou Z, Huang R, Ai G, Li Y, Wang X, Wang T, Lu Y, Hong Z, Ye Z, Zhang J. Nuclear factor Y-A3b binds to the SINGLE FLOWER TRUSS promoter and regulates flowering time in tomato. HORTICULTURE RESEARCH 2024; 11:uhae088. [PMID: 38799124 PMCID: PMC11116822 DOI: 10.1093/hr/uhae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
The control of flowering time is essential for reproductive success and has a major effect on seed and fruit yield and other important agricultural traits in crops. Nuclear factors Y (NF-Ys) are transcription factors that form heterotrimeric protein complexes to regulate gene expression required for diverse biological processes, including flowering time control in plants. However, to our knowledge, there has been no report on mutants of individual NF-YA subunits that promote early flowering phenotype in plants. In this study, we identified SlNF-YA3b, encoding a member of the NF-Y transcription factor family, as a key gene regulating flowering time in tomato. Knockout of NF-YA3b resulted in an early flowering phenotype in tomato, whereas overexpression of NF-YA3b delayed flowering in transgenic tomato plants. NF-YA3b was demonstrated to form heterotrimeric protein complexes with multiple NF-YB/NF-YC heterodimers in yeast three-hybrid assays. Biochemical evidence indicated that NF-YA3b directly binds to the CCAAT cis-elements of the SINGLE FLOWER TRUSS (SFT) promoter to suppress its gene expression. These findings uncovered a critical role of NF-YA3b in regulating flowering time in tomato and could be applied to the management of flowering time in crops.
Collapse
Affiliation(s)
- Dedi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Kangna Ji
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiafa Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyu Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo Ai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, China
| | - Xin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Fan L, Zhu Z, Lin X, Shen X, Yang T, Wang H, Zhou X. Comparative Genomic Analysis of PEBP Genes in Cucurbits Explores the Interactors of Cucumber CsPEBPs Related to Flowering Time. Int J Mol Sci 2024; 25:3815. [PMID: 38612626 PMCID: PMC11011414 DOI: 10.3390/ijms25073815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The family of phosphatidylethanolamine-binding proteins (PEBPs) participates in various plant biological processes, mainly flowering regulation and seed germination. In cucurbit crops, several PEBP genes have been recognized to be responsible for flowering time. However, the investigation of PEBP family members across the genomes of cucurbit species has not been reported, and their conservation and divergence in structure and function remain largely unclear. Herein, PEBP genes were identified from seven cucurbit crops and were used to perform a comparative genomics analysis. The cucurbit PEBP proteins could be classified into MFT, FT, TFL, and PEBP clades, and further, the TFL clade was divided into BFT-like, CEN-like, and TFL1-like subclades. The MFT-like, FT-like, and TFL-like proteins were clearly distinguished by a critical amino acid residue at the 85th position of the Arabidopsis FT protein. In gene expression analysis, CsaPEBP1 was highly expressed in flowers, and its expression levels in females and males were 70.5 and 89.2 times higher, respectively, than those in leaves. CsaPEBP5, CsaPEBP6, and CsaPEBP7 were specifically expressed in male flowers, with expression levels 58.1, 17.3, and 15.7 times higher, respectively, than those of leaves. At least five CsaPEBP genes exhibited the highest expression during the later stages of corolla opening. Through clustering of time-series-based RNA-seq data, several potential transcription factors (TFs) interacting with four CsaPEBPs were identified during cucumber corolla opening. Because of the tandem repeats of binding sites in promoters, NF-YB (Csa4G037610) and GATA (Csa7G64580) TFs appeared to be better able to regulate the CsaPEBP2 and CsaPEBP5 genes, respectively. This study would provide helpful information for further investigating the roles of PEBP genes and their interacting TFs in growth and development processes, such as flowering time regulation in cucurbit crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuyan Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.F.); (Z.Z.); (X.L.); (X.S.); (T.Y.); (H.W.)
| |
Collapse
|
13
|
Li X, Zheng Y, Luo L, Chen Q, Yang T, Yang Y, Qiao Q, Kong X, Yang Y. The evolution and functional divergence of FT-related genes in controlling flowering time in Brassica rapa ssp. rapa. PLANT CELL REPORTS 2024; 43:86. [PMID: 38453734 PMCID: PMC10920429 DOI: 10.1007/s00299-024-03166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
KEY MESSAGE The BrrFT paralogues exhibit distinct expression patterns and play different roles in regulating flowering time, and BrrFT4 competes with BrrFT1 and BrrFT2 to interact with BrrFD proteins. Flowering time is an important agricultural trait for Brassica crops, and early bolting strongly affects the yield and quality of Brassica rapa ssp. rapa. Flowering Locus T paralogues play an important role in regulating flowering time. In this study, we identified FT-related genes in turnip by phylogenetic classification, and four BrrFT homoeologs that shared with high identities with BraFT genes were isolated. The different gene structures, promoter binding sites, and expression patterns observed indicated that these genes may play different roles in flowering time regulation. Further genetic and biochemical experiments showed that as for FT-like paralogues, BrrFT2 acted as the key floral inducer, and BrrFT1 seems to act as a mild 'florigen' protein. However, BrrFT4 acts as a floral repressor and antagonistically regulates flowering time by competing with BrrFT1 and BrrFT2 to bind BrrFD proteins. BrrFT3 may have experienced loss of function via base shift mutation. Our results revealed the potential roles of FT-related genes in flowering time regulation in turnip.
Collapse
Affiliation(s)
- Xieshengyang Li
- School of Agriculture, Yunnan University, Kunming, 650091, Yunnan, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Yan Zheng
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Landi Luo
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Qian Chen
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Tianyu Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Ya Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Xiangxiang Kong
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
| | - Yongping Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
| |
Collapse
|
14
|
Luo X, Liu B, Xie L, Wang K, Xu D, Tian X, Xie L, Li L, Ye X, He Z, Xia X, Yan L, Cao S. The TaSOC1-TaVRN1 module integrates photoperiod and vernalization signals to regulate wheat flowering. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:635-649. [PMID: 37938892 PMCID: PMC10893938 DOI: 10.1111/pbi.14211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
Wheat needs different durations of vernalization, which accelerates flowering by exposure to cold temperature, to ensure reproductive development at the optimum time, as that is critical for adaptability and high yield. TaVRN1 is the central flowering regulator in the vernalization pathway and encodes a MADS-box transcription factor (TF) that usually works by forming hetero- or homo-dimers. We previously identified that TaVRN1 bound to an MADS-box TF TaSOC1 whose orthologues are flowering activators in other plants. The specific function of TaSOC1 and the biological implication of its interaction with TaVRN1 remained unknown. Here, we demonstrated that TaSOC1 was a flowering repressor in the vernalization and photoperiod pathways by overexpression and knockout assays. We confirmed the physical interaction between TaSOC1 and TaVRN1 in wheat protoplasts and in planta, and further validated their genetic interplay. A Flowering Promoting Factor 1-like gene TaFPF1-2B was identified as a common downstream target of TaSOC1 and TaVRN1 through transcriptome and chromatin immunoprecipitation analyses. TaSOC1 competed with TaVRT2, another MADS-box flowering regulator, to bind to TaVRN1; their coding genes synergistically control TaFPF1-2B expression and flowering initiation in response to photoperiod and low temperature. We identified major haplotypes of TaSOC1 and found that TaSOC1-Hap1 conferred earlier flowering than TaSOC1-Hap2 and had been subjected to positive selection in wheat breeding. We also revealed that wheat SOC1 family members were important domestication loci and expanded by tandem and segmental duplication events. These findings offer new insights into the regulatory mechanism underlying flowering control along with useful genetic resources for wheat improvement.
Collapse
Affiliation(s)
- Xumei Luo
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Bingyan Liu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Li Xie
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Ke Wang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Dengan Xu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiuling Tian
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Lina Xie
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Lingli Li
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xingguo Ye
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Zhonghu He
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xianchun Xia
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Liuling Yan
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Shuanghe Cao
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| |
Collapse
|
15
|
Alique D, Redondo López A, González Schain N, Allona I, Wabnik K, Perales M. Core clock genes adjust growth cessation time to day-night switches in poplar. Nat Commun 2024; 15:1784. [PMID: 38413620 PMCID: PMC10899572 DOI: 10.1038/s41467-024-46081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
Poplar trees use photoperiod as a precise seasonal indicator, synchronizing plant phenology with the environment. Daylength cue determines FLOWERING LOCUS T 2 (FT2) daily expression, crucial for shoot apex development and establishment of the annual growing period. However, limited evidence exists for the molecular factors controlling FT2 transcription and the conservation with the photoperiodic control of Arabidopsis flowering. We demonstrate that FT2 expression mediates growth cessation response quantitatively, and we provide a minimal data-driven model linking core clock genes to FT2 daily levels. GIGANTEA (GI) emerges as a critical inducer of the FT2 activation window, time-bound by TIMING OF CAB EXPRESSION (TOC1) and LATE ELONGATED HYPOCOTYL (LHY2) repressions. CRISPR/Cas9 loss-of-function lines validate these roles, identifying TOC1 as a long-sought FT2 repressor. Additionally, model simulations predict that FT2 downregulation upon daylength shortening results from a progressive narrowing of this activation window, driven by the phase shift observed in the preceding clock genes. This circadian-mediated mechanism enables poplar to exploit FT2 levels as an accurate daylength-meter.
Collapse
Affiliation(s)
- Daniel Alique
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Arturo Redondo López
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Nahuel González Schain
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain.
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain.
| |
Collapse
|
16
|
Xue S, Huang H, Xu Y, Liu L, Meng Q, Zhu J, Zhou M, Du H, Yao C, Jin Q, Nie C, Zhong Y. Transcriptomic analysis reveals the molecular basis of photoperiod-regulated sex differentiation in tropical pumpkins (Cucurbita moschata Duch.). BMC PLANT BIOLOGY 2024; 24:90. [PMID: 38317069 PMCID: PMC10845594 DOI: 10.1186/s12870-024-04777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Photoperiod, or the length of the day, has a significant impact on the flowering and sex differentiation of photoperiod-sensitive crops. The "miben" pumpkin (the main type of Cucurbita moschata Duch.) is well-known for its high yield and strong disease resistance. However, its cultivation has been limited due to its sensitivity to photoperiod. This sensitivity imposes challenges on its widespread cultivation and may result in suboptimal yields in regions with specific daylength conditions. As a consequence, efforts are being made to explore potential strategies or breeding techniques to enhance its adaptability to a broader range of photoperiods, thus unlocking its full cultivation potential and further promoting its valuable traits in agriculture. RESULTS This study aimed to identify photoperiod-insensitive germplasm exhibiting no difference in sex differentiation under different day-length conditions. The investigation involved a phenotypic analysis of photoperiod-sensitive (PPS) and photoperiod-insensitive (PPIS) pumpkin materials exposed to different day lengths, including long days (LDs) and short days (SDs). The results revealed that female flower differentiation was significantly inhibited in PPS_LD, while no differences were observed in the other three groups (PPS_SD, PPIS_LD, and PPIS_SD). Transcriptome analysis was carried out for these four groups to explore the main-effect genes of sex differentiation responsive to photoperiod. The main-effect gene subclusters were identified based on the principal component and hierarchical cluster analyses. Further, functional annotations and enrichment analysis revealed significant upregulation of photoreceptors (CmCRY1, F-box/kelch-repeat protein), circadian rhythm-related genes (CmGI, CmPRR9, etc.), and CONSTANS (CO) in PPS_LD. Conversely, a significant downregulation was observed in most Nuclear Factor Y (NF-Y) transcription factors. Regarding the gibberellic acid (GA) signal transduction pathway, positive regulators of GA signaling (CmSCL3, CmSCL13, and so forth) displayed higher expression levels, while the negative regulators of GA signaling, CmGAI, exhibited lower expression levels in PPS_LD. Notably, this effect was not observed in the synthetic pathway genes. Furthermore, genes associated with ethylene synthesis and signal transduction (CmACO3, CmACO1, CmERF118, CmERF118-like1,2, CmWIN1-like, and CmRAP2-7-like) showed significant downregulation. CONCLUSIONS This study offered a crucial theoretical and genetic basis for understanding how photoperiod influences the mechanism of female flower differentiation in pumpkins.
Collapse
Affiliation(s)
- Shudan Xue
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Hexun Huang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Yingchao Xu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Ling Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Qitao Meng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
- Department of Horticulture, College of Food Science and Engineering, Foshan University, Foshan, 528000, P. R. China
| | - Jitong Zhu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Meijiang Zhou
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Hu Du
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Chunpeng Yao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Qingmin Jin
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Chengrong Nie
- Department of Horticulture, College of Food Science and Engineering, Foshan University, Foshan, 528000, P. R. China
| | - Yujuan Zhong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China.
| |
Collapse
|
17
|
Liu S, He M, Lin X, Kong F. Epigenetic regulation of photoperiodic flowering in plants. THE PLANT GENOME 2023; 16:e20320. [PMID: 37013370 DOI: 10.1002/tpg2.20320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/19/2023]
Abstract
In response to changeable season, plants precisely control the initiation of flowering in appropriate time of the year to ensure reproductive success. Day length (photoperiod) acts as the most important external cue to determine flowering time. Epigenetics regulates many major developmental stages in plant life, and emerging molecular genetics and genomics researches reveal their essential roles in floral transition. Here, we summarize the recent advances in epigenetic regulation of photoperiod-mediated flowering in Arabidopsis and rice, and discuss the potential of epigenetic regulation in crops improvement, and give the brief prospect for future study trends.
Collapse
Affiliation(s)
- Shuangrong Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Milan He
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaoya Lin
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
18
|
Zhang B, Feng M, Zhang J, Song Z. Involvement of CONSTANS-like Proteins in Plant Flowering and Abiotic Stress Response. Int J Mol Sci 2023; 24:16585. [PMID: 38068908 PMCID: PMC10706179 DOI: 10.3390/ijms242316585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
The process of flowering in plants is a pivotal stage in their life cycle, and the CONSTANS-like (COL) protein family, known for its photoperiod sensing ability, plays a crucial role in regulating plant flowering. Over the past two decades, homologous genes of COL have been identified in various plant species, leading to significant advancements in comprehending their involvement in the flowering pathway and response to abiotic stress. This article presents novel research progress on the structural aspects of COL proteins and their regulatory patterns within transcription complexes. Additionally, we reviewed recent information about their participation in flowering and abiotic stress response, aiming to provide a more comprehensive understanding of the functions of COL proteins.
Collapse
Affiliation(s)
- Bingqian Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain of Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (B.Z.); (M.F.); (J.Z.)
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Minghui Feng
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain of Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (B.Z.); (M.F.); (J.Z.)
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain of Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (B.Z.); (M.F.); (J.Z.)
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Zhangqiang Song
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain of Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (B.Z.); (M.F.); (J.Z.)
| |
Collapse
|
19
|
Lee Z, Kim S, Choi SJ, Joung E, Kwon M, Park HJ, Shim JS. Regulation of Flowering Time by Environmental Factors in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3680. [PMID: 37960036 PMCID: PMC10649094 DOI: 10.3390/plants12213680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The timing of floral transition is determined by both endogenous molecular pathways and external environmental conditions. Among these environmental conditions, photoperiod acts as a cue to regulate the timing of flowering in response to seasonal changes. Additionally, it has become clear that various environmental factors also control the timing of floral transition. Environmental factor acts as either a positive or negative signal to modulate the timing of flowering, thereby establishing the optimal flowering time to maximize the reproductive success of plants. This review aims to summarize the effects of environmental factors such as photoperiod, light intensity, temperature changes, vernalization, drought, and salinity on the regulation of flowering time in plants, as well as to further explain the molecular mechanisms that link environmental factors to the internal flowering time regulation pathway.
Collapse
Affiliation(s)
- Zion Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Sohyun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Su Jeong Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Eui Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Moonhyuk Kwon
- Division of Life Science, ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
20
|
Choi S, Prabhakar PK, Chowdhury R, Pendergast TH, Urbanowicz BR, Maranas C, Devos KM. A single amino acid change led to structural and functional differentiation of PvHd1 to control flowering in switchgrass. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5532-5546. [PMID: 37402629 PMCID: PMC10540729 DOI: 10.1093/jxb/erad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
Switchgrass, a forage and bioenergy crop, occurs as two main ecotypes with different but overlapping ranges of adaptation. The two ecotypes differ in a range of characteristics, including flowering time. Flowering time determines the duration of vegetative development and therefore biomass accumulation, a key trait in bioenergy crops. No causal variants for flowering time differences between switchgrass ecotypes have, as yet, been identified. In this study, we mapped a robust flowering time quantitative trait locus (QTL) on chromosome 4K in a biparental F2 population and characterized the flowering-associated transcription factor gene PvHd1, an ortholog of CONSTANS in Arabidopsis and Heading date 1 in rice, as the underlying causal gene. Protein modeling predicted that a serine to glycine substitution at position 35 (p.S35G) in B-Box domain 1 greatly altered the global structure of the PvHd1 protein. The predicted variation in protein compactness was supported in vitro by a 4 °C shift in denaturation temperature. Overexpressing the PvHd1-p.35S allele in a late-flowering CONSTANS-null Arabidopsis mutant rescued earlier flowering, whereas PvHd1-p.35G had a reduced ability to promote flowering, demonstrating that the structural variation led to functional divergence. Our findings provide us with a tool to manipulate the timing of floral transition in switchgrass cultivars and, potentially, expand their cultivation range.
Collapse
Affiliation(s)
- Soyeon Choi
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Pradeep K Prabhakar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ratul Chowdhury
- Chemical Engineering, Penn State University, State College, PA 16801, USA
| | - Thomas H Pendergast
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Costas Maranas
- Chemical Engineering, Penn State University, State College, PA 16801, USA
| | - Katrien M Devos
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
21
|
Shankar N, Sunkara P, Nath U. A double-negative feedback loop between miR319c and JAW-TCPs establishes growth pattern in incipient leaf primordia in Arabidopsis thaliana. PLoS Genet 2023; 19:e1010978. [PMID: 37769020 PMCID: PMC10564139 DOI: 10.1371/journal.pgen.1010978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023] Open
Abstract
The microRNA miR319 and its target JAW-TCP transcription factors regulate the proliferation-to-differentiation transition of leaf pavement cells in diverse plant species. In young Arabidopsis leaf primordia, JAW-TCPs are detected towards the distal region whereas the major mRNA319-encoding gene MIR319C, is expressed at the base. Little is known about how this complementary expression pattern of MIR319C and JAW-TCPs is generated. Here, we show that MIR319C is initially expressed uniformly throughout the incipient primordia and is later abruptly down-regulated at the distal region, with concomitant distal appearance of JAW-TCPs, when leaves grow to ~100 μm long. Loss of JAW-TCPs causes distal extension of the MIR319C expression domain, whereas ectopic TCP activity restricts MIR319C more proximally. JAW-TCPs are recruited to and are capable of depositing histone H3K27me3 repressive marks on the MIR319C chromatin. JAW-TCPs fail to repress MIR319C in transgenic seedlings where the TCP-binding cis-elements on MIR319C are mutated, causing miR319 gain-of-function-like phenotype in the embryonic leaves. Based on these results, we propose a model for growth patterning in leaf primordia wherein MIR319C and JAW-TCPs repress each other and divide the uniformly growing primordia into distal differentiation zone and proximal proliferation domain.
Collapse
Affiliation(s)
- Naveen Shankar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Preethi Sunkara
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
22
|
Zhang C, Jian M, Li W, Yao X, Tan C, Qian Q, Hu Y, Liu X, Hou X. Gibberellin signaling modulates flowering via the DELLA-BRAHMA-NF-YC module in Arabidopsis. THE PLANT CELL 2023; 35:3470-3484. [PMID: 37294919 PMCID: PMC10473208 DOI: 10.1093/plcell/koad166] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/11/2023]
Abstract
Gibberellin (GA) plays a key role in floral induction by activating the expression of floral integrator genes in plants, but the epigenetic regulatory mechanisms underlying this process remain unclear. Here, we show that BRAHMA (BRM), a core subunit of the chromatin-remodeling SWItch/sucrose nonfermentable (SWI/SNF) complex that functions in various biological processes by regulating gene expression, is involved in GA-signaling-mediated flowering via the formation of the DELLA-BRM-NF-YC module in Arabidopsis (Arabidopsis thaliana). DELLA, BRM, and NF-YC transcription factors interact with one another, and DELLA proteins promote the physical interaction between BRM and NF-YC proteins. This impairs the binding of NF-YCs to SOC1, a major floral integrator gene, to inhibit flowering. On the other hand, DELLA proteins also facilitate the binding of BRM to SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). The GA-induced degradation of DELLA proteins disturbs the DELLA-BRM-NF-YC module, prevents BRM from inhibiting NF-YCs, and decreases the DNA-binding ability of BRM, which promote the deposition of H3K4me3 on SOC1 chromatin, leading to early flowering. Collectively, our findings show that BRM is a key epigenetic partner of DELLA proteins during the floral transition. Moreover, they provide molecular insights into how GA signaling coordinates an epigenetic factor with a transcription factor to regulate the expression of a flowering gene and flowering in plants.
Collapse
Affiliation(s)
- Chunyu Zhang
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mingyang Jian
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weijun Li
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiani Yao
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cuirong Tan
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Qian
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yilong Hu
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Liu
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Liu Y, Wang Y, Liao J, Chen Q, Jin W, Li S, Zhu T, Li S. Identification and Characterization of the BBX Gene Family in Bambusa pervariabilis × Dendrocalamopsis grandis and Their Potential Role under Adverse Environmental Stresses. Int J Mol Sci 2023; 24:13465. [PMID: 37686287 PMCID: PMC10488121 DOI: 10.3390/ijms241713465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Zinc finger protein (ZFP) transcription factors play a pivotal role in regulating plant growth, development, and response to biotic and abiotic stresses. Although extensively characterized in model organisms, these genes have yet to be reported in bamboo plants, and their expression information is lacking. Therefore, we identified 21 B-box (BBX) genes from a transcriptome analysis of Bambusa pervariabilis × Dendrocalamopsis grandis. Consequently, multiple sequence alignments and an analysis of conserved motifs showed that they all had highly similar structures. The BBX genes were divided into four subgroups according to their phylogenetic relationships and conserved domains. A GO analysis predicted multiple functions of the BBX genes in photomorphogenesis, metabolic processes, and biological regulation. We assessed the expression profiles of 21 BBX genes via qRT-PCR under different adversity conditions. Among them, eight genes were significantly up-regulated under water deficit stress (BBX4, BBX10, BBX11, BBX14, BBX15, BBX16, BBX17, and BBX21), nine under salt stress (BBX2, BBX3, BBX7, BBX9, BBX10, BBX12, BBX15, BBX16, and BBX21), twelve under cold stress (BBX1, BBX2, BBX4, BBX7, BBX10, BBX12, BBX14, BBX15, BBX17, BBX18, BBX19, and BBX21), and twelve under pathogen infestation stress (BBX1, BBX2, BBX4, BBX7, BBX10, BBX12, BBX14, BBX15, BBX17, BBX18, BBX19, and BBX21). Three genes (BBX10, BBX15, and BBX21) were significantly up-regulated under both biotic and abiotic stresses. These results suggest that the BBX gene family is integral to plant growth, development, and response to multivariate stresses. In conclusion, we have comprehensively analyzed the BDBBX genes under various adversity stress conditions, thus providing valuable information for further functional studies of this gene family.
Collapse
Affiliation(s)
- Yi Liu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Yaxuan Wang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Jiao Liao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Qian Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Wentao Jin
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China
| |
Collapse
|
24
|
Siriwardana CL, Risinger JR, Carpenter EM, Holt BF. Analysis of gene duplication within the Arabidopsis NUCLEAR FACTOR Y, subunit B (NF-YB) protein family reveals domains under both purifying and diversifying selection. PLoS One 2023; 18:e0289332. [PMID: 37531316 PMCID: PMC10396019 DOI: 10.1371/journal.pone.0289332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Gene duplication is an evolutionary mechanism that provides new genetic material. Since gene duplication is a major driver for molecular evolution, examining the fate of duplicated genes is an area of active research. The fate of duplicated genes can include loss, subfunctionalization, and neofunctionalization. In this manuscript, we chose to experimentally study the fate of duplicated genes using the Arabidopsis NUCLEAR FACTOR Y (NF-Y) transcription factor family. NF-Y transcription factors are heterotrimeric complexes, composed of NF-YA, NF-YB, and NF-YC. NF-YA subunits are responsible for nucleotide-specific binding to a CCAAT cis-regulatory element. NF-YB and NF-YC subunits make less specific, but essential complex-stabilizing contacts with the DNA flanking the core CCAAT pentamer. While ubiquitous in eukaryotes, each NF-Y family has expanded by duplication in the plant lineage. For example, the model plant Arabidopsis contains 10 each of the NF-Y subunits. Here we examine the fate of duplicated NF-YB proteins in Arabidopsis, which are composed of central histone fold domains (HFD) and less conserved flanking regions (N- and C-termini). Specifically, the principal question we wished to address in this manuscript was to what extent can the 10 Arabidopsis NF-YB paralogs functionally substitute the genes NF-YB2 and NF-YB3 in the promotion of photoperiodic flowering? Our results demonstrate that the conserved histone fold domains (HFD) may be under pressure for purifying (negative) selection, while the non-conserved N- and C-termini may be under pressure for diversifying (positive) selection, which explained each paralog's ability to substitute. In conclusion, our data demonstrate that the N- and C-termini may have allowed the duplicated genes to undergo functional diversification, allowing the retention of the duplicated genes.
Collapse
Affiliation(s)
- Chamindika L Siriwardana
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, Texas, United States of America
| | - Jan R Risinger
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Myriad Genetics Corporation, Salt Lake City, Utah, United States of America
| | - Emily Mills Carpenter
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Aquatic Biomonitoring, Austin, Texas, United States of America
| | - Ben F Holt
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- AgBiome, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
25
|
Jiang Z, Wang Y, Li W, Wang Y, Liu X, Ou X, Su W, Song S, Chen R. Genome-Wide Identification of the NF-Y Gene Family and Their Involvement in Bolting and Flowering in Flowering Chinese Cabbage. Int J Mol Sci 2023; 24:11898. [PMID: 37569274 PMCID: PMC10418651 DOI: 10.3390/ijms241511898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee) is a widely consumed vegetable in southern China with significant economic value. Developing product organs in the flowering Chinese cabbage involves two key processes: bolting and flowering. Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor known for its crucial role in various plant developmental processes. However, there is limited information available on the involvement of this gene family during flowering during Chinese cabbage development. In this study, 49 BcNF-Y genes were identified and characterized along with their physicochemical properties, gene structure, chromosomal location, collinearity, and expression patterns. We also conducted subcellular localization, yeast two-hybrid, and transcriptional activity assays on selected BcNF-Y genes. The findings of this study revealed enhanced expression levels of specific BcNF-Y genes during the stalk development and flowering stages in flowering Chinese cabbage. Notably, BcNF-YA8, BcNF-YB14, BcNF-YB20, and BcNF-YC5 interacted with BcRGA1, a negative regulator of GA signaling, indicating their potential involvement in GA-mediated stalk development. This study provides valuable insights into the role of BcNF-Y genes in flowering Chinese cabbage development and suggests that they are potential candidates for further investigating the key regulators of cabbage bolting and flowering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.J.); (Y.W.); (W.L.); (Y.W.); (X.L.); (X.O.); (W.S.); (S.S.)
| |
Collapse
|
26
|
Li L, Ren X, Shao L, Huang X, Zhang C, Wang X, Yang J, Li C. Comprehensive Analysis of the NF-YB Gene Family and Expression under Abiotic Stress and Hormone Treatment in Larix kaempferi. Int J Mol Sci 2023; 24:ijms24108910. [PMID: 37240255 DOI: 10.3390/ijms24108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
NF-YB, a subfamily of Nuclear Factor Y (NF-Y) transcription factor, play crucial role in many biological processes of plant growth and development and abiotic stress responses, and they can therefore be good candidate factors for breeding stress-resistant plants. However, the NF-YB proteins have not yet been explored in Larix kaempferi, a tree species with high economic and ecological values in northeast China and other regions, limiting the breeding of anti-stress L. kaempferi. In order to explore the roles of NF-YB transcription factors in L. kaempferi, we identified 20 LkNF-YB family genes from L. kaempferi full-length transcriptome data and carried out preliminary characterization of them through series of analyses on their phylogenetic relationships, conserved motif structure, subcellular localization prediction, GO annotation, promoter cis-acting elements as well as expression profiles under treatment of phytohormones (ABA, SA, MeJA) and abiotic stresses (salt and drought). The LkNF-YB genes were classified into three clades through phylogenetic analysis and belong to non-LEC1 type NF-YB transcription factors. They have 10 conserved motifs; all genes contain a common motif, and their promoters have various phytohormones and abiotic stress related cis-acting elements. Quantitative real time reverse transcription PCR (RT-qPCR) analysis showed that the sensitivity of the LkNF-YB genes to drought and salt stresses was higher in leaves than roots. The sensitivity of LKNF-YB genes to ABA, MeJA, SA stresses was much lower than that to abiotic stress. Among the LkNF-YBs, LkNF-YB3 showed the strongest responses to drought and ABA treatments. Further protein interaction prediction analysis for LkNF-YB3 revealed that LkNF-YB3 interacts with various factors associated with stress responses and epigenetic regulation as well as NF-YA/NF-YC factors. Taken together, these results unveiled novel L. kaempferi NF-YB family genes and their characteristics, providing the basic knowledge for further in-depth studies on their roles in abiotic stress responses of L. kaempferi.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xi Ren
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Liying Shao
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xun Huang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chunyan Zhang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xuhui Wang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
27
|
Susila H, Nasim Z, Gawarecka K, Jung JY, Jin S, Youn G, Ahn JH. Chloroplasts prevent precocious flowering through a GOLDEN2-LIKE-B-BOX DOMAIN PROTEIN module. PLANT COMMUNICATIONS 2023; 4:100515. [PMID: 36597356 DOI: 10.1016/j.xplc.2023.100515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 05/11/2023]
Abstract
The timing of flowering is tightly controlled by signals that integrate environmental and endogenous cues. Sugars produced by carbon fixation in the chloroplast are a crucial endogenous cue for floral initiation. Chloroplasts also convey information directly to the nucleus through retrograde signaling to control plant growth and development. Here, we show that mutants defective in chlorophyll biosynthesis and chloroplast development flowered early, especially under long-day conditions, although low sugar accumulation was seen in some mutants. Plants treated with the bleaching herbicide norflurazon also flowered early, suggesting that chloroplasts have a role in floral repression. Among retrograde signaling mutants, the golden2-like 1 (glk1) glk2 double mutants showed early flowering under long-day conditions. This early flowering was completely suppressed by constans (co) and flowering locus t (ft) mutations. Leaf vascular-specific knockdown of both GLK1 and GLK2 phenocopied the glk1 glk2 mutants. GLK1 and GLK2 repress flowering by directly activating the expression of B-BOX DOMAIN PROTEIN 14 (BBX14), BBX15, and BBX16 via CCAATC cis-elements in the BBX genes. BBX14/15/16 physically interact with CO in the nucleus, and expression of BBXs hampered CO-mediated FT transcription. Simultaneous knockdown of BBX14/15/16 by artificial miRNA (35S::amiR-BBX14/15/16) caused early flowering with increased FT transcript levels, whereas BBX overexpression caused late flowering. Flowering of glk1/2 and 35S::amiR-BBX14/15/16 plants was insensitive to norflurazon treatment. Taking these observations together, we propose that the GLK1/2-BBX14/15/16 module provides a novel mechanism explaining how the chloroplast represses flowering to balance plant growth and reproductive development.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Katarzyna Gawarecka
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Yul Jung
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
28
|
Takagi H, Hempton AK, Imaizumi T. Photoperiodic flowering in Arabidopsis: Multilayered regulatory mechanisms of CONSTANS and the florigen FLOWERING LOCUS T. PLANT COMMUNICATIONS 2023; 4:100552. [PMID: 36681863 PMCID: PMC10203454 DOI: 10.1016/j.xplc.2023.100552] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 05/11/2023]
Abstract
The timing of flowering affects the success of sexual reproduction. This developmental event also determines crop yield, biomass, and longevity. Therefore, this mechanism has been targeted for improvement along with crop domestication. The underlying mechanisms of flowering are highly conserved in angiosperms. Central to these mechanisms is how environmental and endogenous conditions control transcriptional regulation of the FLOWERING LOCUS T (FT) gene, which initiates floral development under long-day conditions in Arabidopsis. Since the identification of FT as florigen, efforts have been made to understand the regulatory mechanisms of FT expression. Although many transcriptional regulators have been shown to directly influence FT, the question of how they coordinately control the spatiotemporal expression patterns of FT still requires further investigation. Among FT regulators, CONSTANS (CO) is the primary one whose protein stability is tightly controlled by phosphorylation and ubiquitination/proteasome-mediated mechanisms. In addition, various CO interaction partners, some of them previously identified as FT transcriptional regulators, positively or negatively modulate CO protein activity. The FT promoter possesses several transcriptional regulatory "blocks," highly conserved regions among Brassicaceae plants. Different transcription factors bind to specific blocks and affect FT expression, often causing topological changes in FT chromatin structure, such as the formation of DNA loops. We discuss the current understanding of the regulation of FT expression mainly in Arabidopsis and propose future directions related to this topic.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Andrew K Hempton
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
29
|
Lin S, Medina CA, Wang G, Combs D, Shewmaker G, Fransen S, Llewellyn D, Norberg S, Yu LX. Identification of genetic loci associated with five agronomic traits in alfalfa using multi-environment trials. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:121. [PMID: 37119337 DOI: 10.1007/s00122-023-04364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
The use of multi-environment trials to test yield-related traits in a diverse alfalfa panel allowed to find multiple molecular markers associated with complex agronomic traits. Yield is one of the most important target traits in alfalfa breeding; however, yield is a complex trait affected by genetic and environmental factors. In this study, we used multi-environment trials to test yield-related traits in a diverse panel composed of 200 alfalfa accessions and varieties. Phenotypic data of maturity stage measured as mean stage by count (MSC), dry matter content, plant height (PH), biomass yield (Yi), and fall dormancy (FD) were collected in three locations in Idaho, Oregon, and Washington from 2018 to 2020. Single-trial and stagewise analyses were used to obtain estimated trait means of entries by environment. The plants were genotyped using a genotyping by sequencing approach and obtained a genotypic matrix with 97,345 single nucleotide polymorphisms. Genome-wide association studies identified a total of 84 markers associated with the traits analyzed. Of those, 29 markers were in noncoding regions and 55 markers were in coding regions. Ten significant SNPs at the same locus were associated with FD and they were linked to a gene annotated as a nuclear fusion defective 4-like (NFD4). Additional SNPs associated with MSC, PH, and Yi were annotated as transcription factors such as Cysteine3Histidine (C3H), Hap3/NF-YB family, and serine/threonine-protein phosphatase 7 proteins, respectively. Our results provide insight into the genetic factors that influence alfalfa maturity, yield, and dormancy, which is helpful to speed up the genetic gain toward alfalfa yield improvement.
Collapse
Affiliation(s)
- Sen Lin
- USA Department of Agriculture - Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, USA
| | - Cesar A Medina
- USA Department of Agriculture - Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, USA
| | - Guojie Wang
- Department of Crop and Soil Science, Oregon State University, LaGrande, OR, USA
| | - David Combs
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Steve Fransen
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Don Llewellyn
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Steven Norberg
- Franklin County Extension Office, Washington State University, Pasco, WA, USA.
| | - Long-Xi Yu
- USA Department of Agriculture - Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, USA.
| |
Collapse
|
30
|
Ouyang W, Zhang X, Guo M, Wang J, Wang X, Gao R, Ma M, Xiang X, Luan S, Xing F, Cao Z, Yan J, Li G, Li X. Haplotype mapping of H3K27me3-associated chromatin interactions defines topological regulation of gene silencing in rice. Cell Rep 2023; 42:112350. [PMID: 37071534 DOI: 10.1016/j.celrep.2023.112350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 02/06/2023] [Accepted: 03/20/2023] [Indexed: 04/19/2023] Open
Abstract
Histone modification H3K27me3 is an important chromatin mark that plays vital roles in repressing expression of developmental genes. Here, we construct high-resolution 3D genome maps using long-read chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) and characterize H3K27me3-associated chromatin interactions in an elite rice hybrid, Shanyou 63. We find that many H3K27me3-marked regions may function as silencer-like regulatory elements. The silencer-like elements can come into proximity with distal target genes via forming chromatin loops in 3D space of the nuclei, regulating gene silencing and plant traits. Natural and induced deletion of silencers upregulate expression of distal connected genes. Furthermore, we identify extensive allele-specific chromatin loops. We find that genetic variations alter allelic chromatin topology, thus modulating allelic gene imprinting in rice hybrids. In conclusion, the characterization of silencer-like regulatory elements and haplotype-resolved chromatin interaction maps provide insights into the understanding of molecular mechanisms underlying allelic gene silencing and plant trait controlling.
Collapse
Affiliation(s)
- Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiwen Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Minrong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoting Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Runxin Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Xiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Luan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Xing
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Zhilin Cao
- Department of Resources and Environment, Henan University of Engineering, Zhengzhou 451191, China
| | - Jiapei Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
31
|
Yun HR, Chen C, Kim JH, Kim HE, Karthik S, Kim HJ, Chung YS, Baek HS, Sung S, Kim HU, Heo JB. Genome-edited HEADING DATE 3a knockout enhances leaf production in Perilla frutescens. FRONTIERS IN PLANT SCIENCE 2023; 14:1133518. [PMID: 37077633 PMCID: PMC10108627 DOI: 10.3389/fpls.2023.1133518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Environmental cues regulate the transition of many plants from vegetative to flowering development. Day length, or photoperiod, is one cue that synchronizes flowering by changing seasons. Consequently, the molecular mechanism of flowering control is prominent in Arabidopsis and rice, where essential genes like FLOWERING LOCUS T (FT) homolog, HEADING DATE 3a (Hd3a), have been connected to flowering regulation. Perilla is a nutrient-rich leaf vegetable, and the flowering mechanism remains largely elusive. We identified flowering-related genes under short-day conditions using RNA sequencing to develop an enhanced leaf production trait using the flowering mechanism in the perilla. Initially, an Hd3a-like gene was cloned from the perilla and defined as PfHd3a. Furthermore, PfHd3a is highly rhythmically expressed in mature leaves under short-day and long-day conditions. Ectopic expression of PfHd3a in Atft-1 mutant plants has been shown to complement Arabidopsis FT function, resulting in early flowering. In addition, our genetic approaches revealed that overexpression of PfHd3a in perilla caused early flowering. In contrast, the CRISPR/Cas9 generated PfHd3a-mutant perilla showed significantly late flowering, resulting in approximately 50% leaf production enhancement compared to the control. Our results suggest that PfHd3a plays a vital role in regulating flowering in the perilla and is a potential target for molecular breeding in the perilla.
Collapse
Affiliation(s)
- Hee Rang Yun
- Department of Molecular Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Chong Chen
- Department of Molecular Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Jee Hye Kim
- Department of Molecular Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Hae Eun Kim
- Department of Molecular Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Sivabalan Karthik
- Department of Molecular Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Hye Jeong Kim
- Department of Molecular Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Young-Soo Chung
- Department of Molecular Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Hee Soon Baek
- Crazy Peanut, lnc., Dong-A University, Busan, Republic of Korea
| | - Sibum Sung
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, United States
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, Republic of Korea
| | - Jae Bok Heo
- Department of Molecular Genetic Engineering, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
32
|
Zhai Y, Zhu Y, Wang Q, Wang G, Yu Y, Wang L, Liu T, Liu S, Hu Q, Chen S, Chen F, Jiang J. BBX7 interacts with BBX8 to accelerate flowering in chrysanthemum. MOLECULAR HORTICULTURE 2023; 3:7. [PMID: 37789495 PMCID: PMC10515231 DOI: 10.1186/s43897-023-00055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/06/2023] [Indexed: 10/05/2023]
Abstract
The quantitative control of FLOWERING LOCUS T (FT) activation is important for the floral transition in flowering plants. However, the flowering regulation mechanisms in the day-neutral, summer-flowering chrysanthemum plant remain unclear. In this study, the chrysanthemum BBX7 homolog CmBBX7 was isolated and its flowering function was identified. The expression of CmBBX7 showed a diurnal rhythm and CmBBX7 exhibited higher expression levels than CmBBX8. Overexpression of CmBBX7 in transgenic chrysanthemum accelerated flowering, whereas lines transfected with a chimeric repressor (pSRDX-CmBBX7) exhibited delayed flowering. Yeast single hybridization, luciferase, electrophoretic mobility shift, and chromatin immunoprecipitation assays showed that CmBBX7 directly targets CmFTL1. In addition, we found that CmBBX7 and CmBBX8 interact to positively regulate the expression of CmFTL1 through binding to its promoter. Collectively, these results highlight CmBBX7 as a key cooperator in the BBX8-FT module to control chrysanthemum flowering.
Collapse
Affiliation(s)
- Yiwen Zhai
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqing Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohui Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Yu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijun Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shenhui Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Hu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Zhao H, Chen Y, Liu J, Wang Z, Li F, Ge X. Recent advances and future perspectives in early-maturing cotton research. THE NEW PHYTOLOGIST 2023; 237:1100-1114. [PMID: 36352520 DOI: 10.1111/nph.18611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Cotton's fundamental requirements for long periods of growth and specific seasonal temperatures limit the global arable areas that can be utilized to cultivate cotton. This constraint can be alleviated by breeding for early-maturing varieties. By delaying the sowing dates without impacting the boll-opening time, early-maturing varieties not only mitigate the yield losses brought on by unfavorable weathers in early spring and late autumn but also help reducing the competition between cotton and other crops for arable land, thereby optimizing the cropping system. This review presents studies and breeding efforts for early-maturing cotton, which efficiently pyramid early maturity, high-quality, multiresistance traits, and suitable plant architecture by leveraging pleiotropic genes. Attempts are also made to summarize our current understanding of the molecular mechanisms underlying early maturation, which involves many pathways such as epigenetic, circadian clock, and hormone signaling pathways. Moreover, new avenues and effective measures are proposed for fine-scale breeding of early-maturing crops to ensure the healthy development of the agricultural industry.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yanli Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, Hainan, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
34
|
HSFA1a modulates plant heat stress responses and alters the 3D chromatin organization of enhancer-promoter interactions. Nat Commun 2023; 14:469. [PMID: 36709329 PMCID: PMC9884265 DOI: 10.1038/s41467-023-36227-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/19/2023] [Indexed: 01/30/2023] Open
Abstract
The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood. Here, we comprehensively investigated genome-wide chromatin changes associated with transcriptional reprogramming response to heat stress in tomato. Our data show that heat stress induces rapid changes in chromatin architecture, leading to the transient formation of promoter-enhancer contacts, likely driving the expression of heat-stress responsive genes. Furthermore, we demonstrate that chromatin spatial reorganization requires HSFA1a, a transcription factor (TF) essential for heat stress tolerance in tomato. In light of our findings, we propose that TFs play a key role in controlling dynamic transcriptional responses through 3D reconfiguration of promoter-enhancer contacts.
Collapse
|
35
|
Bhattacharjee B, Hallan V. NF-YB family transcription factors in Arabidopsis: Structure, phylogeny, and expression analysis in biotic and abiotic stresses. Front Microbiol 2023; 13:1067427. [PMID: 36733773 PMCID: PMC9887194 DOI: 10.3389/fmicb.2022.1067427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Nuclear factor-Y (NF-Y) transcription factors (TFs) are conserved heterotrimeric complexes present and widespread across eukaryotes. Three main subunits make up the structural and functional aspect of the NF-Y TFs: NF-YA, NF-YB and NF-YC, which bind to the conserved CCAAT- box of the promoter region of specific genes, while also interacting with each other, thereby forming myriad combinations. The NF-YBs are expressed differentially in various tissues and plant development stages, likely impacting many of the cellular processes constitutively and under stress conditions. In this study, ten members of NF-YB family from Arabidopsis thaliana were identified and expression profiles were mined from microarray data under different biotic and abiotic conditions, revealing key insights into the involvement of this class of proteins in the cellular and biological processes in Arabidopsis. Analysis of cis-acting regulatory elements (CAREs) indicated the presence of abiotic and biotic stress-related transcription factor binding sites (TFBs), shedding light on the multifaceted roles of these TFs. Microarray data analysis inferred distinct patterns of expression in various tissues under differing treatments such as drought, cold and heat stress as well as bacterial, fungal, and viral stress, indicating their likelihood of having an expansive range of regulatory functions under native and stressed conditions; while quantitative real-time PCR (qRT-PCR) based expression analysis revealed that these TFs get real-time-modulated in a stress dependent manner. This study, overall, provides an understanding of the AtNF-YB family of TFs in their regulation and participation in various morphogenetic and defense- related pathways and can provide insights for development of transgenic plants for trait dependent studies.
Collapse
Affiliation(s)
- Bipasha Bhattacharjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India,*Correspondence: Vipin Hallan, ✉
| |
Collapse
|
36
|
The NF-Y Transcription Factor Family in Watermelon: Re-Characterization, Assembly of ClNF-Y Complexes, Hormone- and Pathogen-Inducible Expression and Putative Functions in Disease Resistance. Int J Mol Sci 2022; 23:ijms232415778. [PMID: 36555422 PMCID: PMC9778975 DOI: 10.3390/ijms232415778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor that binds to the CCAAT cis-element in the promoters of target genes and plays critical roles in plant growth, development, and stress responses. In the present study, we aimed to re-characterize the ClNF-Y family in watermelon, examine the assembly of ClNF-Y complexes, and explore their possible involvement in disease resistance. A total of 25 ClNF-Y genes (7 ClNF-YAs, 10 ClNF-YBs, and 8 ClNF-YCs) were identified in the watermelon genome. The ClNF-Y family was comprehensively characterized in terms of gene and protein structures, phylogenetic relationships, and evolution events. Different types of cis-elements responsible for plant growth and development, phytohormones, and/or stress responses were identified in the promoters of the ClNF-Y genes. ClNF-YAs and ClNF-YCs were mainly localized in the nucleus, while most of the ClNF-YBs were localized in the cytoplasm of cells. ClNF-YB5, -YB6, -YB7, -YB8, -YB9, and -YB10 interacted with ClNF-YC2, -YC3, -YC4, -YC5, -YC6, -YC7, and -YC8, while ClNF-YB1 and -YB3 interacted with ClNF-YC1. A total of 37 putative ClNF-Y complexes were identified, e.g., ClNF-YA1, -YA2, -YA3, and -YA7 assembled into 13, 8, 8, and 8 ClNF-Y complexes with different ClNF-YB/-YC heterodimers. Most of the ClNF-Y genes responded with distinct expression patterns to defense hormones such as salicylic acid, methyl jasmonate, abscisic acid, and ethylene precursor 1-aminocyclopropane-1-carboxylate, and to infection by the vascular infecting fungus Fusarium oxysporum f. sp. niveum. Overexpression of ClNF-YB1, -YB8, -YB9, ClNF-YC2, and -YC7 in transgenic Arabidopsis resulted in an earlier flowering phenotype. Overexpression of ClNF-YB8 in Arabidopsis led to enhanced resistance while overexpression of ClNF-YA2 and -YC2 resulted in decreased resistance against Botrytis cinerea. Similarly, overexpression of ClNF-YA3, -YB1, and -YC4 strengthened resistance while overexpression of ClNF-YA2 and -YB8 attenuated resistance against Pseudomonas syringae pv. tomato DC3000. The re-characterization of the ClNF-Y family provides a basis from which to investigate the biological functions of ClNF-Y genes in respect of growth, development, and stress response in watermelon, and the identification of the functions of some ClNF-Y genes in disease resistance enables further exploration of the molecular mechanism of ClNF-Ys in the regulation of watermelon immunity against diverse pathogens.
Collapse
|
37
|
Zhou H, Zeng RF, Liu TJ, Ai XY, Ren MK, Zhou JJ, Hu CG, Zhang JZ. Drought and low temperature-induced NF-YA1 activates FT expression to promote citrus flowering. PLANT, CELL & ENVIRONMENT 2022; 45:3505-3522. [PMID: 36117312 DOI: 10.1111/pce.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Flower induction in adult citrus is mainly regulated by drought and low temperatures. However, the mechanism of FLOWERING LOCUS T regulation of citrus flowering (CiFT) under two flower-inductive stimuli remains largely unclear. In this study, a citrus transcription factor, nuclear factor YA (CiNF-YA1), was found to specifically bind to the CiFT promoter by forming a complex with CiNF-YB2 and CiNF-YC2 to activate CiFT expression. CiNF-YA1 was induced in juvenile citrus by low temperature and drought treatments. Overexpression of CiNF-YA1 increased drought susceptibility in transgenic citrus, whereas suppression of CiNF-YA1 enhanced drought tolerance in silenced citrus plants. Furthermore, a GOLDEN2 - LIKE protein (CiFE) that interacts with CiFT protein was also isolated. Further experimental evidence showed that CiFE binds to the citrus LEAFY (CiLFY) promoter and activates its expression. In addition, the expressions of CiNF-YA1 and CiFE showed a seasonal increase during the floral induction period and were induced by artificial drought and low-temperature treatments at which floral induction occurred. These results indicate that CiNF-YA1 may activate CiFT expression in response to drought and low temperatures by binding to the CiFT promoter. CiFT then forms a complex with CiFE to activate CiLFY, thereby promoting the flowering of adult citrus.
Collapse
Affiliation(s)
- Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Tian-Jia Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Yan Ai
- Institute of Pomology and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Meng-Ke Ren
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing-Jing Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
38
|
Tian W, Huang X, Ouyang X. Genome-wide prediction of activating regulatory elements in rice by combining STARR-seq with FACS. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2284-2297. [PMID: 36028476 PMCID: PMC9674312 DOI: 10.1111/pbi.13907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Self-transcribing active regulatory region sequencing (STARR-seq) is widely used to identify enhancers at the whole-genome level. However, whether STARR-seq works as efficiently in plants as in animal systems remains unclear. Here, we determined that the traditional STARR-seq method can be directly applied to rice (Oryza sativa) protoplasts to identify enhancers, though with limited efficiency. Intriguingly, we identified not only enhancers but also constitutive promoters with this technique. To increase the performance of STARR-seq in plants, we optimized two procedures. We coupled fluorescence activating cell sorting (FACS) with STARR-seq to alleviate the effect of background noise, and we minimized PCR cycles and retained duplicates during prediction, which significantly increased the positive rate for activating regulatory elements (AREs). Using this method, we determined that AREs are associated with AT-rich regions and are enriched for a motif that the AP2/ERF family can recognize. Based on GC content preferences, AREs are clustered into two groups corresponding to promoters and enhancers. Either AT- or GC-rich regions within AREs could boost transcription. Additionally, disruption of AREs resulted in abnormal expression of both proximal and distal genes, which suggests that STARR-seq-revealed elements function as enhancers in vivo. In summary, our work provides a promising method to identify AREs in plants.
Collapse
Affiliation(s)
- Wei Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| |
Collapse
|
39
|
Fu R, Wang J, Zhou M, Ren X, Hua J, Liang M. Five NUCLEAR FACTOR-Y subunit B genes in rapeseed (Brassica napus) promote flowering and root elongation in Arabidopsis. PLANTA 2022; 256:115. [PMID: 36371542 DOI: 10.1007/s00425-022-04030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Heterologous expression of BnNF-YB2, BnNF-YB3, BnNF-YB4, BnNF-YB5, or BnNF-YB6 from rapeseed promotes the floral process and also affects root development in Arabidopsis. The transcriptional regulator NUCLEAR FACTOR-Y (NF-Y) is a heterotrimeric complex composed of NF-YA, NF-YB, and NF-YC proteins and is ubiquitous in yeast, animal, and plant systems. In this study, we found that five NF-YB proteins from rapeseed (Brassica napus), including BnNF-YB2, BnNF-YB3, BnNF-YB4, BnNF-YB5, and BnNF-YB6 (BnNF-YB2/3/4/5/6), all function in photoperiodic flowering and root elongation. Sequence alignment and phylogenetic analysis showed that BnNF-YB2/3 and BnNF-YB4/5/6 were clustered with Arabidopsis AtNF-YB2 and AtNF-YB3, respectively, implying that these NF-YBs are evolutionarily and functionally conserved. In support of this hypothesis, the heterologous expression of individual BnNF-YB2, 3, 4, 5, or 6 in Arabidopsis promoted early flowering under a long-day photoperiod. Further analysis suggested that BnNF-YB 2/3/4/5/6 elevated the expression of key downstream flowering time genes including CO, FT, LFY and SOC1. Promoter-GUS fusion analysis showed that the five BnNF-YBs were expressed in a variety of tissues at various developmental stages and GFP fusion analysis revealed that all BnNF-YBs were localized to the nucleus. In addition, we demonstrated that the heterologous expression of individual BnNF-YB2/3/4/5/6 in Arabidopsis promoted root elongation and increased the number of root tips formed under both normal and treatment with simulators of abiotic stress conditions.
Collapse
Affiliation(s)
- Ruixin Fu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210000, Jiangsu, China
- School of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, Henan, China
| | - Ji Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210000, Jiangsu, China
| | - Mengjia Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210000, Jiangsu, China
| | - Xuyang Ren
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210000, Jiangsu, China
| | - Jianyang Hua
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210000, Jiangsu, China
| | - Mingxiang Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
40
|
Wu T, Alizadeh M, Lu B, Cheng J, Hoy R, Bu M, Laqua E, Tang D, He J, Go D, Gong Z, Song L. The transcriptional co-repressor SEED DORMANCY 4-LIKE (AtSDR4L) promotes the embryonic-to-vegetative transition in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2075-2096. [PMID: 36083579 DOI: 10.1111/jipb.13360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Repression of embryonic traits during the seed-to-seedling phase transition requires the inactivation of master transcription factors associated with embryogenesis. How the timing of such inactivation is controlled is unclear. Here, we report on a novel transcriptional co-repressor, Arabidopsis thaliana SDR4L, that forms a feedback inhibition loop with the master transcription factors LEC1 and ABI3 to repress embryonic traits post-imbibition. LEC1 and ABI3 regulate their own expression by inducing AtSDR4L during mid to late embryogenesis. AtSDR4L binds to sites upstream of LEC1 and ABI4, and these transcripts are upregulated in Atsdr4l seedlings. Atsdr4l seedlings phenocopy a LEC1 overexpressor. The embryonic traits of Atsdr4l can be partially rescued by impairing LEC1 or ABI3. The penetrance and expressivity of the Atsdr4l phenotypes depend on both developmental and external cues, demonstrating the importance of AtSDR4L in seedling establishment under suboptimal conditions.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Ryan Hoy
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Miaoyu Bu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Emma Laqua
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Dongxue Tang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Junna He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Dongeun Go
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
41
|
Shi M, Wang C, Wang P, Zhang M, Liao W. Methylation in DNA, histone, and RNA during flowering under stress condition: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111431. [PMID: 36028071 DOI: 10.1016/j.plantsci.2022.111431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Flowering is the most critical transition period in the whole lifecycle of plants, and it is a highly sensitive period to stress. New combinations of temperature, drought stress, carbon dioxide and other abiotic/biotic conditions resulting from contemporary climate change affect the flowering process. Plants have evolved several strategies to deal with environmental stresses, including epigenetic modifications. Numerous studies show that environmental stresses trigger methylation/demethylation during flowering to preserve/accelerate plant lifecycle. What's more, histone and DNA methylation can be induced to respond to stresses, resulting in changes of flowering gene expression and enhancing stress tolerance in plants. Furthermore, RNA methylation may influence stress-regulated flowering by regulating mRNA stability and antioxidant mechanism. Our review presents the involvement of methylation in stress-repressed and stress-induced flowering. The crosstalk between methylation and small RNAs, phytohormones and exogenous substances (such as salicylic acid, nitric oxide) during flowering under different stresses were discussed. The latest regulatory evidence of RNA methylation in stress-regulated flowering was collected for the first time. Meanwhile, the limited evidences of methylation in biotic stress-induced flowering were summarized. Thus, the review provides insights into understanding of methylation mechanism in stress-regulated flowering and makes use for the development of regulating plant flowering at epigenetic level in the future.
Collapse
Affiliation(s)
- Meimei Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
42
|
Liu H, Guo Y, Wang H, Yang W, Yang J, Zhang J, Liu D, El-Kassaby YA, Li W. Involvement of PtCOL5-PtNF-YC4 in reproductive cone development and gibberellin signaling in Chinese pine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111383. [PMID: 35850285 DOI: 10.1016/j.plantsci.2022.111383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
It is well documented that the CO/NF-YB/NF-YC trimer (NF-Y-CO) binds and regulates the FT promoter. However, the FT/TFL1-like (FLOWERING LOCUS T/TERMINALFLOWER1-like) genes in gymnosperms are all flowering suppressors, and the regulation model of NF-Y in gymnosperms is different from that in angiosperms. Here, using Chinese pine (Pinus tabuliformis), we identified a CONSTANS-LIKE gene, PtCOL5, the expression of which was strongly induced during cones development and it functioned as a repressor of flowering. PtNF-YC4, which interacted with PtCOL5, was highly correlated with PtCOL5 during growth and development, has been demonstrated. Moreover, PtNF-YC4 and PtCOL5 can bind to PtTFL2 promoter, and their interaction can enhance PtTFL2 expression. Interestingly, we found PtNF-YC4 and PtCOL5 were involved in gibberellin signaling and their interaction was inhibited by PtDELLA protein, thus affecting PtTFL2 expression. Collectively, PtCOL5-PtNF-YC4 was involved in reproductive cone development and gibberellin signaling in Chinese pine. Our findings uncovered reproductive cone development and signal transduction mechanism of COL-NF-Y in gymnosperms.
Collapse
Affiliation(s)
- Hongmei Liu
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Yingtian Guo
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Huili Wang
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Wenbin Yang
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Junhe Yang
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Jingxing Zhang
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Dan Liu
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Wei Li
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| |
Collapse
|
43
|
Cui L, Zheng F, Wang J, Zhang C, Zhang D, Gao S, Zhang C, Ye J, Zhang Y, Ouyang B, Wang T, Hong Z, Ye Z, Zhang J. The tomato CONSTANS-LIKE protein SlCOL1 regulates fruit yield by repressing SFT gene expression. BMC PLANT BIOLOGY 2022; 22:429. [PMID: 36071376 PMCID: PMC9454169 DOI: 10.1186/s12870-022-03813-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/24/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND CONSTANS (CO) and CONSTANS-LIKE (COL) transcription factors have been known to regulate a series of cellular processes including the transition from the vegetative growth to flower development in plants. However, their role in regulating fruit yield in tomato is poorly understood. RESULT In this study, the tomato ortholog of Arabidopsis CONSTANS, SlCOL1, was shown to play key roles in the control of flower development and fruit yield. Suppression of SlCOL1 expression in tomato was found to lead to promotion of flower and fruit development, resulting in increased tomato fruit yield. On the contrary, overexpression of SlCOL1 disturbed flower and fruit development, and significantly reduced tomato fruit yield. Genetic and biochemical evidence indicated that SlCOL1 controls inflorescence development by directly binding to the promoter region of tomato inflorescence-associated gene SINGLE-FLOWER TRUSS (SFT) and negatively regulating its expression. Additionally, we found that SlCOL1 can also negatively regulate fruit size in tomato. CONCLUSIONS Tomato SlCOL1 binds to the promoter of the SFT gene, down-regulates its expression, and plays a key role in reducing the fruit size.
Collapse
Affiliation(s)
- Long Cui
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangyan Zheng
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiafa Wang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunli Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dedi Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sunan Gao
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenhui Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuyang Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Ouyang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taotao Wang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Zhibiao Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
44
|
Zhang S, Guo X, Li J, Zhang Y, Yang Y, Zheng W, Xue X. Effects of light-emitting diode spectral combinations on growth and quality of pea sprouts under long photoperiod. FRONTIERS IN PLANT SCIENCE 2022; 13:978462. [PMID: 36161035 PMCID: PMC9490185 DOI: 10.3389/fpls.2022.978462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Pea sprouts have rich nutrition and are considered good for heart health. In this study, the kaspa peas and black-eyed peas were chosen to clarify the effect of different LED spectral combinations on the growth, yield, and nutritional quality of pea sprouts under long photoperiod (22 h light/2 h dark). The results showed that the two pea varieties responded differently to light spectral combinations. Black-eyed pea sprouts had higher plant height, fresh weight per plant, dry weight per plant, soluble sugar content, and lower malondialdehyde (MDA) content than kaspa peas under the same light treatment. Compared with white light, red-to-blue ratio of 2:1 significantly increased peroxidase (POD) and superoxide dismutase (SOD) activity, soluble sugar and soluble protein content of kaspa pea sprouts, and decreased MDA content of black-eyed pea sprouts. Blue light was negatively correlated with the plant height of pea sprouts and positively correlated with SOD activity, vitamin C, soluble sugar, and soluble protein content. Antioxidant capacity, yield, and nutritional quality of black-eyed pea sprouts were higher than those of kaspa pea sprouts under the same light treatment. Blue light improved the nutritional quality of pea sprouts. Compared with other light treatments, the red-to-blue ratio of 2:1 was more conducive to improving the antioxidant capacity and nutritional quality of pea sprouts under long photoperiod.
Collapse
Affiliation(s)
- Siqi Zhang
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaolei Guo
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Junyan Li
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Youming Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wengang Zheng
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Xuzhang Xue
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| |
Collapse
|
45
|
Plewiński P, Rychel-Bielska S, Kozak B, Maureira-Butler IJ, Iqbal MM, Nelson MN, Książkiewicz M. FLOWERING LOCUS T indel variants confer vernalization-independent and photoperiod-insensitive flowering of yellow lupin ( Lupinus luteus L.). HORTICULTURE RESEARCH 2022; 9:uhac180. [PMID: 36338848 PMCID: PMC9627521 DOI: 10.1093/hr/uhac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Ongoing climate change has considerably reduced the seasonal window for crop vernalization, concurrently expanding cultivation area into northern latitudes with long-day photoperiod. To address these changes, cool season legume breeders need to understand molecular control of vernalization and photoperiod. A key floral transition gene integrating signals from these pathways is the Flowering locus T (FT). Here, a recently domesticated grain legume, yellow lupin (Lupinus luteus L.), was explored for potential involvement of FT homologues in abolition of vernalization and photoperiod requirements. Two FTa (LlutFTa1a and LlutFTa1b) and FTc (LlutFTc1 and LlutFTc2) homologues were identified and sequenced for two contrasting parents of a reference recombinant inbred line (RIL) population, an early-flowering cultivar Wodjil and a late-flowering wild-type P28213. Large deletions were detected in the 5' promoter regions of three FT homologues. Quantitative trait loci were identified for flowering time and vernalization response in the RIL population and in a diverse panel of wild and domesticated accessions. A 2227 bp deletion found in the LlutFTc1 promoter was linked with early phenology and vernalization independence, whereas LlutFTa1a and LlutFTc2 indels with photoperiod responsiveness. Comparative mapping highlighted convergence of FTc1 indel evolution in two Old World lupin species, addressing both artificial selection during domestication and natural adaptation to short season environmental conditions. We concluded that rapid flowering in yellow lupin is associated with the de-repression of the LlutFTc1 homologue from the juvenile phase, putatively due to the elimination of all binding sites in the promoter region for the AGAMOUS-like 15 transcription factor.
Collapse
Affiliation(s)
- Piotr Plewiński
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Iván J Maureira-Butler
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Chile
| | - Muhammad Munir Iqbal
- Centre for Plant Genetics and Breeding, The University of Western Australia, Perth, 6009, WA, Australia
- Genomics WA, Joint initiative of Telethon Kids Institute, Harry Perkins Institute of Medical Research and The University of Western Australia, QEII campus, Nedlands, 6009, Western Australia, Australia
| | - Matthew N Nelson
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| | | |
Collapse
|
46
|
Gramzow L, Klupsch K, Fernández-Pozo N, Hölzer M, Marz M, Rensing SA, Theißen G. Comparative transcriptomics identifies candidate genes involved in the evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae). BMC PLANT BIOLOGY 2022; 22:340. [PMID: 35836106 PMCID: PMC9281134 DOI: 10.1186/s12870-022-03631-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/03/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Fruits are the seed-bearing structures of flowering plants and are highly diverse in terms of morphology, texture and maturation. Dehiscent fruits split open upon maturation to discharge their seeds while indehiscent fruits are dispersed as a whole. Indehiscent fruits evolved from dehiscent fruits several times independently in the crucifer family (Brassicaceae). The fruits of Lepidium appelianum, for example, are indehiscent while the fruits of the closely related L. campestre are dehiscent. Here, we investigate the molecular and genetic mechanisms underlying the evolutionary transition from dehiscent to indehiscent fruits using these two Lepidium species as model system. RESULTS We have sequenced the transcriptomes and small RNAs of floral buds, flowers and fruits of L. appelianum and L. campestre and analyzed differentially expressed genes (DEGs) and differently differentially expressed genes (DDEGs). DEGs are genes that show significantly different transcript levels in the same structures (buds, flowers and fruits) in different species, or in different structures in the same species. DDEGs are genes for which the change in expression level between two structures is significantly different in one species than in the other. Comparing the two species, the highest number of DEGs was found in flowers, followed by fruits and floral buds while the highest number of DDEGs was found in fruits versus flowers followed by flowers versus floral buds. Several gene ontology terms related to cell wall synthesis and degradation were overrepresented in different sets of DEGs highlighting the importance of these processes for fruit opening. Furthermore, the fruit valve identity genes FRUITFULL and YABBY3 were among the DEGs identified. Finally, the microRNA miR166 as well as the TCP transcription factors BRANCHED1 (BRC1) and TCP FAMILY TRANSCRIPTION FACTOR 4 (TCP4) were found to be DDEGs. CONCLUSIONS Our study reveals differences in gene expression between dehiscent and indehiscent fruits and uncovers miR166, BRC1 and TCP4 as candidate genes for the evolutionary transition from dehiscent to indehiscent fruits in Lepidium.
Collapse
Affiliation(s)
- Lydia Gramzow
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Katharina Klupsch
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Noé Fernández-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, 35043, Marburg, Germany
- Departamento de Fruticultura Subtropical y Mediterránea, IHSM - CSIC - UMA, Málaga, 29010, Spain
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
- Present Address: Methodology and Research Infrastructure/Bioinformatics, Robert Koch Institute, 13353, Berlin, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, 35043, Marburg, Germany
- Centre for Biological Signaling Studies (BIOSS), University of Freiburg, 79108, Freiburg, Germany
| | - Günter Theißen
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
47
|
Identification and Characterization of Abiotic Stress–Responsive NF-YB Family Genes in Medicago. Int J Mol Sci 2022; 23:ijms23136906. [PMID: 35805915 PMCID: PMC9266772 DOI: 10.3390/ijms23136906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 12/05/2022] Open
Abstract
Nuclear factor YB (NF-YB) are plant-specific transcription factors that play a critical regulatory role in plant growth and development as well as in plant resistance against various stresses. In this study, a total of 49 NF-YB genes were identified from the genomes of Medicago truncatula and Medicago sativa. Multiple sequence alignment analysis showed that all of these NF-YB members contain DNA binding domain, NF-YA interaction domain and NF-YC interaction domain. Phylogenetic analysis suggested that these NF-YB proteins could be classified into five distinct clusters. We also analyzed the exon–intron organizations and conserved motifs of these NF-YB genes and their deduced proteins. We also found many stress-related cis-acting elements in their promoter region. In addition, analyses on genechip for M. truncatula and transcriptome data for M. sativa indicated that these NF-YB genes exhibited a distinct expression pattern in various tissues; many of these could be induced by drought and/or salt treatments. In particular, RT-qPCR analysis revealed that the expression levels of gene pairs MsNF-YB27/MtNF-YB15 and MsNF-YB28/MtNF-YB16 were significantly up-regulated under NaCl and mannitol treatments, indicating that they are most likely involved in salt and drought stress response. Taken together, our study on NF-YB family genes in Medicago is valuable for their functional characterization, as well as for the application of NF-YB genes in genetic breeding for high-yield and high-resistance alfalfa.
Collapse
|
48
|
Mishra M, Rathore RS, Joshi R, Pareek A, Singla-Pareek SL. DTH8 overexpression induces early flowering, boosts yield, and improves stress recovery in rice cv IR64. PHYSIOLOGIA PLANTARUM 2022; 174:e13691. [PMID: 35575899 DOI: 10.1111/ppl.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Rice yield and heading date are the two discrete traits controlled by quantitative trait loci (QTLs). Both traits are influenced by the genetic make-up of the plant as well as the environmental factors where it thrives. Drought and salinity adversely affect crop productivity in many parts of the world. Tolerance to these stresses is multigenic and complex in nature. In this study, we have characterized a QTL, DTH8 (days to heading) from Oryza sativa L. cv IR64 that encodes a putative HAP3/NF-YB/CBF subunit of CCAAT-box binding protein (HAP complex). We demonstrate DTH8 to be positively influencing the yield, heading date, and stress tolerance in IR64. DTH8 up-regulates the transcription of RFT1, Hd3a, GHD7, MOC1, and RCN1 in IR64 at the pre-flowering stage and plays a role in early flowering, increased number of tillers, enhanced panicle branching, and improved tolerance towards drought and salinity stress at the reproductive stage. The presence of DTH8 binding elements (CCAAT) in the promoter regions of all of these genes, predicted by in silico analysis of the promoter region, indicates the regulation of their expression by DTH8. In addition, DTH8 overexpressing transgenic lines showed favorable physiological parameters causing less yield penalty under stress than the WT plants. Taken together, DTH8 is a positive regulator of the network of genes related to early flowering/heading, higher yield, as well as salinity and drought stress tolerance, thus, enabling the crops to adapt to a wide range of climatic conditions.
Collapse
Affiliation(s)
- Manjari Mishra
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ray Singh Rathore
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rohit Joshi
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
49
|
Rozov SM, Permyakova NV, Sidorchuk YV, Deineko EV. Optimization of Genome Knock-In Method: Search for the Most Efficient Genome Regions for Transgene Expression in Plants. Int J Mol Sci 2022; 23:ijms23084416. [PMID: 35457234 PMCID: PMC9027324 DOI: 10.3390/ijms23084416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Plant expression systems are currently regarded as promising alternative platforms for the production of recombinant proteins, including the proteins for biopharmaceutical purposes. However, the accumulation level of a target protein in plant expression systems is still rather low compared with the other existing systems, namely, mammalian, yeast, and E. coli cells. To solve this problem, numerous methods and approaches have been designed and developed. At the same time, the random nature of the distribution of transgenes over the genome can lead to gene silencing, variability in the accumulation of recombinant protein, and also to various insertional mutations. The current research study considered inserting target genes into pre-selected regions of the plant genome (genomic “safe harbors”) using the CRISPR/Cas system. Regions of genes expressed constitutively and at a high transcriptional level in plant cells (housekeeping genes) that are of interest as attractive targets for the delivery of target genes were characterized. The results of the first attempts to deliver target genes to the regions of housekeeping genes are discussed. The approach of “euchromatization” of the transgene integration region using the modified dCas9 associated with transcription factors is considered. A number of the specific features in the spatial chromatin organization allowing individual genes to efficiently transcribe are discussed.
Collapse
|
50
|
Xu X, Xu J, Yuan C, Chen Q, Liu Q, Wang X, Qin C. BBX17 Interacts with CO and Negatively Regulates Flowering Time in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2022; 63:401-409. [PMID: 35016218 DOI: 10.1093/pcp/pcac005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Floral transition, the change from vegetative growth to reproductive development, is dramatic in flowering plants. Here, we show that one subgroup III member of the B-box (BBX) family, BBX17, is a repressor of floral transition under long-day conditions. BBX17 contains a B-box domain and a CCT domain. Although the phenotype of the BBX17 loss-of-function plants was comparable to that of wild-type plants, BBX17-overexpression plants displayed a delayed-flowering phenotype under long-day conditions. The delayed-flowering phenotype was not the result of an altered CONSTANS (CO) expression level but rather the repression of the FLOWERING LOCUS T (FT) expression level. BBX17 physically associated with CO and repressed its ability to control FT expression. Furthermore, the BBX17 protein degraded in the dark, but irradiating seedlings with white, blue, red or far-red light stabilized the BBX17 level. We also proved that the degradation of BBX17 was via 26S proteasome and requires COP1. Thus, BBX17 acts as a key factor in the CO-FT regulatory system to control Arabidopsis thaliana flowering.
Collapse
Affiliation(s)
- Xiaorui Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingya Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chen Yuan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qianqian Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qinggang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agriproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|