1
|
Chang Y, Gong W, Xu J, Gong H, Song Q, Xiao S, Yuan D. Integration of semi- in vivo assays and multi-omics data reveals the effect of galloylated catechins on self-pollen tube inhibition in Camellia oleifera. HORTICULTURE RESEARCH 2023; 10:uhac248. [PMID: 36643738 PMCID: PMC9832949 DOI: 10.1093/hr/uhac248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/04/2022] [Indexed: 05/02/2023]
Abstract
Camellia oil extracted from the seeds of Camellia oleifera Abel. is a popular and high-quality edible oil, but its yield is limited by seed setting, which is mainly caused by self-incompatibility (SI). One of the obvious biological features of SI plants is the inhibition of self-pollen tubes; however, the underlying mechanism of this inhibition in C. oleifera is poorly understood. In this study, we constructed a semi-in vivo pollen tube growth test (SIV-PGT) system that can screen for substances that inhibit self-pollen tubes without interference from the genetic background. Combined with multi-omics analysis, the results revealed the important role of galloylated catechins in self-pollen tube inhibition, and a possible molecular regulatory network mediated by UDP-glycosyltransferase (UGT) and serine carboxypeptidase-like (SCPL) was proposed. In summary, galloylation of catechins and high levels of galloylated catechins are specifically involved in pollen tube inhibition under self-pollination rather than cross-pollination, which provides a new understanding of SI in C. oleifera. These results will contribute to sexual reproduction research on C. oleifera and provide theoretical support for improving Camellia oil yield in production.
Collapse
Affiliation(s)
- Yihong Chang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wenfang Gong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jinming Xu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Han Gong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiling Song
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Shixin Xiao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
2
|
Klodová B, Potěšil D, Steinbachová L, Michailidis C, Lindner AC, Hackenberg D, Becker JD, Zdráhal Z, Twell D, Honys D. Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis. PLANT REPRODUCTION 2022:10.1007/s00497-022-00452-5. [PMID: 36282332 PMCID: PMC10363097 DOI: 10.1007/s00497-022-00452-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Sexual reproduction in angiosperms requires the production and delivery of two male gametes by a three-celled haploid male gametophyte. This demands synchronized gene expression in a short developmental window to ensure double fertilization and seed set. While transcriptomic changes in developing pollen are known for Arabidopsis, no studies have integrated RNA and proteomic data in this model. Further, the role of alternative splicing has not been fully addressed, yet post-transcriptional and post-translational regulation may have a key role in gene expression dynamics during microgametogenesis. We have refined and substantially updated global transcriptomic and proteomic changes in developing pollen for two Arabidopsis accessions. Despite the superiority of RNA-seq over microarray-based platforms, we demonstrate high reproducibility and comparability. We identify thousands of long non-coding RNAs as potential regulators of pollen development, hundreds of changes in alternative splicing and provide insight into mRNA translation rate and storage in developing pollen. Our analysis delivers an integrated perspective of gene expression dynamics in developing Arabidopsis pollen and a foundation for studying the role of alternative splicing in this model.
Collapse
Affiliation(s)
- Božena Klodová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Praha 2, 128 00, Czech Republic
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Christos Michailidis
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Ann-Cathrin Lindner
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- KWS SAAT SE & Co. KGaA, Grimsehlstraße 31, 37574, Einbeck, Germany
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
3
|
Liu W, Sun J, Li J, Liu C, Si F, Yan B, Wang Z, Song X, Yang Y, Zhu Y, Cao X. Reproductive tissue-specific translatome of a rice thermo-sensitive genic male sterile line. J Genet Genomics 2022; 49:624-635. [PMID: 35041992 DOI: 10.1016/j.jgg.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Translational regulation, especially tissue- or cell type-specific gene regulation, plays essential roles in plant growth and development. Thermo-sensitive genic male sterile (TGMS) lines have been widely used for hybrid breeding in rice (Oryza sativa). However, little is known about translational regulation during reproductive stage in TGMS rice. Here, we used translating ribosome affinity purification (TRAP) combined with RNA sequencing to investigate the reproductive tissue-specific translatome of TGMS rice expressing FLAG-tagged ribosomal protein L18 (RPL18) from the germline-specific promoter MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1). Differentially expressed genes at the transcriptional and translational levels were enriched in pollen and anther-related formation and development processes. These contained a number of genes reported to be involved in tapetum programmed cell death (PCD) and lipid metabolism during pollen development and anther dehiscence in rice, including several encoding transcription factors and key enzymes, as well as several long non-coding RNAs (lncRNAs) that potentially affect tapetum and pollen-related genes in male sterility. This study represents the first comprehensive reproductive tissue-specific characterization of the translatome in TGMS rice. These results contribute to our understanding of the molecular basis of sterility in TGMS rice and will facilitate further genetic manipulation of TGMS rice in two-line breeding systems.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ji Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuyan Si
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanzhu Yang
- Department of Rice Breeding, Hunan Yahua Seed Scientific Research Institute, Changsha 410119, Hunan, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Poidevin L, Forment J, Unal D, Ferrando A. Transcriptome and translatome changes in germinated pollen under heat stress uncover roles of transporter genes involved in pollen tube growth. PLANT, CELL & ENVIRONMENT 2021; 44:2167-2184. [PMID: 33289138 DOI: 10.1111/pce.13972] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 05/12/2023]
Abstract
Plant reproduction is one key biological process that is very sensitive to heat stress and, as a result, enhanced global warming becomes a serious threat to agriculture. In this work, we have studied the effects of heat on germinated pollen of Arabidopsis thaliana both at the transcriptional and translational level. We have used a high-resolution ribosome profiling technology to provide a comprehensive study of the transcriptome and the translatome of germinated pollen at permissive and restrictive temperatures. We have found significant down-regulation of key membrane transporters required for pollen tube growth by heat, thus uncovering heat-sensitive targets. A subset of the heat-repressed transporters showed coordinated up-regulation with canonical heat-shock genes at permissive conditions. We also found specific regulations at the translational level and we have uncovered the presence of ribosomes on sequences annotated as non-coding. Our results demonstrate that heat impacts mostly on membrane transporters thus explaining the deleterious effects of heat stress on pollen growth. The specific regulations at the translational level and the presence of ribosomes on non-coding RNAs highlights novel regulatory aspects on plant fertilization.
Collapse
Affiliation(s)
- Laetitia Poidevin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Dilek Unal
- Biotechnology Application and Research Center, and Department of Molecular Biology, Faculty of Science and Letter, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
5
|
Chaturvedi P, Wiese AJ, Ghatak A, Záveská Drábková L, Weckwerth W, Honys D. Heat stress response mechanisms in pollen development. THE NEW PHYTOLOGIST 2021; 231:571-585. [PMID: 33818773 PMCID: PMC9292940 DOI: 10.1111/nph.17380] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 05/03/2023]
Abstract
Being rooted in place, plants are faced with the challenge of responding to unfavourable local conditions. One such condition, heat stress, contributes massively to crop losses globally. Heatwaves are predicted to increase, and it is of vital importance to generate crops that are tolerant to not only heat stress but also to several other abiotic stresses (e.g. drought stress, salinity stress) to ensure that global food security is protected. A better understanding of the molecular mechanisms that underlie the temperature stress response in pollen will be a significant step towards developing effective breeding strategies for high and stable production in crop plants. While most studies have focused on the vegetative phase of plant growth to understand heat stress tolerance, it is the reproductive phase that requires more attention as it is more sensitive to elevated temperatures. Every phase of reproductive development is affected by environmental challenges, including pollen and ovule development, pollen tube growth, male-female cross-talk, fertilization, and embryo development. In this review we summarize how pollen is affected by heat stress and the molecular mechanisms employed during the stress period, as revealed by classical and -omics experiments.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Anna J. Wiese
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Lenka Záveská Drábková
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14Vienna1090Austria
| | - David Honys
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| |
Collapse
|
6
|
Abstract
The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis-a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell-cell communication within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| |
Collapse
|
7
|
Motomura K, Takeuchi H, Notaguchi M, Tsuchi H, Takeda A, Kinoshita T, Higashiyama T, Maruyama D. Persistent directional growth capability in Arabidopsis thaliana pollen tubes after nuclear elimination from the apex. Nat Commun 2021; 12:2331. [PMID: 33888710 PMCID: PMC8062503 DOI: 10.1038/s41467-021-22661-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
During the double fertilization process, pollen tubes deliver two sperm cells to an ovule containing the female gametes. In the pollen tube, the vegetative nucleus and sperm cells move together to the apical region where the vegetative nucleus is thought to play a crucial role in controlling the direction and growth of the pollen tube. Here, we report the generation of pollen tubes in Arabidopsis thaliana whose vegetative nucleus and sperm cells are isolated and sealed by callose plugs in the basal region due to apical transport defects induced by mutations in the WPP domain-interacting tail-anchored proteins (WITs) and sperm cell-specific expression of a dominant mutant of the CALLOSE SYNTHASE 3 protein. Through pollen-tube guidance assays, we show that the physiologically anuclear mutant pollen tubes maintain the ability to grow and enter ovules. Our findings provide insight into the sperm cell delivery mechanism and illustrate the independence of the tip-localized vegetative nucleus from directional growth control of the pollen tube.
Collapse
Affiliation(s)
- Kazuki Motomura
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.,JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Hidenori Takeuchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.,Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Michitaka Notaguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.,Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Haruna Tsuchi
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Atsushi Takeda
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.,College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
8
|
Kodera C, Just J, Da Rocha M, Larrieu A, Riglet L, Legrand J, Rozier F, Gaude T, Fobis-Loisy I. The molecular signatures of compatible and incompatible pollination in Arabidopsis. BMC Genomics 2021; 22:268. [PMID: 33853522 PMCID: PMC8048354 DOI: 10.1186/s12864-021-07503-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Background Fertilization in flowering plants depends on the early contact and acceptance of pollen grains by the receptive papilla cells of the stigma. Deciphering the specific transcriptomic response of both pollen and stigmatic cells during their interaction constitutes an important challenge to better our understanding of this cell recognition event. Results Here we describe a transcriptomic analysis based on single nucleotide polymorphisms (SNPs) present in two Arabidopsis thaliana accessions, one used as female and the other as male. This strategy allowed us to distinguish 80% of transcripts according to their parental origins. We also developed a tool which predicts male/female specific expression for genes without SNP. We report an unanticipated transcriptional activity triggered in stigma upon incompatible pollination and show that following compatible interaction, components of the pattern-triggered immunity (PTI) pathway are induced on the female side. Conclusions Our work unveils the molecular signatures of compatible and incompatible pollinations both at the male and female side. We provide invaluable resource and tools to identify potential new molecular players involved in pollen-stigma interaction. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07503-7.
Collapse
Affiliation(s)
- Chie Kodera
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France. .,Present Address: Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France.
| | - Jérémy Just
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Martine Da Rocha
- INRAE, Université Côte d'Azur, CNRS, ISA 400 route des Chappes BP 167, F-06903, Sophia Antipolis Cedex, France
| | - Antoine Larrieu
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.,Present Address: Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lucie Riglet
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.,Present Address: Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | - Jonathan Legrand
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Thierry Gaude
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Isabelle Fobis-Loisy
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.
| |
Collapse
|
9
|
Urquidi-Camacho RA, Lokdarshi A, von Arnim AG. Translational gene regulation in plants: A green new deal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1597. [PMID: 32367681 PMCID: PMC9258721 DOI: 10.1002/wrna.1597] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The molecular machinery for protein synthesis is profoundly similar between plants and other eukaryotes. Mechanisms of translational gene regulation are embedded into the broader network of RNA-level processes including RNA quality control and RNA turnover. However, over eons of their separate history, plants acquired new components, dropped others, and generally evolved an alternate way of making the parts list of protein synthesis work. Research over the past 5 years has unveiled how plants utilize translational control to defend themselves against viruses, regulate translation in response to metabolites, and reversibly adjust translation to a wide variety of environmental parameters. Moreover, during seed and pollen development plants make use of RNA granules and other translational controls to underpin developmental transitions between quiescent and metabolically active stages. The economics of resource allocation over the daily light-dark cycle also include controls over cellular protein synthesis. Important new insights into translational control on cytosolic ribosomes continue to emerge from studies of translational control mechanisms in viruses. Finally, sketches of coherent signaling pathways that connect external stimuli with a translational response are emerging, anchored in part around TOR and GCN2 kinase signaling networks. These again reveal some mechanisms that are familiar and others that are different from other eukaryotes, motivating deeper studies on translational control in plants. This article is categorized under: Translation > Translation Regulation RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Ricardo A. Urquidi-Camacho
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996
| | - Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology and UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
10
|
Adhikari PB, Liu X, Wu X, Zhu S, Kasahara RD. Fertilization in flowering plants: an odyssey of sperm cell delivery. PLANT MOLECULAR BIOLOGY 2020; 103:9-32. [PMID: 32124177 DOI: 10.1007/s11103-020-00987-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/22/2023]
Abstract
In light of the available discoveries in the field, this review manuscript discusses on plant reproduction mechanism and molecular players involved in the process. Sperm cells in angiosperms are immotile and are physically distant to the female gametophytes (FG). To secure the production of the next generation, plants have devised a clever approach by which the two sperm cells in each pollen are safely delivered to the female gametophyte where two fertilization events occur (by each sperm cell fertilizing an egg cell and central cell) to give rise to embryo and endosperm. Each of the successfully fertilized ovules later develops into a seed. Sets of macromolecules play roles in pollen tube (PT) guidance, from the stigma, through the transmitting tract and funiculus to the micropylar end of the ovule. Other sets of genetic players are involved in PT reception and in its rupture after it enters the ovule, and yet other sets of genes function in gametic fusion. Angiosperms have come long way from primitive reproductive structure development to today's sophisticated, diverse, and in most cases flamboyant organ. In this review, we will be discussing on the intricate yet complex molecular mechanism of double fertilization and how it might have been shaped by the evolutionary forces focusing particularly on the model plant Arabidopsis.
Collapse
Affiliation(s)
- Prakash B Adhikari
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shaowei Zhu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ryushiro D Kasahara
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
11
|
Gray SB, Rodriguez‐Medina J, Rusoff S, Toal TW, Kajala K, Runcie DE, Brady SM. Translational regulation contributes to the elevated CO 2 response in two Solanum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:383-397. [PMID: 31797460 PMCID: PMC7216843 DOI: 10.1111/tpj.14632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 05/12/2023]
Abstract
Understanding the impact of elevated CO2 (eCO2 ) in global agriculture is important given climate change projections. Breeding climate-resilient crops depends on genetic variation within naturally varying populations. The effect of genetic variation in response to eCO2 is poorly understood, especially in crop species. We describe the different ways in which Solanum lycopersicum and its wild relative S. pennellii respond to eCO2 , from cell anatomy, to the transcriptome, and metabolome. We further validate the importance of translational regulation as a potential mechanism for plants to adaptively respond to rising levels of atmospheric CO2 .
Collapse
Affiliation(s)
- Sharon B. Gray
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Joel Rodriguez‐Medina
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Samuel Rusoff
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Ted W. Toal
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Kaisa Kajala
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
- Present address:
Plant EcophysiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Daniel E. Runcie
- Department of Plant SciencesUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| | - Siobhan M. Brady
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| |
Collapse
|
12
|
Traubenik S, Blanco F, Zanetti ME, Reynoso MA. TRAP-SEQ of Eukaryotic Translatomes Applied to the Detection of Polysome-Associated Long Noncoding RNAs. Methods Mol Biol 2020; 2166:451-472. [PMID: 32710425 DOI: 10.1007/978-1-0716-0712-1_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Translating ribosome affinity purification (TRAP) technology allows the isolation of polysomal complexes and the RNAs associated with at least one 80S ribosome. TRAP consists of the stabilization and affinity purification of polysomes containing a tagged version of a ribosomal protein. Quantitative assessment of the TRAP RNA is achieved by direct sequencing (TRAP-SEQ), which provides accurate quantitation of ribosome-associated RNAs, including long noncoding RNAs (lncRNAs). Here we present an updated procedure for TRAP-SEQ, as well as a primary analysis guide for identification of ribosome-associated lncRNAs. This methodology enables the study of dynamic association of lncRNAs by assessing rapid changes in their transcript levels in polysomes at organ or cell-type level, during development, or in response to endogenous or exogenous stimuli.
Collapse
Affiliation(s)
- Soledad Traubenik
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Mauricio A Reynoso
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina.
| |
Collapse
|
13
|
Sankaranarayanan S, Ju Y, Kessler SA. Reactive Oxygen Species as Mediators of Gametophyte Development and Double Fertilization in Flowering Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1199. [PMID: 32849744 PMCID: PMC7419745 DOI: 10.3389/fpls.2020.01199] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species (ROS) are toxic by-products of aerobic metabolism. In plants, they also function as important signaling molecules that regulate biotic and abiotic stress responses as well as plant growth and development. Recent studies have implicated ROS in various aspects of plant reproduction. In male gametophytes, ROS are associated with germline development as well as the developmentally associated programmed cell death of tapetal cells necessary for microspore development. ROS have a role in regulation of female gametophyte patterning and maintenance of embryo sac polarity. During pollination, ROS play roles in the generation of self-incompatibility response during pollen-pistil interaction, pollen tube growth, pollen tube burst for sperm release and fertilization. In this mini review, we provide an overview of ROS production and signaling in the context of plant reproductive development, from female and male gametophyte development to fertilization.
Collapse
Affiliation(s)
- Subramanian Sankaranarayanan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Subramanian Sankaranarayanan, ; Sharon A. Kessler,
| | - Yan Ju
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Sharon A. Kessler
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Subramanian Sankaranarayanan, ; Sharon A. Kessler,
| |
Collapse
|
14
|
Marchais A, Chevalier C, Voinnet O. Extensive profiling in Arabidopsis reveals abundant polysome-associated 24-nt small RNAs including AGO5-dependent pseudogene-derived siRNAs. RNA (NEW YORK, N.Y.) 2019; 25:1098-1117. [PMID: 31138671 PMCID: PMC6800511 DOI: 10.1261/rna.069294.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/07/2019] [Indexed: 05/19/2023]
Abstract
In a reductionist perspective, plant silencing small (s)RNAs are often classified as mediating nuclear transcriptional gene silencing (TGS) or cytosolic posttranscriptional gene silencing (PTGS). Among the PTGS diagnostics is the association of AGOs and their sRNA cargos with the translation apparatus. In Arabidopsis, this is observed for AGO1 loaded with micro(mi)RNAs and, accordingly, translational-repression (TR) is one layer of plant miRNA action. Using AGO1:miRNA-mediated TR as a paradigm, we explored, with two unrelated polysome-isolation methods, which, among the ten Arabidopsis AGOs and numerous sRNA classes, interact with translation. We found that representatives of all three AGO-clades associate with polysomes, including the TGS-effector AGO4 and stereotypical 24-nt sRNAs that normally mediate TGS of transposons/repeats. Strikingly, approximately half of these annotated 24-nt siRNAs displayed unique matches in coding regions/introns of genes, and in pseudogenes, but not in transposons/repeats commonly found in their vicinity. Protein-coding gene-derived 24-nt sRNAs correlate with gene-body methylation. Those derived from pseudogenes belong to two main clusters defined by their parental-gene expression patterns, and are vastly enriched in AGO5, itself found on polysomes. Based on their tight expression pattern in developing and mature siliques, their biogenesis, and genomic/epigenomic features of their loci-of-origin, we discuss potential roles for these hitherto unknown polysome-enriched, pseudogene-derived siRNAs.
Collapse
Affiliation(s)
- Antonin Marchais
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Clément Chevalier
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| |
Collapse
|
15
|
Misra CS, Santos MR, Rafael-Fernandes M, Martins NP, Monteiro M, Becker JD. Transcriptomics of Arabidopsis sperm cells at single-cell resolution. PLANT REPRODUCTION 2019; 32:29-38. [PMID: 30675644 DOI: 10.1007/s00497-018-00355-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 05/22/2023]
Abstract
We present a detailed protocol for isolation of single sperm cells and transcriptome analysis to study variation in gene expression between sperm cells. Male gametophyte development in flowering plants begins with a microspore mother cell, which upon two consecutive cell divisions forms a mature pollen grain containing a vegetative nucleus and two sperm cells. Pollen development is a highly dynamic process, involving changes at both the transcriptome and epigenome levels of vegetative nuclei and the pair of sperm cells that have their own cytoplasm and nucleus. While the overall transcriptome of Arabidopsis pollen development is well documented, studies at single-cell level, in particular of sperm cells, are still lacking. Such studies would be essential to understand whether and how the two sperm cells are transcriptionally different, in particular once the pollen tube grows through the transmitting tissue of the pistil. Here we describe a detailed protocol for isolation of single sperm cells from growing pollen tubes and analysis of their transcriptome.
Collapse
Affiliation(s)
- Chandra Shekhar Misra
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Avenida da República, 2780-157, Oeiras, Portugal
| | - Mário R Santos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | | | - Nuno P Martins
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Marta Monteiro
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
16
|
Collum TD, Lutton E, Raines CD, Dardick C, Culver JN. Identification of phloem-associated translatome alterations during leaf development in Prunus domestica L. HORTICULTURE RESEARCH 2019; 6:16. [PMID: 30729006 PMCID: PMC6355854 DOI: 10.1038/s41438-018-0092-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 06/01/2023]
Abstract
Phloem plays a fundamental role in plants by transporting hormones, nutrients, proteins, RNAs, and carbohydrates essential for plant growth and development. However, the identity of the underlying phloem genes and pathways remain enigmatic especially in agriculturally important perennial crops, in part, due to the technical difficulty of phloem sampling. Here, we used two phloem-specific promoters and a translating ribosome affinity purification (TRAP) strategy to characterize the phloem translatome during leaf development at 2, 4, and 6 weeks post vernalization in plum (Prunus domestica L.). Results provide insight into the changing phloem processes that occur during leaf development. These processes included the early activation of DNA replication genes that are likely involved in phloem cell division during leaf expansion, as well as the upregulation of phloem genes associated with sink to source conversion, induction of defense processes, and signaling for reproduction. Combined these results reveal the dynamics of phloem gene expression during leaf development and establish the TRAP system as a powerful tool for studying phloem-specific functions and responses in trees.
Collapse
Affiliation(s)
- Tamara D. Collum
- Institute for Bioscience and Biotechnology Research, College Park, MD USA
| | - Elizabeth Lutton
- USDA-ARS, Appalachian Fruit Research Laboratory, Kearneysville, WV USA
| | - C. Douglas Raines
- USDA-ARS, Appalachian Fruit Research Laboratory, Kearneysville, WV USA
| | | | - James N. Culver
- Institute for Bioscience and Biotechnology Research, College Park, MD USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD USA
| |
Collapse
|
17
|
Goldenkova-Pavlova IV, Pavlenko OS, Mustafaev ON, Deyneko IV, Kabardaeva KV, Tyurin AA. Computational and Experimental Tools to Monitor the Changes in Translation Efficiency of Plant mRNA on a Genome-Wide Scale: Advantages, Limitations, and Solutions. Int J Mol Sci 2018; 20:E33. [PMID: 30577638 PMCID: PMC6337405 DOI: 10.3390/ijms20010033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
The control of translation in the course of gene expression regulation plays a crucial role in plants' cellular events and, particularly, in responses to environmental factors. The paradox of the great variance between levels of mRNAs and their protein products in eukaryotic cells, including plants, requires thorough investigation of the regulatory mechanisms of translation. A wide and amazingly complex network of mechanisms decoding the plant genome into proteome challenges researchers to design new methods for genome-wide analysis of translational control, develop computational algorithms detecting regulatory mRNA contexts, and to establish rules underlying differential translation. The aims of this review are to (i) describe the experimental approaches for investigation of differential translation in plants on a genome-wide scale; (ii) summarize the current data on computational algorithms for detection of specific structure⁻function features and key determinants in plant mRNAs and their correlation with translation efficiency; (iii) highlight the methods for experimental verification of existed and theoretically predicted features within plant mRNAs important for their differential translation; and finally (iv) to discuss the perspectives of discovering the specific structural features of plant mRNA that mediate differential translation control by the combination of computational and experimental approaches.
Collapse
Affiliation(s)
- Irina V Goldenkova-Pavlova
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Olga S Pavlenko
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Orkhan N Mustafaev
- Department of Biophysics and Molecular Biology, Baku State University, Zahid Khalilov Str. 23, Baku AZ 1148, Azerbaijan.
| | - Igor V Deyneko
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Ksenya V Kabardaeva
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Alexander A Tyurin
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| |
Collapse
|
18
|
Zhou LZ, Dresselhaus T. Friend or foe: Signaling mechanisms during double fertilization in flowering seed plants. Curr Top Dev Biol 2018; 131:453-496. [PMID: 30612627 DOI: 10.1016/bs.ctdb.2018.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the first description of double fertilization 120 years ago, the processes of pollen tube growth and guidance, sperm cell release inside the receptive synergid cell, as well as fusion of two sperm cells to the female gametes (egg and central cell) have been well documented in many flowering plants. Especially microscopic techniques, including live cell imaging, were used to visualize these processes. Molecular as well as genetic methods were applied to identify key players involved. However, compared to the first 11 decades since its discovery, the past decade has seen a tremendous advancement in our understanding of the molecular mechanisms regulating angiosperm fertilization. Whole signaling networks were elucidated including secreted ligands, corresponding receptors, intracellular interaction partners, and further downstream signaling events involved in the cross-talk between pollen tubes and their cargo with female reproductive cells. Biochemical and structural biological approaches are now increasingly contributing to our understanding of the different signaling processes required to distinguish between compatible and incompatible interaction partners. Here, we review the current knowledge about signaling mechanisms during above processes with a focus on the model plants Arabidopsis thaliana and Zea mays (maize). The analogy that many of the identified "reproductive signaling mechanisms" also act partly or fully in defense responses and/or cell death is also discussed.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
19
|
He SL, Hsieh HL, Jauh GY. SMALL AUXIN UP RNA62/75 Are Required for the Translation of Transcripts Essential for Pollen Tube Growth. PLANT PHYSIOLOGY 2018; 178:626-640. [PMID: 30093526 PMCID: PMC6181030 DOI: 10.1104/pp.18.00257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/29/2018] [Indexed: 05/21/2023]
Abstract
Successful pollen tube elongation is critical for double fertilization, but the biological functions of pollen tube genes and the regulatory machinery underlying this crucial process are largely unknown. A previous translatomic study revealed two Arabidopsis (Arabidopsis thaliana) SAUR (SMALL AUXIN UP RNA) genes, SAUR62 and SAUR75, whose expression is up-regulated by pollination. Here, we found that both SAUR62 and SAUR75 localized mainly to pollen tube nuclei. The siliques of homozygous saur62 (saur62/-), saur75 (saur75/-), and the SAUR62/75 RNA interference (RNAi) knockdown line had many aborted seeds. These lines had normal pollen viability but defective in vitro and in vivo pollen tube growth, with branching phenotypes. Immunoprecipitation with transgenic SAUR62/75-GFP flowers revealed ribosomal protein RPL12 family members as potential interacting partners, and their individual interactions were confirmed further by yeast two-hybrid and bimolecular fluorescence complementation assays. Polysome profiling showed reduced 80S ribosome abundance in homozygous saur62, saur75, ribosomal large subunit12c, and SAUR62/75 RNAi flowers, suggesting that SAUR62/75 play roles in ribosome assembly. To clarify their roles in translation, we analyzed total proteins from RNAi versus wild-type flowers by isobaric tags for relative and absolute quantitation, revealing significantly reduced expression of factors participating in pollen tube wall biogenesis and F-actin dynamics, which are critical for the elastic properties of tube elongation. Indeed, RNAi pollen tubes showed mislocalization of deesterified and esterified pectins and F-actin organization. Thus, the biological roles of SAUR62/75 and their RPL12 partners are critical in ribosomal pre-60S subunit assembly for efficient pollen tube elongation and subsequent fertilization.
Collapse
Affiliation(s)
- Siou-Luan He
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
20
|
Hafidh S, Potěšil D, Müller K, Fíla J, Michailidis C, Herrmannová A, Feciková J, Ischebeck T, Valášek LS, Zdráhal Z, Honys D. Dynamics of the Pollen Sequestrome Defined by Subcellular Coupled Omics. PLANT PHYSIOLOGY 2018; 178:258-282. [PMID: 30007911 PMCID: PMC6130014 DOI: 10.1104/pp.18.00648] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/27/2018] [Indexed: 05/19/2023]
Abstract
Reproduction success in angiosperm plants depends on robust pollen tube growth through the female pistil tissues to ensure successful fertilization. Accordingly, there is an apparent evolutionary trend to accumulate significant reserves during pollen maturation, including a population of stored mRNAs, that are utilized later for a massive translation of various proteins in growing pollen tubes. Here, we performed a thorough transcriptomic and proteomic analysis of stored and translated transcripts in three subcellular compartments of tobacco (Nicotiana tabacum), long-term storage EDTA/puromycin-resistant particles, translating polysomes, and free ribonuclear particles, throughout tobacco pollen development and in in vitro-growing pollen tubes. We demonstrated that the composition of the aforementioned complexes is not rigid and that numerous transcripts were redistributed among these complexes during pollen development, which may represent an important mechanism of translational regulation. Therefore, we defined the pollen sequestrome as a distinct and highly dynamic compartment for the storage of stable, translationally repressed transcripts and demonstrated its dynamics. We propose that EDTA/puromycin-resistant particle complexes represent aggregated nontranslating monosomes as the primary mediators of messenger RNA sequestration. Such organization is extremely useful in fast tip-growing pollen tubes, where rapid and orchestrated protein synthesis must take place in specific regions.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 00 Prague 6, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Karel Müller
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 00 Prague 6, Czech Republic
| | - Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 00 Prague 6, Czech Republic
| | - Christos Michailidis
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 00 Prague 6, Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Jana Feciková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 00 Prague 6, Czech Republic
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, 37077 Goettingen, Germany
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 00 Prague 6, Czech Republic
| |
Collapse
|
21
|
Li HJ, Meng JG, Yang WC. Multilayered signaling pathways for pollen tube growth and guidance. PLANT REPRODUCTION 2018; 31:31-41. [PMID: 29441420 DOI: 10.1007/s00497-018-0324-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/24/2018] [Indexed: 05/22/2023]
Abstract
Sexual reproductive success is essential for the survival of all higher organisms. As the most prosperous and diverse group of land plants on earth, flowering plants evolved highly sophisticated fertilization mechanisms. To adapt to the terrestrial environment, a tubular structure pollen tube has been evolved to deliver the immobile sperm cells to the egg and central cell enclosed within the ovule. The pollen tube is generated from the vegetative cell of the pollen (male gametophyte), where two sperm cells are hosted. Pollen tube elongation in the maternal tissue and navigation to the ovule require intimate cell-cell interactions between the tube and female tissues. Questions on how the single-celled pollen tube accomplishes such task and how the female tissues accommodate the tube have attracted many plant biologists. Here, we review recent progresses and concepts in understanding the molecular mechanisms governing pollen tube growth and its interactions with the female tissues. We will also discuss the future perspective in this field.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China.
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Jiang-Guo Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China.
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
22
|
Bai B, Novák O, Ljung K, Hanson J, Bentsink L. Combined transcriptome and translatome analyses reveal a role for tryptophan-dependent auxin biosynthesis in the control of DOG1-dependent seed dormancy. THE NEW PHYTOLOGIST 2018; 217:1077-1085. [PMID: 29139127 DOI: 10.1111/nph.14885] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 10/07/2017] [Indexed: 05/11/2023]
Abstract
The importance of translational regulation during Arabidopsis seed germination has been shown previously. Here the role of transcriptional and translational regulation during seed imbibition of the very dormant DELAY OF GERMINATION 1 (DOG1) near-isogenic line was investigated. Polysome profiling was performed on dormant and after-ripened seeds imbibed for 6 and 24 h in water and in the transcription inhibitor cordycepin. Transcriptome and translatome changes were investigated. Ribosomal profiles of after-ripened seeds imbibed in cordycepin mimic those of dormant seeds. The polysome occupancy of mRNA species is not affected by germination inhibition, either as a result of seed dormancy or as a result of cordycepin treatment, indicating the importance of the regulation of transcript abundance. The expression of auxin metabolism genes is discriminative during the imbibition of after-ripened and dormant seeds, which is confirmed by altered concentrations of indole-3-acetic acid conjugates and precursors.
Collapse
Affiliation(s)
- Bing Bai
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Johannes Hanson
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| | - Leónie Bentsink
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
23
|
Kanaoka MM. Cell-cell communications and molecular mechanisms in plant sexual reproduction. JOURNAL OF PLANT RESEARCH 2018; 131:37-47. [PMID: 29181649 DOI: 10.1007/s10265-017-0997-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Sexual reproduction is achieved by precise interactions between male and female reproductive organs. In plant fertilization, sperm cells are carried to ovules by pollen tubes. Signals from the pistil are involved in elongation and control of the direction of the pollen tube. Genetic, reverse genetic, and cell biological analyses using model plants have identified various factors related to the regulation of pollen tube growth and guidance. In this review, I summarize the mechanisms and molecules controlling pollen tube growth to the ovule, micropylar guidance, reception of the guidance signal in the pollen tube, rupture of the pollen tube to release sperm cells, and cessation of the tube guidance signal. I also briefly introduce various techniques used to analyze pollen tube guidance in vitro.
Collapse
Affiliation(s)
- Masahiro M Kanaoka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
24
|
Palovaara J, Saiga S, Wendrich JR, van 't Wout Hofland N, van Schayck JP, Hater F, Mutte S, Sjollema J, Boekschoten M, Hooiveld GJ, Weijers D. Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo. NATURE PLANTS 2017; 3:894-904. [PMID: 29116234 PMCID: PMC5687563 DOI: 10.1038/s41477-017-0035-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/19/2017] [Indexed: 05/02/2023]
Abstract
During early plant embryogenesis, precursors for all major tissues and stem cells are formed. While several components of the regulatory framework are known, how cell fates are instructed by genome-wide transcriptional activity remains unanswered-in part because of difficulties in capturing transcriptome changes at cellular resolution. Here, we have adapted a two-component transgenic labelling system to purify cell-type-specific nuclear RNA and generate a transcriptome atlas of early Arabidopsis embryo development, with a focus on root stem cell niche formation. We validated the dataset through gene expression analysis, and show that gene activity shifts in a spatio-temporal manner, probably signifying transcriptional reprogramming, to induce developmental processes reflecting cell states and state transitions. This atlas provides the most comprehensive tissue- and cell-specific description of genome-wide gene activity in the early plant embryo, and serves as a valuable resource for understanding the genetic control of early plant development.
Collapse
Affiliation(s)
- Joakim Palovaara
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Shunsuke Saiga
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Jos R Wendrich
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
- Department of Plant Biotechnology and Bioinformatics and VIB Center for Plant Systems Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | | | - J Paul van Schayck
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Friederike Hater
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Jouke Sjollema
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Mark Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Guido J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
25
|
Palovaara J, Saiga S, Wendrich JR, van 't Wout Hofland N, van Schayck JP, Hater F, Mutte S, Sjollema J, Boekschoten M, Hooiveld GJ, Weijers D. Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo. NATURE PLANTS 2017; 3:894-904. [PMID: 29116234 DOI: 10.1038/s41477-017-0035-33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/19/2017] [Indexed: 05/22/2023]
Abstract
During early plant embryogenesis, precursors for all major tissues and stem cells are formed. While several components of the regulatory framework are known, how cell fates are instructed by genome-wide transcriptional activity remains unanswered-in part because of difficulties in capturing transcriptome changes at cellular resolution. Here, we have adapted a two-component transgenic labelling system to purify cell-type-specific nuclear RNA and generate a transcriptome atlas of early Arabidopsis embryo development, with a focus on root stem cell niche formation. We validated the dataset through gene expression analysis, and show that gene activity shifts in a spatio-temporal manner, probably signifying transcriptional reprogramming, to induce developmental processes reflecting cell states and state transitions. This atlas provides the most comprehensive tissue- and cell-specific description of genome-wide gene activity in the early plant embryo, and serves as a valuable resource for understanding the genetic control of early plant development.
Collapse
Affiliation(s)
- Joakim Palovaara
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Shunsuke Saiga
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Jos R Wendrich
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
- Department of Plant Biotechnology and Bioinformatics and VIB Center for Plant Systems Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | | | - J Paul van Schayck
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Friederike Hater
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Jouke Sjollema
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Mark Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Guido J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
26
|
Collum TD, Culver JN. Tobacco mosaic virus infection disproportionately impacts phloem associated translatomes in Arabidopsis thaliana and Nicotiana benthamiana. Virology 2017; 510:76-89. [PMID: 28710959 DOI: 10.1016/j.virol.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
In this study we use vascular specific promoters and a translating ribosome affinity purification strategy to identify phloem associated translatome responses to infection by tobacco mosaic virus (TMV) in systemic hosts Arabidopsis thaliana ecotype Shahdara and Nicotiana benthamiana. Results demonstrate that in both hosts the number of translatome gene alterations that occurred in response to infection is at least four fold higher in phloem specific translatomes than in non-phloem translatomes. This finding indicates that phloem functions as a key responsive tissue to TMV infection. In addition, host comparisons of translatome alterations reveal both similarities and differences in phloem responses to infection, representing both conserved virus induced phloem alterations involved in promoting infection and virus spread as well as host specific alterations that reflect differences in symptom responses. Combined these results suggest phloem tissues play a disproportion role in the mediation and control of host responses to virus infection.
Collapse
Affiliation(s)
- Tamara D Collum
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - James N Culver
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
27
|
Zhang L, Liu X, Gaikwad K, Kou X, Wang F, Tian X, Xin M, Ni Z, Sun Q, Peng H, Vierling E. Mutations in eIF5B Confer Thermosensitive and Pleiotropic Phenotypes via Translation Defects in Arabidopsis thaliana. THE PLANT CELL 2017; 29:1952-1969. [PMID: 28808135 PMCID: PMC5590492 DOI: 10.1105/tpc.16.00808] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 06/16/2017] [Accepted: 08/09/2017] [Indexed: 05/19/2023]
Abstract
The conserved eukaryotic translation initiation factor 5B, eIF5B, is a GTPase that acts late in translation initiation. We found that an Arabidopsis thaliana mutant sensitive to hot temperatures 3 (hot3-1), which behaves as the wild type in the absence of stress but is unable to acclimate to high temperature, carries a missense mutation in the eIF5B1 gene (At1g76810), producing a temperature sensitive protein. A more severe, T-DNA insertion allele (hot3-2) causes pleiotropic developmental phenotypes. Surprisingly, Arabidopsis has three other eIF5B genes that do not substitute for eIF5B1; two of these appear to be in the process of pseudogenization. Polysome profiling and RNA-seq analysis of hot3-1 plants show delayed recovery of polysomes after heat stress and reduced translational efficiency (TE) of a subset of stress protective proteins, demonstrating the critical role of translational control early in heat acclimation. Plants carrying the severe hot3-2 allele show decreased TE of auxin-regulated, ribosome-related, and electron transport genes, even under optimal growth conditions. The hot3-2 data suggest that disrupting specific eIF5B interactions on the ribosome can, directly or indirectly, differentially affect translation. Thus, modulating eIF5B interactions could be another mechanism of gene-specific translational control.
Collapse
Affiliation(s)
- Liyuan Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Kishor Gaikwad
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - Xiaoxia Kou
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Fei Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Xuejun Tian
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Elizabeth Vierling
- University of Massachusetts Amherst, Biochemistry and Molecular Biology, Amherst, Massachusetts 01003
| |
Collapse
|
28
|
Merchante C, Stepanova AN, Alonso JM. Translation regulation in plants: an interesting past, an exciting present and a promising future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:628-653. [PMID: 28244193 DOI: 10.1111/tpj.13520] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 05/19/2023]
Abstract
Changes in gene expression are at the core of most biological processes, from cell differentiation to organ development, including the adaptation of the whole organism to the ever-changing environment. Although the central role of transcriptional regulation is solidly established and the general mechanisms involved in this type of regulation are relatively well understood, it is clear that regulation at a translational level also plays an essential role in modulating gene expression. Despite the large number of examples illustrating the critical role played by translational regulation in determining the expression levels of a gene, our understanding of the molecular mechanisms behind such types of regulation has been slow to emerge. With the recent development of high-throughput approaches to map and quantify different critical parameters affecting translation, such as RNA structure, protein-RNA interactions and ribosome occupancy at the genome level, a renewed enthusiasm toward studying translation regulation is warranted. The use of these new powerful technologies in well-established and uncharacterized translation-dependent processes holds the promise to decipher the likely complex and diverse, but also fascinating, mechanisms behind the regulation of translation.
Collapse
Affiliation(s)
- Catharina Merchante
- Departamento de Biologia Molecular y Bioquimica, Universidad de Malaga-Instituto de Hortofruticultura Subtropical y Mediterranea, IHSM-UMA-CSIC, Malaga, Andalucía, Spain
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
29
|
Leydon AR, Weinreb C, Venable E, Reinders A, Ward JM, Johnson MA. The Molecular Dialog between Flowering Plant Reproductive Partners Defined by SNP-Informed RNA-Sequencing. THE PLANT CELL 2017; 29:984-1006. [PMID: 28400492 PMCID: PMC5466024 DOI: 10.1105/tpc.16.00816] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/30/2017] [Accepted: 04/10/2017] [Indexed: 05/25/2023]
Abstract
The molecular interactions between reproductive cells are critical for determining whether sexual reproduction between individuals results in fertilization and can result in barriers to interspecific hybridization. However, it is a challenge to define the complete molecular exchange between reproductive partners because parents contribute to a complex mixture of cells during reproduction. We unambiguously defined male- and female-specific patterns of gene expression during Arabidopsis thaliana reproduction using single nucleotide polymorphism-informed RNA-sequencing analysis. Importantly, we defined the repertoire of pollen tube-secreted proteins controlled by a group of MYB transcription factors that are required for sperm release from the pollen tube to the female gametes, a critical barrier to interspecific hybridization. Our work defines the pollen tube gene products that respond to the pistil and are required for reproductive success; moreover, we find that these genes are highly evolutionarily plastic both at the level of coding sequence and expression across A. thaliana accessions.
Collapse
Affiliation(s)
- Alexander R Leydon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Caleb Weinreb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Elena Venable
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Anke Reinders
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108-6106
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108-6106
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
30
|
Bai B, Peviani A, van der Horst S, Gamm M, Snel B, Bentsink L, Hanson J. Extensive translational regulation during seed germination revealed by polysomal profiling. THE NEW PHYTOLOGIST 2017; 214:233-244. [PMID: 27935038 PMCID: PMC5347915 DOI: 10.1111/nph.14355] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 05/18/2023]
Abstract
This work investigates the extent of translational regulation during seed germination. The polysome occupancy of each gene is determined by genome-wide profiling of total mRNA and polysome-associated mRNA. This reveals extensive translational regulation during Arabidopsis thaliana seed germination. The polysome occupancy of thousands of individual mRNAs changes to a large extent during the germination process. Intriguingly, these changes are restricted to two temporal phases (shifts) during germination, seed hydration and germination. Sequence features, such as upstream open reading frame number, transcript length, mRNA stability, secondary structures, and the presence and location of specific motifs correlated with this translational regulation. These features differed significantly between the two shifts, indicating that independent mechanisms regulate translation during seed germination. This study reveals substantial translational dynamics during seed germination and identifies development-dependent sequence features and cis elements that correlate with the translation control, uncovering a novel and important layer of gene regulation during seed germination.
Collapse
Affiliation(s)
- Bing Bai
- Department of Molecular Plant PhysiologyUtrecht University3584 CHUtrechtthe Netherlands
- Wageningen Seed LaboratoryLaboratory of Plant PhysiologyWageningen University6708 PBWageningenthe Netherlands
| | - Alessia Peviani
- Theoretical Biology and BioinformaticsUtrecht University3584 CHUtrechtthe Netherlands
| | - Sjors van der Horst
- Wageningen Seed LaboratoryLaboratory of Plant PhysiologyWageningen University6708 PBWageningenthe Netherlands
- Theoretical Biology and BioinformaticsUtrecht University3584 CHUtrechtthe Netherlands
| | - Magdalena Gamm
- Department of Molecular Plant PhysiologyUtrecht University3584 CHUtrechtthe Netherlands
| | - Berend Snel
- Theoretical Biology and BioinformaticsUtrecht University3584 CHUtrechtthe Netherlands
| | - Leónie Bentsink
- Department of Molecular Plant PhysiologyUtrecht University3584 CHUtrechtthe Netherlands
- Wageningen Seed LaboratoryLaboratory of Plant PhysiologyWageningen University6708 PBWageningenthe Netherlands
| | - Johannes Hanson
- Department of Molecular Plant PhysiologyUtrecht University3584 CHUtrechtthe Netherlands
- Umeå Plant Science CentreDepartment of Plant PhysiologyUniversity of UmeåUmeåSE‐901 87Sweden
| |
Collapse
|
31
|
Higashiyama T, Yang WC. Gametophytic Pollen Tube Guidance: Attractant Peptides, Gametic Controls, and Receptors. PLANT PHYSIOLOGY 2017; 173:112-121. [PMID: 27920159 PMCID: PMC5210755 DOI: 10.1104/pp.16.01571] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/02/2016] [Indexed: 05/19/2023]
Abstract
Pollen tube guidance in flowering plants is a unique and critical process for successful sexual reproduction. The pollen tube that grows from pollen, which is the male gametophyte, precisely navigates to the embryo sac, which is the female gametophyte, within the pistil. Recent advances have clarified the molecular framework of gametophytic pollen tube guidance. Multiple species-specific attractant peptides are secreted from synergid cells, the proper development and function of which are regulated by female gametes. Multiple receptor-like kinases on the pollen tube tip are involved in sensing species-specific attractant peptides. In this Update article, recent progress in our understanding of the mechanism of gametophytic pollen tube guidance is reviewed, including attraction by synergid cells, control of pollen tube guidance by female gametes, and directional growth of the pollen tube by directional cue sensing. Future directions in the study of pollen tube guidance also are discussed.
Collapse
Affiliation(s)
- Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan (T.H.);
- Division of Biological Science, Graduate School of Science, and JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (T.H.); and
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (W.Y.)
| | - Wei-Cai Yang
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan (T.H.);
- Division of Biological Science, Graduate School of Science, and JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (T.H.); and
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (W.Y.)
| |
Collapse
|
32
|
Sablok G, Powell JJ, Kazan K. Emerging Roles and Landscape of Translating mRNAs in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1443. [PMID: 28919899 PMCID: PMC5585741 DOI: 10.3389/fpls.2017.01443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/03/2017] [Indexed: 05/03/2023]
Abstract
Plants use a wide range of mechanisms to adapt to different environmental stresses. One of the earliest responses displayed under stress is rapid alterations in stress responsive gene expression that has been extensively analyzed through expression profiling such as microarrays and RNA-sequencing. Recently, expression profiling has been complemented with proteome analyses to establish a link between transcriptional and the corresponding translational changes. However, proteome profiling approaches have their own technical limitations. More recently, ribosome-associated mRNA profiling has emerged as an alternative and a robust way of identifying translating mRNAs, which are a set of mRNAs associated with ribosomes and more likely to contribute to proteome abundance. In this article, we briefly review recent studies that examined the processes affecting the abundance of translating mRNAs, their regulation during plant development and tolerance to stress conditions and plant factors affecting the selection of translating mRNA pools. This review also highlights recent findings revealing differential roles of alternatively spliced mRNAs and their translational control during stress adaptation. Overall, better understanding of processes involved in the regulation of translating mRNAs has obvious implications for improvement of stress tolerance in plants.
Collapse
Affiliation(s)
- Gaurav Sablok
- Finnish Museum of Natural HistoryHelsinki, Finland
- Department of Biosciences, Viikki Plant Science Center, University of HelsinkiHelsinki, Finland
- *Correspondence: Gaurav Sablok, Kemal Kazan,
| | - Jonathan J. Powell
- Commonwealth Scientific and Industrial Research Organization Agriculture, St. LuciaQLD, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization Agriculture, St. LuciaQLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. LuciaQLD, Australia
- *Correspondence: Gaurav Sablok, Kemal Kazan,
| |
Collapse
|
33
|
Kozłowska M, Niedojadło K, Brzostek M, Bednarska-Kozakiewicz E. Epigenetic marks in the Hyacinthus orientalis L. mature pollen grain and during in vitro pollen tube growth. PLANT REPRODUCTION 2016; 29:251-263. [PMID: 27422435 PMCID: PMC4978762 DOI: 10.1007/s00497-016-0289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
During the sexual reproduction of flowering plants, epigenetic control of gene expression and genome integrity by DNA methylation and histone modifications plays an important role in male gametogenesis. In this study, we compared the chromatin modification patterns of the generative, sperm cells and vegetative nuclei during Hyacinthus orientalis male gametophyte development. Changes in the spatial and temporal distribution of 5-methylcytosine, acetylated histone H4 and histone deacetylase indicated potential differences in the specific epigenetic state of all analysed cells, in both the mature cellular pollen grains and the in vitro growing pollen tubes. Interestingly, we observed unique localization of chromatin modifications in the area of the generative and the vegetative nuclei located near each other in the male germ unit, indicating the precise mechanisms of gene expression regulation in this region. We discuss the differences in the patterns of the epigenetic marks along with our previous reports of nuclear metabolism and changes in chromatin organization and activity in hyacinth male gametophyte cells. We also propose that this epigenetic status of the analysed nuclei is related to the different acquired fates and biological functions of these cells.
Collapse
Affiliation(s)
- Marlena Kozłowska
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Katarzyna Niedojadło
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| | - Marta Brzostek
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
34
|
Oracz K, Stawska M. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination. FRONTIERS IN PLANT SCIENCE 2016; 7:1128. [PMID: 27512405 PMCID: PMC4961694 DOI: 10.3389/fpls.2016.01128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/15/2016] [Indexed: 05/24/2023]
Abstract
Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant's photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the current knowledge the model of cellular recycling of proteins in germinating seeds is also proposed.
Collapse
|
35
|
Zhao LJ, Yuan HM, Guo WD, Yang CP. Digital Gene Expression Analysis of Populus simonii × P. nigra Pollen Germination and Tube Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:825. [PMID: 27379121 PMCID: PMC4908133 DOI: 10.3389/fpls.2016.00825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/26/2016] [Indexed: 05/27/2023]
Abstract
Pollen tubes are an ideal model for the study of cell growth and morphogenesis because of their extreme elongation without cell division; however, the genetic basis of pollen germination and tube growth remains largely unknown. Using the Illumina/Solexa digital gene expression system, we identified 13,017 genes (representing 28.3% of the unigenes on the reference genes) at three stages, including mature pollen, hydrated pollen, and pollen tubes of Populus simonii × P. nigra. Comprehensive analysis of P. simonii × P. nigra pollen revealed dynamic changes in the transcriptome during pollen germination and pollen tube growth (PTG). Gene ontology analysis of differentially expressed genes showed that genes involved in functional categories such as catalytic activity, binding, transporter activity, and enzyme regulator activity were overrepresented during pollen germination and PTG. Some highly dynamic genes involved in pollen germination and PTG were detected by clustering analysis. Genes related to some key pathways such as the mitogen-activated protein kinase signaling pathway, regulation of the actin cytoskeleton, calcium signaling, and ubiquitin-mediated proteolysis were significantly changed during pollen germination and PTG. These data provide comprehensive molecular information toward further understanding molecular mechanisms underlying pollen germination and PTG.
Collapse
Affiliation(s)
- Li-Juan Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
- Department of Crop Molecular Breeding, Crop Breeding Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Hong-Mei Yuan
- Medical Plant Research Center, Economic Crop Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Wen-Dong Guo
- Biotechnology Research Center, Institute of Natural Resources and Ecology, Heilongjiang Academy of SciencesHarbin, China
| | - Chuan-Ping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
36
|
Qi W, Zhu J, Wu Q, Wang Q, Li X, Yao D, Jin Y, Wang G, Wang G, Song R. Maize reas1 Mutant Stimulates Ribosome Use Efficiency and Triggers Distinct Transcriptional and Translational Responses. PLANT PHYSIOLOGY 2016; 170:971-88. [PMID: 26645456 PMCID: PMC4734584 DOI: 10.1104/pp.15.01722] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/07/2015] [Indexed: 05/19/2023]
Abstract
Ribosome biogenesis is a fundamental cellular process in all cells. Impaired ribosome biogenesis causes developmental defects; however, its molecular and cellular bases are not fully understood. We cloned a gene responsible for a maize (Zea mays) small seed mutant, dek* (for defective kernel), and found that it encodes Ribosome export associated1 (ZmReas1). Reas1 is an AAA-ATPase that controls 60S ribosome export from the nucleus to the cytoplasm after ribosome maturation. dek* is a weak mutant allele with decreased Reas1 function. In dek* cells, mature 60S ribosome subunits are reduced in the nucleus and cytoplasm, but the proportion of actively translating polyribosomes in cytosol is significantly increased. Reduced phosphorylation of eukaryotic initiation factor 2α and the increased elongation factor 1α level indicate an enhancement of general translational efficiency in dek* cells. The mutation also triggers dramatic changes in differentially transcribed genes and differentially translated RNAs. Discrepancy was observed between differentially transcribed genes and differentially translated RNAs, indicating distinct cellular responses at transcription and translation levels to the stress of defective ribosome processing. DNA replication and nucleosome assembly-related gene expression are selectively suppressed at the translational level, resulting in inhibited cell growth and proliferation in dek* cells. This study provides insight into cellular responses due to impaired ribosome biogenesis.
Collapse
Affiliation(s)
- Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Jie Zhu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Qiao Wu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Qun Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Xia Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Dongsheng Yao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Ying Jin
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Gang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Guifeng Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| |
Collapse
|
37
|
Zhou X, Groves NR, Meier I. SUN anchors pollen WIP-WIT complexes at the vegetative nuclear envelope and is necessary for pollen tube targeting and fertility. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7299-307. [PMID: 26409047 PMCID: PMC4765795 DOI: 10.1093/jxb/erv425] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
LINC (linker of nucleoskeleton and cytoskeleton) complexes play an essential role in nuclear migration by connecting the nucleus to the cytoskeleton and/or motor proteins. Plant LINC complexes have recently been identified in Arabidopsis thaliana, with the inner nuclear membrane SUN and outer nuclear membrane WIP proteins comprising the first identified complex. A recent study identified a nuclear movement defect in Arabidopsis pollen vegetative nuclei linked to the outer nuclear envelope WIP and WIT proteins. However, the role that SUN proteins may play in pollen nuclear migration has yet to be addressed. To explore this question, a SUN2 lumenal domain that was targeted to the ER specifically in pollen was over-expressed. It is shown that the ER-targeted SUN2 lumenal domain was able to displace WIP and WIT proteins from the pollen vegetative nuclear envelope. Expression of this dominant-negative transgene led to impaired VN mobility, impaired pollen tube guidance, and defective pollen tube reception. The observed pollen defects are similar to phenotypes observed in a wip1-1 wip2-1 wip3-1 wit1-1 wit2-1 mutant. It is also shown that these defects were dependent on the KASH-binding function of the SUN2 lumenal domain. These data support a model where LINC complexes formed by SUN, WIP, and WIT at the VNE are responsible for VN migration and suggest an important function of SUN, WIP, and WIT in pollen tube guidance and reception.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
38
|
Bolaños-Villegas P, Guo CL, Jauh GY. Arabidopsis Qc-SNARE genes BET11 and BET12 are required for fertility and pollen tube elongation. BOTANICAL STUDIES 2015; 56:21. [PMID: 28510830 PMCID: PMC5430320 DOI: 10.1186/s40529-015-0102-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/12/2015] [Indexed: 05/13/2023]
Abstract
BET11 and 12 are required for pollen tube elongation. Pollen tubes are rapidly growing specialized structures that elongate in a polar manner. They play a crucial role in the delivery of sperm cells through the stylar tissues of the flower and into the embryo sac, where the sperm cells are released to fuse with the egg cell and the central cell to give rise to the embryo and the endosperm. Polar growth at the pollen tube tip is believed to result from secretion of materials by membrane trafficking mechanisms. In this study, we report the functional characterization of Arabidopsis BET11 and BET12, two genes that may code for Qc-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors). Double mutants (bet11/bet12) in a homozygous/heterozygous background showed reduced transmission of the mutant alleles, reduced fertilization of seeds, defective embryo development, reduced pollen tube lengths and formation of secondary pollen tubes. Both BET11 and BET12 are required for fertility and development of pollen tubes in Arabidopsis. More experiments are required to dissect the mechanisms involved.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Fabio Baudrit Agricultural Experimental Station, University of Costa Rica, La Garita de Alajuela, P.O. Box 183-4050, Alajuela, Costa Rica
| | - Cian-Ling Guo
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 11529 Taiwan
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 11529 Taiwan
| |
Collapse
|
39
|
Kanaoka MM, Higashiyama T. Peptide signaling in pollen tube guidance. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:127-36. [PMID: 26580200 DOI: 10.1016/j.pbi.2015.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 05/05/2023]
Abstract
Fertilization is an important life event for sexually reproductive plants. Part of this process involves precise regulation of a series of complicated cell-cell communications between male and female tissues. Through genetic and omics approaches, many genes and proteins involved in this process have been identified. Here we review our current understanding of signaling components during fertilization. We will especially focus on LURE peptides and related signaling events that are required for micropylar pollen tube guidance. We will also summarize signaling events required for termination of micropylar pollen tube guidance after fertilization.
Collapse
Affiliation(s)
- Masahiro M Kanaoka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; JST, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
40
|
Basbouss-Serhal I, Soubigou-Taconnat L, Bailly C, Leymarie J. Germination Potential of Dormant and Nondormant Arabidopsis Seeds Is Driven by Distinct Recruitment of Messenger RNAs to Polysomes. PLANT PHYSIOLOGY 2015; 168:1049-65. [PMID: 26019300 PMCID: PMC4741348 DOI: 10.1104/pp.15.00510] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/21/2015] [Indexed: 05/19/2023]
Abstract
Dormancy is a complex evolutionary trait that temporally prevents seed germination, thus allowing seedling growth at a favorable season. High-throughput analyses of transcriptomes have led to significant progress in understanding the molecular regulation of this process, but the role of posttranscriptional mechanisms has received little attention. In this work, we have studied the dynamics of messenger RNA association with polysomes and compared the transcriptome with the translatome in dormant and nondormant seeds of Arabidopsis (Arabidopsis thaliana) during their imbibition at 25 °C in darkness, a temperature preventing germination of dormant seeds only. DNA microarray analysis revealed that 4,670 and 7,028 transcripts were differentially abundant in dormant and nondormant seeds in the transcriptome and the translatome, respectively. We show that there is no correlation between transcriptome and translatome and that germination regulation is also largely translational, implying a selective and dynamic recruitment of messenger RNAs to polysomes in both dormant and nondormant seeds. The study of 5' untranslated region features revealed that GC content and the number of upstream open reading frames could play a role in selective translation occurring during germination. Gene Ontology clustering showed that the functions of polysome-associated transcripts differed between dormant and nondormant seeds and revealed actors in seed dormancy and germination. In conclusion, our results demonstrate the essential role of selective polysome loading in this biological process.
Collapse
Affiliation(s)
- Isabelle Basbouss-Serhal
- Sorbonne Universités, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, F-75005 Paris, France (I.B.-S., C.B., J.L.);Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, Biologie du Développement, F-75005 Paris, France (I.B.-S., C.B., J.L.); andUnité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, 91057 Evry, France (L.S.-T.)
| | - Ludivine Soubigou-Taconnat
- Sorbonne Universités, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, F-75005 Paris, France (I.B.-S., C.B., J.L.);Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, Biologie du Développement, F-75005 Paris, France (I.B.-S., C.B., J.L.); andUnité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, 91057 Evry, France (L.S.-T.)
| | - Christophe Bailly
- Sorbonne Universités, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, F-75005 Paris, France (I.B.-S., C.B., J.L.);Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, Biologie du Développement, F-75005 Paris, France (I.B.-S., C.B., J.L.); andUnité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, 91057 Evry, France (L.S.-T.)
| | - Juliette Leymarie
- Sorbonne Universités, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, F-75005 Paris, France (I.B.-S., C.B., J.L.);Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Unité Mixte de Recherche 7622, Biologie du Développement, F-75005 Paris, France (I.B.-S., C.B., J.L.); andUnité de Recherche en Génomique Végétale, Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique, 91057 Evry, France (L.S.-T.)
| |
Collapse
|
41
|
Liu J, Pang C, Wei H, Song M, Meng Y, Ma J, Fan S, Yu S. iTRAQ-facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.). J Proteomics 2015; 126:68-81. [PMID: 26047712 DOI: 10.1016/j.jprot.2015.05.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 11/28/2022]
Abstract
Male sterility is a common phenomenon in flowering plants, and it has been successfully developed in several crops by taking advantage of heterosis. Cotton (Gossypium hirsutum L.) is an important economic crop, used mainly for the production of textile fiber. Using a space mutation breeding technique, a novel photosensitive genetic male sterile mutant CCRI9106 was isolated from the wild-type upland cotton cultivar CCRI040029. To use CCRI9106 in cotton hybrid breeding, it is of great importance to study the molecular mechanisms of its male sterility. Here, histological and iTRAQ-facilitated proteomic analyses of anthers were performed to explore male sterility mechanisms of the mutant. Scanning and transmission electron microscopy of the anthers showed that the development of pollen wall in CCRI9106 was severely defective with a lack of exine formation. At the protein level, 6121 high-confidence proteins were identified and 325 of them showed differential expression patterns between mutant and wild-type anthers. The proteins up- or down-regulated in MT anthers were mainly involved in exine formation, protein degradation, calcium ion binding,etc. These findings provide valuable information on the proteins involved in anther and pollen development, and contribute to elucidate the mechanism of male sterility in upland cotton.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Yanyan Meng
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South Central University for Nationalities, Wuhan 430064, Hubei Province, China
| | - Jianhui Ma
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China.
| |
Collapse
|
42
|
Rutley N, Twell D. A decade of pollen transcriptomics. PLANT REPRODUCTION 2015; 28:73-89. [PMID: 25761645 PMCID: PMC4432081 DOI: 10.1007/s00497-015-0261-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/24/2015] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE Overview of pollen transcriptome studies. Pollen development is driven by gene expression, and knowledge of the molecular events underlying this process has undergone a quantum leap in the last decade through studies of the transcriptome. Here, we outline historical evidence for male haploid gene expression and review the wealth of pollen transcriptome data now available. Knowledge of the transcriptional capacity of pollen has progressed from genetic studies to the direct analysis of RNA and from gene-by-gene studies to analyses on a genomic scale. Microarray and/or RNA-seq data can now be accessed for all phases and cell types of developing pollen encompassing 10 different angiosperms. These growing resources have accelerated research and will undoubtedly inspire new directions and the application of system-based research into the mechanisms that govern the development, function and evolution of angiosperm pollen.
Collapse
Affiliation(s)
- Nicholas Rutley
- Department of Biology, University of Leicester, Leicester, LE1 7RH UK
| | - David Twell
- Department of Biology, University of Leicester, Leicester, LE1 7RH UK
| |
Collapse
|
43
|
Juntawong P, Hummel M, Bazin J, Bailey-Serres J. Ribosome profiling: a tool for quantitative evaluation of dynamics in mRNA translation. Methods Mol Biol 2015; 1284:139-73. [PMID: 25757771 DOI: 10.1007/978-1-4939-2444-8_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Translational regulation is important for plant growth, metabolism, and acclimation to environmental challenges. Ribosome profiling involves the nuclease digestion of mRNAs associated with ribosomes and mapping of the generated ribosome-protected footprints to transcripts. This is useful for investigation of translational regulation. Here we present a detailed method to generate, purify, and high-throughput-sequence ribosome footprints from Arabidopsis thaliana using two different isolation methods, namely, conventional differential centrifugation and the translating ribosome affinity purification (TRAP) technology. These methodologies provide researchers with an opportunity to quantitatively assess with high-resolution the translational activity of individual mRNAs by determination of the position and number of ribosomes in the corresponding mRNA. The results can provide insights into the translation of upstream open reading frames, alternatively spliced transcripts, short open reading frames, and other aspects of translation.
Collapse
Affiliation(s)
- Piyada Juntawong
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | | | | | | |
Collapse
|
44
|
Higashiyama T, Takeuchi H. The mechanism and key molecules involved in pollen tube guidance. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:393-413. [PMID: 25621518 DOI: 10.1146/annurev-arplant-043014-115635] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During sexual reproduction of flowering plants, pollen tube guidance by pistil tissue is critical for the delivery of nonmotile sperm cells to female gametes. Multistep controls of pollen tube guidance can be divided into two phases: preovular guidance and ovular guidance. During preovular guidance, various female molecules, including stimulants for pollen germination and pollen tube growth, are provided to support tube growth toward the ovary, where the ovules are located. After entering the ovary, pollen tubes receive directional cues from their respective target ovules, including attractant peptides for precise, species-preferential attraction. Successful pollen tube guidance in the pistil requires not only nutritional and directional controls but also competency controls to make pollen tubes responsive to guidance cues, regulation to terminate growth once a pollen tube arrives at the target, and strategies to stop ovular attraction depending on the fertilization of female gametes.
Collapse
|
45
|
Translating Ribosome Affinity Purification (TRAP) followed by RNA sequencing technology (TRAP-SEQ) for quantitative assessment of plant translatomes. Methods Mol Biol 2015; 1284:185-207. [PMID: 25757773 DOI: 10.1007/978-1-4939-2444-8_9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Translating Ribosome Affinity Purification (TRAP) is a technology to isolate the population of mRNAs associated with at least one 80S ribosome, referred as the translatome. TRAP is based on the expression of an epitope-tagged version of a ribosomal protein and the affinity purification of ribosomes and associated mRNAs using antibodies conjugated to agarose beads. Quantitative assessment of the translatome is achieved by direct RNA sequencing (RNA-SEQ), which provides accurate quantitation of ribosome-associated mRNAs and reveals alternatively spliced isoforms. Here we present a detailed procedure for TRAP, as well as a guide for preparation of RNA-SEQ libraries (TRAP-SEQ) and a primary data analysis. This methodology enables the study of translational dynamic by assessing rapid changes in translatomes, at organ or cell-type level, during development or in response to endogenous or exogenous stimuli.
Collapse
|
46
|
Yue X, Gao XQ, Zhang XS. Circadian rhythms synchronise intracellular calcium dynamics and ATP production for facilitating Arabidopsis pollen tube growth. PLANT SIGNALING & BEHAVIOR 2015; 10:e1017699. [PMID: 26039479 PMCID: PMC4622975 DOI: 10.1080/15592324.2015.1017699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 01/29/2015] [Accepted: 02/06/2015] [Indexed: 05/13/2023]
Abstract
Experimental evidences support that the circadian rhythm regulates the transcription levels of genes encoding the enzymes involved in plant metabolism. However, there is no paper to refer the correlation of the circadian rhythms and the metabolic processes for facilitating pollen tube growth. In this study, we found that many central components of the circadian clock were highly enriched and specifically present in the in vivo grown Arabidopsis pollen tubes. Our analysis also identified the significant differentially expressed genes encoding co-expressed enzymes in the consecutive steps of fatty acid β-oxidation II, pentose phosphate pathway (oxidative branch) and phosphatidic acid biosynthesis pathway in the in vivo grown Arabidopsis pollen tubes during pollination. Thus, it is implicated that the circadian rhythms of pollen tube may be adjusted and have a greater probability of the direct or indirect functional relationship with enhanced intracellular Ca(2+) dynamics and ATP production for facilitating pollen tube growth in vivo.
Collapse
Affiliation(s)
- Xun Yue
- State Key Laboratory of Crop Biology; College of Life Sciences; Shandong Agricultural University; Tai’an, Shandong, China
- College of Information Sciences and Engineering; Shandong Agricultural University; Tai’an, Shandong, China
| | - Xin-Qi Gao
- State Key Laboratory of Crop Biology; College of Life Sciences; Shandong Agricultural University; Tai’an, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology; College of Life Sciences; Shandong Agricultural University; Tai’an, Shandong, China
| |
Collapse
|
47
|
Layat E, Leymarie J, El-Maarouf-Bouteau H, Caius J, Langlade N, Bailly C. Translatome profiling in dormant and nondormant sunflower (Helianthus annuus) seeds highlights post-transcriptional regulation of germination. THE NEW PHYTOLOGIST 2014; 204:864-72. [PMID: 25157915 DOI: 10.1111/nph.13002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/27/2014] [Indexed: 05/19/2023]
Abstract
Seed dormancy, which blocks germination in apparently favourable conditions, is a key regulatory control point of plant population establishment. As germination requires de novo translation, its regulation by dormancy is likely to be related to the association of individual transcripts to polysomes. Here, the polysome-associated mRNAs, that is, the translatome, were fractionated and characterized with microarrays in dormant and nondormant sunflower (Helianthus annuus) embryos during their imbibition at 10°C, a temperature preventing germination of dormant embryos. Profiling of mRNAs in polysomal complexes revealed that the translatome differs between germinating and nongerminating embryos. Association of transcripts with polysomes reached a maximum after 15 h of imbibition; at this time-point 194 polysome-associated transcripts were specifically found in nondormant embryos and 47 in dormant embryos only. The proteins corresponding to the polysomal mRNAs in nondormant embryos appeared to be very pertinent for germination and were involved mainly in transport, regulation of transcription or cell wall modifications. This work demonstrates that seed germination results from a timely regulated and selective recruitment of mRNAs to polysomes, thus opening novel fields of investigation for the understanding of this developmental process.
Collapse
Affiliation(s)
- Elodie Layat
- UMR 7622, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France; UMR 7622, CNRS, 75005, Paris, France
| | | | | | | | | | | |
Collapse
|
48
|
Rajasundaram D, Selbig J, Persson S, Klie S. Co-ordination and divergence of cell-specific transcription and translation of genes in arabidopsis root cells. ANNALS OF BOTANY 2014; 114:1109-23. [PMID: 25149544 PMCID: PMC4195562 DOI: 10.1093/aob/mcu151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS A key challenge in biology is to systematically investigate and integrate the different levels of information available at the global and single-cell level. Recent studies have elucidated spatiotemporal expression patterns of root cell types in Arabidopsis thaliana, and genome-wide quantification of polysome-associated mRNA levels, i.e. the translatome, has also been obtained for corresponding cell types. Translational control has been increasingly recognized as an important regulatory step in protein synthesis. The aim of this study was to investigate coupled transcription and translation by use of publicly available root datasets. METHODS Using cell-type-specific datasets of the root transcriptome and translatome of arabidopsis, a systematic assessment was made of the degree of co-ordination and divergence between these two levels of cellular organization. The computational analysis considered correlation and variation of expression across cell types at both system levels, and also provided insights into the degree of co-regulatory relationships that are preserved between the two processes. KEY RESULTS The overall correlation of expression and translation levels of genes resemble an almost bimodal distribution (mean/median value of 0·08/0·12), with a second, less strongly pronounced 'mode' for negative Pearson's correlation coefficient values. The analysis conducted also confirms that previously identified key transcriptional activators of secondary cell wall development display highly conserved patterns of transcription and translation across the investigated cell types. Moreover, the biological processes that display conserved and divergent patterns based on the cell-type-specific expression and translation levels were identified. CONCLUSIONS In agreement with previous studies in animal cells, a large degree of uncoupling was found between the transcriptome and translatome. However, components and processes were also identified that are under co-ordinated transcriptional and translational control in plant root cells.
Collapse
Affiliation(s)
- Dhivyaa Rajasundaram
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Joachim Selbig
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Staffan Persson
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sebastian Klie
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany Targenomix GmbH, Potsdam-Golm, 14476, Germany
| |
Collapse
|
49
|
Hofmann N. No scalpel needed: translatome of pollen tubes growing within the flower in Arabidopsis. THE PLANT CELL 2014; 26:517. [PMID: 24532594 PMCID: PMC3967020 DOI: 10.1105/tpc.114.123984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
50
|
Lin SY, Jauh GY. Polysomal-mRNA Extraction from Arabidopsis by Sucrose-gradient Separation. Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|