1
|
Enyew M, Geleta M, Tesfaye K, Seyoum A, Feyissa T, Alemu A, Hammenhag C, Carlsson AS. Genome-wide association study and genomic prediction of root system architecture traits in Sorghum (Sorghum bicolor (L.) Moench) at the seedling stage. BMC PLANT BIOLOGY 2025; 25:69. [PMID: 39819271 PMCID: PMC11740658 DOI: 10.1186/s12870-025-06077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Root system architecture (RSA) plays an important role in plant adaptation to drought stress. However, the genetic basis of RSA in sorghum has not been adequately elucidated. This study aimed to investigate the genetic bases of RSA traits through genome-wide association studies (GWAS) and determine genomic prediction (GP) accuracy in sorghum landraces at the seedling stage. Phenotypic data for nodal root angle (NRA), number of nodal roots (NNR), nodal root length (NRL), fresh shoot weight (FSW), dry shoot weight (DSW), and leaf area (LA) were collected from 160 sorghum accessions grown in soil-based rhizotrons. The sorghum panel was genotyped with 5,000 single nucleotide polymorphism (SNP) markers for use in the current GWAS and GP studies. A multi-locus model, Fixed and random model Circulating Probability Unification (FarmCPU), was applied for GWAS analysis. For GP, ridge-regression best linear unbiased prediction (RR-BLUP) and five different Bayesian models were applied. A total of 17 SNP loci significantly associated with the studied traits were identified, of which nine are novel loci. Among the traits, the highest number of significant marker-trait associations (MTAs) was identified for nodal root angle on chromosomes 1, 3, 6, and 7. The SNP loci that explain the highest proportion of phenotypic variance (PVE) include sbi32853830 (PVE = 18.2%), sbi29954292 (PVE = 18.1%), sbi24668980 (PVE = 10.8%), sbi3022983 (PVE = 7%), sbi29897704 (PVE = 6.4%) and sbi29897694 (PVE = 5.3%) for the traits NNR, LA, SDW, NRA, NRL and SFW, respectively. The genomic prediction accuracy estimated for the studied traits using five Bayesian models ranged from 0.30 to 0.63 while it ranged from 0.35 to 0.60 when the RR-BLUP model was used. The observed moderate to high prediction accuracy for each trait suggests that genomic selection could be a feasible approach to sorghum RSA-targeted selection and breeding. Overall, the present study provides insights into the genetic bases of RSA and offers an opportunity to speed up breeding for drought-tolerant sorghum varieties.
Collapse
Affiliation(s)
- Muluken Enyew
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.
- School of Biological Sciences, Washington State University, Pullman, USA.
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Amare Seyoum
- National Sorghum Research Program, Crop Research Department, Melkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Tileye Feyissa
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Admas Alemu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
2
|
Zhang H, Chen M, Luo X, Song L, Li F. Overexpression of StBBX14 Enhances Cold Tolerance in Potato. PLANTS (BASEL, SWITZERLAND) 2024; 14:18. [PMID: 39795278 PMCID: PMC11722690 DOI: 10.3390/plants14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025]
Abstract
Potato (Solanum tuberosum L.) is an important food crop, but low temperature affects the potato growth and yield. In this study, the expression level of StBBX14 was significantly increased over 1 h and then gradually decreased under cold stress. The subcellular localization of the StBBX14 protein took place in the nucleus. The OE-StBBX14 transgenic lines showed less leaf damage and significantly lower electrolyte leakage compared with the WT under cold stress, indicating that the overexpression of StBBX14 in the potato enhanced the cold resistance. A transcriptome analysis showed that a total of 2449 and 6274 differentially expressed genes were identified in WT-1 h and WT-12 h, respectively, when compared with WT-0h. A Gene Ontology enrichment analysis revealed that photosynthesis, cell wall, thylakoid, transcription regulator activity, oxidoreductase activity and glucosyltransferase activity were significantly enriched in OE-StBBX14 and WT. A total of 14 distinct modules were generated by a WGCNA analysis based on all differentially expressed genes (DEGs). Four major modules with cold-related genes were isolated. RT-qPCR analysis showed that the expression patterns of eight DEGs were consistent between the qPCR and RNA-seq. These findings illustrate that the StBBX14 played an important role in cold stress in potato and provided a data basis for the genetic improvement of cold resistance traits of potato.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China;
- Guizhou Institute of Biotechnology, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550003, China; (M.C.); (X.L.)
| | - Mingjun Chen
- Guizhou Institute of Biotechnology, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550003, China; (M.C.); (X.L.)
| | - Xiaobo Luo
- Guizhou Institute of Biotechnology, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550003, China; (M.C.); (X.L.)
- Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Ministry of Agriculture and Rural Affairs, Guiyang 550003, China
| | - Li Song
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China;
| | - Fei Li
- Guizhou Institute of Biotechnology, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550003, China; (M.C.); (X.L.)
| |
Collapse
|
3
|
Wang Y, Qin H, Ni J, Yang T, Lv X, Ren K, Xu X, Yang C, Dai X, Zeng J, Liu W, Xu D, Ma W. Genome-Wide Identification, Characterization and Expression Patterns of the DBB Transcription Factor Family Genes in Wheat. Int J Mol Sci 2024; 25:11654. [PMID: 39519206 PMCID: PMC11546462 DOI: 10.3390/ijms252111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Double B-box (DBB) proteins are plant-specific transcription factors (TFs) that play crucial roles in plant growth and stress responses. This study investigated the classification, structure, conserved motifs, chromosomal locations, cis-elements, duplication events, expression levels, and protein interaction network of the DBB TF family genes in common wheat (Triticum aestivum L.). In all, twenty-seven wheat DBB genes (TaDBBs) with two conserved B-box domains were identified and classified into six subgroups based on sequence features. A collinearity analysis of the DBB family genes among wheat, Arabidopsis, and rice revealed some duplicated gene pairs and highly conserved genes in wheat. An expression pattern analysis indicated that wheat TaDBBs were involved in plant growth, responses to drought stress, light/dark, and abscisic acid treatment. A large number of cis-acting regulatory elements related to light response are enriched in the predicted promoter regions of 27 TaDBBs. Furthermore, some of TaDBBs can interact with COP1 or HY5 based on the STRING database prediction and yeast two-hybrid (Y2H) assay, indicating the potential key roles of TaDBBs in the light signaling pathway. Conclusively, our study revealed the potential functions and regulatory mechanisms of TaDBBs in plant growth and development under drought stress, light, and abscisic acid.
Collapse
Affiliation(s)
- Yalin Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Huimin Qin
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Jinlan Ni
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Tingzhi Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Xinru Lv
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Kangzhen Ren
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Xinyi Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Chuangyi Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Xuehuan Dai
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Wenxing Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
- School of Agriculture, Murdoch University, Perth, WA 4350, Australia
| |
Collapse
|
4
|
Zhang P, Wang Y, Wang Z, Di S, Zhang X, Ma D, Bao Z, Ma F. Chrysanthemum lavandulifolium homolog CYCLIN A2;1 modulates cell division in ray florets. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6423-6440. [PMID: 39127875 DOI: 10.1093/jxb/erae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The morphology of ray florets in chrysanthemums is tightly associated with cell division and expansion, both of which require proper progression of the cell cycle. Here, we identified a Chrysanthemum lavandulifolium homolog, CYCLIN A2;1 (CYCA2;1), the expression of which in ray florets is negatively correlated with petal width. We found that CYC2a, a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor in the CYCLOIDEA2 (CYC2) family, interacts with and stabilizes CYC2b, and the latter can bind to the promoter of CYCA2;1 to activate its transcription. Overexpression of CYCA2;1 in C. lavandulifolium reduced the size of capitula and ray florets. Cytological analysis revealed that CYCA2;1 overexpression inhibited both cell division and expansion via repression of the mitotic cell cycle in ray florets, the latitudinal development of which was more relatively negatively influenced, thereby leading to increased ratios of petal length to width at later developmental stages. Yeast two-hybrid library screening revealed multiple proteins that interacted with CYCA2;1 including ACTIN-RELATED PROTEIN7 (ARP7), and silencing ARP7 inhibited the development of ray florets. Co-immunoprecipitation assays confirmed that CYCA2;1 could induce the degradation of ARP7 to inhibit the development of ray florets. Taken together, our results indicate the presence of a regulatory network in ray floret development in chrysanthemum consisting of CYC2b-CYCA2;1-ARP7 that acts via governing mitosis. The identification of this network has the potential to facilitate breeding efforts targeted at producing novel ornamental traits in the flowers.
Collapse
Affiliation(s)
- Peng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yahui Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Zhimin Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Shengqiang Di
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xinyi Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Ma
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Zhilong Bao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Fangfang Ma
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
5
|
Li J, Ai G, Wang Y, Ding Y, Hu X, Liang Y, Yan Q, Wu K, Huang R, Chen C, Ouyang B, Zhang X, Pan Y, Wu L, Hong Z, Zhang J. A truncated B-box zinc finger transcription factor confers drought sensitivity in modern cultivated tomatoes. Nat Commun 2024; 15:8013. [PMID: 39271661 PMCID: PMC11399245 DOI: 10.1038/s41467-024-51699-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Enhancing drought tolerance in crops and understanding the underlying mechanisms have been subject of intense research. The precise function and molecular mechanisms of B-box zinc finger proteins (BBX) remain elusive. Here, we report a natural allele of BBX18 (BBX18TT) that encodes a C-terminal truncated protein. While most wild tomato germplasms contain the BBX18CC allele and show more drought tolerant, modern cultivated tomatoes mostly carry BBX18TT allele and are more drought sensitive. Knockout of BBX18 leads to improved drought tolerance in transgenic plants of cultivated tomato. Ascorbate peroxidase 1 (APX1) is identified as a BBX18-interacting protein that acts as a positive regulator of drought resistance in tomato. Chromatin immunoprecipitation sequencing analyses reveal that BBX18 binds to a unique cis-acting element of the APX1 promoter and represses its gene expression. This study provides insights into the molecular mechanism underlying drought resistance mediated by the BBX18-APX1 module in plants.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, P. R. China.
| | - Guo Ai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yaling Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, P. R. China
| | - Yin Ding
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, P. R. China
| | - Xiaomeng Hu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, P. R. China
| | - Yan Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, P. R. China
| | - Qingxia Yan
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, P. R. China
| | - Ke Wu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, P. R. China
| | - Rong Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Chunrui Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, P. R. China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China
| | - Xingguo Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, P. R. China
| | - Yu Pan
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, P. R. China
| | - Lang Wu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, P. R. China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, USA
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, P. R. China.
| |
Collapse
|
6
|
Chen S, Qiu Y, Lin Y, Zou S, Wang H, Zhao H, Shen S, Wang Q, Wang Q, Du H, Li J, Qu C. Genome-Wide Identification of B-Box Family Genes and Their Potential Roles in Seed Development under Shading Conditions in Rapeseed. PLANTS (BASEL, SWITZERLAND) 2024; 13:2226. [PMID: 39204662 PMCID: PMC11359083 DOI: 10.3390/plants13162226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
B-box (BBX) proteins, a subfamily of zinc-finger transcription factors, are involved in various environmental signaling pathways. In this study, we conducted a comprehensive analysis of BBX family members in Brassica crops. The 482 BBX proteins were divided into five groups based on gene structure, conserved domains, and phylogenetic analysis. An analysis of nonsynonymous substitutions and (Ka)/synonymous substitutions (Ks) revealed that most BBX genes have undergone purifying selection during evolution. An analysis of transcriptome data from rapeseed (Brassica napus) organs suggested that BnaBBX3d might be involved in the development of floral tissue-specific RNA-seq expression. We identified numerous light-responsive elements in the promoter regions of BnaBBX genes, which were suggestive of participation in light signaling pathways. Transcriptomic analysis under shade treatment revealed 77 BnaBBX genes with significant changes in expression before and after shading treatment. Of these, BnaBBX22e showed distinct expression patterns in yellow- vs. black-seeded materials in response to shading. UPLC-HESI-MS/MS analysis revealed that shading influences the accumulation of 54 metabolites, with light response BnaBBX22f expression correlating with the accumulation of the flavonoid metabolites M46 and M51. Additionally, BnaBBX22e and BnaBBX22f interact with BnaA10.HY5. These results suggest that BnaBBXs might function in light-induced pigment accumulation. Overall, our findings elucidate the characteristics of BBX proteins in six Brassica species and reveal a possible connection between light and seed coat color, laying the foundation for further exploring the roles of BnaBBX genes in seed development.
Collapse
Affiliation(s)
- Si Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.C.); (Y.Q.); (Y.L.); (S.Z.); (H.W.); (H.Z.); (S.S.); (Q.W.); (Q.W.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yushan Qiu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.C.); (Y.Q.); (Y.L.); (S.Z.); (H.W.); (H.Z.); (S.S.); (Q.W.); (Q.W.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yannong Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.C.); (Y.Q.); (Y.L.); (S.Z.); (H.W.); (H.Z.); (S.S.); (Q.W.); (Q.W.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Songling Zou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.C.); (Y.Q.); (Y.L.); (S.Z.); (H.W.); (H.Z.); (S.S.); (Q.W.); (Q.W.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Hailing Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.C.); (Y.Q.); (Y.L.); (S.Z.); (H.W.); (H.Z.); (S.S.); (Q.W.); (Q.W.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huiyan Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.C.); (Y.Q.); (Y.L.); (S.Z.); (H.W.); (H.Z.); (S.S.); (Q.W.); (Q.W.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Shulin Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.C.); (Y.Q.); (Y.L.); (S.Z.); (H.W.); (H.Z.); (S.S.); (Q.W.); (Q.W.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Qinghui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.C.); (Y.Q.); (Y.L.); (S.Z.); (H.W.); (H.Z.); (S.S.); (Q.W.); (Q.W.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Qiqi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.C.); (Y.Q.); (Y.L.); (S.Z.); (H.W.); (H.Z.); (S.S.); (Q.W.); (Q.W.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.C.); (Y.Q.); (Y.L.); (S.Z.); (H.W.); (H.Z.); (S.S.); (Q.W.); (Q.W.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.C.); (Y.Q.); (Y.L.); (S.Z.); (H.W.); (H.Z.); (S.S.); (Q.W.); (Q.W.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.C.); (Y.Q.); (Y.L.); (S.Z.); (H.W.); (H.Z.); (S.S.); (Q.W.); (Q.W.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
7
|
Yan R, Zhang T, Wang Y, Wang W, Sharif R, Liu J, Dong Q, Luan H, Zhang X, Li H, Guo S, Qi G, Jia P. The apple MdGA2ox7 modulates the balance between growth and stress tolerance in an anthocyanin-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108707. [PMID: 38763002 DOI: 10.1016/j.plaphy.2024.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
Apple (Malus domestica Borkh.) is a widely cultivated fruit crop worldwide but often suffers from abiotic stresses such as salt and cold. Gibberellic acid (GA) plays a pivotal in controlling plant development, environmental adaptability, and secondary metabolism. The GA2-oxidase (GA2ox) is responsible for the deactivation of bioactive GA. In this study, seventeen GA2-oxidase genes were identified in the apple genome, and these members could be clustered into four clades based on phylogenetic relationships and conserved domain structures. MdGA2ox7 exhibited robust expression across various tissues, responded to cold and salt treatments, and was triggered in apple fruit peels via light-induced anthocyanin accumulation. Subcellular localization prediction and experiments confirmed that MdGA2ox7 was located in the cytoplasm. Overexpression of MdGA2ox7 in Arabidopsis caused a lower level of active GA and led to GA-deficient phenotypes, such as dwarfism and delayed flowering. MdGA2ox7 alleviated cold and salt stress damage in both Arabidopsis and apple in concert with melatonin (MT). Additionally, MdGA2ox7 enhanced anthocyanin biosynthesis in apple calli and activated genes involved in anthocyanin synthesis. These findings provide new insights into the functions of apple GA2ox in regulating development, stress tolerance, and secondary metabolism.
Collapse
Affiliation(s)
- Rui Yan
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Tianle Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, China
| | - Wenxiu Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Jiale Liu
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Qinglong Dong
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Han Li
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
| | - Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
8
|
Yin L, Wu R, An R, Feng Y, Qiu Y, Zhang M. Genome-wide identification, molecular evolution and expression analysis of the B-box gene family in mung bean (Vigna radiata L.). BMC PLANT BIOLOGY 2024; 24:532. [PMID: 38862892 PMCID: PMC11167828 DOI: 10.1186/s12870-024-05236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Mung bean (Vigna radiata L.) is an important warm-season grain legume. Adaptation to extreme environmental conditions, supported by evolution, makes mung bean a rich gene pool for stress tolerance traits. The exploration of resistance genes will provide important genetic resources and a theoretical basis for strengthening mung bean breeding. B-box (BBX) proteins play a major role in developmental processes and stress responses. However, the identification and analysis of the mung bean BBX gene family are still lacking. RESULTS In this study, 23 VrBBX genes were identified through comprehensive bioinformatics analysis and named based on their physical locations on chromosomes. All the VrBBXs were divided into five groups based on their phylogenetic relationships, the number of B-box they contained and whether there was an additional CONSTANS, CO-like and TOC1 (CCT) domain. Homology and collinearity analysis indicated that the BBX genes in mung bean and other species had undergone a relatively conservative evolution. Gene duplication analysis showed that only chromosomal segmental duplication contributed to the expansion of VrBBX genes and that most of the duplicated gene pairs experienced purifying selection pressure during evolution. Gene structure and motif analysis revealed that VrBBX genes clustered in the same group shared similar structural characteristics. An analysis of cis-acting elements indicated that elements related to stress and hormone responses were prevalent in the promoters of most VrBBXs. The RNA-seq data analysis and qRT-PCR of nine VrBBX genes demonstrated that VrBBX genes may play a role in response to environmental stress. Moreover, VrBBX5, VrBBX10 and VrBBX12 are important candidate genes for plant stress response. CONCLUSIONS In this study, we systematically analyzed the genomic characteristics and expression patterns of the BBX gene family under ABA, PEG and NaCl treatments. The results will help us better understand the complexity of the BBX gene family and provide valuable information for future functional characteristics of specific genes in this family.
Collapse
Affiliation(s)
- Lili Yin
- College of Agronomy and Life Sciences, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Ruigang Wu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, People's Republic of China
| | - Ruilan An
- College of Agronomy and Life Sciences, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Yaxin Feng
- College of Agronomy and Life Sciences, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Yaqi Qiu
- College of Agronomy and Life Sciences, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Meiling Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
9
|
Fan Z, Lin S, Jiang J, Zeng Y, Meng Y, Ren J, Wu P. Dual-Model GWAS Analysis and Genomic Selection of Maize Flowering Time-Related Traits. Genes (Basel) 2024; 15:740. [PMID: 38927676 PMCID: PMC11203321 DOI: 10.3390/genes15060740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
An appropriate flowering period is an important selection criterion in maize breeding. It plays a crucial role in the ecological adaptability of maize varieties. To explore the genetic basis of flowering time, GWAS and GS analyses were conducted using an associating panel consisting of 379 multi-parent DH lines. The DH population was phenotyped for days to tasseling (DTT), days to pollen-shedding (DTP), and days to silking (DTS) in different environments. The heritability was 82.75%, 86.09%, and 85.26% for DTT, DTP, and DTS, respectively. The GWAS analysis with the FarmCPU model identified 10 single-nucleotide polymorphisms (SNPs) distributed on chromosomes 3, 8, 9, and 10 that were significantly associated with flowering time-related traits. The GWAS analysis with the BLINK model identified seven SNPs distributed on chromosomes 1, 3, 8, 9, and 10 that were significantly associated with flowering time-related traits. Three SNPs 3_198946071, 9_146646966, and 9_152140631 showed a pleiotropic effect, indicating a significant genetic correlation between DTT, DTP, and DTS. A total of 24 candidate genes were detected. A relatively high prediction accuracy was achieved with 100 significantly associated SNPs detected from GWAS, and the optimal training population size was 70%. This study provides a better understanding of the genetic architecture of flowering time-related traits and provides an optimal strategy for GS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Penghao Wu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China; (Z.F.); (S.L.); (J.J.); (Y.Z.); (Y.M.); (J.R.)
| |
Collapse
|
10
|
Wang Y, Ye H, Ren F, Ren X, Zhu Y, Xiao Y, He J, Wang B. Comparative Transcriptome Analysis Revealed Candidate Gene Modules Involved in Salt Stress Response in Sweet Basil and Overexpression of ObWRKY16 and ObPAL2 Enhanced Salt Tolerance of Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1487. [PMID: 38891295 PMCID: PMC11174604 DOI: 10.3390/plants13111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Sweet basil (Ocimum basilicum L.) is an important aromatic plant with high edibility and economic value, widely distributed in many regions of the tropics including the south of China. In recent years, environmental problems, especially soil salinization, have seriously restricted the planting and spread of sweet basil. However, the molecular mechanism of the salt stress response in sweet basil is still largely unknown. In this study, seed germination, seedling growth, and chlorophyll synthesis in sweet basil were inhibited under salt stress conditions. Through comparative transcriptome analysis, the gene modules involved in the metabolic processes, oxidative response, phytohormone signaling, cytoskeleton, and photosynthesis were screened out. In addition, the landscape of transcription factors during salt treatment in sweet basil was displayed as well. Moreover, the overexpression of the WRKY transcription factor-encoding gene, ObWRKY16, and the phenylalanine ammonia-lyase-encoding gene, ObPAL2, enhanced the seed germination, seedling growth, and survival rate, respectively, of transgenic Arabidopsis, suggesting that they might be important candidates for the creation of salt-tolerant sweet basil cultivars. Our data enrich the study on salt responses in sweet basil and provide essential gene resources for genetic improvements in sweet basil in the future.
Collapse
Affiliation(s)
- Yukun Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Hong Ye
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Fei Ren
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Xiaoqiang Ren
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Yunna Zhu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Yanhui Xiao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
11
|
Cheng X, Lei S, Li J, Tian B, Li C, Cao J, Lu J, Ma C, Chang C, Zhang H. In silico analysis of the wheat BBX gene family and identification of candidate genes for seed dormancy and germination. BMC PLANT BIOLOGY 2024; 24:334. [PMID: 38664603 PMCID: PMC11044412 DOI: 10.1186/s12870-024-04977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND B-box (BBX) proteins are a type of zinc finger proteins containing one or two B-box domains. They play important roles in development and diverse stress responses of plants, yet their roles in wheat remain unclear. RESULTS In this study, 96 BBX genes were identified in the wheat genome and classified into five subfamilies. Subcellular localization prediction results showed that 68 TaBBXs were localized in the nucleus. Protein interaction prediction analysis indicated that interaction was one way that these proteins exerted their functions. Promoter analysis indicated that TaBBXs may play important roles in light signal, hormone, and stress responses. qRT-PCR analysis revealed that 14 TaBBXs were highly expressed in seeds compared with other tissues. These were probably involved in seed dormancy and germination, and their expression patterns were investigated during dormancy acquisition and release in the seeds of wheat varieties Jing 411 and Hongmangchun 21, showing significant differences in seed dormancy and germination phenotypes. Subcellular localization analysis confirmed that the three candidates TaBBX2-2 A, TaBBX4-2 A, and TaBBX11-2D were nuclear proteins. Transcriptional self-activation experiments further demonstrated that TaBBX4-2A was transcriptionally active, but TaBBX2-2A and TaBBX11-2D were not. Protein interaction analysis revealed that TaBBX2-2A, TaBBX4-2A, and TaBBX11-2D had no interaction with each other, while TaBBX2-2A and TaBBX11-2D interacted with each other, indicating that TaBBX4-2A may regulate seed dormancy and germination by transcriptional regulation, and TaBBX2-2A and TaBBX11-2D may regulate seed dormancy and germination by forming a homologous complex. CONCLUSIONS In this study, the wheat BBX gene family was identified and characterized at the genomic level by bioinformatics analysis. These observations provide a theoretical basis for future studies on the functions of BBXs in wheat and other species.
Collapse
Affiliation(s)
- Xinran Cheng
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuying Lei
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jin Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingbing Tian
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chunxiu Li
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jiajia Cao
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jie Lu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chuanxi Ma
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Cheng Chang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Haiping Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
12
|
Wu R, Li Y, Wang L, Li Z, Wu R, Xu K, Liu Y. The DBB Family in Populus trichocarpa: Identification, Characterization, Evolution and Expression Profiles. Molecules 2024; 29:1823. [PMID: 38675643 PMCID: PMC11054233 DOI: 10.3390/molecules29081823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The B-box proteins (BBXs) encode a family of zinc-finger transcription factors that regulate the plant circadian rhythm and early light morphogenesis. The double B-box (DBB) family is in the class of the B-box family, which contains two conserved B-box domains and lacks a CCT (CO, CO-like and TOC1) motif. In this study, the identity, classification, structures, conserved motifs, chromosomal location, cis elements, duplication events, and expression profiles of the PtrDBB genes were analyzed in the woody model plant Populus trichocarpa. Here, 12 PtrDBB genes (PtrDBB1-PtrDBB12) were identified and classified into four distinct groups, and all of them were homogeneously spread among eight out of seventeen poplar chromosomes. The collinearity analysis of the DBB family genes from P. trichocarpa and two other species (Z. mays and A. thaliana) indicated that segmental duplication gene pairs and high-level conservation were identified. The analysis of duplication events demonstrates an insight into the evolutionary patterns of DBB genes. The previously published transcriptome data showed that PtrDBB genes represented distinct expression patterns in various tissues at different stages. In addition, it was speculated that several PtrDBBs are involved in the responsive to drought stress, light/dark, and ABA and MeJA treatments, which implied that they might function in abiotic stress and phytohormone responses. In summary, our results contribute to the further understanding of the DBB family and provide a reference for potential functional studies of PtrDBB genes in P. trichocarpa.
Collapse
Affiliation(s)
- Ruihua Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (L.W.); (Z.L.); (R.W.); (K.X.)
| | - Yuxin Li
- Melbourne School of Design, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Lin Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (L.W.); (Z.L.); (R.W.); (K.X.)
| | - Zitian Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (L.W.); (Z.L.); (R.W.); (K.X.)
| | - Runbin Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (L.W.); (Z.L.); (R.W.); (K.X.)
| | - Kehang Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (L.W.); (Z.L.); (R.W.); (K.X.)
| | - Yixin Liu
- College of Landscape Architecture and Art, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
13
|
Tang H, Yuan C, Shi H, Liu F, Shan S, Wang Z, Sun Q, Sun J. Genome-Wide Identification of Peanut B-Boxs and Functional Characterization of AhBBX6 in Salt and Drought Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:955. [PMID: 38611484 PMCID: PMC11013918 DOI: 10.3390/plants13070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
The B-box (BBX) gene family includes zinc finger protein transcription factors that regulate a multitude of physiological and developmental processes in plants. While BBX gene families have been previously determined in various plants, the members and roles of peanut BBXs are largely unknown. In this research, on the basis of the genome-wide identification of BBXs in three peanut species (Arachis hypogaea, A. duranensis, and A. ipaensis), we investigated the expression profile of the BBXs in various tissues and in response to salt and drought stresses and selected AhBBX6 for functional characterization. We identified a total of 77 BBXs in peanuts, which could be grouped into five subfamilies, with the genes from the same branch of the same subgroup having comparable exon-intron structures. In addition, a significant number of cis-regulatory elements involved in the regulation of responses to light and hormones and abiotic stresses were found in the promoter region of peanut BBXs. Based on the analysis of transcriptome data and qRT-PCR, we identified AhBBX6, AhBBX11, AhBBX13, and AhBBX38 as potential genes associated with tolerance to salt and drought. Silencing AhBBX6 using virus-induced gene silencing compromised the tolerance of peanut plants to salt and drought stresses. The results of this study provide knowledge on peanut BBXs and establish a foundation for future research into their functional roles in peanut development and stress response.
Collapse
Affiliation(s)
- Haohong Tang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, China; (H.T.); (H.S.); (F.L.)
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao 266100, China; (C.Y.); (S.S.)
| | - Haonan Shi
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, China; (H.T.); (H.S.); (F.L.)
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, China; (H.T.); (H.S.); (F.L.)
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao 266100, China; (C.Y.); (S.S.)
| | - Zhijun Wang
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao 266100, China; (C.Y.); (S.S.)
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, China; (H.T.); (H.S.); (F.L.)
| |
Collapse
|
14
|
Bin J, Tan Q, Wen S, Huang L, Wang H, Imtiaz M, Zhang Z, Guo H, Xie L, Zeng R, Wei Q. Comprehensive Analyses of Four PhNF-YC Genes from Petunia hybrida and Impacts on Flowering Time. PLANTS (BASEL, SWITZERLAND) 2024; 13:742. [PMID: 38475587 DOI: 10.3390/plants13050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Nuclear Factor Y (NF-Y) is a class of heterotrimeric transcription factors composed of three subunits: NF-A, NF-YB, and NF-YC. NF-YC family members play crucial roles in various developmental processes, particularly in the regulation of flowering time. However, their functions in petunia remain poorly understood. In this study, we isolated four PhNF-YC genes from petunia and confirmed their subcellular localization in both the nucleus and cytoplasm. We analyzed the transcript abundance of all four PhNF-YC genes and found that PhNF-YC2 and PhNF-YC4 were highly expressed in apical buds and leaves, with their transcript levels decreasing before flower bud differentiation. Silencing PhNF-YC2 using VIGS resulted in a delayed flowering time and reduced chlorophyll content, while PhNF-YC4-silenced plants only exhibited a delayed flowering time. Furthermore, we detected the transcript abundance of flowering-related genes involved in different signaling pathways and found that PhCO, PhGI, PhFBP21, PhGA20ox4, and PhSPL9b were regulated by both PhNF-YC2 and PhNF-YC4. Additionally, the transcript abundance of PhSPL2, PhSPL3, and PhSPL4 increased only in PhNF-YC2-silenced plants. Overall, these results provide evidence that PhNF-YC2 and PhNF-YC4 negatively regulate flowering time in petunia by modulating a series of flowering-related genes.
Collapse
Affiliation(s)
- Jing Bin
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Tan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shiyun Wen
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Licheng Huang
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Huimin Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Imtiaz
- Department of Horticulture, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Zhisheng Zhang
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Herong Guo
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Li Xie
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ruizhen Zeng
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Wei
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Shen T, Xu F, Chen D, Yan R, Wang Q, Li K, Zhang G, Ni L, Jiang M. A B-box transcription factor OsBBX17 regulates saline-alkaline tolerance through the MAPK cascade pathway in rice. THE NEW PHYTOLOGIST 2024; 241:2158-2175. [PMID: 38098211 DOI: 10.1111/nph.19480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/24/2023] [Indexed: 02/09/2024]
Abstract
Rice OsBBX17 encodes a B-box zinc finger transcription factor in which the N-terminal B-box structural domain interacts with OsMPK1. In addition, it directly binds to the G-box of OsHAK2 and OsHAK7 promoters and represses their transcription. Under saline-alkaline conditions, the expression of OsBBX17 was inhibited. Meanwhile, activation of the OsMPK1-mediated mitogen-activated protein kinase cascade pathway caused OsMPK1 to interact with OsBBX17 and phosphorylate OsBBX17 at the Thr-95 site. It reduced OsBBX17 DNA-binding activity and enhanced saline-alkaline tolerance by deregulating transcriptional repression of OsHAK2 and OsHAK7. Genetic assays showed that the osbbx17-KO had an excellent saline-alkaline tolerance, whereas the opposite was in OsBBX17-OE. In addition, overexpression of OsMPK1 significantly improved saline-alkaline tolerance, but knockout of OsMPK1 caused an increased sensitivity. Further overexpression of OsBBX17 in the osmpk1-KO caused extreme saline-alkaline sensitivity, even a quick death. OsBBX17 was validated in saline-alkaline tolerance from two independent aspects, transcriptional level and post-translational protein modification, unveiling a mechanistic framework by which OsMPK1-mediated phosphorylation of OsBBX17 regulates the transcription of OsHAK2 and OsHAK7 to enhance the Na+ /K+ homeostasis, which partially explains light on the molecular mechanisms of rice responds to saline-alkaline stress via B-box transcription factors for the genetic engineering of saline-alkaline tolerant crops.
Collapse
Affiliation(s)
- Tao Shen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengjuan Xu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Chen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Runjiao Yan
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingwen Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Kaiyue Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gang Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lan Ni
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyi Jiang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
16
|
Kohli M, Bansal H, Mishra GP, Dikshit HK, Reddappa SB, Roy A, Sinha SK, Shivaprasad K, Kumari N, Kumar A, Kumar RR, Nair RM, Aski M. Genome-wide association studies for earliness, MYMIV resistance, and other associated traits in mungbean ( Vigna radiata L. Wilczek) using genotyping by sequencing approach. PeerJ 2024; 12:e16653. [PMID: 38288464 PMCID: PMC10823994 DOI: 10.7717/peerj.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 02/01/2024] Open
Abstract
Yellow mosaic disease (YMD) remains a major constraint in mungbean (Vigna radiata (L.)) production; while short-duration genotypes offer multiple crop cycles per year and help in escaping terminal heat stress, especially during summer cultivation. A comprehensive genotyping by sequencing (GBS)-based genome-wide association studies (GWAS) analysis was conducted using 132 diverse mungbean genotypes for traits like flowering time, YMD resistance, soil plant analysis development (SPAD) value, trichome density, and leaf area. The frequency distribution revealed a wide range of values for all the traits. GBS studies identified 31,953 high-quality single nucleotide polymorphism (SNPs) across all 11 mungbean chromosomes and were used for GWAS. Structure analysis revealed the presence of two genetically distinct populations based on ΔK. The linkage disequilibrium (LD) varied throughout the chromosomes and at r2 = 0.2, the mean LD decay was estimated as 39.59 kb. Two statistical models, mixed linear model (MLM) and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) identified 44 shared SNPs linked with various candidate genes. Notable candidate genes identified include FPA for flowering time (VRADI10G01470; chr. 10), TIR-NBS-LRR for mungbean yellow mosaic India virus (MYMIV) resistance (VRADI09G06940; chr. 9), E3 ubiquitin-protein ligase RIE1 for SPAD value (VRADI07G28100; chr. 11), WRKY family transcription factor for leaf area (VRADI03G06560; chr. 3), and LOB domain-containing protein 21 for trichomes (VRADI06G04290; chr. 6). In-silico validation of candidate genes was done through digital gene expression analysis using Arabidopsis orthologous (compared with Vigna radiata genome). The findings provided valuable insight for marker-assisted breeding aiming for the development of YMD-resistant and early-maturing mungbean varieties.
Collapse
Affiliation(s)
- Manju Kohli
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| | - Hina Bansal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | | | | | - Anirban Roy
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Subodh Kumar Sinha
- Biotechnology, National Institute of Plant Biotechnology, New Delhi, Delhi, India
| | - K.M. Shivaprasad
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| | - Nikki Kumari
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Ranjeet R. Kumar
- Biochemistry, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | | | - Muraleedhar Aski
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| |
Collapse
|
17
|
Sui C, Cheng S, Wang D, Lv L, Meng H, Du M, Li J, Su P, Guo S. Systematic identification and characterization of the soybean ( Glycine max) B-box transcription factor family. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Chao Sui
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Shanshan Cheng
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Deying Wang
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Lujia Lv
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Huiran Meng
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Mengxue Du
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Jingyu Li
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Peisen Su
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| | - Shangjing Guo
- Liaocheng University Crop Germplasm Innovation Research Institute, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, PR China
| |
Collapse
|
18
|
Su J, Lu Z, Zeng J, Zhang X, Yang X, Wang S, Zhang F, Jiang J, Chen F. Multi-locus genome-wide association study and genomic prediction for flowering time in chrysanthemum. PLANTA 2023; 259:13. [PMID: 38063918 DOI: 10.1007/s00425-023-04297-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Multi-locus GWAS detected several known and candidate genes responsible for flowering time in chrysanthemum. The associations could greatly increase the predictive ability of genome selection that accelerates the possible application of GS in chrysanthemum breeding. Timely flowering is critical for successful reproduction and determines the economic value for ornamental plants. To investigate the genetic architecture of flowering time in chrysanthemum, a multi-locus genome-wide association study (GWAS) was performed using a collection of 200 accessions and 330,710 single-nucleotide polymorphisms (SNPs) via 3VmrMLM method. Five flowering time traits including budding (FBD), visible colouring (VC), early opening (EO), full-bloom (OF) and senescing (SF) stages, plus five derived conditional traits were recorded in two environments. Extensive phenotypic variations were observed for these flowering time traits with coefficients of variation ranging from 6.42 to 38.27%, and their broad-sense heritability ranged from 71.47 to 96.78%. GWAS revealed 88 stable quantitative trait nucleotides (QTNs) and 93 QTN-by-environment interactions (QEIs) associated with flowering time traits, accounting for 0.50-8.01% and 0.30-10.42% of the phenotypic variation, respectively. Amongst the genes around these stable QTNs and QEIs, 21 and 10 were homologous to known flowering genes in Arabidopsis; 20 and 11 candidate genes were mined by combining the functional annotation and transcriptomics data, respectively, such as MYB55, FRIGIDA-like, WRKY75 and ANT. Furthermore, genomic selection (GS) was assessed using three models and seven unique marker datasets. We found the prediction accuracy (PA) using significant SNPs identified by GWAS under SVM model exhibited the best performance with PA ranging from 0.90 to 0.95. Our findings provide new insights into the dynamic genetic architecture of flowering time and the identified significant SNPs and candidate genes will accelerate the future molecular improvement of chrysanthemum.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhaowen Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Junwei Zeng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiuwei Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Siyue Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China.
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
19
|
Mekapogu M, Song HY, Lim SH, Jung JA. Genetic Engineering and Genome Editing Advances to Enhance Floral Attributes in Ornamental Plants: An Update. PLANTS (BASEL, SWITZERLAND) 2023; 12:3983. [PMID: 38068619 PMCID: PMC10707928 DOI: 10.3390/plants12233983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
The ornamental horticulture industry is a highly dynamic and rapidly changing market. Constant development of novel cultivars with elite traits is essential to sustain competitiveness. Conventional breeding has been used to develop cultivars, which is often laborious. Biotechnological strategies such as genetic engineering have been crucial in manipulating and improving various beneficial traits that are technically not possible through cross-breeding. One such trait is the highly desired blue-colored flower in roses and chrysanthemums, which can be achieved through transgenic technology. Advances in genome sequencing platforms have enhanced the opportunities to access the whole genome sequence in various ornamentals, facilitating the dissection of the molecular genetics and regulatory controls of different traits. The recent advent of genome editing tools, including CRISPR/Cas9, has revolutionized plant breeding. CRISPR/Cas9-based gene editing offers efficient and highly precise trait modification, contributing to various beneficial advancements. Although genome editing in ornamentals is currently in its infancy, the recent increase in the availability of ornamental genome sequences provides a platform to extend the frontiers of future genome editing in ornamentals. Hence, this review depicts the implication of various commercially valuable ornamental attributes, and details the research attempts and achievements in enhancing floral attributes using genetic engineering and genome editing in ornamental plants.
Collapse
Affiliation(s)
| | | | | | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
20
|
Zhao X, Liu W, Aiwaili P, Zhang H, Xu Y, Gu Z, Gao J, Hong B. PHOTOLYASE/BLUE LIGHT RECEPTOR2 regulates chrysanthemum flowering by compensating for gibberellin perception. PLANT PHYSIOLOGY 2023; 193:2848-2864. [PMID: 37723123 PMCID: PMC10663108 DOI: 10.1093/plphys/kiad503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
The gibberellins (GAs) receptor GA INSENSITIVE DWARF1 (GID1) plays a central role in GA signal perception and transduction. The typical photoperiodic plant chrysanthemum (Chrysanthemum morifolium) only flowers when grown in short-day photoperiods. In addition, chrysanthemum flowering is also controlled by the aging pathway, but whether and how GAs participate in photoperiod- and age-dependent regulation of flowering remain unknown. Here, we demonstrate that photoperiod affects CmGID1B expression in response to GAs and developmental age. Moreover, we identified PHOTOLYASE/BLUE LIGHT RECEPTOR2, an atypical photocleavage synthase, as a CRYPTOCHROME-INTERACTING bHLH1 interactor with which it forms a complex in response to short days to activate CmGID1B transcription. Knocking down CmGID1B raised endogenous bioactive GA contents and GA signal perception, in turn modulating the expression of the aging-related genes MicroRNA156 and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3. We propose that exposure to short days accelerates the juvenile-to-adult transition by increasing endogenous GA contents and response to GAs, leading to entry into floral transformation.
Collapse
Affiliation(s)
- Xin Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenwen Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Palinuer Aiwaili
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Han Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanjie Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhaoyu Gu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Zhang Z, Hu Q, Gao Z, Zhu Y, Yin M, Shang E, Liu G, Liu W, Hu R, Cheng H, Chong X, Guan Z, Fang W, Chen S, Sun B, He Y, Chen F, Jiang J. Flowering repressor CmSVP recruits the TOPLESS corepressor to control flowering in chrysanthemum. PLANT PHYSIOLOGY 2023; 193:2413-2429. [PMID: 37647542 DOI: 10.1093/plphys/kiad476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/10/2023] [Accepted: 07/23/2023] [Indexed: 09/01/2023]
Abstract
Plant flowering time is induced by environmental and endogenous signals perceived by the plant. The MCM1-AGAMOUSDEFICIENS-Serum Response Factor-box (MADS-box) protein SHORT VEGETATIVE PHASE (SVP) is a pivotal repressor that negatively regulates the floral transition during the vegetative phase; however, the transcriptional regulatory mechanism remains poorly understood. Here, we report that CmSVP, a chrysanthemum (Chrysanthemum morifolium Ramat.) homolog of SVP, can repress the expression of a key flowering gene, a chrysanthemum FLOWERING LOCUS T-like gene (CmFTL3), by binding its promoter CArG element to delay flowering in the ambient temperature pathway in chrysanthemum. Protein-protein interaction assays identified an interaction between CmSVP and CmTPL1-2, a chrysanthemum homologue of TOPLESS (TPL) that plays critical roles as transcriptional corepressor in many aspects of plant life. Genetic analyses revealed the CmSVP-CmTPL1-2 transcriptional complex is a prerequisite for CmSVP to act as a floral repressor. Furthermore, overexpression of CmSVP rescued the phenotype of the svp-31 mutant in Arabidopsis (Arabidopsis thaliana), overexpression of AtSVP or CmSVP in the Arabidopsis dominant-negative mutation tpl-1 led to ineffective late flowering, and AtSVP interacted with AtTPL, confirming the conserved function of SVP in chrysanthemum and Arabidopsis. We have validated a conserved machinery wherein SVP partially relies on TPL to inhibit flowering via a thermosensory pathway.
Collapse
Affiliation(s)
- Zixin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Gao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Yuqing Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengru Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Erlei Shang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Gaofeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - RongQian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinran Chong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| |
Collapse
|
22
|
Liu X, Sun W, Ma B, Song Y, Guo Q, Zhou L, Wu K, Zhang X, Zhang C. Genome-wide analysis of blueberry B-box family genes and identification of members activated by abiotic stress. BMC Genomics 2023; 24:584. [PMID: 37789264 PMCID: PMC10546702 DOI: 10.1186/s12864-023-09704-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND B-box (BBX) proteins play important roles in regulating plant growth, development, and abiotic stress responses. BBX family genes have been identified and functionally characterized in many plant species, but little is known about the BBX family in blueberry (Vaccinium corymbosum). RESULT In this study, we identified 23 VcBBX genes from the Genome Database for Vaccinium (GDV). These VcBBXs can be divided into five clades based on gene structures and conserved domains in their encoded proteins. The prediction of cis-acting elements in the upstream sequences of VcBBX genes and protein-protein interactions indicated that VcBBX proteins are likely involved in phytohormone signaling pathways and abiotic stress responses. Analysis of transcriptome deep sequencing (RNA-seq) data showed that VcBBX genes exhibited organ-specific expression pattern and 11 VcBBX genes respond to ultraviolet B (UV-B) radiation. The co-expression analysis revealed that the encoded 11 VcBBX proteins act as bridges integrating UV-B and phytohormone signaling pathways in blueberry under UV-B radiation. Reverse-transcription quantitative PCR (RT-qPCR) analysis showed that most VcBBX genes respond to drought, salt, and cold stress. Among VcBBX proteins, VcBBX24 is highly expressed in all the organs, not only responds to abiotic stress, but it also interacts with proteins in UV-B and phytohormone signaling pathways, as revealed by computational analysis and co-expression analysis, and might be an important regulator integrating abiotic stress and phytohormone signaling networks. CONCLUSIONS Twenty-three VcBBX genes were identified in blueberry, in which, 11 VcBBX genes respond to UV-B radiation, and act as bridges integrating UV-B and phytohormone signaling pathways according to RNA-seq data. The expression patterns under abiotic stress suggested that the functional roles of most VcBBX genes respose to drought, salt, and cold stress. Our study provides a useful reference for functional analysis of VcBBX genes and for improving abiotic stress tolerance in blueberry.
Collapse
Affiliation(s)
- Xiaoming Liu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Wenying Sun
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Bin Ma
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yan Song
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Qingxun Guo
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Lianxia Zhou
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Kuishen Wu
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Xinsheng Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Chunyu Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
23
|
Li H, Yao S, Xia W, Ma X, Shi L, Ju H, Li Z, Zhong Y, Xie B, Tao Y. Targeted metabolome and transcriptome analyses reveal changes in gibberellin and related cell wall-acting enzyme-encoding genes during stipe elongation in Flammulina filiformis. Front Microbiol 2023; 14:1195709. [PMID: 37799602 PMCID: PMC10548271 DOI: 10.3389/fmicb.2023.1195709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
Flammulina filiformis, a typical agaric fungus, is a widely cultivated and consumed edible mushroom. Elongation of its stipe (as the main edible part) is closely related to its yield and commercial traits; however, the endogenous hormones during stipe elongation and their regulatory mechanisms are not well understood. Gibberellin (GA) plays an important role in the regulation of plant growth, but little has been reported in macro fungi. In this study, we first treated F. filiformis stipes in the young stage with PBZ (an inhibitor of GA) and found that PBZ significantly inhibited elongation of the stipe. Then, we performed GA-targeted metabolome and transcriptome analyses of the stipe at both the young and elongation stages. A total of 13 types of GAs were detected in F. filiformis; the contents of ten of them, namely, GA3, GA4, GA8, GA14, GA19, GA20, GA24, GA34, GA44, and GA53, were significantly decreased, and the contents of three (GA5, GA9, and GA29) were significantly increased during stipe elongation. Transcriptome analysis showed that the genes in the terpenoid backbone biosynthesis pathway showed varying expression patterns: HMGS, HMGR, GPS, and FPPS were significantly upregulated, while CPS/KS had no significant difference in transcript level during stipe elongation. In total, 37 P450 genes were annotated to be involved in GA biosynthesis; eight of them were upregulated, twelve were downregulated, and the rest were not differentially expressed. In addition, four types of differentially expressed genes involved in stipe elongation were identified, including six signal transduction genes, five cell cycle-controlling genes, twelve cell wall-related enzymes and six transcription factors. The results identified the types and content of GAs and the expression patterns of their synthesis pathways during elongation in F. filiformis and revealed the molecular mechanisms by which GAs may affect the synthesis of cell wall components and the cell cycle of the stipe through the downstream action of cell wall-related enzymes, transcription factors, signal transduction and cell cycle control, thus regulating stipe elongation. This study is helpful for understanding the roles of GAs in stipe development in mushrooms and lays the foundation for the rational regulation of stipe length in agaric mushrooms during production.
Collapse
Affiliation(s)
- Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Sen Yao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Weiwei Xia
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xinbin Ma
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Lei Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huimin Ju
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ziyan Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yingli Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
24
|
Jun SE, Shim JS, Park HJ. Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. PLANTS (BASEL, SWITZERLAND) 2023; 12:3299. [PMID: 37765463 PMCID: PMC10535918 DOI: 10.3390/plants12183299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Flowering time in plants is a complex process regulated by environmental conditions such as photoperiod and temperature, as well as nutrient conditions. While the impact of major nutrients like nitrogen, phosphorus, and potassium on flowering time has been well recognized, the significance of micronutrient imbalances and their deficiencies should not be neglected because they affect the floral transition from the vegetative stage to the reproductive stage. The secondary major nutrients such as calcium, magnesium, and sulfur participate in various aspects of flowering. Micronutrients such as boron, zinc, iron, and copper play crucial roles in enzymatic reactions and hormone biosynthesis, affecting flower development and reproduction as well. The current review comprehensively explores the interplay between microelements and flowering time, and summarizes the underlying mechanism in plants. Consequently, a better understanding of the interplay between microelements and flowering time will provide clues to reveal the roles of microelements in regulating flowering time and to improve crop reproduction in plant industries.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Genetics, Dong-A University, Busan 49315, Republic of Korea;
| | - Jae Sun Shim
- School of Biological Science and Technology, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
25
|
Song J, Lin R, Tang M, Wang L, Fan P, Xia X, Yu J, Zhou Y. SlMPK1- and SlMPK2-mediated SlBBX17 phosphorylation positively regulates CBF-dependent cold tolerance in tomato. THE NEW PHYTOLOGIST 2023; 239:1887-1902. [PMID: 37322592 DOI: 10.1111/nph.19072] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
B-box (BBX) proteins are an important class of zinc finger transcription factors that play a critical role in plant growth and stress response. However, the mechanisms of how BBX proteins participate in the cold response in tomato remain unclear. Here, using approaches of reverse genetics, biochemical and molecular biology we characterized a BBX transcription factor, SlBBX17, which positively regulates cold tolerance in tomato (Solanum lycopersicum). Overexpressing SlBBX17 enhanced C-repeat binding factor (CBF)-dependent cold tolerance in tomato plants, whereas silencing SlBBX17 increased plant susceptibility to cold stress. Crucially, the positive role of SlBBX17 in CBF-dependent cold tolerance was dependent on ELONGATED HYPOCOTYL5 (HY5). SlBBX17 physically interacted with SlHY5 to directly promote the protein stability of SlHY5 and subsequently increased the transcriptional activity of SlHY5 on SlCBF genes under cold stress. Further experiments showed that cold-activated mitogen-activated protein kinases, SlMPK1 and SlMPK2, also physically interact with and phosphorylate SlBBX17 to enhance the interaction between SlBBX17 and SlHY5, leading to enhanced CBF-dependent cold tolerance. Collectively, the study unveiled a mechanistic framework by which SlMPK1/2-SlBBX17-SlHY5 regulated transcription of SlCBFs to enhance cold tolerance, thereby shedding light on the molecular mechanisms of how plants respond to cold stress via multiple transcription factors.
Collapse
Affiliation(s)
- Jianing Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Lingyu Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Pengxiang Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
26
|
Liu Y, Wang Y, Liao J, Chen Q, Jin W, Li S, Zhu T, Li S. Identification and Characterization of the BBX Gene Family in Bambusa pervariabilis × Dendrocalamopsis grandis and Their Potential Role under Adverse Environmental Stresses. Int J Mol Sci 2023; 24:13465. [PMID: 37686287 PMCID: PMC10488121 DOI: 10.3390/ijms241713465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Zinc finger protein (ZFP) transcription factors play a pivotal role in regulating plant growth, development, and response to biotic and abiotic stresses. Although extensively characterized in model organisms, these genes have yet to be reported in bamboo plants, and their expression information is lacking. Therefore, we identified 21 B-box (BBX) genes from a transcriptome analysis of Bambusa pervariabilis × Dendrocalamopsis grandis. Consequently, multiple sequence alignments and an analysis of conserved motifs showed that they all had highly similar structures. The BBX genes were divided into four subgroups according to their phylogenetic relationships and conserved domains. A GO analysis predicted multiple functions of the BBX genes in photomorphogenesis, metabolic processes, and biological regulation. We assessed the expression profiles of 21 BBX genes via qRT-PCR under different adversity conditions. Among them, eight genes were significantly up-regulated under water deficit stress (BBX4, BBX10, BBX11, BBX14, BBX15, BBX16, BBX17, and BBX21), nine under salt stress (BBX2, BBX3, BBX7, BBX9, BBX10, BBX12, BBX15, BBX16, and BBX21), twelve under cold stress (BBX1, BBX2, BBX4, BBX7, BBX10, BBX12, BBX14, BBX15, BBX17, BBX18, BBX19, and BBX21), and twelve under pathogen infestation stress (BBX1, BBX2, BBX4, BBX7, BBX10, BBX12, BBX14, BBX15, BBX17, BBX18, BBX19, and BBX21). Three genes (BBX10, BBX15, and BBX21) were significantly up-regulated under both biotic and abiotic stresses. These results suggest that the BBX gene family is integral to plant growth, development, and response to multivariate stresses. In conclusion, we have comprehensively analyzed the BDBBX genes under various adversity stress conditions, thus providing valuable information for further functional studies of this gene family.
Collapse
Affiliation(s)
- Yi Liu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Yaxuan Wang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Jiao Liao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Qian Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Wentao Jin
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China
| |
Collapse
|
27
|
Azhand M, Saeidi M, Beheshti Ale Agha A, Kahrizi D. Interaction of iron and zinc fortification and late-season water deficit on yield and fatty acid composition of Dragon's Head (Lallemantia iberica L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107882. [PMID: 37478727 DOI: 10.1016/j.plaphy.2023.107882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
Dragon's head (Lallemantia iberica) is a rich source of alpha-linolenic acid, linoleic acid, essential oil, protein, and mucilage. Therefore, the aim of this study was to evaluate the effects of foliar application of three different concentrations of Fe and Zn (control, 4, and 8 g lit-1) at two different developmental stages (vegetative stage (VS) and reproductive stage (RS)) on the quantity and quality of dragon's head seed yield and fatty acid composition in two crop seasons (2018 and 2019) under two environments (normal irrigation as control (NI) and post-anthesis water deficit (WD). In NI, average yields of seed, oil, and protein were 1155, 340, and 183 kg ha-1, respectively, and in the WD, they were 879, 283, and 148 kg ha-1, respectively. By applying Zn and Fe, the mean values of seed, oil, and protein yields in the NI were 1425, 478, and 264 kg ha-1, while in the WD, they were 1011, 354, and 200 kg ha-1, respectively. Furthermore, the application of WD resulted in a significant increase in zinc concentration, protein percentage, and saturated fatty acid percentage in seeds. Unlike WD, iron and zinc treatments decreased the percentage of saturated fatty acids and increased the percentage of unsaturated fatty acids. The number of capsules per plant had the most positive indirect effect on grain yield. The results showed that foliar spraying of Fe and Zn could effectively mitigate the adverse effects of WD on the quality and quantity of seed and oil yield dragon's head.
Collapse
Affiliation(s)
- Mandana Azhand
- Department of Plant Production and Genetic Engineering, Razi University, Postal Code: 6714414971, Kermanshah, Iran
| | - Mohsen Saeidi
- Department of Plant Production and Genetic Engineering, Razi University, Postal Code: 6714414971, Kermanshah, Iran.
| | - Ali Beheshti Ale Agha
- Department of Soil Science, Razi University, Postal Code: 6714414971, Kermanshah, Iran
| | - Danial Kahrizi
- Department of Plant Production and Genetic Engineering, Razi University, Postal Code: 6714414971, Kermanshah, Iran
| |
Collapse
|
28
|
Song H, Ding G, Zhao C, Li Y. Genome-Wide Identification of B-Box Gene Family and Expression Analysis Suggest Its Roles in Responses to Cercospora Leaf Spot in Sugar Beet ( Beta Vulgaris L.). Genes (Basel) 2023; 14:1248. [PMID: 37372426 DOI: 10.3390/genes14061248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The B-box (BBX) protein, which is a zinc-finger protein containing one or two B-box domains, plays a crucial role in the growth and development of plants. Plant B-box genes are generally involved in morphogenesis, the growth of floral organs, and various life activities in response to stress. In this study, the sugar beet B-box genes (hereafter referred to as BvBBXs) were identified by searching the homologous sequences of the Arabidopsis thaliana B-box gene family. The gene structure, protein physicochemical properties, and phylogenetic analysis of these genes were systematically analyzed. In this study, 17 B-box gene family members were identified from the sugar beet genome. A B-box domain can be found in all sugar beet BBX proteins. BvBBXs encode 135 to 517 amino acids with a theoretical isoelectric point of 4.12 to 6.70. Chromosome localization studies revealed that BvBBXs were dispersed across nine sugar beet chromosomes except chromosomes 5 and 7. The sugar beet BBX gene family was divided into five subfamilies using phylogenetic analysis. The gene architectures of subfamily members on the same evolutionary tree branch are quite similar. Light, hormonal, and stress-related cis-acting elements can be found in the promoter region of BvBBXs. The BvBBX gene family was differently expressed in sugar beet following Cercospora leaf spot infection, according to RT-qPCR data. It is shown that the BvBBX gene family may influence how the plant reacts to a pathogen infection.
Collapse
Affiliation(s)
- He Song
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Guangzhou Ding
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin 150080, China
| | - Chunlei Zhao
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin 150080, China
| | - Yanli Li
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin 150080, China
| |
Collapse
|
29
|
Saura-Sánchez M, Chiriotto TS, Cascales J, Gómez-Ocampo G, Hernández-García J, Li Z, Pruneda-Paz JL, Blázquez MA, Botto JF. BBX24 Interacts with JAZ3 to Promote Growth by Reducing DELLA Activity in Shade Avoidance. PLANT & CELL PHYSIOLOGY 2023; 64:474-485. [PMID: 36715091 DOI: 10.1093/pcp/pcad011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 05/17/2023]
Abstract
Shade avoidance syndrome (SAS) is a strategy of major adaptive significance and typically includes elongation of the stem and petiole, leaf hyponasty, reduced branching and phototropic orientation of the plant shoot toward canopy gaps. Both cryptochrome 1 and phytochrome B (phyB) are the major photoreceptors that sense the reduction in the blue light fluence rate and the low red:far-red ratio, respectively, and both light signals are associated with plant density and the resource reallocation when SAS responses are triggered. The B-box (BBX)-containing zinc finger transcription factor BBX24 has been implicated in the SAS as a regulator of DELLA activity, but this interaction does not explain all the observed BBX24-dependent regulation in shade light. Here, through a combination of transcriptional meta-analysis and large-scale identification of BBX24-interacting transcription factors, we found that JAZ3, a jasmonic acid signaling component, is a direct target of BBX24. Furthermore, we demonstrated that joint loss of BBX24 and JAZ3 function causes insensitivity to DELLA accumulation, and the defective shade-induced elongation in this mutant is rescued by loss of DELLA or phyB function. Therefore, we propose that JAZ3 is part of the regulatory network that controls the plant growth in response to shade, through a mechanism in which BBX24 and JAZ3 jointly regulate DELLA activity. Our results provide new insights into the participation of BBX24 and JA signaling in the hypocotyl shade avoidance response in Arabidopsis.
Collapse
Affiliation(s)
- Maite Saura-Sánchez
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Tai Sabrina Chiriotto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Jimena Cascales
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Gabriel Gómez-Ocampo
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Zheng Li
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0348, USA
| | - José Luis Pruneda-Paz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0348, USA
| | - Miguel Angel Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Javier Francisco Botto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| |
Collapse
|
30
|
Shi G, Ai K, Yan X, Zhou Z, Cai F, Bao M, Zhang J. Genome-Wide Analysis of the BBX Genes in Platanus × acerifolia and Their Relationship with Flowering and/or Dormancy. Int J Mol Sci 2023; 24:ijms24108576. [PMID: 37239923 DOI: 10.3390/ijms24108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The B-BOX (BBX) gene family is widely distributed in animals and plants and is involved in the regulation of their growth and development. In plants, BBX genes play important roles in hormone signaling, biotic and abiotic stress, light-regulated photomorphogenesis, flowering, shade response, and pigment accumulation. However, there has been no systematic analysis of the BBX family in Platanus × acerifolia. In this study, we identified 39 BBX genes from the P. × acerifolia genome, and used TBtools, MEGA, MEME, NCBI CCD, PLANTCARE and other tools for gene collinearity analysis, phylogenetic analysis, gene structure, conserved domain analysis, and promoter cis-element analysis, and used the qRT-PCR and transcriptome data for analyzing expression pattern of the PaBBX genes. Collinearity analysis indicated segmental duplication was the main driver of the BBX family in P. × acerifolia, and phylogenetic analysis showed that the PaBBX family was divided into five subfamilies: I, II, III, IV and V. Gene structure analysis showed that some PaBBX genes contained super-long introns that may regulate their own expression. Moreover, the promoter of PaBBX genes contained a significant number of cis-acting elements that are associated with plant growth and development, as well as hormone and stress responses. The qRT-PCR results and transcriptome data indicated that certain PaBBX genes exhibited tissue-specific and stage-specific expression patterns, suggesting that these genes may have distinct regulatory roles in P. × acerifolia growth and development. In addition, some PaBBX genes were regularly expressed during the annual growth of P. × acerifolia, corresponding to different stages of flower transition, dormancy, and bud break, indicating that these genes may be involved in the regulation of flowering and/or dormancy of P. × acerifolia. This article provided new ideas for the study of dormancy regulation and annual growth patterns in perennial deciduous plants.
Collapse
Affiliation(s)
- Gehui Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Kangyu Ai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Xu Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Zheng Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Fangfang Cai
- Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| | - Jiaqi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Afairs, Wuhan 430070, China
| |
Collapse
|
31
|
Mukherjee A, Dwivedi S, Bhagavatula L, Datta S. Integration of light and ABA signaling pathways to combat drought stress in plants. PLANT CELL REPORTS 2023; 42:829-841. [PMID: 36906730 DOI: 10.1007/s00299-023-02999-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 05/06/2023]
Abstract
Drought is one of the most critical stresses, which causes an enormous reduction in crop yield. Plants develop various strategies like drought escape, drought avoidance, and drought tolerance to cope with the reduced availability of water during drought. Plants adopt several morphological and biochemical modifications to fine-tune their water-use efficiency to alleviate drought stress. ABA accumulation and signaling plays a crucial role in the response of plants towards drought. Here, we discuss how drought-induced ABA regulates the modifications in stomatal dynamics, root system architecture, and the timing of senescence to counter drought stress. These physiological responses are also regulated by light, indicating the possibility of convergence of light- and drought-induced ABA signaling pathways. In this review, we provide an overview of investigations reporting light-ABA signaling cross talk in Arabidopsis as well as other crop species. We have also tried to describe the potential role of different light components and their respective photoreceptors and downstream factors like HY5, PIFs, BBXs, and COP1 in modulating drought stress responses. Finally, we highlight the possibilities of enhancing the plant drought resilience by fine-tuning light environment or its signaling components in the future.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Shubhi Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Lavanya Bhagavatula
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India.
| |
Collapse
|
32
|
Zhai Y, Zhu Y, Wang Q, Wang G, Yu Y, Wang L, Liu T, Liu S, Hu Q, Chen S, Chen F, Jiang J. BBX7 interacts with BBX8 to accelerate flowering in chrysanthemum. MOLECULAR HORTICULTURE 2023; 3:7. [PMID: 37789495 PMCID: PMC10515231 DOI: 10.1186/s43897-023-00055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/06/2023] [Indexed: 10/05/2023]
Abstract
The quantitative control of FLOWERING LOCUS T (FT) activation is important for the floral transition in flowering plants. However, the flowering regulation mechanisms in the day-neutral, summer-flowering chrysanthemum plant remain unclear. In this study, the chrysanthemum BBX7 homolog CmBBX7 was isolated and its flowering function was identified. The expression of CmBBX7 showed a diurnal rhythm and CmBBX7 exhibited higher expression levels than CmBBX8. Overexpression of CmBBX7 in transgenic chrysanthemum accelerated flowering, whereas lines transfected with a chimeric repressor (pSRDX-CmBBX7) exhibited delayed flowering. Yeast single hybridization, luciferase, electrophoretic mobility shift, and chromatin immunoprecipitation assays showed that CmBBX7 directly targets CmFTL1. In addition, we found that CmBBX7 and CmBBX8 interact to positively regulate the expression of CmFTL1 through binding to its promoter. Collectively, these results highlight CmBBX7 as a key cooperator in the BBX8-FT module to control chrysanthemum flowering.
Collapse
Affiliation(s)
- Yiwen Zhai
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqing Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohui Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Yu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijun Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shenhui Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Hu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Luo Y, Hu T, Huo Y, Wang L, Zhang L, Yan R. Transcriptomic and Physiological Analyses Reveal the Molecular Mechanism through Which Exogenous Melatonin Increases Drought Stress Tolerance in Chrysanthemum. PLANTS (BASEL, SWITZERLAND) 2023; 12:1489. [PMID: 37050115 PMCID: PMC10096800 DOI: 10.3390/plants12071489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium (Ramat.) Hemsl.) is an important species in China's flower industry, and drought stress seriously affects the growth, quality, yield, and geographical distribution of this species. Melatonin (MT) plays a key role in regulating plant abiotic stress responses and stress resistance, but the mechanism through which exogenous MT regulates drought resistance in chrysanthemum remains unclear. This study explored the protective effect of MT on chrysanthemum drought tolerance and its key regulatory pathways. Exogenous MT application increased the photosynthetic capacity (Tr increased by 18.07%; Pn increased by 38.46%; and Gs increased by 26.52%) of chrysanthemum and attenuated decreases in its chlorophyll (19.89%) and relative water contents (26.94%). Moreover, MT increased the levels of osmolarity-related compounds such as soluble sugars (43.60%) and soluble protein (9.86%) under drought stress and increased antioxidant enzyme activity (SOD increased by 20.98%; POD increased by 35.04%; and CAT increased by 26.21%). Additionally, MT increased the endogenous MT (597.96%), growth hormone (45.31% and 92.09%), gibberellic acid (75.92% and 3.79%), salicylic acid (33.02%), and cytokinin contents (1400.00%) under drought stress while decreasing the abscisic acid (50.69% and 56.79%), jasmonate contents (62.57% and 28.31%), and ethylene contents (9.28%). RNA-seq analysis revealed 17,389, 1466, and 9359 differentially expressed genes (DEGs) under three treatments (PEG, MT, and MT _ PEG, respectively) compared with the control. Enrichment analyses of the DEGs identified more than 10 GO terms and 34 KEGG pathways. Nitrogen metabolism, sulfur metabolism, and alanine, aspartate, and glutamate metabolism were significantly increased under all three treatments. The DEGs included many transcription factors, such as MYB, WRKY, and NAC proteins. Our results preliminarily classify candidate genes and metabolic pathways with active roles in the interaction between MT and drought stress and advance the understanding of the molecular mechanism of the response to drought stress under MT conditions, thereby providing a theoretical basis for the breeding of drought-resistant chrysanthemum.
Collapse
Affiliation(s)
- Yan Luo
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.L.); (T.H.); (Y.H.); (L.W.); (L.Z.)
| | - Taotao Hu
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.L.); (T.H.); (Y.H.); (L.W.); (L.Z.)
| | - Yunyun Huo
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.L.); (T.H.); (Y.H.); (L.W.); (L.Z.)
| | - Lingling Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.L.); (T.H.); (Y.H.); (L.W.); (L.Z.)
| | - Li Zhang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.L.); (T.H.); (Y.H.); (L.W.); (L.Z.)
| | - Rui Yan
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.L.); (T.H.); (Y.H.); (L.W.); (L.Z.)
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan 750021, China
| |
Collapse
|
34
|
Wu Z, Fu D, Gao X, Zeng Q, Chen X, Wu J, Zhang N. Characterization and expression profiles of the B-box gene family during plant growth and under low-nitrogen stress in Saccharum. BMC Genomics 2023; 24:79. [PMID: 36800937 PMCID: PMC9936747 DOI: 10.1186/s12864-023-09185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND B-box (BBX) zinc-finger transcription factors play crucial roles in plant growth, development, and abiotic stress responses. Nevertheless, little information is available on sugarcane (Saccharum spp.) BBX genes and their expression profiles. RESULTS In the present study, we characterized 25 SsBBX genes in the Saccharum spontaneum genome database. The phylogenetic relationships, gene structures, and expression patterns of these genes during plant growth and under low-nitrogen conditions were systematically analyzed. The SsBBXs were divided into five groups based on phylogenetic analysis. The evolutionary analysis further revealed that whole-genome duplications or segmental duplications were the main driving force for the expansion of the SsBBX gene family. The expression data suggested that many BBX genes (e.g., SsBBX1 and SsBBX13) may be helpful in both plant growth and low-nitrogen stress tolerance. CONCLUSIONS The results of this study offer new evolutionary insight into the BBX family members in how sugarcane grows and responds to stress, which will facilitate their utilization in cultivated sugarcane breeding.
Collapse
Affiliation(s)
- Zilin Wu
- grid.464309.c0000 0004 6431 5677Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China
| | - Danwen Fu
- grid.464309.c0000 0004 6431 5677Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China
| | - Xiaoning Gao
- grid.464309.c0000 0004 6431 5677Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China ,grid.464309.c0000 0004 6431 5677Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, 524300 Guangdong China
| | - Qiaoying Zeng
- grid.464309.c0000 0004 6431 5677Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China
| | - Xinglong Chen
- grid.464309.c0000 0004 6431 5677Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China
| | - Jiayun Wu
- grid.464309.c0000 0004 6431 5677Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China
| | - Nannan Zhang
- Guangdong Sugarcane Genetic Improvement Engineering Centre, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, Guangdong, China.
| |
Collapse
|
35
|
Cheng H, Yu Y, Zhai Y, Wang L, Wang L, Chen S, Chen F, Jiang J. An ethylene-responsive transcription factor and a B-box protein coordinate vegetative growth and photoperiodic flowering in chrysanthemum. PLANT, CELL & ENVIRONMENT 2023; 46:440-450. [PMID: 36367211 DOI: 10.1111/pce.14488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Plants employ several endogenous and exogenous signals to guarantee timely floral transitions with floral integrators. To avoid premature flowering, flowering plants must control the balance between vegetative and floral development. As a Group II member of BBX family, CmBBX8 promotes flowering by directly activating CmFTL1 in summer-flowering chrysanthemum. However, the mechanisms underlying this floral transition is yet to be elucidated. Here, we report that the chrysanthemum ERF3 homologue, CmERF3, physically interacts with CmBBX8 through yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), pull-down, and luciferase complementation (LCI) assays. We found that CmERF3 was highly expressed at the vegetative stage and rarely expressed in the reproductive phase, indicating that CmERF3 may play a critical role in maintaining vegetative growth to prevent premature flowering. Rhythm analysis revealed that CmERF3 had a different response to rhythm compared to CmBBX8. Knockdown of CmERF3 facilitated floral initiation, whereas overexpression of CmERF3 delayed floral transition. We further found that CmERF3 repressed the transactivation activity of CmBBX8 on the downstream CmFTL1 gene. Collectively, our results indicate that the CmERF3-CmBBX8 transcriptional complex is a crucial module that balances the vegetative growth and reproductive development of chrysanthemum.
Collapse
Affiliation(s)
- Hua Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yao Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yiwen Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lijun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
Cao J, Yuan J, Zhang Y, Chen C, Zhang B, Shi X, Niu R, Lin F. Multi-layered roles of BBX proteins in plant growth and development. STRESS BIOLOGY 2023; 3:1. [PMID: 37676379 PMCID: PMC10442040 DOI: 10.1007/s44154-022-00080-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/18/2022] [Indexed: 09/08/2023]
Abstract
Light and phytohormone are external and internal cues that regulate plant growth and development throughout their life cycle. BBXs (B-box domain proteins) are a group of zinc finger proteins that not only directly govern the transcription of target genes but also associate with other factors to create a meticulous regulatory network to precisely regulate numerous aspects of growth and developmental processes in plants. Recent studies demonstrate that BBXs play pivotal roles in light-controlled plant growth and development. Besides, BBXs have been documented to regulate phytohormone-mediated physiological procedures. In this review, we summarize and highlight the multi-faced role of BBXs, with a focus in photomorphogenesis, photoperiodic flowering, shade avoidance, abiotic stress, and phytohormone-mediated growth and development in plant.
Collapse
Affiliation(s)
- Jing Cao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiale Yuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingli Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chen Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Beihong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xianming Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rui Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
37
|
Moulick D, Bhutia KL, Sarkar S, Roy A, Mishra UN, Pramanick B, Maitra S, Shankar T, Hazra S, Skalicky M, Brestic M, Barek V, Hossain A. The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2023; 13:1083960. [PMID: 36684752 PMCID: PMC9846276 DOI: 10.3389/fpls.2022.1083960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Environmental stresses such as drought, high salinity, and low temperature can adversely modulate the field crop's ability by altering the morphological, physiological, and biochemical processes of the plants. It is estimated that about 50% + of the productivity of several crops is limited due to various types of abiotic stresses either presence alone or in combination (s). However, there are two ways plants can survive against these abiotic stresses; a) through management practices and b) through adaptive mechanisms to tolerate plants. These adaptive mechanisms of tolerant plants are mostly linked to their signalling transduction pathway, triggering the action of plant transcription factors and controlling the expression of various stress-regulated genes. In recent times, several studies found that Zn-finger motifs have a significant function during abiotic stress response in plants. In the first report, a wide range of Zn-binding motifs has been recognized and termed Zn-fingers. Since the zinc finger motifs regulate the function of stress-responsive genes. The Zn-finger was first reported as a repeated Zn-binding motif, comprising conserved cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly attached to amino acid residues and thus espousing a tetrahedral coordination geometry. The physical nature of Zn-proteins, defining the attraction of Zn-proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+ facilitates their characteristic function and how proteins control its mobility (intra and intercellular) as well as cellular availability. The current review summarized the concept, importance and mechanisms of Zn-finger motifs during abiotic stress response in plants.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India
| | - Karma Landup Bhutia
- Department of Agricultural Biotechnology & Molecular Breeding, College of Basic Science and Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Udit Nandan Mishra
- Department of Crop Physiology and Biochemistry, Sri University, Cuttack, Odisha, India
| | - Biswajit Pramanick
- Department of Agronomy, Dr. Rajendra Prasad Central Agricultural University, PUSA, Samastipur, Bihar, India
- Department of Agronomy and Horticulture, University of Nebraska Lincoln, Scottsbluff, NE, United States
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Tanmoy Shankar
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Akbar Hossain
- Division of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
38
|
Rathan ND, Krishnappa G, Singh AM, Govindan V. Mapping QTL for Phenological and Grain-Related Traits in a Mapping Population Derived from High-Zinc-Biofortified Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:220. [PMID: 36616350 PMCID: PMC9823887 DOI: 10.3390/plants12010220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Genomic regions governing days to heading (DH), days to maturity (DM), plant height (PH), thousand-kernel weight (TKW), and test weight (TW) were investigated in a set of 190 RILs derived from a cross between a widely cultivated wheat-variety, Kachu (DPW-621-50), and a high-zinc variety, Zinc-Shakti. The RIL population was genotyped using 909 DArTseq markers and phenotyped in three environments. The constructed genetic map had a total genetic length of 4665 cM, with an average marker density of 5.13 cM. A total of thirty-seven novel quantitative trait loci (QTL), including twelve for PH, six for DH, five for DM, eight for TKW and six for TW were identified. A set of 20 stable QTLs associated with the expression of DH, DM, PH, TKW, and TW were identified in two or more environments. Three novel pleiotropic genomic-regions harboring co-localized QTLs governing two or more traits were also identified. In silico analysis revealed that the DArTseq markers were located on important putative candidate genes such as MLO-like protein, Phytochrome, Zinc finger and RING-type, Cytochrome P450 and pentatricopeptide repeat, involved in the regulation of pollen maturity, the photoperiodic modulation of flowering-time, abiotic-stress tolerance, grain-filling duration, thousand-kernel weight, seed morphology, and plant growth and development. The identified novel QTLs, particularly stable and co-localized QTLs, will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection (MAS).
Collapse
Affiliation(s)
| | | | | | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco 56237, Mexico
| |
Collapse
|
39
|
Napier JD, Heckman RW, Juenger TE. Gene-by-environment interactions in plants: Molecular mechanisms, environmental drivers, and adaptive plasticity. THE PLANT CELL 2023; 35:109-124. [PMID: 36342220 PMCID: PMC9806611 DOI: 10.1093/plcell/koac322] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/03/2022] [Indexed: 05/13/2023]
Abstract
Plants demonstrate a broad range of responses to environmental shifts. One of the most remarkable responses is plasticity, which is the ability of a single plant genotype to produce different phenotypes in response to environmental stimuli. As with all traits, the ability of plasticity to evolve depends on the presence of underlying genetic diversity within a population. A common approach for evaluating the role of genetic variation in driving differences in plasticity has been to study genotype-by-environment interactions (G × E). G × E occurs when genotypes produce different phenotypic trait values in response to different environments. In this review, we highlight progress and promising methods for identifying the key environmental and genetic drivers of G × E. Specifically, methodological advances in using algorithmic and multivariate approaches to understand key environmental drivers combined with new genomic innovations can greatly increase our understanding about molecular responses to environmental stimuli. These developing approaches can be applied to proliferating common garden networks that capture broad natural environmental gradients to unravel the underlying mechanisms of G × E. An increased understanding of G × E can be used to enhance the resilience and productivity of agronomic systems.
Collapse
Affiliation(s)
- Joseph D Napier
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Robert W Heckman
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
40
|
Luo C, Liu L, Zhao J, Xu Y, Liu H, Chen D, Cheng X, Gao J, Hong B, Huang C, Ma C. CmHY5 functions in apigenin biosynthesis by regulating flavone synthase II expression in chrysanthemum flowers. PLANTA 2022; 257:7. [PMID: 36478305 DOI: 10.1007/s00425-022-04040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The predominant flavones in the ray florets of chrysanthemum flowers are apigenin and its derivatives. CmHY5 participates in apigenin biosynthesis by directly regulating the expression of FNSII-1 in chrysanthemum. Chrysanthemum (Chrysanthemum morifolium) flowers have been used for centuries as functional food and in herbal tea and traditional medicine. The chrysanthemum flower contains significant amounts of the biologically active compound flavones, which has medicinal properties. However, the mechanism regulating flavones biosynthesis in chrysanthemum flowers organs is still unclear. Here, we compared the transcriptomes and metabolomes of different floral organs between two cultivars with contrasting flavone levels in their flowers. We identified 186 flavonoids by metabolome analysis. The predominant flavones in the ray florets of chrysanthemum flowers are apigenin and its derivatives, of which the contents are highly correlated with the expression of flavones synthase II gene CmFNSII-1. We also determined that CmHY5 is a direct upstream regulator of CmFNSII-1 transcription. We showed that CmHY5 RNAi interference lines in chrysanthemum have lower contents of apigenin compared to wild-type chrysanthemum. Our results demonstrated that CmHY5 participates in flavone biosynthesis by directly regulating the expression of FNSII-1 in chrysanthemum.
Collapse
Affiliation(s)
- Chang Luo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lei Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jian Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanjie Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hua Liu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Dongliang Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Xi Cheng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Conglin Huang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China.
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
41
|
Lyu J, Aiwaili P, Gu Z, Xu Y, Zhang Y, Wang Z, Huang H, Zeng R, Ma C, Gao J, Zhao X, Hong B. Chrysanthemum MAF2 regulates flowering by repressing gibberellin biosynthesis in response to low temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1159-1175. [PMID: 36214418 PMCID: PMC10092002 DOI: 10.1111/tpj.16002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium) is well known as a photoperiod-sensitive flowering plant. However, it has also evolved into a temperature-sensitive ecotype. Low temperature can promote the floral transition of the temperature-sensitive ecotype, but little is known about the underlying molecular mechanisms. Here, we identified MADS AFFECTING FLOWERING 2 (CmMAF2), a putative MADS-box gene, which induces floral transition in response to low temperatures independent of day length conditions in this ecotype. CmMAF2 was shown to bind to the promoter of the GA biosynthesis gene CmGA20ox1 and to directly regulate the biosynthesis of bioactive GA1 and GA4 . The elevated bioactive GA levels activated LEAFY (CmLFY) expression, ultimately initiating floral transition. In addition, CmMAF2 expression in response to low temperatures was directly activated by CmC3H1, a CCCH-type zinc-finger protein upstream. In summary, our results reveal that the CmC3H1-CmMAF2 module regulates flowering time in response to low temperatures by regulating GA biosynthesis in the temperature-sensitive chrysanthemum ecotype.
Collapse
Affiliation(s)
- Jing Lyu
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Palinuer Aiwaili
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Zhaoyu Gu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Yanjie Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Yunhan Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Zhiling Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Hongfeng Huang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Ruihong Zeng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Chao Ma
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Junping Gao
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| | - Xin Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijing100193China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Bo Hong
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental HorticultureChina Agricultural UniversityBeijing100193China
| |
Collapse
|
42
|
Dong J, Zhao C, Zhang J, Ren Y, He L, Tang R, Wang W, Jia X. The sweet potato B-box transcription factor gene IbBBX28 negatively regulates drought tolerance in transgenic Arabidopsis. Front Genet 2022; 13:1077958. [PMID: 36523761 PMCID: PMC9744756 DOI: 10.3389/fgene.2022.1077958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
B-box (BBX) which are a class of zinc finger transcription factors, play an important role in regulating of photoperiod, photomorphogenesis, and biotic and abiotic stresses in plants. However, there are few studies on the involvement of BBX transcription factors in response to abiotic stresses in sweet potato. In this paper, we cloned the DNA and promoter sequences of IbBBX28. There was one B-box conserved domain in IbBBX28, and the expression of IbBBX28 was induced under drought stress. Under drought stress, compared to wild type Arabidopsis, the protective enzyme activities (SOD, POD, and CAT) were all decreased in IbBBX28-overexpression Arabidopsis but increased in the mutant line bbx28, while the MDA content was increased in the IbBBX28-overexpression Arabidopsis and decreased in the bbx28. Moreover, the expression levels of the resistance-related genes showed the same trend as the protective enzyme activities. These results showed that IbBBX28 negatively regulates drought tolerance in transgenic Arabidopsis. Additionally, the yeast two-hybrid and BiFC assays verified that IbBBX28 interacted with IbHOX11 and IbZMAT2. The above results provide important clues for further studies on the role of IbBBX28 in regulating the stress response in sweet potato.
Collapse
Affiliation(s)
- Jingjing Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Cailiang Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yuchao Ren
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Liheng He
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Ruimin Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wenbin Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
43
|
Ouyang Y, Zhang X, Wei Y, He Y, Zhang X, Li Z, Wang C, Zhang H. AcBBX5, a B-box transcription factor from pineapple, regulates flowering time and floral organ development in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1060276. [PMID: 36507446 PMCID: PMC9729951 DOI: 10.3389/fpls.2022.1060276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Flowering is an important factor to ensure the success of plant reproduction, and reasonable flowering time is crucial to the crop yield. BBX transcription factors can regulate several growth and development processes. However, there is little research on whether BBX is involved in flower formation and floral organ development of pineapple. In this study, AcBBX5, a BBX family gene with two conserved B-box domains, was identified from pineapple. Subcellular localization analysis showed that AcBBX5 was located in the nucleus. Transactivation analysis indicated that AcBBX5 had no significant toxic effects on the yeast system and presented transcriptional activation activity in yeast. Overexpression of AcBBX5 delayed flowering time and enlarged flower morphology in Arabidopsis. Meanwhile, the expression levels of AtFT, AtSOC1, AtFUL and AtSEP3 were decreased, and the transcription levels of AtFLC and AtSVP were increased in AcBBX5-overexpressing Arabidopsis, which might lead to delayed flowering of transgenic plants. Furthermore, transcriptome data and QRT-PCR results showed that AcBBX5 was expressed in all floral organs, with the high expression levels in stamens, ovaries and petals. Yeast one-hybrid and dual luciferase assay results showed that AcBBX5 bound to AcFT promoter and inhibited AcFT gene expression. In conclusion, AcBBX5 was involved in flower bud differentiation and floral organ development, which provides an important reference for studying the functions of BBX and the molecular regulation of flower.
Collapse
Affiliation(s)
- Yanwei Ouyang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Xiumei Zhang
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yongzan Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Yukun He
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Xiaohan Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Ziqiong Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Can Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Hongna Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
44
|
Mekapogu M, Kwon OK, Song HY, Jung JA. Towards the Improvement of Ornamental Attributes in Chrysanthemum: Recent Progress in Biotechnological Advances. Int J Mol Sci 2022; 23:ijms232012284. [PMID: 36293140 PMCID: PMC9603847 DOI: 10.3390/ijms232012284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
Incessant development and introduction of novel cultivars with improved floral attributes are vital in the dynamic ornamental industry. Chrysanthemum (Chrysanthemum morifolium) is a highly favored ornamental plant, ranking second globally in the cut flower trade, after rose. Development of new chrysanthemum cultivars with improved and innovative modifications in ornamental attributes, including floral color, shape, plant architecture, flowering time, enhanced shelf life, and biotic and abiotic stress tolerance, is a major goal in chrysanthemum breeding. Despite being an economically important ornamental plant, the application of conventional and molecular breeding approaches to various key traits of chrysanthemum is hindered owing to its genomic complexity, heterozygosity, and limited gene pool availability. Although classical breeding of chrysanthemum has resulted in the development of several hundreds of cultivars with various morphological variations, the genetic and transcriptional control of various important ornamental traits remains unclear. The coveted blue colored flowers of chrysanthemums cannot be achieved through conventional breeding and mutation breeding due to technical limitations. However, blue-hued flower has been developed by genetic engineering, and transgenic molecular breeding has been successfully employed, leading to substantial progress in improving various traits. The recent availability of whole-genome sequences of chrysanthemum offers a platform to extensively employ MAS to identify a large number of markers for QTL mapping, and GWAS to dissect the genetic control of complex traits. The combination of NGS, multi-omic platforms, and genome editing technologies has provided a tremendous scope to decipher the molecular and regulatory mechanisms. However, the application and integration of these technologies remain inadequate for chrysanthemum. This review, therefore, details the significance of floral attributes, describes the efforts of recent advancements, and highlights the possibilities for future application towards the improvement of crucial ornamental traits in the globally popular chrysanthemum plant.
Collapse
|
45
|
The Function of BBX Gene Family under Multiple Stresses in Nicotiana tabacum. Genes (Basel) 2022; 13:genes13101841. [PMID: 36292726 PMCID: PMC9602306 DOI: 10.3390/genes13101841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
B-box (BBX) is a zinc finger transcription factor, which is involved in regulating the growth and development of plants and resisting various stresses. In this study, 43 NtBBX genes were identified and divided into five subgroups in tobacco. The members in each subgroup had similar characteristics. The promoter region of NtBBX genes had cis-acting elements related to light response, hormone regulation and stress response. Transcriptome analysis showed that NtBBX30 was significantly up-regulated, and NtBBX12, NtBBX13, NtBBX16 and NtBBX17 were significantly down-regulated under abiotic stresses. The NtBBX genes also responded to the infection of Ralstonia solanacearum. NtBBX9, NtBBX1, NtBBX15 and NtBBX17 showed the greatest response under stresses. The NtBBX genes are expressed in various degrees under different tissues. This research will provide a solid foundation for further study of the biological function of NtBBX genes in tobacco.
Collapse
|
46
|
Castro-Camba R, Sánchez C, Vidal N, Vielba JM. Plant Development and Crop Yield: The Role of Gibberellins. PLANTS (BASEL, SWITZERLAND) 2022; 11:2650. [PMID: 36235516 PMCID: PMC9571322 DOI: 10.3390/plants11192650] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/12/2023]
Abstract
Gibberellins have been classically related to a few key developmental processes, thus being essential for the accurate unfolding of plant genetic programs. After more than a century of research, over one hundred different gibberellins have been described. There is a continuously increasing interest in gibberellins research because of their relevant role in the so-called "Green Revolution", as well as their current and possible applications in crop improvement. The functions attributed to gibberellins have been traditionally restricted to the regulation of plant stature, seed germination, and flowering. Nonetheless, research in the last years has shown that these functions extend to many other relevant processes. In this review, the current knowledge on gibberellins homeostasis and mode of action is briefly outlined, while specific attention is focused on the many different responses in which gibberellins take part. Thus, those genes and proteins identified as being involved in the regulation of gibberellin responses in model and non-model species are highlighted. The present review aims to provide a comprehensive picture of the state-of-the-art perception of gibberellins molecular biology and its effects on plant development. This picture might be helpful to enhance our current understanding of gibberellins biology and provide the know-how for the development of more accurate research and breeding programs.
Collapse
Affiliation(s)
| | | | | | - Jesús Mª Vielba
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
| |
Collapse
|
47
|
Dong J, Zhang J, Liu X, Zhao C, He L, Tang R, Wang W, Li R, Jia X. RETRACTED: Genome-wide analysis of the B-box gene family in the sweetpotato wild ancestor Ipomoea trifida and determination of the function of IbBBX28 in the regulation of flowering time of Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:109-122. [PMID: 36029691 DOI: 10.1016/j.plaphy.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of of the Editors-in-Chief. A large part of the article is highly similar to the paper previously published by Wenqian Hou, Lei Ren, Yang Zhang, Haoyun Sun, Tianye Shi, Yulan Gu, Aimin Wang, Daifu Ma, Zongyun Li and Lei Zhang in Scientia Horticulturae 288 (2021) 110374 https://doi.org/10.1016/j.scienta.2021.110374. In particular, a large part of the two articles shows a study on the same gene family in the same plant, with similar methodological approaches, resulting in a series of highly similar figures. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Jingjing Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jie Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Xiayu Liu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Cailiang Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Liheng He
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Ruimin Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Wenbin Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Runzhi Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
48
|
Nian L, Zhang X, Liu X, Li X, Liu X, Yang Y, Haider FU, Zhu X, Ma B, Mao Z, Xue Z. Characterization of B-box family genes and their expression profiles under abiotic stresses in the Melilotus albus. FRONTIERS IN PLANT SCIENCE 2022; 13:990929. [PMID: 36247587 PMCID: PMC9559383 DOI: 10.3389/fpls.2022.990929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
B-box (BBX) proteins are one of the zinc-finger transcription factor that plays a critical role in plant development, growth, and multiple stress responses. Although BBX genes have been reported in many model organisms, no comprehensive study has yet been conducted on the BBX genes in Melilotus albus, and the biological functions of this family remain unknown. In this study, a total of 20 BBX (MaBBX) genes were identified in M. albus and were phylogenetically divided into five clades. BBX members within the same clade showed similar conserved domain, suggesting similarity of potential biological function. Analysis of MaBBX conserved motifs showed that every subfamily contained two common motifs. Distribution mapping shows that BBX proteins are nonrandomly localized in eight chromosomes. The synteny showed that most homologous gene pairs of the MaBBX gene family were amplified by segmental replication, which meant segmental replication was the main way for the MaBBX gene family to evolve. Additionally, the cis-element analysis predicted light-responsive, various hormone and stress-related elements in the promoter regions of MaBBXs. Furthermore, the expression levels of all 20 MaBBX genes were detected by qRT-PCR under salt, cold, and dark stresses in M. albus. Moreover, it was observed that 16 genes had higher expression levels after 3 h of salt treatment, 10 genes were significantly upregulated after 3 h of cold treatment, and all genes were up regulated after 3 h of dark treatment, and then appeared to decline. In addition, it was also noticed that MaBBX13 may be an important candidate for improving tolerance to abiotic stress. The prediction of protein tertiary structure showed that the tertiary structures of members of the same subfamily of MaBBX proteins were highly similar. The hypothesis exhibited that most of the MaBBX proteins were predicted to be localized to the nucleus and cytoplasm and was validated by transient expression assays of MaBBX15 in tobacco leaf epidermal cells. This study provides useful information for further investigating and researching the regulatory mechanisms of BBX family genes in response to abiotic stresses in M. albus.
Collapse
Affiliation(s)
- Lili Nian
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xiaoning Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xingyu Liu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xiaodan Li
- College of Management, Gansu Agricultural University, Lanzhou, China
| | - Xuelu Liu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Yingbo Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Biao Ma
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Zixuan Mao
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Zongyang Xue
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
49
|
Kiełbowicz-Matuk A, Grądzka K, Biegańska M, Talar U, Czarnecka J, Rorat T. The StBBX24 protein affects the floral induction and mediates salt tolerance in Solanum tuberosum. FRONTIERS IN PLANT SCIENCE 2022; 13:965098. [PMID: 36160990 PMCID: PMC9490078 DOI: 10.3389/fpls.2022.965098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The transition from vegetative growth to reproductive development is a critical developmental switch in flowering plants to ensure a successful life cycle. However, while the genes controlling flowering are well-known in model plants, they are less well-understood in crops. In this work, we generated potato lines both silenced and overexpressed for the expression of StBBX24, a clock-controlled gene encoding a B-box protein located in the cytosol and nuclear chromatin fraction. We revealed that Solanum tuberosum lines silenced for StBBX24 expression displayed much earlier flowering than wild-type plants. Conversely, plants overexpressing StBBX24 mostly did not produce flower buds other than wild-type plants. In addition, RT-qPCR analyses of transgenic silenced lines revealed substantial modifications in the expression of genes functioning in flowering. Furthermore, S. tuberosum lines silenced for StBBX24 expression displayed susceptibility to high salinity with a lower capacity of the antioxidant system and strongly decreased expression of genes encoding Na+ transporters that mediate salt tolerance, contrary to the plants with StBBX24 overexpression. Altogether, these data reveal that StBBX24 participates in potato flowering repression and is involved in salt stress response.
Collapse
Affiliation(s)
- Agnieszka Kiełbowicz-Matuk
- Department of Regulation of Gene Expression, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
50
|
Alhajhoj MR, Munir M, Sudhakar B, Ali-Dinar HM, Iqbal Z. Common and novel metabolic pathways related ESTs were upregulated in three date palm cultivars to ameliorate drought stress. Sci Rep 2022; 12:15027. [PMID: 36056140 PMCID: PMC9440037 DOI: 10.1038/s41598-022-19399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Date palm is an important staple crop in Saudi Arabia, and about 400 different date palm cultivars grown here, only 50-60 of them are used commercially. The most popular and commercially consumed cultivars of these are Khalas, Reziz, and Sheshi, which are also widely cultivated across the country. Date palm is high water-demanding crop in oasis agriculture, with an inherent ability to tolerate drought stress. However, the mechanisms by which it tolerates drought stress, especially at the transcriptomic level, are still elusive. This study appraised the physiological and molecular response of three commercial date palm cultivars Khalas, Reziz, and Sheshi at two different field capacities (FC; 100% and 25%) levels. At 25% FC (drought stress), leaf relative water content, chlorophyll, photosynthesis, stomatal conductance, and transpiration were significantly reduced. However, leaf intercellular CO2 concentration and water use efficiency increased under drought stress. In comparison to cvs. Khalas and Reziz, date palm cv. Sheshi showed less tolerance to drought stress. A total of 1118 drought-responsive expressed sequence tags (ESTs) were sequenced, 345 from Khalas, 391 from Reziz, and 382 from Sheshi and subjected to functional characterization, gene ontology classification, KEGG pathways elucidation, and enzyme codes dissemination. Three date palm cultivars deployed a multivariate approach to ameliorate drought stress by leveraging common and indigenous molecular, cellular, biological, structural, transcriptional and reproductive mechanisms. Approximately 50% of the annotated ESTs were related to photosynthesis regulation, photosynthetic structure, signal transduction, auxin biosynthesis, osmoregulation, stomatal conductance, protein synthesis/turnover, active transport of solutes, and cell structure modulation. Along with the annotated ESTs, ca. 45% of ESTs were novel. Conclusively, the study provides novel clues and opens the myriads of genetic resources to understand the fine-tuned drought amelioration mechanisms in date palm.
Collapse
Affiliation(s)
- Mohammed Refdan Alhajhoj
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Muhammad Munir
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Balakrishnan Sudhakar
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Hassan Muzzamil Ali-Dinar
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Zafar Iqbal
- Central Laboratories, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia.
| |
Collapse
|