1
|
Yang J, Liu J, Liu Y, Zhao Y, Wang X, Yang J, Tang K. In-depth site-specific glycoproteomic analysis reveals ER-resident protein PDI regulating wheat yellow mosaic virus infection. Int J Biol Macromol 2025; 293:139303. [PMID: 39743104 DOI: 10.1016/j.ijbiomac.2024.139303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
N-glycosylation is crucial in the process of wheat yellow mosaic virus (WYMV) infection, but changes in site-specific N-glycosylation of proteins during WYMV infection have not been well studied. In this study, we employed an intact glycopeptide approach to analyze mock- and WYMV-infected wheat plants. We found that most glycoproteins have N-glycans containing paucimannose or complex/hybrid chains. Notably, the H3N2F1X1 N-glycan was the most prevalent, comprising 40 % of the total glycan abundance. Six glycan types showed an increasing trend of glycosylation in WYMV-infected wheat. Overall, 1202 unique N-glycopeptides corresponding to 53 N-glycans at 562 N-glycosylation sites in 456 N-glycoproteins were identified, and 176 N-glycopeptides from 115 glycoproteins were significantly regulated in WYMV-infected wheat. Bioinformatics analysis of the hyperglycosylated and hypoglycosylated glycoproteins indicated that two N-glycoproteins with significant regulatory differences were specifically related to protein quality control, endoplasmic reticulum stress response, and protein folding. Furthermore, the protein disulfide isomerase TaPDI 1-4 and TaPDI regulate WYMV infection, and their N-glycosylation is involved in the regulatory process. To our knowledge, this is the first study to analyze the differences and roles of protein N-glycosylation in wheat virus infection at the level of intact glycopeptides.
Collapse
Affiliation(s)
- Jiaqian Yang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China
| | - Jiaqian Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Ying Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yingjie Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xia Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China.
| |
Collapse
|
2
|
Schoberer J, Vavra U, Shin Y, Grünwald‐Gruber C, Strasser R. Elucidation of the late steps in the glycan-dependent ERAD of soluble misfolded glycoproteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17185. [PMID: 39642157 PMCID: PMC11712024 DOI: 10.1111/tpj.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/08/2024]
Abstract
The endoplasmic reticulum (ER) utilizes ER-associated degradation (ERAD), a highly conserved eukaryotic pathway, to eliminate misfolded or unassembled proteins and maintain protein homeostasis in cells. The clearance of misfolded glycoproteins involves several distinct steps, including the recognition of a specific glycan signal, retrotranslocation to the cytosol, and subsequent degradation of the misfolded protein by the ubiquitin proteasome system. Confocal microscopy was used to track the fate of a well-characterized ERAD substrate via a self-complementing split fluorescent protein assay. The results demonstrate that a misfolded variant of the STRUBBELIG (SUB) extracellular protein domain (SUBEX-C57Y) is retrotranslocated to the cytosol when transiently expressed in Nicotiana benthamiana leaf epidermal cells. Retrotranslocation requires a protein domain with a lesion that is exposed in the lumen of the ER, N-glycan trimming by α-mannosidases, HRD1-mediated ubiquitination, and the ATPase function of CDC48. The retrotranslocated SUBEX-C57Y ERAD substrate undergoes deglycosylation, and proteasomal degradation is blocked by a catalytically inactive cytosolic peptide N-glycanase. These findings define distinct aspects of ERAD that have been elusive until now and may represent the default pathway for degrading misfolded glycoproteins in plants.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Yun‐Ji Shin
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Clemens Grünwald‐Gruber
- Core Facility Mass SpectrometryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| |
Collapse
|
3
|
Isono E, Li J, Pulido P, Siao W, Spoel SH, Wang Z, Zhuang X, Trujillo M. Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants. THE PLANT CELL 2024; 36:3074-3098. [PMID: 38701343 PMCID: PMC11371205 DOI: 10.1093/plcell/koae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Proteome composition is dynamic and influenced by many internal and external cues, including developmental signals, light availability, or environmental stresses. Protein degradation, in synergy with protein biosynthesis, allows cells to respond to various stimuli and adapt by reshaping the proteome. Protein degradation mediates the final and irreversible disassembly of proteins, which is important for protein quality control and to eliminate misfolded or damaged proteins, as well as entire organelles. Consequently, it contributes to cell resilience by buffering against protein or organellar damage caused by stresses. Moreover, protein degradation plays important roles in cell signaling, as well as transcriptional and translational events. The intricate task of recognizing specific proteins for degradation is achieved by specialized systems that are tailored to the substrate's physicochemical properties and subcellular localization. These systems recognize diverse substrate cues collectively referred to as "degrons," which can assume a range of configurations. They are molecular surfaces recognized by E3 ligases of the ubiquitin-proteasome system but can also be considered as general features recognized by other degradation systems, including autophagy or even organellar proteases. Here we provide an overview of the newest developments in the field, delving into the intricate processes of protein recognition and elucidating the pathways through which they are recruited for degradation.
Collapse
Affiliation(s)
- Erika Isono
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jianming Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Pablo Pulido
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Wei Siao
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marco Trujillo
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| |
Collapse
|
4
|
Cui C, Wan H, Li Z, Ai N, Zhou B. Long noncoding RNA TRABA suppresses β-glucosidase-encoding BGLU24 to promote salt tolerance in cotton. PLANT PHYSIOLOGY 2024; 194:1120-1138. [PMID: 37801620 DOI: 10.1093/plphys/kiad530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/08/2023]
Abstract
Salt stress severely damages the growth and yield of crops. Recently, long noncoding RNAs (lncRNAs) were demonstrated to regulate various biological processes and responses to environmental stresses. However, the regulatory mechanisms of lncRNAs in cotton (Gossypium hirsutum) response to salt stress are still poorly understood. Here, we observed that a lncRNA, trans acting of BGLU24 by lncRNA (TRABA), was highly expressed while GhBGLU24-A was weakly expressed in a salt-tolerant cotton accession (DM37) compared to a salt-sensitive accession (TM-1). Using TRABA as an effector and proGhBGLU24-A-driven GUS as a reporter, we showed that TRABA suppressed GhBGLU24-A promoter activity in double transgenic Arabidopsis (Arabidopsis thaliana), which explained why GhBGLU24-A was weakly expressed in the salt-tolerant accession compared to the salt-sensitive accession. GhBGLU24-A encodes an endoplasmic reticulum (ER)-localized β-glucosidase that responds to salt stress. Further investigation revealed that GhBGLU24-A interacted with RING-type E3 ubiquitin ligase (GhRUBL). Virus-induced gene silencing (VIGS) and transgenic Arabidopsis studies revealed that both GhBGLU24-A and GhRUBL diminish plant tolerance to salt stress and ER stress. Based on its substantial effect on ER-related degradation (ERAD)-associated gene expression, GhBGLU24-A mediates ER stress likely through the ERAD pathway. These findings provide insights into the regulatory role of the lncRNA TRABA in modulating salt and ER stresses in cotton and have potential implications for developing more resilient crops.
Collapse
Affiliation(s)
- Changjiang Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Zhu Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi, 832000 Xinjiang, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| |
Collapse
|
5
|
Tax G, Guay KP, Pantalone L, Ceci M, Soldà T, Hitchman CJ, Hill JC, Vasiljević S, Lia A, Modenutti CP, Straatman KR, Santino A, Molinari M, Zitzmann N, Hebert DN, Roversi P, Trerotola M. Rescue of secretion of rare-disease-associated misfolded mutant glycoproteins in UGGT1 knock-out mammalian cells. Traffic 2024; 25:e12927. [PMID: 38272446 PMCID: PMC10832616 DOI: 10.1111/tra.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Endoplasmic reticulum (ER) retention of misfolded glycoproteins is mediated by the ER-localized eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognizes a misfolded glycoprotein and flags it for ER retention by re-glucosylating one of its N-linked glycans. In the background of a congenital mutation in a secreted glycoprotein gene, UGGT-mediated ER retention can cause rare disease, even if the mutant glycoprotein retains activity ("responsive mutant"). Using confocal laser scanning microscopy, we investigated here the subcellular localization of the human Trop-2-Q118E, E227K and L186P mutants, which cause gelatinous drop-like corneal dystrophy (GDLD). Compared with the wild-type Trop-2, which is correctly localized at the plasma membrane, these Trop-2 mutants are retained in the ER. We studied fluorescent chimeras of the Trop-2 Q118E, E227K and L186P mutants in mammalian cells harboring CRISPR/Cas9-mediated inhibition of the UGGT1 and/or UGGT2 genes. The membrane localization of the Trop-2 Q118E, E227K and L186P mutants was successfully rescued in UGGT1-/- cells. UGGT1 also efficiently reglucosylated Trop-2-Q118E-EYFP in cellula. The study supports the hypothesis that UGGT1 modulation would constitute a novel therapeutic strategy for the treatment of pathological conditions associated to misfolded membrane glycoproteins (whenever the mutation impairs but does not abrogate function), and it encourages the testing of modulators of ER glycoprotein folding quality control as broad-spectrum rescue-of-secretion drugs in rare diseases caused by responsive secreted glycoprotein mutants.
Collapse
Affiliation(s)
- Gabor Tax
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
| | - Kevin P. Guay
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, United States
| | - Ludovica Pantalone
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Italy; Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Italy
| | - Martina Ceci
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Italy; Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Italy
| | - Tatiana Soldà
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, UniversitàdellaSvizzeraItaliana (USI), Bellinzona, Switzerland
| | - Charlie J. Hitchman
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
| | - Johan C. Hill
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Snežana Vasiljević
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Andrea Lia
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
- Institute of Sciences of Food Production, ISPA-CNR Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Carlos P. Modenutti
- Departamento de QuímicaBiológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de QuímicaBiológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Kees R. Straatman
- Core Biotechnology Services, University of Leicester, University Road, Leicester LE1 7RH, England, United Kingdom
| | - Angelo Santino
- Institute of Sciences of Food Production, ISPA-CNR Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Maurizio Molinari
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicole Zitzmann
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, United States
| | - Pietro Roversi
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
- Institute of AgriculturalBiology and Biotecnology, IBBA-CNR Unit of Milano, via Bassini 15, I-20133 Milano, Italy
| | - Marco Trerotola
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Italy; Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Italy
| |
Collapse
|
6
|
Schoberer J, Shin YJ, Vavra U, Veit C, Strasser R. Analysis of Protein Glycosylation in the ER. Methods Mol Biol 2024; 2772:221-238. [PMID: 38411817 DOI: 10.1007/978-1-0716-3710-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Protein N-glycosylation is an essential posttranslational modification which is initiated in the endoplasmic reticulum (ER). In plants, the N-glycans play a pivotal role in protein folding and quality control. Through the interaction of glycan processing and binding reactions mediated by ER-resident glycosidases and specific carbohydrate-binding proteins, the N-glycans contribute to the adoption of a native protein conformation. Properly folded glycoproteins are released from these processes and allowed to continue their transit to the Golgi where further processing and maturation of N-glycans leads to the formation of more complex structures with different functions. Incompletely folded glycoproteins are removed from the ER by a highly conserved degradation process to prevent the accumulation or secretion of misfolded proteins and maintain ER homeostasis. Here, we describe methods to analyze the N-glycosylation status and the glycan-dependent ER-associated degradation process in plants.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yun-Ji Shin
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
7
|
Yu G, Sun B, Zhu Z, Mehareb EM, Teng A, Han J, Zhang H, Liu J, Liu X, Raza G, Zhang B, Zhang Y, Wang K. Genome-wide DNase I-hypersensitive site assay reveals distinct genomic distributions and functional features of open chromatin in autopolyploid sugarcane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:573-589. [PMID: 37897092 DOI: 10.1111/tpj.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.
Collapse
Affiliation(s)
- Guangrun Yu
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Bo Sun
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiying Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Eid M Mehareb
- Sugar Crops Research Institute (SRCI), Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Ailing Teng
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Jiayong Liu
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Xinlong Liu
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| | - Yuebin Zhang
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| |
Collapse
|
8
|
Duan Z, Chen K, Yang T, You R, Chen B, Li J, Liu L. Mechanisms of Endoplasmic Reticulum Protein Homeostasis in Plants. Int J Mol Sci 2023; 24:17599. [PMID: 38139432 PMCID: PMC10743519 DOI: 10.3390/ijms242417599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Maintenance of proteome integrity is essential for cell function and survival in changing cellular and environmental conditions. The endoplasmic reticulum (ER) is the major site for the synthesis of secretory and membrane proteins. However, the accumulation of unfolded or misfolded proteins can perturb ER protein homeostasis, leading to ER stress and compromising cellular function. Eukaryotic organisms have evolved sophisticated and conserved protein quality control systems to ensure protein folding fidelity via the unfolded protein response (UPR) and to eliminate potentially harmful proteins via ER-associated degradation (ERAD) and ER-phagy. In this review, we summarize recent advances in our understanding of the mechanisms of ER protein homeostasis in plants and discuss the crosstalk between different quality control systems. Finally, we will address unanswered questions in this field.
Collapse
Affiliation(s)
- Zhihao Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Kai Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Tao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ronghui You
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Binzhao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Zheng L, Zhou P, Pan Y, Li B, Shen R, Lan P. Proteomic profile of the germinating seeds reveals enhanced seedling growth in Arabidopsis rpp1a mutant. PLANT MOLECULAR BIOLOGY 2023; 113:105-120. [PMID: 37804450 DOI: 10.1007/s11103-023-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Ribosomal phosphoprotein P1 (RPP1) is an integral component of the P-protein stalk in the 60S subunit of eukaryotic ribosomes and is required for the efficient elongation of translation. Previously, Arabidopsis RPP1A was revealed to be involved in the regulation of seed size and seed storage protein accumulation. In this work, the seedling growth analysis shows that the knockout mutation of Arabidopsis RPP1A significantly promoted seedling growth, particularly in the shoots. The label-free quantitative proteomic analysis demonstrated that a total of 593 proteins were differentially accumulated between the germinating seeds of the wild-type Col-0 and rpp1a mutant. And these proteins were significantly enriched in the intracellular transport, nitrogen compound transport, protein transport, and organophosphate metabolic process. The abundance of proteins involved in the RNA and protein processing processes, including ncRNA processing and protein folding, were significantly increased in the rpp1a mutant. Mutation in RPP1A highlighted the effects on the ribosome, energy metabolism, and nitrogen metabolism. The abundance of enzymes involved in glycolysis and pyruvate mechanism was decreased in the germinating seeds of the rpp1a mutant. Whereas the processes of amino acid biosynthesis, protein processing in endoplasmic reticulum, and biosynthesis of cofactors were enhanced in the germinating seeds of the rpp1a mutant. Taken together, the lack of RPP1A triggered changes in other ribosomal proteins, and the higher amino acid contents in the seedlings of the rpp1a mutant probably contributed to enhanced biosynthesis, processing, and transport of proteins, resulting in accelerated growth. Our results show the novel role of a P-protein and shed new light on the regulatory mechanism of seedling growth.
Collapse
Affiliation(s)
- Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peijun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingjuan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Beihammer G, König-Beihammer J, Kogelmann B, Ruocco V, Grünwald-Gruber C, D’Aoust MA, Lavoie PO, Saxena P, Gach JS, Steinkellner H, Strasser R. An oligosaccharyltransferase from Leishmania donovani increases the N-glycan occupancy on plant-produced IgG1. FRONTIERS IN PLANT SCIENCE 2023; 14:1233666. [PMID: 37615026 PMCID: PMC10442823 DOI: 10.3389/fpls.2023.1233666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
N-Glycosylation of immunoglobulin G1 (IgG1) at the heavy chain Fc domain (Asn297) plays an important role for antibody structure and effector functions. While numerous recombinant IgG1 antibodies have been successfully expressed in plants, they frequently display a considerable amount (up to 50%) of unglycosylated Fc domain. To overcome this limitation, we tested a single-subunit oligosaccharyltransferase from the protozoan Leishmania donovani (LdOST) for its ability to improve IgG1 Fc glycosylation. LdOST fused to a fluorescent protein was transiently expressed in Nicotiana benthamiana and confocal microscopy confirmed the subcellular location at the endoplasmic reticulum. Transient co-expression of LdOST with two different IgG1 antibodies resulted in a significant increase (up to 97%) of Fc glycosylation while leaving the overall N-glycan composition unmodified, as determined by different mass spectrometry approaches. While biochemical and functional features of "glycosylation improved" antibodies remained unchanged, a slight increase in FcγRIIIa binding and thermal stability was observed. Collectively, our results reveal that LdOST expression is suitable to reduce the heterogeneity of plant-produced antibodies and can contribute to improving their stability and effector functions.
Collapse
Affiliation(s)
- Gernot Beihammer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Julia König-Beihammer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Kogelmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Valentina Ruocco
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | - Johannes S. Gach
- Division of Infectious Diseases, University of California, Irvine, Irvine, CA, United States
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
11
|
Tax G, Guay KP, Soldà T, Hitchman CJ, Hill JC, Vasiljević S, Lia A, Modenutti CP, Straatman KR, Santino A, Molinari M, Zitzmann N, Hebert DN, Roversi P, Trerotola M. Rescue of secretion of a rare-disease associated mis-folded mutant glycoprotein in UGGT1 knock-out mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542711. [PMID: 37398215 PMCID: PMC10312515 DOI: 10.1101/2023.05.30.542711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Endoplasmic reticulum (ER) retention of mis-folded glycoproteins is mediated by the ERlocalised eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognises a mis-folded glycoprotein and flags it for ER retention by reglucosylating one of its N-linked glycans. In the background of a congenital mutation in a secreted glycoprotein gene, UGGT-mediated ER retention can cause rare disease even if the mutant glycoprotein retains activity ("responsive mutant"). Here, we investigated the subcellular localisation of the human Trop-2 Q118E variant, which causes gelatinous droplike corneal dystrophy (GDLD). Compared with the wild type Trop-2, which is correctly localised at the plasma membrane, the Trop-2-Q118E variant is found to be heavily retained in the ER. Using Trop-2-Q118E, we tested UGGT modulation as a rescue-of-secretion therapeutic strategy for congenital rare disease caused by responsive mutations in genes encoding secreted glycoproteins. We investigated secretion of a EYFP-fusion of Trop-2-Q118E by confocal laser scanning microscopy. As a limiting case of UGGT inhibition, mammalian cells harbouring CRISPR/Cas9-mediated inhibition of the UGGT1 and/or UGGT2 gene expressions were used. The membrane localisation of the Trop-2-Q118E-EYFP mutant was successfully rescued in UGGT1-/- and UGGT1/2-/- cells. UGGT1 also efficiently reglucosylated Trop-2-Q118E-EYFP in cellula. The study supports the hypothesis that UGGT1 modulation constitutes a novel therapeutic strategy for the treatment of Trop-2-Q118E associated GDLD, and it encourages the testing of modulators of ER glycoprotein folding Quality Control (ERQC) as broad-spectrum rescueof-secretion drugs in rare diseases caused by responsive secreted glycoprotein mutants.
Collapse
Affiliation(s)
- Gábor Tax
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
| | - Kevin P. Guay
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, United States
| | - Tatiana Soldà
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Charlie J. Hitchman
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
| | - Johan C. Hill
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Snežana Vasiljević
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Andrea Lia
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
- Institute of Sciences of Food Production, ISPA-CNR Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Carlos P. Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Kees R. Straatman
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
- Core Biotechnology Services, University of Leicester, University Road, Leicester LE1 7RH, England, United Kingdom
| | - Angelo Santino
- Institute of Sciences of Food Production, ISPA-CNR Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Maurizio Molinari
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicole Zitzmann
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, United States
| | - Pietro Roversi
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
- Institute of Agricultural Biology and Biotecnology, IBBACNR Unit of Milano, via Bassini 15, I-20133 Milano, Italy
| | - Marco Trerotola
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Italy; Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Italy
| |
Collapse
|
12
|
Montpetit J, Clúa J, Hsieh YF, Vogiatzaki E, Müller J, Abel S, Strasser R, Poirier Y. Endoplasmic reticulum calnexins participate in the primary root growth response to phosphate deficiency. PLANT PHYSIOLOGY 2023; 191:1719-1733. [PMID: 36567484 PMCID: PMC10022610 DOI: 10.1093/plphys/kiac595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Accumulation of incompletely folded proteins in the endoplasmic reticulum (ER) leads to ER stress, activates ER protein degradation pathways, and upregulates genes involved in protein folding. This process is known as the unfolded protein response (UPR). The role of ER protein folding in plant responses to nutrient deficiencies is unclear. We analyzed Arabidopsis (Arabidopsis thaliana) mutants affected in ER protein quality control and established that both CALNEXIN (CNX) genes function in the primary root response to phosphate (Pi) deficiency. CNX1 and CNX2 are homologous ER lectins promoting protein folding of N-glycosylated proteins via the recognition of the GlcMan9GlcNAc2 glycan. Growth of cnx1-1 and cnx2-2 single mutants was similar to that of the wild type under high and low Pi conditions, but the cnx1-1 cnx2-2 double mutant showed decreased primary root growth under low Pi conditions due to reduced meristematic cell division. This phenotype was specific to Pi deficiency; the double mutant responded normally to osmotic and salt stress. Expression of CNX2 mutated in amino acids involved in binding the GlcMan9GlcNAc2 glycan failed to complement the cnx1-1 cnx2-2 mutant. The root growth phenotype was Fe-dependent and was associated with root apoplastic Fe accumulation. Two genes involved in Fe-dependent inhibition of primary root growth under Pi deficiency, the ferroxidase LOW PHOSPHATE 1 (LPR1) and P5-type ATPase PLEIOTROPIC DRUG RESISTANCE 2 (PDR2) were epistatic to CNX1/CNX2. Overexpressing PDR2 failed to complement the cnx1-1 cnx2-2 root phenotype. The cnx1-1 cnx2-2 mutant showed no evidence of UPR activation, indicating a limited effect on ER protein folding. CNX might process a set of N-glycosylated proteins specifically involved in the response to Pi deficiency.
Collapse
Affiliation(s)
- Jonatan Montpetit
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Joaquín Clúa
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Yi-Fang Hsieh
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Evangelia Vogiatzaki
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jens Müller
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Li J, Zhang B, Duan P, Yan L, Yu H, Zhang L, Li N, Zheng L, Chai T, Xu R, Li Y. An endoplasmic reticulum-associated degradation-related E2-E3 enzyme pair controls grain size and weight through the brassinosteroid signaling pathway in rice. THE PLANT CELL 2023; 35:1076-1091. [PMID: 36519262 PMCID: PMC10015164 DOI: 10.1093/plcell/koac364] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 05/16/2023]
Abstract
Grain size is an important agronomic trait, but our knowledge about grain size determination in crops is still limited. Endoplasmic reticulum (ER)-associated degradation (ERAD) is a special ubiquitin proteasome system that is involved in degrading misfolded or incompletely folded proteins in the ER. Here, we report that SMALL GRAIN 3 (SMG3) and DECREASED GRAIN SIZE 1 (DGS1), an ERAD-related E2-E3 enzyme pair, regulate grain size and weight through the brassinosteroid (BR) signaling pathway in rice (Oryza sativa). SMG3 encodes a homolog of Arabidopsis (Arabidopsis thaliana) UBIQUITIN CONJUGATING ENZYME 32, which is a conserved ERAD-associated E2 ubiquitin conjugating enzyme. SMG3 interacts with another grain size regulator, DGS1. Loss of function of SMG3 or DGS1 results in small grains, while overexpression of SMG3 or DGS1 leads to long grains. Further analyses showed that DGS1 is an active E3 ubiquitin ligase and colocates with SMG3 in the ER. SMG3 and DGS1 are involved in BR signaling. DGS1 ubiquitinates the BR receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and affects its accumulation. Genetic analysis suggests that SMG3, DGS1, and BRI1 act together to regulate grain size and weight. In summary, our findings identify an ERAD-related E2-E3 pair that regulates grain size and weight, which gives insight into the function of ERAD in grain size control and BR signaling.
Collapse
Affiliation(s)
- Jing Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baolan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Penggen Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Yan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyue Yu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Leiying Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tuanyao Chai
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops Hainan University, Hainan University, Haikou 570288, China
| | - Yunhai Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The Innovative of Seed Design, Chinese Academy of Sciences, Sanya 572025, China
| |
Collapse
|
14
|
De Benedictis M, Gallo A, Migoni D, Papadia P, Roversi P, Santino A. Cadmium treatment induces endoplasmic reticulum stress and unfolded protein response in Arabidopsisthaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:281-290. [PMID: 36736010 DOI: 10.1016/j.plaphy.2023.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
We report about the response of Arabidopsis thaliana to chronic and temporary Cd2+ stress, and the Cd2+ induced activation of ER stress and unfolded protein response (UPR). Cd2+-induced UPR proceeds mainly through the bZIP60 arm, which in turn activates relevant ER stress marker genes such as BiP3, CNX, PDI5 and ERdj3B in a concentration- (chronic stress) or time- (temporary stress) dependent manner. A more severe Cd-stress triggers programmed cell death (PCD) through the activation of the NAC089 transcription factor. Toxic effects of Cd2+ exposure are reduced in the Atbzip28/bzip60 double mutant in terms of primary root length and fresh shoot weight, likely due to reduced UPR and PCD activation. We also hypothesised that the enhanced Cd2+ tolerance of the Atbzip28/bzip60 double mutant is due to an increase in brassinosteroids signaling, since the amount of the brassinosteroid insensitive1 receptor (BRI1) protein decreases under Cd2+ stress only in Wt plants. These data highlight the complexity of the UPR pathway, since the ER stress response is strictly related to the type of the treatment applied and the multifaceted connections of ER signaling. The reduced sensing of Cd2+ stress in plants with UPR defects can be used as a novel strategy for phytoremediation.
Collapse
Affiliation(s)
- Maria De Benedictis
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy
| | - Antonia Gallo
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy
| | - Danilo Migoni
- Laboratory of General and Inorganic Chemistry, Di.S.Te.B.A. (Dipartimento di Scienze e Technologie Biologic e Ambientali), University of Salento, Lecce, Italy
| | - Paride Papadia
- Laboratory of General and Inorganic Chemistry, Di.S.Te.B.A. (Dipartimento di Scienze e Technologie Biologic e Ambientali), University of Salento, Lecce, Italy
| | - Pietro Roversi
- Institute of Agricultural Biology and Biotechnology, C.N.R., Unit of Milan, Milano, Italy; Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy.
| |
Collapse
|
15
|
Liu Y, Cao D, Ma L, Jin X. Upregulation of protein N-glycosylation plays crucial roles in the response of Camellia sinensis leaves to fluoride. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:138-150. [PMID: 35597102 DOI: 10.1016/j.plaphy.2022.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The tea plant (Camellia sinensis) is one of the three major beverage crops in the world with its leaves consumption as tea. However, it can hyperaccumulate fluoride with about 98% fluoride deposition in the leaves. Our previously studies found that cell wall proteins (CWPs) might play a central role in fluoride accumulation/detoxification in C. sinensis. CWP is known to be glycosylated, however the response of CWP N-glycosylation to fluoride remains unknown in C. sinensis. In this study, a comparative N-glycoproteomic analysis was performed through HILIC enrichment coupled with UPLC-MS/MS based on TMT-labeling approach in C. sinensis leaves. Totally, 237 N-glycoproteins containing 326 unique N-glycosites were identified. 73.4%, 18.6%, 6.3% and 1.7% of these proteins possess 1, 2, 3, and ≥4 modification site, respectively. 93.2% of these proteins were predicted to be localized in the secretory pathway and 78.9% of them were targeted to the cell wall and the plasma membrane. 133 differentially accumulated N-glycosites (DNGSs) on 100 N-glycoproteins (DNGPs) were detected and 85.0% of them exhibited upregulated expression after fluoride treatment. 78.0% DNGPs were extracellular DNGPs, which belonged to CWPs, and 53.0% of them were grouped into protein acting on cell wall polysaccharides, proteases and oxido-reductases, whereas the majority of the remaining DNGPs were mainly related to N-glycoprotein biosynthesis, trafficking and quality control. Our study shed new light on the N-glycoproteome study, and revealed that increased N-glycosylation abundance of CWPs might contribute to fluoride accumulation/detoxification in C. sinensis leave.
Collapse
Affiliation(s)
- Yanli Liu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Dan Cao
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Linlong Ma
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xiaofang Jin
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| |
Collapse
|
16
|
Zhang J, Xia Y, Wang D, Du Y, Chen Y, Zhang C, Mao J, Wang M, She YM, Peng X, Liu L, Voglmeir J, He Z, Liu L, Li J. A Predominant Role of AtEDEM1 in Catalyzing a Rate-Limiting Demannosylation Step of an Arabidopsis Endoplasmic Reticulum-Associated Degradation Process. FRONTIERS IN PLANT SCIENCE 2022; 13:952246. [PMID: 35874007 PMCID: PMC9302962 DOI: 10.3389/fpls.2022.952246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a key cellular process for degrading misfolded proteins. It was well known that an asparagine (N)-linked glycan containing a free α1,6-mannose residue is a critical ERAD signal created by Homologous to α-mannosidase 1 (Htm1) in yeast and ER-Degradation Enhancing α-Mannosidase-like proteins (EDEMs) in mammals. An earlier study suggested that two Arabidopsis homologs of Htm1/EDEMs function redundantly in generating such a conserved N-glycan signal. Here we report that the Arabidopsis irb1 (reversal of bri1) mutants accumulate brassinosteroid-insensitive 1-5 (bri1-5), an ER-retained mutant variant of the brassinosteroid receptor BRI1 and are defective in one of the Arabidopsis Htm1/EDEM homologs, AtEDEM1. We show that the wild-type AtEDEM1, but not its catalytically inactive mutant, rescues irb1-1. Importantly, an insertional mutation of the Arabidopsis Asparagine-Linked Glycosylation 3 (ALG3), which causes N-linked glycosylation with truncated glycans carrying a different free α1,6-mannose residue, completely nullifies the inhibitory effect of irb1-1 on bri1-5 ERAD. Interestingly, an insertional mutation in AtEDEM2, the other Htm1/EDEM homolog, has no detectable effect on bri1-5 ERAD; however, it enhances the inhibitory effect of irb1-1 on bri1-5 degradation. Moreover, AtEDEM2 transgenes rescued the irb1-1 mutation with lower efficacy than AtEDEM1. Simultaneous elimination of AtEDEM1 and AtEDEM2 completely blocks generation of α1,6-mannose-exposed N-glycans on bri1-5, while overexpression of either AtEDEM1 or AtEDEM2 stimulates bri1-5 ERAD and enhances the bri1-5 dwarfism. We concluded that, despite its functional redundancy with AtEDEM2, AtEDEM1 plays a predominant role in promoting bri1-5 degradation.
Collapse
Affiliation(s)
- Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Yang Xia
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Dinghe Wang
- University of Chinese Academy of Sciences, Beijing, China
- The Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yamin Du
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongwu Chen
- University of Chinese Academy of Sciences, Beijing, China
- The Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Congcong Zhang
- University of Chinese Academy of Sciences, Beijing, China
- The Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Muyang Wang
- The Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Min She
- The Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zuhua He
- The Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Ma L, Liu X, Lv W, Yang Y. Molecular Mechanisms of Plant Responses to Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:934877. [PMID: 35832230 PMCID: PMC9271918 DOI: 10.3389/fpls.2022.934877] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 06/12/2023]
Abstract
Saline-alkali soils pose an increasingly serious global threat to plant growth and productivity. Much progress has been made in elucidating how plants adapt to salt stress by modulating ion homeostasis. Understanding the molecular mechanisms that affect salt tolerance and devising strategies to develop/breed salt-resilient crops have been the primary goals of plant salt stress signaling research over the past few decades. In this review, we reflect on recent major advances in our understanding of the cellular and physiological mechanisms underlying plant responses to salt stress, especially those involving temporally and spatially defined changes in signal perception, decoding, and transduction in specific organelles or cells.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohong Liu
- Department of Art and Design, Taiyuan University, Taiyuan, China
| | - Wanjia Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
The Role of SBI2/ALG12/EBS4 in the Regulation of Endoplasmic Reticulum-Associated Degradation (ERAD) Studied by a Null Allele. Int J Mol Sci 2022; 23:ijms23105811. [PMID: 35628619 PMCID: PMC9147235 DOI: 10.3390/ijms23105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Redundancy and lethality is a long-standing problem in genetics but generating minimal and lethal phenotypes in the knockouts of the same gene by different approaches drives this problem to a new high. In Asn (N)-linked glycosylation, a complex and ubiquitous cotranslational and post-translational protein modification required for the transfer of correctly folded proteins and endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins, ALG12 (EBS4) is an α 1, 6-mannosyltransferase catalyzing a mannose into Glc3Man9GlcNAc2. In Arabidopsis, T-DNA knockout alg12-T is lethal while likely ebs4 null mutants isolated by forward genetics are most healthy as weak alleles, perplexing researchers and demanding further investigations. Here, we isolated a true null allele, sbi2, with the W258Stop mutation in ALG12/EBS4. sbi2 restored the sensitivity of brassinosteroid receptor mutants bri1-5, bri1-9, and bri1-235 with ER-trapped BRI1 to brassinosteroids. Furthermore, sbi2 maturated earlier than the wild-type. Moreover, concomitant with impaired and misfolded proteins accumulated in the ER, sbi2 had higher sensitivity to tunicamycin and salt than the wild-type. Our findings thus clarify the role of SBI2/ALG12/EBS4 in the regulation of the ERAD of misfolded glycoproteins, and plant growth and stress response. Further, our study advocates the necessity and importance of using multiple approaches to validate genetics study.
Collapse
|
19
|
Xia T, Zhan Y, Mu Y, Zhang J, Xu W. MNSs-mediated N-glycan processing is essential for auxin homeostasis in Arabidopsis roots during alkaline response. iScience 2022; 25:104298. [PMID: 35602943 PMCID: PMC9118167 DOI: 10.1016/j.isci.2022.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/30/2021] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Early steps in the endoplasmic reticulum (ER) lumen and cis-Golgi comprise trimming of N-glycans by class I α-mannosidases (MNSs) play crucial roles in root growth and stress response. Herein, we found that the root growth inhibition in the mns1 mns2 mns3 mutant was partially rescued under alkaline condition, and inhibitor treatment to disrupt auxin transport counteracted this alkaline-maintained root growth. Further study showed that indole-3-acetic acid (IAA) levels were undetectable in mns1 mns2 mns3 at normal condition and recovered at alkaline condition, which corroborate our N-glycopeptide profiling, from which N-glycopeptides related with IAA biosynthesis, amino acid conjugates hydrolysis, and response showed differential abundance between normal and alkaline conditions in mns1 mns2 mns3. Overall, our results linked the need for MNSs-mediated N-glycan processing in the ER and cis-Golgi with maintenance of auxin homeostasis and transport in Arabidopsis roots during the response to alkaline stress. Root growth inhibition of the mns1 mns2 mns3 mutant was rescued at alkaline pH Auxin homeostasis was changed between normal and alkaline pH in mns1 mns2 mns3 Disrupting auxin transport inhibited the alkaline-rescued root growth in mns1 mns2 mns3
Collapse
Affiliation(s)
- Tianyu Xia
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Yujie Zhan
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Yangjie Mu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
- Corresponding author
| |
Collapse
|
20
|
Ma X, Zhao X, Zhang H, Zhang Y, Sun S, Li Y, Long Z, Liu Y, Zhang X, Li R, Tan L, Jiang L, Zhu JK, Li L. MAG2 and MAL Regulate Vesicle Trafficking and Auxin Homeostasis With Functional Redundancy. FRONTIERS IN PLANT SCIENCE 2022; 13:849532. [PMID: 35371137 PMCID: PMC8966843 DOI: 10.3389/fpls.2022.849532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Auxin is a central phytohormone and controls almost all aspects of plant development and stress response. Auxin homeostasis is coordinately regulated by biosynthesis, catabolism, transport, conjugation, and deposition. Endoplasmic reticulum (ER)-localized MAIGO2 (MAG2) complex mediates tethering of arriving vesicles to the ER membrane, and it is crucial for ER export trafficking. Despite important regulatory roles of MAG2 in vesicle trafficking, the mag2 mutant had mild developmental abnormalities. MAG2 has one homolog protein, MAG2-Like (MAL), and the mal-1 mutant also had slight developmental phenotypes. In order to investigate MAG2 and MAL regulatory function in plant development, we generated the mag2-1 mal-1 double mutant. As expected, the double mutant exhibited serious developmental defects and more alteration in stress response compared with single mutants and wild type. Proteomic analysis revealed that signaling, metabolism, and stress response in mag2-1 mal-1 were affected, especially membrane trafficking and auxin biosynthesis, signaling, and transport. Biochemical and cell biological analysis indicated that the mag2-1 mal-1 double mutant had more serious defects in vesicle transport than the mag2-1 and mal-1 single mutants. The auxin distribution and abundance of auxin transporters were altered significantly in the mag2-1 and mal-1 single mutants and mag2-1 mal-1 double mutant. Our findings suggest that MAG2 and MAL regulate plant development and auxin homeostasis by controlling membrane trafficking, with functional redundancy.
Collapse
Affiliation(s)
- Xiaohui Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Xiaonan Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Hailong Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shanwen Sun
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Ying Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Zhengbiao Long
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Xiaomeng Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Rongxia Li
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Tan
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
21
|
Sun X, Guo C, Ali K, Zheng Q, Wei Q, Zhu Y, Wang L, Li G, Li W, Zheng B, Bai Q, Wu G. A Non-redundant Function of MNS5: A Class I α-1, 2 Mannosidase, in the Regulation of Endoplasmic Reticulum-Associated Degradation of Misfolded Glycoproteins. FRONTIERS IN PLANT SCIENCE 2022; 13:873688. [PMID: 35519817 PMCID: PMC9062699 DOI: 10.3389/fpls.2022.873688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 05/14/2023]
Abstract
Endoplasmic Reticulum-Associated Degradation (ERAD) is one of the major processes in maintaining protein homeostasis. Class I α-mannosidases MNS4 and MNS5 are involved in the degradation of misfolded variants of the heavily glycosylated proteins, playing an important role for glycan-dependent ERAD in planta. MNS4 and MNS5 reportedly have functional redundancy, meaning that only the loss of both MNS4 and MNS5 shows phenotypes. However, MNS4 is a membrane-associated protein while MNS5 is a soluble protein, and both can localize to the endoplasmic reticulum (ER). Furthermore, MNS4 and MNS5 differentially demannosylate the glycoprotein substrates. Importantly, we found that their gene expression patterns are complemented rather than overlapped. This raises the question of whether they indeed work redundantly, warranting a further investigation. Here, we conducted an exhaustive genetic screen for a suppressor of the bri1-5, a brassinosteroid (BR) receptor mutant with its receptor downregulated by ERAD, and isolated sbi3, a suppressor of bri1-5 mutant named after sbi1 (suppressor of bri1). After genetic mapping together with whole-genome re-sequencing, we identified a point mutation G343E in AT1G27520 (MNS5) in sbi3. Genetic complementation experiments confirmed that sbi3 was a loss-of-function allele of MNS5. In addition, sbi3 suppressed the dwarf phenotype of bri1-235 in the proteasome-independent ERAD pathway and bri1-9 in the proteasome-dependent ERAD pathway. Importantly, sbi3 could only affect BRI1/bri1 with kinase activities such that it restored BR-sensitivities of bri1-5, bri1-9, and bri1-235 but not null bri1. Furthermore, sbi3 was less tolerant to tunicamycin and salt than the wild-type plants. Thus, our study uncovers a non-redundant function of MNS5 in the regulation of ERAD as well as plant growth and ER stress response, highlighting a need of the traditional forward genetic approach to complement the T-DNA or CRISPR-Cas9 systems on gene functional study.
Collapse
|
22
|
Guo T, Weber H, Niemann MCE, Theisl L, Leonte G, Novák O, Werner T. Arabidopsis HIPP proteins regulate endoplasmic reticulum-associated degradation of CKX proteins and cytokinin responses. MOLECULAR PLANT 2021; 14:1918-1934. [PMID: 34314894 DOI: 10.1016/j.molp.2021.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Eukaryotic organisms are equipped with quality-control mechanisms that survey protein folding in the endoplasmic reticulum (ER) and remove non-native proteins by ER-associated degradation (ERAD). Recent research has shown that cytokinin-degrading CKX proteins are subjected to ERAD during plant development. The mechanisms of plant ERAD, including the export of substrate proteins from the ER, are not fully understood, and the molecular components involved in the ERAD of CKX are unknown. Here, we show that heavy metal-associated isoprenylated plant proteins (HIPPs) interact specifically with CKX proteins synthesized in the ER and processed by ERAD. CKX-HIPP protein complexes were detected at the ER as well as in the cytosol, suggesting that the complexes involve retrotranslocated CKX protein species. Altered CKX levels in HIPP-overexpressing and higher-order hipp mutant plants suggest that the studied HIPPs control the ERAD of CKX. Deregulation of CKX proteins caused corresponding changes in the cytokinin signaling activity and triggered typical morphological cytokinin responses. Notably, transcriptional repression of HIPP genes by cytokinin indicates a feedback regulatory mechanism of cytokinin homeostasis and signaling responses. Moreover, loss of function of HIPP genes constitutively activates the unfolded protein response and compromises the ER stress tolerance. Collectively, these results suggests that HIPPs represent novel functional components of plant ERAD.
Collapse
Affiliation(s)
- Tianqi Guo
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, 514015 Mei Zhou, China
| | - Henriette Weber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Michael C E Niemann
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Lisa Theisl
- Institute of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Georgeta Leonte
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, 78371 Olomouc, Czech Republic
| | - Tomáš Werner
- Institute of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria.
| |
Collapse
|
23
|
Dobrica M, van Eerde A, Tucureanu C, Onu A, Paruch L, Caras I, Vlase E, Steen H, Haugslien S, Alonzi D, Zitzmann N, Bock R, Dubuisson J, Popescu C, Stavaru C, Liu Clarke J, Branza‐Nichita N. Hepatitis C virus E2 envelope glycoprotein produced in Nicotiana benthamiana triggers humoral response with virus-neutralizing activity in vaccinated mice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2027-2039. [PMID: 34002936 PMCID: PMC8486241 DOI: 10.1111/pbi.13631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 05/03/2023]
Abstract
Chronic infection with hepatitis C virus (HCV) remains a leading cause of liver-related pathologies and a global health problem, currently affecting more than 71 million people worldwide. The development of a prophylactic vaccine is much needed to complement the effective antiviral treatment available and achieve HCV eradication. Current strategies focus on increasing the immunogenicity of the HCV envelope glycoprotein E2, the major target of virus-neutralizing antibodies, by testing various expression systems or manipulating the protein conformation and the N-glycosylation pattern. Here we report the first evidence of successful production of the full-length HCV E2 glycoprotein in Nicotiana benthamiana, by using the Agrobacterium-mediated transient expression technology. Molecular and functional analysis showed that the viral protein was correctly processed in plant cells and achieved the native folding required for binding to CD81, one of the HCV receptors. N-glycan analysis of HCV-E2 produced in N. benthamiana and mammalian cells indicated host-specific trimming of mannose residues and possibly, protein trafficking. Notably, the plant-derived viral antigen triggered a significant immune response in vaccinated mice, characterized by the presence of antibodies with HCV-neutralizing activity. Together, our study demonstrates that N. benthamiana is a viable alternative to costly mammalian cell cultures for the expression of complex viral antigens and supports the use of plants as cost-effective production platforms for the development of HCV vaccines.
Collapse
Affiliation(s)
| | | | - Catalin Tucureanu
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | - Adrian Onu
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | - Lisa Paruch
- NIBIO ‐ Norwegian Institute of Bioeconomy ResearchÅsNorway
| | - Iuliana Caras
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | - Ene Vlase
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | - Hege Steen
- NIBIO ‐ Norwegian Institute of Bioeconomy ResearchÅsNorway
| | | | - Dominic Alonzi
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Nicole Zitzmann
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Jean Dubuisson
- Université LilleCNRSINSERMCHU LilleInstitut Pasteur de LilleU1019‐UMR 9017‐CIIL‐Center for Infection and Immunity of LilleLilleFrance
| | | | - Crina Stavaru
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | | | | |
Collapse
|
24
|
Yang CH, Wang C, Singh S, Fan N, Liu S, Zhao L, Cao H, Xie W, Yang C, Huang CF. Golgi-localised manganese transporter PML3 regulates Arabidopsis growth through modulating Golgi glycosylation and cell wall biosynthesis. THE NEW PHYTOLOGIST 2021; 231:2200-2214. [PMID: 33454966 DOI: 10.1111/nph.17209] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 05/24/2023]
Abstract
Golgi is a critical compartment for both the reutilisation of the essential micronutrient manganese (Mn) and its detoxification. However, whether Mn plays a role in the Golgi remains to be demonstrated in plants. We characterised the function of PML3, a member of the Unknown Protein Family UPF0016, in Mn transport and the regulation of plant growth, Golgi glycosylation and cell wall biosynthesis in Arabidopsis. We also investigated the relationship of PML3 with NRAMP2, a trans-Golgi network localised Mn transporter. PML3-GFP is preferentially localised in the cis-Golgi. PML3 can transport Mn to rescue the hypersensitivity of yeast mutant Δpmr1 to excess Mn. Two mutant alleles of PML3 displayed reduced plant growth and impaired seed development under Mn-deficient conditions. The pml3 mutants also showed impaired Golgi glycosylation and cell wall biosynthesis under Mn deficiency. Double mutations of PML3 and NRAMP2 showed improved plant growth compared with that of single mutants under Mn deficiency, implying that PML3 and NRAMP2 play opposite roles in the regulation of Golgi Mn levels. Our results suggest that PML3 mediates Mn uptake into the Golgi compartments, which is required for proper protein glycosylation and cell wall biosynthesis under Mn-deficient conditions.
Collapse
Affiliation(s)
- Chang-Hong Yang
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Wang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Somesh Singh
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ni Fan
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuo Liu
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Li Zhao
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hengliang Cao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenxiang Xie
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chengwei Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chao-Feng Huang
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Shin YJ, Vavra U, Strasser R. Proper protein folding in the endoplasmic reticulum is required for attachment of a glycosylphosphatidylinositol anchor in plants. PLANT PHYSIOLOGY 2021; 186:1878-1892. [PMID: 33930152 PMCID: PMC8331152 DOI: 10.1093/plphys/kiab181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/04/2021] [Indexed: 05/31/2023]
Abstract
Endoplasmic reticulum (ER) quality control processes recognize and eliminate misfolded proteins to maintain cellular protein homeostasis and prevent the accumulation of defective proteins in the secretory pathway. Glycosylphosphatidylinositol (GPI)-anchored proteins carry a glycolipid modification, which provides an efficient ER export signal and potentially prevents the entry into ER-associated degradation (ERAD), which is one of the major pathways for clearance of terminally misfolded proteins from the ER. Here, we analyzed the degradation routes of different misfolded glycoproteins carrying a C-terminal GPI-attachment signal peptide in Arabidopsis thaliana. We found that a fusion protein consisting of the misfolded extracellular domain from Arabidopsis STRUBBELIG and the GPI-anchor attachment sequence of COBRA1 was efficiently targeted to hydroxymethylglutaryl reductase degradation protein 1 complex-mediated ERAD without the detectable attachment of a GPI anchor. Non-native variants of the GPI-anchored lipid transfer protein 1 (LTPG1) that lack a severely misfolded domain, on the other hand, are modified with a GPI anchor and targeted to the vacuole for degradation. Impaired processing of the GPI-anchoring signal peptide by mutation of the cleavage site or in a GPI-transamidase-compromised mutant caused ER retention and routed the non-native LTPG1 to ERAD. Collectively, these results indicate that for severely misfolded proteins, ER quality control processes are dominant over ER export. For less severely misfolded proteins, the GPI anchor provides an efficient ER export signal resulting in transport to the vacuole.
Collapse
Affiliation(s)
- Yun-Ji Shin
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
26
|
Shin YJ, König-Beihammer J, Vavra U, Schwestka J, Kienzl NF, Klausberger M, Laurent E, Grünwald-Gruber C, Vierlinger K, Hofner M, Margolin E, Weinhäusel A, Stöger E, Mach L, Strasser R. N-Glycosylation of the SARS-CoV-2 Receptor Binding Domain Is Important for Functional Expression in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:689104. [PMID: 34211491 PMCID: PMC8239413 DOI: 10.3389/fpls.2021.689104] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/20/2021] [Indexed: 05/17/2023]
Abstract
Nicotiana benthamiana is used worldwide as production host for recombinant proteins. Many recombinant proteins such as monoclonal antibodies, growth factors or viral antigens require posttranslational modifications like glycosylation for their function. Here, we transiently expressed different variants of the glycosylated receptor binding domain (RBD) from the SARS-CoV-2 spike protein in N. benthamiana. We characterized the impact of variations in RBD-length and posttranslational modifications on protein expression, yield and functionality. We found that a truncated RBD variant (RBD-215) consisting of amino acids Arg319-Leu533 can be efficiently expressed as a secreted soluble protein. Purified RBD-215 was mainly present as a monomer and showed binding to the conformation-dependent antibody CR3022, the cellular receptor angiotensin converting enzyme 2 (ACE2) and to antibodies present in convalescent sera. Expression of RBD-215 in glycoengineered ΔXT/FT plants resulted in the generation of complex N-glycans on both N-glycosylation sites. While site-directed mutagenesis showed that the N-glycans are important for proper RBD folding, differences in N-glycan processing had no effect on protein expression and function.
Collapse
Affiliation(s)
- Yun-Ji Shin
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Julia König-Beihammer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Jennifer Schwestka
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Nikolaus F. Kienzl
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Miriam Klausberger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Elisabeth Laurent
- Department of Biotechnology, Core Facility Biomolecular and Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Klemens Vierlinger
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Manuela Hofner
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Andreas Weinhäusel
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
27
|
Mócsai R, Göritzer K, Stenitzer D, Maresch D, Strasser R, Altmann F. Prolyl Hydroxylase Paralogs in Nicotiana benthamiana Show High Similarity With Regard to Substrate Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:636597. [PMID: 33737944 PMCID: PMC7960765 DOI: 10.3389/fpls.2021.636597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 05/03/2023]
Abstract
Plant glycoproteins display a characteristic type of O-glycosylation where short arabinans or larger arabinogalactans are linked to hydroxyproline. The conversion of proline to 4-hydroxyproline is accomplished by prolyl-hydroxylases (P4Hs). Eleven putative Nicotiana benthamiana P4Hs, which fall in four homology groups, have been identified by homology searches using known Arabidopsis thaliana P4H sequences. One member of each of these groups has been expressed in insect cells using the baculovirus expression system and applied to synthetic peptides representing the O-glycosylated region of erythropoietin (EPO), IgA1, Art v 1 and the Arabidopsis thaliana glycoprotein STRUBBELIG. Unlike the situation in the moss Physcomitrella patens, where one particular P4H was mainly responsible for the oxidation of erythropoietin, the tobacco P4Hs exhibited rather similar activities, albeit with biased substrate preferences and preferred sites of oxidation. From a biotechnological viewpoint, this result means that silencing/knockout of a single P4H in N. benthamiana cannot be expected to result in the abolishment of the plant-specific oxidation of prolyl residues in a recombinant protein.
Collapse
Affiliation(s)
- Réka Mócsai
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kathrin Göritzer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - David Stenitzer
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
28
|
Strasser R, Seifert G, Doblin MS, Johnson KL, Ruprecht C, Pfrengle F, Bacic A, Estevez JM. Cracking the "Sugar Code": A Snapshot of N- and O-Glycosylation Pathways and Functions in Plants Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:640919. [PMID: 33679857 PMCID: PMC7933510 DOI: 10.3389/fpls.2021.640919] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Glycosylation is a fundamental co-translational and/or post-translational modification process where an attachment of sugars onto either proteins or lipids can alter their biological function, subcellular location and modulate the development and physiology of an organism. Glycosylation is not a template driven process and as such produces a vastly larger array of glycan structures through combinatorial use of enzymes and of repeated common scaffolds and as a consequence it provides a huge expansion of both the proteome and lipidome. While the essential role of N- and O-glycan modifications on mammalian glycoproteins is already well documented, we are just starting to decode their biological functions in plants. Although significant advances have been made in plant glycobiology in the last decades, there are still key challenges impeding progress in the field and, as such, holistic modern high throughput approaches may help to address these conceptual gaps. In this snapshot, we present an update of the most common O- and N-glycan structures present on plant glycoproteins as well as (1) the plant glycosyltransferases (GTs) and glycosyl hydrolases (GHs) responsible for their biosynthesis; (2) a summary of microorganism-derived GHs characterized to cleave specific glycosidic linkages; (3) a summary of the available tools ranging from monoclonal antibodies (mAbs), lectins to chemical probes for the detection of specific sugar moieties within these complex macromolecules; (4) selected examples of N- and O-glycoproteins as well as in their related GTs to illustrate the complexity on their mode of action in plant cell growth and stress responses processes, and finally (5) we present the carbohydrate microarray approach that could revolutionize the way in which unknown plant GTs and GHs are identified and their specificities characterized.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Monika S. Doblin
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Colin Ruprecht
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Fabian Pfrengle
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - José M. Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
29
|
Sun JL, Li JY, Wang MJ, Song ZT, Liu JX. Protein Quality Control in Plant Organelles: Current Progress and Future Perspectives. MOLECULAR PLANT 2021; 14:95-114. [PMID: 33137518 DOI: 10.1016/j.molp.2020.10.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum, chloroplasts, and mitochondria are major plant organelles for protein synthesis, photosynthesis, metabolism, and energy production. Protein homeostasis in these organelles, maintained by a balance between protein synthesis and degradation, is essential for cell functions during plant growth, development, and stress resistance. Nucleus-encoded chloroplast- and mitochondrion-targeted proteins and ER-resident proteins are imported from the cytosol and undergo modification and maturation within their respective organelles. Protein folding is an error-prone process that is influenced by both developmental signals and environmental cues; a number of mechanisms have evolved to ensure efficient import and proper folding and maturation of proteins in plant organelles. Misfolded or damaged proteins with nonnative conformations are subject to degradation via complementary or competing pathways: intraorganelle proteases, the organelle-associated ubiquitin-proteasome system, and the selective autophagy of partial or entire organelles. When proteins in nonnative conformations accumulate, the organelle-specific unfolded protein response operates to restore protein homeostasis by reducing protein folding demand, increasing protein folding capacity, and enhancing components involved in proteasome-associated protein degradation and autophagy. This review summarizes recent progress on the understanding of protein quality control in the ER, chloroplasts, and mitochondria in plants, with a focus on common mechanisms shared by these organelles during protein homeostasis.
Collapse
Affiliation(s)
- Jing-Liang Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Mei-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Ze-Ting Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
30
|
Wang W, Wu Y, Shi R, Sun M, Li Q, Zhang G, Wu J, Wang Y, Wang W. Overexpression of wheat α-mannosidase gene TaMP impairs salt tolerance in transgenic Brachypodium distachyon. PLANT CELL REPORTS 2020; 39:653-667. [PMID: 32123996 DOI: 10.1007/s00299-020-02522-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
The TaMP gene from wheat encodes an α-mannosidase induced by salt stress that functions as negative regulator of salt tolerance in plants. Salt stress significantly affects growth and yield of crop plants. The α-mannosidases function in protein folding, trafficking, and endoplasmic reticulum-associated degradation in eukaryotic cells, and they are involved in abiotic stress tolerance in plants. Previously, we identified the α-mannosidase gene TaMP in wheat (Triticum aestivum). In this study, we investigated the function of TaMP in salt stress tolerance. TaMP expression was induced in wheat leaves by salt, drought, abscisic acid, and H2O2 treatments. Overexpressing TaMP in Brachypodium distachyon was associated with a salt-sensitive phenotype. Under salt stress, the overexpressing plants had reduced height, delayed growth status, low photosynthetic rate, decreased survival rate, and diminished yield. Moreover, the overexpression of TaMP aggravated the tendency for ions to become toxic under salt stress by significantly affecting the Na+ and K+ contents in cells. In addition, TaMP could negatively regulate salt tolerance by affecting the antioxidant enzyme system capacity and increasing the reactive oxygen species accumulation. Our study was helpful to understand the underlying physiological and molecular mechanisms of salt stress tolerance in plants.
Collapse
Affiliation(s)
- Wenlong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yunzhen Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Ruirui Shi
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Mengwei Sun
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
31
|
Chen Q, Yu F, Xie Q. Insights into endoplasmic reticulum-associated degradation in plants. THE NEW PHYTOLOGIST 2020; 226:345-350. [PMID: 31838748 DOI: 10.1111/nph.16369] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Secretory and transmembrane protein synthesis and initial modification are essential processes in protein maturation, and these processes are important for maintaining protein homeostasis in the endoplasmic reticulum (ER). ER homeostasis can be disrupted by the accumulation of misfolded proteins, resulting in ER stress, due to specific intra- or extracellular stresses. Processes including the unfolded protein response (UPR), ER-associated degradation (ERAD) and autophagy are thought to play important roles in restoring ER homeostasis. Here, we focus on summarizing and analysing recent advances in our understanding of the role of ERAD in plant physiological processes, especially in plant adaption to biotic and abiotic stresses, and also identify several issues that still need to be resolved in this field.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Zhang J, Wu J, Liu L, Li J. The Crucial Role of Demannosylating Asparagine-Linked Glycans in ERADicating Misfolded Glycoproteins in the Endoplasmic Reticulum. FRONTIERS IN PLANT SCIENCE 2020; 11:625033. [PMID: 33510762 PMCID: PMC7835635 DOI: 10.3389/fpls.2020.625033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Most membrane and secreted proteins are glycosylated on certain asparagine (N) residues in the endoplasmic reticulum (ER), which is crucial for their correct folding and function. Protein folding is a fundamentally inefficient and error-prone process that can be easily interfered by genetic mutations, stochastic cellular events, and environmental stresses. Because misfolded proteins not only lead to functional deficiency but also produce gain-of-function cellular toxicity, eukaryotic organisms have evolved highly conserved ER-mediated protein quality control (ERQC) mechanisms to monitor protein folding, retain and repair incompletely folded or misfolded proteins, or remove terminally misfolded proteins via a unique ER-associated degradation (ERAD) mechanism. A crucial event that terminates futile refolding attempts of a misfolded glycoprotein and diverts it into the ERAD pathway is executed by removal of certain terminal α1,2-mannose (Man) residues of their N-glycans. Earlier studies were centered around an ER-type α1,2-mannosidase that specifically cleaves the terminal α1,2Man residue from the B-branch of the three-branched N-linked Man9GlcNAc2 (GlcNAc for N-acetylglucosamine) glycan, but recent investigations revealed that the signal that marks a terminally misfolded glycoprotein for ERAD is an N-glycan with an exposed α1,6Man residue generated by members of a unique folding-sensitive α1,2-mannosidase family known as ER-degradation enhancing α-mannosidase-like proteins (EDEMs). This review provides a historical recount of major discoveries that led to our current understanding on the role of demannosylating N-glycans in sentencing irreparable misfolded glycoproteins into ERAD. It also discusses conserved and distinct features of the demannosylation processes of the ERAD systems of yeast, mammals, and plants.
Collapse
Affiliation(s)
- Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jiarui Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Jianming Li, ;
| |
Collapse
|
33
|
Tax G, Lia A, Santino A, Roversi P. Modulation of ERQC and ERAD: A Broad-Spectrum Spanner in the Works of Cancer Cells? JOURNAL OF ONCOLOGY 2019; 2019:8384913. [PMID: 31662755 PMCID: PMC6791201 DOI: 10.1155/2019/8384913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
Endoplasmic reticulum glycoprotein folding quality control (ERQC) and ER-associated degradation (ERAD) preside over cellular glycoprotein secretion and maintain steady glycoproteostasis. When cells turn malignant, cancer cell plasticity is affected and supported either by point mutations, preferential isoform selection, altered expression levels, or shifts to conformational equilibria of a secreted glycoprotein. Such changes are crucial in mediating altered extracellular signalling, metabolic behavior, and adhesion properties of cancer cells. It is therefore conceivable that interference with ERQC and/or ERAD can be used to selectively damage cancers. Indeed, inhibitors of the late stages of ERAD are already in the clinic against cancers such as multiple myeloma. Here, we review recent advances in our understanding of the complex relationship between glycoproteostasis and cancer biology and discuss the potential of ERQC and ERAD modulators for the selective targeting of cancer cell plasticity.
Collapse
Affiliation(s)
- Gábor Tax
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
| | - Andrea Lia
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Pietro Roversi
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
| |
Collapse
|
34
|
Schoberer J, König J, Veit C, Vavra U, Liebminger E, Botchway SW, Altmann F, Kriechbaumer V, Hawes C, Strasser R. A signal motif retains Arabidopsis ER-α-mannosidase I in the cis-Golgi and prevents enhanced glycoprotein ERAD. Nat Commun 2019; 10:3701. [PMID: 31420549 PMCID: PMC6697737 DOI: 10.1038/s41467-019-11686-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/01/2019] [Indexed: 11/09/2022] Open
Abstract
The Arabidopsis ER-α-mannosidase I (MNS3) generates an oligomannosidic N-glycan structure that is characteristically found on ER-resident glycoproteins. The enzyme itself has so far not been detected in the ER. Here, we provide evidence that in plants MNS3 exclusively resides in the Golgi apparatus at steady-state. Notably, MNS3 remains on dispersed punctate structures when subjected to different approaches that commonly result in the relocation of Golgi enzymes to the ER. Responsible for this rare behavior is an amino acid signal motif (LPYS) within the cytoplasmic tail of MNS3 that acts as a specific Golgi retention signal. This retention is a means to spatially separate MNS3 from ER-localized mannose trimming steps that generate the glycan signal required for flagging terminally misfolded glycoproteins for ERAD. The physiological importance of the very specific MNS3 localization is demonstrated here by means of a structurally impaired variant of the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
| | - Julia König
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Eva Liebminger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Stanley W Botchway
- Central Laser Facility, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, OX11 0QX, UK
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
35
|
Schoberer J, Liebminger E, Vavra U, Veit C, Grünwald-Gruber C, Altmann F, Botchway SW, Strasser R. The Golgi Localization of GnTI Requires a Polar Amino Acid Residue within Its Transmembrane Domain. PLANT PHYSIOLOGY 2019; 180:859-873. [PMID: 30971450 PMCID: PMC6548254 DOI: 10.1104/pp.19.00310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/03/2019] [Indexed: 05/12/2023]
Abstract
The Golgi apparatus consists of stacked cisternae filled with enzymes that facilitate the sequential and highly controlled modification of glycans from proteins that transit through the organelle. Although the glycan processing pathways have been extensively studied, the underlying mechanisms that concentrate Golgi-resident glycosyltransferases and glycosidases in distinct Golgi compartments are poorly understood. The single-pass transmembrane domain (TMD) of n-acetylglucosaminyltransferaseI (GnTI) accounts for its steady-state distribution in the cis/medial-Golgi. Here, we investigated the contribution of individual amino acid residues within the TMD of Arabidopsis (Arabidopsis thaliana) and Nicotiana tabacum GnTI toward Golgi localization and n-glycan processing. Conserved sequence motifs within the TMD were replaced with those from the established trans-Golgi enzyme α2,6-sialyltransferase and site-directed mutagenesis was used to exchange individual amino acid residues. Subsequent subcellular localization of fluorescent fusion proteins and n-glycan profiling revealed that a conserved Gln residue in the GnTI TMD is essential for its cis/medial-Golgi localization. Substitution of the crucial Gln residue with other amino acids resulted in mislocalization to the vacuole and impaired n-glycan processing in vivo. Our results suggest that sequence-specific features of the GnTI TMD are required for its interaction with a Golgi-resident adaptor protein or a specific lipid environment that likely promotes coat protein complexI-mediated retrograde transport, thus maintaining the steady-state distribution of GnTI in the cis/medial-Golgi of plants.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Eva Liebminger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Stanley W Botchway
- Research Complex at Harwell, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot OX11 0QX, United Kingdom
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
36
|
An F, Baker MR, Qin Y, Chen S, Li QX. Relevance of Class I α-Mannosidases to Cassava Postharvest Physiological Deterioration. ACS OMEGA 2019; 4:8739-8746. [PMID: 31459963 PMCID: PMC6648743 DOI: 10.1021/acsomega.8b03558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/09/2019] [Indexed: 05/27/2023]
Abstract
Class I α-mannosidases (MNSs) play important roles in protein N-glycosylation. However, no data are currently available about MNSs in cassava (Manihot esculenta), of which the functions are therefore not known, particularly in relevance to postharvest physiological deterioration (PPD). A total of seven genes were identified from the cassava genome in the present study. Two (MeMNS2 and MeMNS6) of the seven genes may be pseudogenes, as indicated by sequence alignment and exon-intron organizations. Five MNSs could be classified into three subfamilies. Tissue-specific expression analysis revealed that MNS genes have distinct expression patterns in different tissues between sugar cassava and cultivated cassava varieties, indicating their functional diversity. A PPD response and defense model was proposed based on the transcription data of MNSs and genes involved in reactive oxygen species, signal transduction, and cell wall remodeling. The findings help in the understanding of PPD responses in cassava.
Collapse
Affiliation(s)
- Feifei An
- Tropical
Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural
Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources
Conservation and Utilization of Cassava, Danzhou, Hainan 571737, China
- Department
of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Margaret R. Baker
- Department
of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yuling Qin
- Tropical
Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural
Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources
Conservation and Utilization of Cassava, Danzhou, Hainan 571737, China
| | - Songbi Chen
- Tropical
Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural
Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources
Conservation and Utilization of Cassava, Danzhou, Hainan 571737, China
| | - Qing X. Li
- Department
of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
37
|
Nagashima Y, von Schaewen A, Koiwa H. Function of N-glycosylation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:70-79. [PMID: 30080642 DOI: 10.1016/j.plantsci.2018.05.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 05/20/2023]
Abstract
Protein N-glycosylation is one of the major post-translational modifications in eukaryotic cells. In lower unicellular eukaryotes, the known functions of N-glycans are predominantly in protein folding and quality control within the lumen of the endoplasmic reticulum (ER). In multicellular organisms, complex N-glycans are important for developmental programs and immune responses. However, little is known about the functions of complex N-glycans in plants. Formed in the Golgi apparatus, plant complex N-glycans have structures distinct from their animal counterparts due to a set of glycosyltransferases unique to plants. Severe basal underglycosylation in the ER lumen induces misfolding of newly synthesized proteins, which elicits the unfolded protein response (UPR) and ER protein quality control (ERQC) pathways. The former promotes higher capacity of proper protein folding and the latter degradation of misfolded proteins to clear the ER. Although our knowledge on plant complex N-glycan functions is limited, genetic studies revealed the importance of complex N-glycans in cellulose biosynthesis and growth under stress.
Collapse
Affiliation(s)
- Yukihiro Nagashima
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Antje von Schaewen
- Molekulare Physiologie der Pflanzen, Institut für Biologie & Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
38
|
Liu C, Niu G, Zhang H, Sun Y, Sun S, Yu F, Lu S, Yang Y, Li J, Hong Z. Trimming of N-Glycans by the Golgi-Localized α-1,2-Mannosidases, MNS1 and MNS2, Is Crucial for Maintaining RSW2 Protein Abundance during Salt Stress in Arabidopsis. MOLECULAR PLANT 2018; 11:678-690. [PMID: 29409894 DOI: 10.1016/j.molp.2018.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 05/18/2023]
Abstract
Asparagine (Asn/N)-linked glycans are important for protein folding, trafficking, and endoplasmic reticulum-associated degradation in eukaryotes. The maturation of glycoproteins involves the trimming of mannosyl residues by mannosidases and addition of other sugar molecules to three-branched N-glycans in the Golgi. However, the biological importance of Golgi-mediated mannose trimming is not fully understood. Here, we show that abolishment of two functionally redundant mannosidases, MNS1 and MNS2, responsible for α-1,2-mannose trimming on the A and C branches of plant N-glycans lead to severe root growth inhibition under salt stress conditions in Arabidopsis. In contrast, mutants with defects in the biosynthesis of the oligosaccharide precursor displayed enhanced salt tolerance in the absence of mannose trimming. However, mutation in EBS3, which is required for the formation of the branched N-glycan precursor, suppressed the salt-sensitive phenotype of mns1 mns2 double mutant. Interestingly, we observed that cellulose biosynthesis was compromised in mns1 mns2 roots under high salinity. Consistently, abundance of a membrane anchored endo-β-1,4-endoglucanase (RSW2/KOR) that plays a key role in cellulose biosynthesis and its mutant variant rsw2-1 were modulated by α-1,2-mannose trimming under salt stress. Overexpression of RSW2 could partially rescue the salt-sensitive phenotype of mns1 mns2. Taken together, these results suggest that MNS1/2-mediated mannose trimming of N-glycans is crucial in modulating glycoprotein abundance to withstand salt stress in plants.
Collapse
Affiliation(s)
- Chuanfa Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Guanting Niu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Huchen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Fugen Yu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jianming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 201602, China.
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
39
|
Abstract
The endoplasmic reticulum (ER) is the site of maturation for roughly one-third of all cellular proteins. ER-resident molecular chaperones and folding catalysts promote folding and assembly in a diverse set of newly synthesized proteins. Because these processes are error-prone, all eukaryotic cells have a quality-control system in place that constantly monitors the proteins and decides their fate. Proteins with potentially harmful nonnative conformations are subjected to assisted folding or degraded. Persistent folding-defective proteins are distinguished from folding intermediates and targeted for degradation by a specific process involving clearance from the ER. Although the basic principles of these processes appear conserved from yeast to animals and plants, there are distinct differences in the ER-associated degradation of misfolded glycoproteins. The general importance of ER quality-control events is underscored by their involvement in the biogenesis of diverse cell surface receptors and their crucial maintenance of protein homeostasis under diverse stress conditions.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
40
|
Abstract
The endoplasmic reticulum (ER) is the site of maturation for roughly one-third of all cellular proteins. ER-resident molecular chaperones and folding catalysts promote folding and assembly in a diverse set of newly synthesized proteins. Because these processes are error-prone, all eukaryotic cells have a quality-control system in place that constantly monitors the proteins and decides their fate. Proteins with potentially harmful nonnative conformations are subjected to assisted folding or degraded. Persistent folding-defective proteins are distinguished from folding intermediates and targeted for degradation by a specific process involving clearance from the ER. Although the basic principles of these processes appear conserved from yeast to animals and plants, there are distinct differences in the ER-associated degradation of misfolded glycoproteins. The general importance of ER quality-control events is underscored by their involvement in the biogenesis of diverse cell surface receptors and their crucial maintenance of protein homeostasis under diverse stress conditions.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
41
|
Shin Y, Vavra U, Veit C, Strasser R. The glycan-dependent ERAD machinery degrades topologically diverse misfolded proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:246-259. [PMID: 29396984 PMCID: PMC5900737 DOI: 10.1111/tpj.13851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
Many soluble and integral membrane proteins fold in the endoplasmic reticulum (ER) with the help of chaperones and folding factors. Despite these efforts, protein folding is intrinsically error prone and amino acid changes, alterations in post-translational modifications or cellular stress can cause protein misfolding. Folding-defective non-native proteins are cleared from the ER and typically undergo ER-associated degradation (ERAD). Here, we investigated whether different misfolded glycoproteins require the same set of ERAD factors and are directed to HRD1 complex-mediated degradation in plants. We generated a series of glycoprotein ERAD substrates harboring a misfolded domain from Arabidopsis STRUBBELIG or the BRASSINOSTEROID INSENSITVE 1 receptor fused to different membrane anchoring regions. We show that single pass and multispanning ERAD substrates are subjected to glycan-dependent degradation by the HRD1 complex. However, the presence of a powerful ER exit signal in the multispanning ERAD substrates causes competition with ER quality control and targeting of misfolded glycoproteins to the vacuole. Our results demonstrate that the same machinery is used for degradation of topologically different misfolded glycoproteins in the ER of plants.
Collapse
Affiliation(s)
- Yun‐Ji Shin
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| |
Collapse
|
42
|
Veit C, König J, Altmann F, Strasser R. Processing of the Terminal Alpha-1,2-Linked Mannose Residues From Oligomannosidic N-Glycans Is Critical for Proper Root Growth. FRONTIERS IN PLANT SCIENCE 2018; 9:1807. [PMID: 30574158 PMCID: PMC6291467 DOI: 10.3389/fpls.2018.01807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/20/2018] [Indexed: 05/02/2023]
Abstract
N-glycosylation is an essential protein modification that plays roles in many diverse biological processes including protein folding, quality control and protein interactions. Despite recent advances in characterization of the N-glycosylation and N-glycan processing machinery our understanding of N-glycosylation related processes in plant development is limited. In Arabidopsis thaliana, failure of mannose trimming from oligomannosidic N-glycans in the endoplasmic reticulum (ER) and cis/medial-Golgi leads to a defect in root development in the mns123 triple mutant. Here, we show that the severe root phenotype of mns123 is restored in asparagine-linked glycosylation (ALG)-deficient plants with distinct defects in the biosynthesis of the lipid-linked oligosaccharide precursor. The root growth of these ALG-deficient plants is not affected by the α-mannosidase inhibitor kifunensine. Genetic evidence shows that the defect is uncoupled from the glycan-dependent ER-associated degradation (ERAD) pathway that removes misfolded glycoproteins with oligomannosidic N-glycans from the ER. Restoration of mannose trimming using a trans-Golgi targeted α-mannosidase suppresses the defect of mns123 roots. These data suggest that processing of terminal mannose residues from oligomannosidic N-glycans is important for an unknown late-Golgi or post-Golgi process that is implicated in proper root formation.
Collapse
Affiliation(s)
- Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia König
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Richard Strasser,
| |
Collapse
|
43
|
Abstract
Protein N-glycosylation is an essential posttranslational modification which is initiated in the endoplasmic reticulum. In plants, the N-glycans play a pivotal role for protein folding and quality control. Through the interaction of glycan processing and binding reactions mediated by ER-resident glycosidases and specific carbohydrate binding proteins, the N-glycans contribute to the adoption of a native protein conformation. Properly folded glycoproteins are released from these processes and allowed to continue their transit to the Golgi where further processing and maturation of N-glycans leads to the formation of more complex structures with different functions. Incompletely folded glycoproteins are removed from the ER by a highly conserved degradation process to prevent the accumulation or secretion of misfolded proteins and maintain ER homeostasis. Here, we describe methods to analyze the N-glycosylation status and the glycan-dependent ER-associated degradation process in plants.
Collapse
|
44
|
Liu R, Fang L, Yang T, Zhang X, Hu J, Zhang H, Han W, Hua Z, Hao J, Zong X. Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections. Sci Rep 2017; 7:5919. [PMID: 28724947 PMCID: PMC5517424 DOI: 10.1038/s41598-017-06222-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022] Open
Abstract
Frost stress is one of the major abiotic stresses causing seedling death and yield reduction in winter pea. To improve the frost tolerance of pea, field evaluation of frost tolerance was conducted on 672 diverse pea accessions at three locations in Northern China in three growing seasons from 2013 to 2016 and marker-trait association analysis of frost tolerance were performed with 267 informative SSR markers in this study. Sixteen accessions were identified as the most winter-hardy for their ability to survive in all nine field experiments with a mean survival rate of 0.57, ranging from 0.41 to 0.75. Population structure analysis revealed a structured population of two sub-populations plus some admixtures in the 672 accessions. Association analysis detected seven markers that repeatedly had associations with frost tolerance in at least two different environments with two different statistical models. One of the markers is the functional marker EST1109 on LG VI which was predicted to co-localize with a gene involved in the metabolism of glycoproteins in response to chilling stress and may provide a novel mechanism of frost tolerance in pea. These winter-hardy germplasms and frost tolerance associated markers will play a vital role in marker-assisted breeding for winter-hardy pea cultivar.
Collapse
Affiliation(s)
- Rong Liu
- Center for Crop Germplasm Resources/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Fang
- Center for Crop Germplasm Resources/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Yang
- Center for Crop Germplasm Resources/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoyan Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, Shandong, China
| | - Jinguo Hu
- USDA, Agricultural Research Service, Western Regional Plant Introduction Station, Washington State University, Pullman, WA, 99164, USA
| | - Hongyan Zhang
- Center for Crop Germplasm Resources/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenliang Han
- Binzhou Academy of Agricultural Sciences, Binzhou, 256600, Shandong, China
| | - Zeke Hua
- Laiyang Agricultural Extension Center, Laiyang, 265200, Shandong, China
| | - Junjie Hao
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, Shandong, China
| | - Xuxiao Zong
- Center for Crop Germplasm Resources/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
45
|
Schoberer J, Strasser R. Plant glyco-biotechnology. Semin Cell Dev Biol 2017; 80:133-141. [PMID: 28688929 DOI: 10.1016/j.semcdb.2017.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/17/2022]
Abstract
Glycosylation is an important protein modification in all eukaryotes. Whereas the early asparagine-linked glycosylation (N-glycosylation) and N-glycan processing steps in the endoplasmic reticulum are conserved between mammals and plants, the maturation of complex N-glycans in the Golgi apparatus differs considerably. Due to a restricted number of Golgi-resident N-glycan processing enzymes and the absence of nucleotide sugars such as CMP-N-acetylneuraminic acid, plants produce only a limited repertoire of different N-glycan structures. Moreover, mammalian mucin-type O-glycosylation of serine or threonine residues has not been described in plants and the required machinery is not encoded in their genome which enables de novo build-up of the pathway. As a consequence, plants are very well-suited for the production of homogenous N- and O-glycans and are increasingly used for the production of recombinant glycoproteins with custom-made glycans that may result in the generation of biopharmaceuticals with improved therapeutic potential.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
46
|
Shin Y, Castilho A, Dicker M, Sádio F, Vavra U, Grünwald‐Gruber C, Kwon T, Altmann F, Steinkellner H, Strasser R. Reduced paucimannosidic N-glycan formation by suppression of a specific β-hexosaminidase from Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:197-206. [PMID: 27421111 PMCID: PMC5259580 DOI: 10.1111/pbi.12602] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 05/19/2023]
Abstract
Plants are attractive hosts for the production of recombinant glycoproteins for therapeutic use. Recent advances in glyco-engineering facilitate the elimination of nonmammalian-type glycosylation and introduction of missing pathways for customized N-glycan formation. However, some therapeutically relevant recombinant glycoproteins exhibit unwanted truncated (paucimannosidic) N-glycans that lack GlcNAc residues at the nonreducing terminal end. These paucimannosidic N-glycans increase product heterogeneity and may affect the biological function of the recombinant drugs. Here, we identified two enzymes, β-hexosaminidases (HEXOs) that account for the formation of paucimannosidic N-glycans in Nicotiana benthamiana, a widely used expression host for recombinant proteins. Subcellular localization studies showed that HEXO1 is a vacuolar protein and HEXO3 is mainly located at the plasma membrane in N. benthamiana leaf epidermal cells. Both enzymes are functional and can complement the corresponding HEXO-deficient Arabidopsis thaliana mutants. In planta expression of HEXO3 demonstrated that core α1,3-fucose enhances the trimming of GlcNAc residues from the Fc domain of human IgG. Finally, using RNA interference, we show that suppression of HEXO3 expression can be applied to increase the amounts of complex N-glycans on plant-produced human α1-antitrypsin.
Collapse
Affiliation(s)
- Yun‐Ji Shin
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Martina Dicker
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Flavio Sádio
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | | | - Friedrich Altmann
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
47
|
Evolution of protein N-glycosylation process in Golgi apparatus which shapes diversity of protein N-glycan structures in plants, animals and fungi. Sci Rep 2017; 7:40301. [PMID: 28074929 PMCID: PMC5225481 DOI: 10.1038/srep40301] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/01/2016] [Indexed: 01/21/2023] Open
Abstract
Protein N-glycosylation (PNG) is crucial for protein folding and enzymatic activities, and has remarkable diversity among eukaryotic species. Little is known of how unique PNG mechanisms arose and evolved in eukaryotes. Here we demonstrate a picture of onset and evolution of PNG components in Golgi apparatus that shaped diversity of eukaryotic protein N-glycan structures, with an emphasis on roles that domain emergence and combination played on PNG evolution. 23 domains were identified from 24 known PNG genes, most of which could be classified into a single clan, indicating a single evolutionary source for the majority of the genes. From 153 species, 4491 sequences containing the domains were retrieved, based on which we analyzed distribution of domains among eukaryotic species. Two domains in GnTV are restricted to specific eukaryotic domains, while 10 domains distribute not only in species where certain unique PNG reactions occur and thus genes harboring these domains are supoosed to be present, but in other ehkaryotic lineages. Notably, two domains harbored by β-1,3 galactosyltransferase, an essential enzyme in forming plant-specific Lea structure, were present in separated genes in fungi and animals, suggesting its emergence as a result of domain shuffling.
Collapse
|
48
|
Abstract
Glycosylation is essential for all trees of life. N-glycosylation is one of the most common covalent protein modifications and influences a large variety of cellular processes including protein folding, quality control and protein-receptor interactions. Despite recent progress in understanding of N-glycan biosynthesis, our knowledge of N-glycan function on individual plant proteins is still very limited. In this respect, plant hormone receptors are an interesting group of proteins as several of these proteins are present at distinct sites in the secretory pathway or at the plasma membrane and have numerous potential N-glycosylation sites. Identifying and characterization of N-glycan structures on these proteins is essential to investigate the functional role of this abundant protein modification. Here, a straightforward immunoblot-based approach is presented that enables the analysis of N-glycosylation on endogenous hormone receptors like the brassinosteroid receptor BRI1.
Collapse
Affiliation(s)
- Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Muthgasse 18, 1190, Vienna, Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Muthgasse 18, 1190, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
49
|
Plant Virus Infection and the Ubiquitin Proteasome Machinery: Arms Race along the Endoplasmic Reticulum. Viruses 2016; 8:v8110314. [PMID: 27869775 PMCID: PMC5127028 DOI: 10.3390/v8110314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/29/2016] [Accepted: 11/08/2016] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is central to plant virus replication, translation, maturation, and egress. Ubiquitin modification of ER associated cellular and viral proteins, alongside the actions of the 26S proteasome, are vital for the regulation of infection. Viruses can arrogate ER associated ubiquitination as well as cytosolic ubiquitin ligases with the purpose of directing the ubiquitin proteasome system (UPS) to new targets. Such targets include necessary modification of viral proteins which may stabilize certain complexes, or modification of Argonaute to suppress gene silencing. The UPS machinery also contributes to the regulation of effector triggered immunity pattern recognition receptor immunity. Combining the results of unrelated studies, many positive strand RNA plant viruses appear to interact with cytosolic Ub-ligases to provide novel avenues for controlling the deleterious consequences of disease. Viral interactions with the UPS serve to regulate virus infection in a manner that promotes replication and movement, but also modulates the levels of RNA accumulation to ensure successful biotrophic interactions. In other instances, the UPS plays a central role in cellular immunity. These opposing roles are made evident by contrasting studies where knockout mutations in the UPS can either hamper viruses or lead to more aggressive diseases. Understanding how viruses manipulate ER associated post-translational machineries to better manage virus–host interactions will provide new targets for crop improvement.
Collapse
|
50
|
Ma J, Wang D, She J, Li J, Zhu JK, She YM. Endoplasmic reticulum-associated N-glycan degradation of cold-upregulated glycoproteins in response to chilling stress in Arabidopsis. THE NEW PHYTOLOGIST 2016; 212:282-96. [PMID: 27558752 PMCID: PMC5513495 DOI: 10.1111/nph.14014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/11/2016] [Indexed: 05/18/2023]
Abstract
N-glycosylation has a great impact on glycoprotein structure, conformation, stability, solubility, immunogenicity and enzyme activity. Structural characterization of N-glycoproteome has been challenging but can provide insights into the extent of protein folding and surface topology. We describe a highly sensitive proteomics method for large-scale identification and quantification of glycoproteins in Arabidopsis through (15) N-metabolic labeling, selective enrichment of glycopeptides, data-dependent MS/MS analysis and automated database searching. In-house databases of Arabidopsis glycoproteins and glycopeptides containing Asn-X-Ser/Thr/Cys motifs were constructed by reducing 20% and 90% of the public database size, respectively, to enable a rapid analysis of large datasets for comprehensive identification and quantification of glycoproteins and heterogeneous N-glycans in a complex mixture. Proteome-wide analysis identified c. 100 stress-related N-glycoproteins, of which the endoplasmic reticulum (ER) resident proteins were examined to be up-regulated. Quantitative measurements provided a molecular signature specific to glycoproteins for determining the degree of plant stress at low temperature. Structural N-glycoproteomics following time-course cold treatments revealed the stress-responsive degradation of high-mannose type N-glycans in ER in response to chilling stress, which may aid in elucidating the cellular mechanisms of protein relocation, transport, trafficking, misfolding and degradation under stress conditions.
Collapse
Affiliation(s)
- Jun Ma
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Dinghe Wang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jessica She
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jianming Li
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yi-Min She
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|