1
|
Liang D, Yang D, Li T, Zhu Z, Yan B, He Y, Li X, Zhai K, Liu J, Kawano Y, Deng Y, Wu XN, Liu J, He Z. A PRA-Rab trafficking machinery modulates NLR immune receptor plasma membrane microdomain anchoring and blast resistance in rice. Sci Bull (Beijing) 2025; 70:733-747. [PMID: 39736493 DOI: 10.1016/j.scib.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/16/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae. Here, we report that a PRA (Prenylated Rab acceptor) protein, PIBP4 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 4), interacts with both PigmR and the active form of the Rab GTPase, OsRab5a, thereby loads a portion of PigmR on trafficking vesicles that target to PM microdomains. Microdomain-localized PigmR interacts with and activates the small GTPase OsRac1, which triggers reactive oxygen species signaling and hypersensitive response, leading to immune responses against blast infection. Thus, our study discovers a previously unknown mechanism that deploys a PRA-Rab protein delivering hub to ensure ETI, linking the membrane trafficking machinery with NLR function and immune activation in plants.
Collapse
Affiliation(s)
- Di Liang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dongyong Yang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tai Li
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhe Zhu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Bingxiao Yan
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang He
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyuan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Keran Zhai
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiyun Liu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yoji Kawano
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Yiwen Deng
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xu Na Wu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Junzhong Liu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China.
| | - Zuhua He
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
2
|
Nielsen ME. Vesicle trafficking pathways in defence-related cell wall modifications: papillae and encasements. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3700-3712. [PMID: 38606692 DOI: 10.1093/jxb/erae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Filamentous pathogens that cause plant diseases such as powdery mildew, rust, anthracnose, and late blight continue to represent an enormous challenge for farmers worldwide. Interestingly, these pathogens, although phylogenetically distant, initiate pathogenesis in a very similar way by penetrating the cell wall and establishing a feeding structure inside the plant host cell. To prevent pathogen ingress, the host cell responds by forming defence structures known as papillae and encasements that are thought to mediate pre- and post-invasive immunity, respectively. This form of defence is evolutionarily conserved in land plants and is highly effective and durable against a broad selection of non-adapted filamentous pathogens. As most pathogens have evolved strategies to overcome the defences of only a limited range of host plants, the papilla/encasement response could hold the potential to become an optimal transfer of resistance from one plant species to another. In this review I lay out current knowledge of the involvement of membrane trafficking that forms these important defence structures and highlight some of the questions that still need to be resolved.
Collapse
Affiliation(s)
- Mads Eggert Nielsen
- University of Copenhagen, Faculty of Science, CPSC, Department of Plant and Environmental Sciences, 1871 Frederiksberg C, Denmark
| |
Collapse
|
3
|
Zhang W, Maksym R, Georgii E, Geist B, Schäffner AR. SA and NHP glucosyltransferase UGT76B1 affects plant defense in both SID2- and NPR1-dependent and independent manner. PLANT CELL REPORTS 2024; 43:149. [PMID: 38780624 PMCID: PMC11116260 DOI: 10.1007/s00299-024-03228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
KEY MESSAGE The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany.
- College of Life Sciences, Jiangsu University, Jiangsu, People's Republic of China.
| | - Rafał Maksym
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Birgit Geist
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
4
|
Lu Y, Cheng K, Tang H, Li J, Zhang C, Zhu H. The role of Rab GTPase in Plant development and stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154239. [PMID: 38574493 DOI: 10.1016/j.jplph.2024.154239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Small GTPase is a type of crucial regulator in eukaryotes. It acts as a molecular switch by binding with GTP and GDP in cytoplasm, affecting various cellular processes. Small GTPase were divided into five subfamilies based on sequence, structure and function: Ras, Rho, Rab, Arf/Sar and Ran, with Rab being the largest subfamily. Members of the Rab subfamily play an important role in regulating complex vesicle transport and microtubule system activity. Plant cells are composed of various membrane-bound organelles, and vesicle trafficking is fundamental to the existence of plants. At present, the function of some Rab members, such as RabA1a, RabD2b/c and RabF2, has been well characterized in plants. This review summarizes the role of Rab GTPase in regulating plant tip growth, morphogenesis, fruit ripening and stress response, and briefly describes the regulatory mechanisms involved. It provides a reference for further alleviating environmental stress, improving plant resistance and even improving fruit quality.
Collapse
Affiliation(s)
- Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hui Tang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
5
|
Saatian B, Kohalmi SE, Cui Y. Localization of Arabidopsis Glucan Synthase-Like 5, 8, and 12 to plasmodesmata and the GSL8-dependent role of PDLP5 in regulating plasmodesmal permeability. PLANT SIGNALING & BEHAVIOR 2023; 18:2164670. [PMID: 36645916 PMCID: PMC9851254 DOI: 10.1080/15592324.2022.2164670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Cell-to-cell communication via membranous channels called plasmodesmata (PD) plays critical roles during plant development and in response to biotic and abiotic stresses. Several enzymes and receptor-like proteins (RLPs), including Arabidopsis thaliana glucan synthase-likes (GSLs), also known as callose synthases (CALSs), and PD-located proteins (PDLPs), have been implicated in plasmodesmal permeability regulation and intercellular communication. Localization of PDLPs to punctate structures at the cell periphery and their receptor-like identity have raised the hypothesis that PDLPs are involved in the regulation of symplastic trafficking during plant development and in response to endogenous and exogenous signals. Indeed, it was shown that PDLP5 could limit plasmodesmal permeability through inducing an increase in callose accumulation at PD. However, mechanistically, how this is achieved remains to be elucidated. To address this key issue in understanding the regulation of PD, physical and functional interactions between PDLPs and GSLs (using the PDLP5-GSL8/CALS10 pair as a model) were investigated. Our results show that GSL8/CALS10 plays essential roles and is required for the function and plasmodesmal localization of PDLP5. Furthermore, it was demonstrated that the localization of PDLP5 to PD and its function in inducing callose deposition are GSL8-dependent. Importantly, our transgenic study shows that three key members of the GSL family, i.e., GSL5/CALS12, GSL8/CALS10, and GSL12/CALS3, localize to PD and co-localize with PDLP5, suggesting that GSL8/CALS10 might not be the only callose synthase with the determining role in PD regulation. These findings, together with our previous observation showing the direct interaction of GSL8/CALS10 with PDLP5, indicate the pivotal role of the GSL8/CALS10-PDLP5 interplay in regulating PD permeability. Future work is needed to investigate whether the PDLP5 functionality and localization are also disrupted in gsl5 and gsl12, or it is just gsl8-specific.
Collapse
Affiliation(s)
- Behnaz Saatian
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
6
|
Fang S, Shang X, He Q, Li W, Song X, Zhang B, Guo W. A cell wall-localized β-1,3-glucanase promotes fiber cell elongation and secondary cell wall deposition. PLANT PHYSIOLOGY 2023; 194:106-123. [PMID: 37427813 DOI: 10.1093/plphys/kiad407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
β-1,3-glucanase functions in plant physiological and developmental processes. However, how β-1,3-glucanase participates in cell wall development remains largely unknown. Here, we answered this question by examining the role of GhGLU18, a β-1,3-glucanase, in cotton (Gossypium hirsutum) fibers, in which the content of β-1,3-glucan changes dynamically from 10% of the cell wall mass at the onset of secondary wall deposition to <1% at maturation. GhGLU18 was specifically expressed in cotton fiber with higher expression in late fiber elongation and secondary cell wall (SCW) synthesis stages. GhGLU18 largely localized to the cell wall and was able to hydrolyze β-1,3-glucan in vitro. Overexpression of GhGLU18 promoted polysaccharide accumulation, cell wall reconstruction, and cellulose synthesis, which led to increased fiber length and strength with thicker cell walls and shorter pitch of the fiber helix. However, GhGLU18-suppressed cotton resulted in opposite phenotypes. Additionally, GhGLU18 was directly activated by GhFSN1 (fiber SCW-related NAC1), a NAC transcription factor reported previously as the master regulator in SCW formation during fiber development. Our results demonstrate that cell wall-localized GhGLU18 promotes fiber elongation and SCW thickening by degrading callose and enhancing polysaccharide metabolism and cell wall synthesis.
Collapse
Affiliation(s)
- Shuai Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingfei He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Ganotra J, Sharma B, Biswal B, Bhardwaj D, Tuteja N. Emerging role of small GTPases and their interactome in plants to combat abiotic and biotic stress. PROTOPLASMA 2023; 260:1007-1029. [PMID: 36525153 DOI: 10.1007/s00709-022-01830-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/05/2022] [Indexed: 06/07/2023]
Abstract
Plants are frequently subjected to abiotic and biotic stress which causes major impediments in their growth and development. It is emerging that small guanosine triphosphatases (small GTPases), also known as monomeric GTP-binding proteins, assist plants in managing environmental stress. Small GTPases function as tightly regulated molecular switches that get activated with the aid of guanosine triphosphate (GTP) and deactivated by the subsequent hydrolysis of GTP to guanosine diphosphate (GDP). All small GTPases except Rat sarcoma (Ras) are found in plants, including Ras-like in brain (Rab), Rho of plant (Rop), ADP-ribosylation factor (Arf) and Ras-like nuclear (Ran). The members of small GTPases in plants interact with several downstream effectors to counteract the negative effects of environmental stress and disease-causing pathogens. In this review, we describe processes of stress alleviation by developing pathways involving several small GTPases and their associated proteins which are important for neutralizing fungal infections, stomatal regulation, and activation of abiotic stress-tolerant genes in plants. Previous reviews on small GTPases in plants were primarily focused on Rab GTPases, abiotic stress, and membrane trafficking, whereas this review seeks to improve our understanding of the role of all small GTPases in plants as well as their interactome in regulating mechanisms to combat abiotic and biotic stress. This review brings to the attention of scientists recent research on small GTPases so that they can employ genome editing tools to precisely engineer economically important plants through the overexpression/knock-out/knock-in of stress-related small GTPase genes.
Collapse
Affiliation(s)
- Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Bhawana Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Brijesh Biswal
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
8
|
Li N, Lin Z, Yu P, Zeng Y, Du S, Huang LJ. The multifarious role of callose and callose synthase in plant development and environment interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1183402. [PMID: 37324665 PMCID: PMC10264662 DOI: 10.3389/fpls.2023.1183402] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Callose is an important linear form of polysaccharide synthesized in plant cell walls. It is mainly composed of β-1,3-linked glucose residues with rare amount of β-1,6-linked branches. Callose can be detected in almost all plant tissues and are widely involved in various stages of plant growth and development. Callose is accumulated on plant cell plates, microspores, sieve plates, and plasmodesmata in cell walls and is inducible upon heavy metal treatment, pathogen invasion, and mechanical wounding. Callose in plant cells is synthesized by callose synthases located on the cell membrane. The chemical composition of callose and the components of callose synthases were once controversial until the application of molecular biology and genetics in the model plant Arabidopsis thaliana that led to the cloning of genes encoding synthases responsible for callose biosynthesis. This minireview summarizes the research progress of plant callose and its synthetizing enzymes in recent years to illustrate the important and versatile role of callose in plant life activities.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China
| | - Zeng Lin
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Peiyao Yu
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yanling Zeng
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Shenxiu Du
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
9
|
Khan M, Ali S, Al Azzawi TNI, Saqib S, Ullah F, Ayaz A, Zaman W. The Key Roles of ROS and RNS as a Signaling Molecule in Plant-Microbe Interactions. Antioxidants (Basel) 2023; 12:268. [PMID: 36829828 PMCID: PMC9952064 DOI: 10.3390/antiox12020268] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a pivotal role in the dynamic cell signaling systems in plants, even under biotic and abiotic stress conditions. Over the past two decades, various studies have endorsed the notion that these molecules can act as intracellular and intercellular signaling molecules at a very low concentration to control plant growth and development, symbiotic association, and defense mechanisms in response to biotic and abiotic stress conditions. However, the upsurge of ROS and RNS under stressful conditions can lead to cell damage, retarded growth, and delayed development of plants. As signaling molecules, ROS and RNS have gained great attention from plant scientists and have been studied under different developmental stages of plants. However, the role of RNS and RNS signaling in plant-microbe interactions is still unknown. Different organelles of plant cells contain the enzymes necessary for the formation of ROS and RNS as well as their scavengers, and the spatial and temporal positions of these enzymes determine the signaling pathways. In the present review, we aimed to report the production of ROS and RNS, their role as signaling molecules during plant-microbe interactions, and the antioxidant system as a balancing system in the synthesis and elimination of these species.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fazal Ullah
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
10
|
Liu L, Qin L, Safdar LB, Zhao C, Cheng X, Xie M, Zhang Y, Gao F, Bai Z, Huang J, Bhalerao RP, Liu S, Wei Y. The plant trans-Golgi network component ECHIDNA regulates defense, cell death, and endoplasmic reticulum stress. PLANT PHYSIOLOGY 2023; 191:558-574. [PMID: 36018261 PMCID: PMC9806577 DOI: 10.1093/plphys/kiac400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The trans-Golgi network (TGN) acts as a central platform for sorting and secreting various cargoes to the cell surface, thus being essential for the full execution of plant immunity. However, the fine-tuned regulation of TGN components in plant defense and stress response has been not fully elucidated. Our study revealed that despite largely compromising penetration resistance, the loss-of-function mutation of the TGN component protein ECHIDNA (ECH) induced enhanced postinvasion resistance to powdery mildew in Arabidopsis thaliana. Genetic and transcriptome analyses and hormone profiling demonstrated that ECH loss resulted in salicylic acid (SA) hyperaccumulation via the ISOCHORISMATE SYNTHASE 1 biosynthesis pathway, thereby constitutively activating SA-dependent innate immunity that was largely responsible for the enhanced postinvasion resistance. Furthermore, the ech mutant displayed accelerated SA-independent spontaneous cell death and constitutive POWDERY MILDEW RESISTANCE 4-mediated callose depositions. In addition, ECH loss led to a chronically prolonged endoplasmic reticulum stress in the ech mutant. These results provide insights into understanding the role of TGN components in the regulation of plant immunity and stress responses.
Collapse
Affiliation(s)
- Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
| | - Li Qin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
| | - Luqman Bin Safdar
- School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond 5064, Australia
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Meili Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Feng Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, S-901 83, Sweden
| | | | | |
Collapse
|
11
|
Liu S, Jiang J, Ma Z, Xiao M, Yang L, Tian B, Yu Y, Bi C, Fang A, Yang Y. The Role of Hydroxycinnamic Acid Amide Pathway in Plant Immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:922119. [PMID: 35812905 PMCID: PMC9257175 DOI: 10.3389/fpls.2022.922119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The compounds involved in the hydroxycinnamic acid amide (HCAA) pathway are an important class of metabolites in plants. Extensive studies have reported that a variety of plant hydroxycinnamamides exhibit pivotal roles in plant-pathogen interactions, such as p-coumaroylagmatine and ferulic acid. The aim of this review is to discuss the emerging findings on the functions of hydroxycinnamic acid amides (HCAAs) accumulation associated with plant defenses against plant pathologies, antimicrobial activity of HCAAs, and the mechanism of HCAAs involved in plant immune responses (such as reactive oxygen species (ROS), cell wall response, plant defense hormones, and stomatal immunity). However, these advances have also revealed the complexity of HCAAs participation in plant defense reactions, and many mysteries remain to be revealed. This review provides an overview of the mechanistic and conceptual insights obtained so far and highlights areas for future exploration of phytochemical defense metabolites.
Collapse
Affiliation(s)
- Saifei Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jincheng Jiang
- Committee on Agriculture and Rural Affairs of Yongchuan District, Chongqing, China
| | - Zihui Ma
- College of Plant Protection, Southwest University, Chongqing, China
| | - Muye Xiao
- College of Plant Protection, Southwest University, Chongqing, China
| | - Lan Yang
- Analytical and Testing Center, Southwest University, Chongqing, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Zhao Z, Li M, Zhang H, Yu Y, Ma L, Wang W, Fan Y, Huang N, Wang X, Liu K, Dong S, Tang H, Wang J, Zhang H, Bao Y. Comparative Proteomic Analysis of Plasma Membrane Proteins in Rice Leaves Reveals a Vesicle Trafficking Network in Plant Immunity That Is Provoked by Blast Fungi. FRONTIERS IN PLANT SCIENCE 2022; 13:853195. [PMID: 35548300 PMCID: PMC9083198 DOI: 10.3389/fpls.2022.853195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases in rice and can affect rice production worldwide. Rice plasma membrane (PM) proteins are crucial for rapidly and precisely establishing a defense response in plant immunity when rice and blast fungi interact. However, the plant-immunity-associated vesicle trafficking network mediated by PM proteins is poorly understood. In this study, to explore changes in PM proteins during M. oryzae infection, the PM proteome was analyzed via iTRAQ in the resistant rice landrace Heikezijing. A total of 831 differentially expressed proteins (DEPs) were identified, including 434 upregulated and 397 downregulated DEPs. In functional analyses, DEPs associated with vesicle trafficking were significantly enriched, including the "transport" term in a Gene Ontology enrichment analysis, the endocytosis and phagosome pathways in a Encyclopedia of Genes and Genomes analysis, and vesicle-associated proteins identified via a protein-protein interaction network analysis. OsNPSN13, a novel plant-specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) 13 protein, was identified as an upregulated DEP, and transgenic plants overexpressing this gene showed enhanced blast resistance, while transgenic knockdown plants were more susceptible than wild-type plants. The changes in abundance and putative functions of 20 DEPs revealed a possible vesicle trafficking network in the M. oryzae-rice interaction. A comparative proteomic analysis of plasma membrane proteins in rice leaves revealed a plant-immunity-associated vesicle trafficking network that is provoked by blast fungi; these results provide new insights into rice resistance responses against rice blast fungi.
Collapse
|
13
|
Feng J, Chen Y, Xiao X, Qu Y, Li P, Lu Q, Huang J. Genome-wide analysis of the CalS gene family in cotton reveals their potential roles in fiber development and responses to stress. PeerJ 2021; 9:e12557. [PMID: 34909280 PMCID: PMC8641485 DOI: 10.7717/peerj.12557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Callose deposition occurs during plant growth and development, as well as when plants are under biotic and abiotic stress. Callose synthase is a key enzyme for the synthesis of callose. In this study, 27, 28, 16, and 15 callose synthase family members were identified in Gossypium hirsutum, Gossypium barbadense, Gossypium raimondii, and Gossypium arboreum using the sequence of Arabidopsis callose synthase. The CalSs were divided into five groups by phylogenetic, gene structure, and conservative motif analysis. The conserved motifs and gene structures of CalSs in each group were highly similar. Based on the analysis of cis-acting elements, it is inferred that GhCalSs were regulated by abiotic stress. WGD/Segmental duplication promoted the amplification of the CalS gene in cotton, and purification selection had an important function in the CalS family. The transcriptome data and qRT-PCR under cold, heat, salt, and PEG treatments showed that GhCalSs were involved in abiotic stress. The expression patterns of GhCalSs were different in various tissues. We predicted that GhCalS4, which was highly expressed in fibers, had an important effect on fiber elongation. Hence, these results help us understand the role of GhCalSs in fiber development and stress response.
Collapse
Affiliation(s)
- Jiajia Feng
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China.,School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Yi Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xianghui Xiao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Yunfang Qu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Quanwei Lu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China.,School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Jinling Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
14
|
Ambastha V, Matityahu I, Tidhar D, Leshem Y. RabA2b Overexpression Alters the Plasma-Membrane Proteome and Improves Drought Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:738694. [PMID: 34691115 PMCID: PMC8526897 DOI: 10.3389/fpls.2021.738694] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 06/07/2023]
Abstract
Rab proteins are small GTPases that are important in the regulation of vesicle trafficking. Through data mining, we identified RabA2b to be stress responsive, though little is known about the involvement of RabA in plant responses to abiotic stresses. Analysis of the RabA2b native promoter showed strong activity during osmotic stress, which required the stress hormone Abscisic acid (ABA) and was restricted to the vasculature. Sequence analysis of the promoter region identified predicted binding motifs for several ABA-responsive transcription factors. We cloned RabA2b and overexpressed it in Arabidopsis. The resulting transgenic plants were strikingly drought resistant. The reduced water loss observed in detached leaves of the transgenic plants could not be explained by stomatal aperture or density, which was similar in all the genotypes. Subcellular localization studies detected strong colocalization between RabA2b and the plasma membrane (PM) marker PIP2. Further studies of the PM showed, for the first time, a distinguished alteration in the PM proteome as a result of RabA2b overexpression. Proteomic analysis of isolated PM fractions showed enrichment of stress-coping proteins as well as cell wall/cuticle modifiers in the transgenic lines. Finally, the cuticle permeability of transgenic leaves was significantly reduced compared to the wild type, suggesting that it plays a role in its drought resistant properties. Overall, these data provide new insights into the roles and modes of action of RabA2b during water stresses, and indicate that increased RabA2b mediated PM trafficking can affect the PM proteome and increase drought tolerance.
Collapse
Affiliation(s)
- Vivek Ambastha
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
| | - Ifat Matityahu
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
| | - Dafna Tidhar
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Yehoram Leshem
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
15
|
The Rab Geranylgeranyl Transferase Beta Subunit Is Essential for Embryo and Seed Development in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22157907. [PMID: 34360673 PMCID: PMC8347404 DOI: 10.3390/ijms22157907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Auxin is a key regulator of plant development affecting the formation and maturation of reproductive structures. The apoplastic route of auxin transport engages influx and efflux facilitators from the PIN, AUX and ABCB families. The polar localization of these proteins and constant recycling from the plasma membrane to endosomes is dependent on Rab-mediated vesicular traffic. Rab proteins are anchored to membranes via posttranslational addition of two geranylgeranyl moieties by the Rab Geranylgeranyl Transferase enzyme (RGT), which consists of RGTA, RGTB and REP subunits. Here, we present data showing that seed development in the rgtb1 mutant, with decreased vesicular transport capacity, is disturbed. Both pre- and post-fertilization events are affected, leading to a decrease in seed yield. Pollen tube recognition at the stigma and its guidance to the micropyle is compromised and the seed coat forms incorrectly. Excess auxin in the sporophytic tissues of the ovule in the rgtb1 plants leads to an increased tendency of autonomous endosperm formation in unfertilized ovules and influences embryo development in a maternal sporophytic manner. The results show the importance of vesicular traffic for sexual reproduction in flowering plants, and highlight RGTB1 as a key component of sporophytic-filial signaling.
Collapse
|
16
|
Wang Y, Li X, Fan B, Zhu C, Chen Z. Regulation and Function of Defense-Related Callose Deposition in Plants. Int J Mol Sci 2021; 22:ijms22052393. [PMID: 33673633 PMCID: PMC7957820 DOI: 10.3390/ijms22052393] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/15/2023] Open
Abstract
Plants are constantly exposed to a wide range of potential pathogens and to protect themselves, have developed a variety of chemical and physical defense mechanisms. Callose is a β-(1,3)-D-glucan that is widely distributed in higher plants. In addition to its role in normal growth and development, callose plays an important role in plant defense. Callose is deposited between the plasma membrane and the cell wall at the site of pathogen attack, at the plasmodesmata, and on other plant tissues to slow pathogen invasion and spread. Since it was first reported more than a century ago, defense-related callose deposition has been extensively studied in a wide-spectrum of plant-pathogen systems. Over the past 20 years or so, a large number of studies have been published that address the dynamic nature of pathogen-induced callose deposition, the complex regulation of synthesis and transport of defense-related callose and associated callose synthases, and its important roles in plant defense responses. In this review, we summarize our current understanding of the regulation and function of defense-related callose deposition in plants and discuss both the progresses and future challenges in addressing this complex defense mechanism as a critical component of a plant immune system.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (Y.W.); (X.L.)
| | - Xifeng Li
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (Y.W.); (X.L.)
| | - Baofang Fan
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA;
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (Y.W.); (X.L.)
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-86836090 (C.Z.); +1-765-494-4657 (Z.C.)
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (Y.W.); (X.L.)
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA;
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-86836090 (C.Z.); +1-765-494-4657 (Z.C.)
| |
Collapse
|
17
|
Wang H, Cao S, Li T, Zhang L, Yao J, Xia X, Zhang R. Classification and expression analysis of cucumber ( Cucumis sativus L.) callose synthase ( CalS) family genes and localization of CsCalS4, a protein involved in pollen development. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2022.2038670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hongyun Wang
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Shoujun Cao
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Tao Li
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Lili Zhang
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Jiangang Yao
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Xiubo Xia
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Ruiqing Zhang
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| |
Collapse
|
18
|
Zhou Y, Yang Y, Niu Y, Fan T, Qian D, Luo C, Shi Y, Li S, An L, Xiang Y. The Tip-Localized Phosphatidylserine Established by Arabidopsis ALA3 Is Crucial for Rab GTPase-Mediated Vesicle Trafficking and Pollen Tube Growth. THE PLANT CELL 2020; 32:3170-3187. [PMID: 32817253 PMCID: PMC7534478 DOI: 10.1105/tpc.19.00844] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/17/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
RabA4 subfamily proteins, the key regulators of intracellular transport, are vital for tip growth of plant polar cells, but their unique distribution in the apical zone and role in vesicle targeting and trafficking in the tips remain poorly understood. Here, we found that loss of Arabidopsis (Arabidopsis thaliana) AMINOPHOSPHOLIPID ATPASE 3 (ALA3) function resulted in a marked decrease in YFP-RabA4b/ RFP-RabA4d- and FM4-64-labeled vesicles from the inverted-cone zone of the pollen tube tip, misdistribution of certain intramembrane compartment markers, and an obvious increase in pollen tube width. Additionally, we revealed that phosphatidylserine (PS) was abundant in the inverted-cone zone of the apical pollen tube in wild-type Arabidopsis and was mainly colocalized with the trans-Golgi network/early endosome, certain post-Golgi compartments, and the plasma membrane. Loss of ALA3 function resulted in loss of polar localization of apical PS and significantly decreased PS distribution, suggesting that ALA3 is a key regulator for establishing and maintaining the polar localization of apical PS in pollen tubes. We further demonstrated that certain Rab GTPases colocalized with PS in vivo and bound to PS in vitro. Moreover, ALA3 and RabA4d collectively regulated pollen tube growth genetically. Thus, we propose that the tip-localized PS established by ALA3 is crucial for Rab GTPase-mediated vesicle targeting/trafficking and polar growth of pollen tubes in Arabidopsis.
Collapse
Affiliation(s)
- Yuelong Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - TingTing Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Changxin Luo
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yumei Shi
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shanwei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Liu JJ, Sniezko RA, Sissons R, Krakowski J, Alger G, Schoettle AW, Williams H, Zamany A, Zitomer RA, Kegley A. Association Mapping and Development of Marker-Assisted Selection Tools for the Resistance to White Pine Blister Rust in the Alberta Limber Pine Populations. FRONTIERS IN PLANT SCIENCE 2020; 11:557672. [PMID: 33042181 PMCID: PMC7522202 DOI: 10.3389/fpls.2020.557672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Since its introduction to North America in the early 1900s, white pine blister rust (WPBR) caused by the fungal pathogen Cronartium ribicola has resulted in substantial economic losses and ecological damage to native North American five-needle pine species. The high susceptibility and mortality of these species, including limber pine (Pinus flexilis), creates an urgent need for the development and deployment of resistant germplasm to support recovery of impacted populations. Extensive screening for genetic resistance to WPBR has been underway for decades in some species but has only started recently in limber pine using seed families collected from wild parental trees in the USA and Canada. This study was conducted to characterize Alberta limber pine seed families for WPBR resistance and to develop reliable molecular tools for marker-assisted selection (MAS). Open-pollinated seed families were evaluated for host reaction following controlled infection using C. ribicola basidiospores. Phenotypic segregation for presence/absence of stem symptoms was observed in four seed families. The segregation ratios of these families were consistent with expression of major gene resistance (MGR) controlled by a dominant R locus. Based on linkage disequilibrium (LD)-based association mapping used to detect single nucleotide polymorphism (SNP) markers associated with MGR against C. ribicola, MGR in these seed families appears to be controlled by Cr4 or other R genes in very close proximity to Cr4. These associated SNPs were located in genes involved in multiple molecular mechanisms potentially underlying limber pine MGR to C. ribicola, including NBS-LRR genes for recognition of C. ribicola effectors, signaling components, and a large set of defense-responsive genes with potential functions in plant effector-triggered immunity (ETI). Interactions of associated loci were identified for MGR selection in trees with complex genetic backgrounds. SNPs with tight Cr4-linkage were further converted to TaqMan assays to confirm their effectiveness as MAS tools. This work demonstrates the successful translation and deployment of molecular genetic knowledge into specific MAS tools that can be easily applied in a selection or breeding program to efficiently screen MGR against WPBR in Alberta limber pine populations.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Richard A. Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Robert Sissons
- Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada
| | | | - Genoa Alger
- Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada
| | - Anna W. Schoettle
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, United States
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Rachel A. Zitomer
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| |
Collapse
|
20
|
Sharma K, Niraula PM, Troell HA, Adhikari M, Alshehri HA, Alkharouf NW, Lawrence KS, Klink VP. Exocyst components promote an incompatible interaction between Glycine max (soybean) and Heterodera glycines (the soybean cyst nematode). Sci Rep 2020; 10:15003. [PMID: 32929168 PMCID: PMC7490361 DOI: 10.1038/s41598-020-72126-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/17/2020] [Indexed: 11/24/2022] Open
Abstract
Vesicle and target membrane fusion involves tethering, docking and fusion. The GTPase SECRETORY4 (SEC4) positions the exocyst complex during vesicle membrane tethering, facilitating docking and fusion. Glycine max (soybean) Sec4 functions in the root during its defense against the parasitic nematode Heterodera glycines as it attempts to develop a multinucleate nurse cell (syncytium) serving to nourish the nematode over its 30-day life cycle. Results indicate that other tethering proteins are also important for defense. The G. max exocyst is encoded by 61 genes: 5 EXOC1 (Sec3), 2 EXOC2 (Sec5), 5 EXOC3 (Sec6), 2 EXOC4 (Sec8), 2 EXOC5 (Sec10) 6 EXOC6 (Sec15), 31 EXOC7 (Exo70) and 8 EXOC8 (Exo84) genes. At least one member of each gene family is expressed within the syncytium during the defense response. Syncytium-expressed exocyst genes function in defense while some are under transcriptional regulation by mitogen-activated protein kinases (MAPKs). The exocyst component EXOC7-H4-1 is not expressed within the syncytium but functions in defense and is under MAPK regulation. The tethering stage of vesicle transport has been demonstrated to play an important role in defense in the G. max-H. glycines pathosystem, with some of the spatially and temporally regulated exocyst components under transcriptional control by MAPKs.
Collapse
Affiliation(s)
- Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, MN, 55108, USA
| | - Prakash M Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Texas A&M University, 2415 E. Hwy. 83, Weslaco, TX, 78596, USA
| | - Hallie A Troell
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Mandeep Adhikari
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Hamdan Ali Alshehri
- Department of Mathematics and Computer Science, Texas Women's University, Denton, TX, 76204, USA
| | - Nadim W Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA.
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
21
|
Kalachova T, Janda M, Šašek V, Ortmannová J, Nováková P, Dobrev IP, Kravets V, Guivarc’h A, Moura D, Burketová L, Valentová O, Ruelland E. Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant. ANNALS OF BOTANY 2020; 125:775-784. [PMID: 31250883 PMCID: PMC7182594 DOI: 10.1093/aob/mcz112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/27/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS We have recently shown that an Arabidopsis thaliana double mutant of type III phosphatidylinositol-4-kinases (PI4Ks), pi4kβ1β2, constitutively accumulated a high level of salicylic acid (SA). By crossing this pi4kβ1β2 double mutant with mutants impaired in SA synthesis (such as sid2 impaired in isochorismate synthase) or transduction, we demonstrated that the high SA level was responsible for the dwarfism phenotype of the double mutant. Here we aimed to distinguish between the SA-dependent and SA-independent effects triggered by the deficiency in PI4Kβ1 and PI4Kβ2. METHODS To achieve this we used the sid2pi4kβ1β2 triple mutant. High-throughput analyses of phytohormones were performed on this mutant together with pi4kβ1β2 and sid2 mutants and wild-type plants. Responses to pathogens, namely Hyaloperonospora arabidopsidis, Pseudomonas syringae and Botrytis cinerea, and also to the non-host fungus Blumeria graminis, were also determined. Callose accumulation was monitored in response to flagellin. KEY RESULTS We show here the prominent role of high SA levels in influencing the concentration of many other tested phytohormones, including abscisic acid and its derivatives, the aspartate-conjugated form of indole-3-acetic acid and some cytokinins such as cis-zeatin. We show that the increased resistance of pi4kβ1β2 plants to the host pathogens H. arabidopsidis, P. syringae pv. tomato DC3000 and Bothrytis cinerea is dependent on accumulation of high SA levels. In contrast, accumulation of callose in pi4kβ1β2 after flagellin treatment was independent of SA. Concerning the response to Blumeria graminis, both callose accumulation and fungal penetration were enhanced in the pi4kβ1β2 double mutant compared to wild-type plants. Both of these processes occurred in an SA-independent manner. CONCLUSIONS Our data extensively illustrate the influence of SA on other phytohormone levels. The sid2pi4kβ1β2 triple mutant revealed the role of PI4Kβ1/β2 per se, thus showing the importance of these enzymes in plant defence responses.
Collapse
Affiliation(s)
- Tetiana Kalachova
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
- Université Paris-Est, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Créteil, France
| | - Martin Janda
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
- University of Chemistry and Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Vladimír Šašek
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Ortmannová
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
- Present address: Department of Plant Biology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, SWEDEN
| | - Pavla Nováková
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
- University of Chemistry and Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - I Petre Dobrev
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
| | - Volodymyr Kravets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Anne Guivarc’h
- CNRS, Institut d’Ecologie et des Sciences de l’Environnement de Paris, UMR 7618, Créteil, France
| | - Deborah Moura
- Université Paris-Est, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Créteil, France
| | - Lenka Burketová
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Valentová
- University of Chemistry and Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Eric Ruelland
- CNRS, Institut d’Ecologie et des Sciences de l’Environnement de Paris, UMR 7618, Créteil, France
- Université Paris-Est, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Créteil, France
- For correspondence. E-mail
| |
Collapse
|
22
|
Elliott L, Moore I, Kirchhelle C. Spatio-temporal control of post-Golgi exocytic trafficking in plants. J Cell Sci 2020; 133:133/4/jcs237065. [PMID: 32102937 DOI: 10.1242/jcs.237065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A complex and dynamic endomembrane system is a hallmark of eukaryotic cells and underpins the evolution of specialised cell types in multicellular organisms. Endomembrane system function critically depends on the ability of the cell to (1) define compartment and pathway identity, and (2) organise compartments and pathways dynamically in space and time. Eukaryotes possess a complex molecular machinery to control these processes, including small GTPases and their regulators, SNAREs, tethering factors, motor proteins, and cytoskeletal elements. Whereas many of the core components of the eukaryotic endomembrane system are broadly conserved, there have been substantial diversifications within different lineages, possibly reflecting lineage-specific requirements of endomembrane trafficking. This Review focusses on the spatio-temporal regulation of post-Golgi exocytic transport in plants. It highlights recent advances in our understanding of the elaborate network of pathways transporting different cargoes to different domains of the cell surface, and the molecular machinery underpinning them (with a focus on Rab GTPases, their interactors and the cytoskeleton). We primarily focus on transport in the context of growth, but also highlight how these pathways are co-opted during plant immunity responses and at the plant-pathogen interface.
Collapse
Affiliation(s)
- Liam Elliott
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
23
|
Hu Y, Gao YR, Yang LS, Wang W, Wang YJ, Wen YQ. The cytological basis of powdery mildew resistance in wild Chinese Vitis species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:244-253. [PMID: 31593897 DOI: 10.1016/j.plaphy.2019.09.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The wild Chinese grapevines (Vitis spp.) show varying levels of resistance to powdery mildew caused by Erysiphe necator that is an economically important disease of cultivated grapevines (Vitis vinifera). However, little information is available regarding the cytological mechanisms of powdery mildew resistance in these wild relatives. Here, we studied the cytological responses of three wild Chinese grapevine accessions after they were infected with E. necator (En) NAFU1 in comparison to the susceptible V. vinifera cv. 'Thompson Seedless' grape. The hyphal growth and sporulation of En NAFU1 were significantly restricted in wild species compared to 'Thompson Seedless', which appears to be associated with early cell wall deposition at the attempt sites, encasement of haustoria, and hypersensitive response-like cell death of penetrated epidermal cells. Moreover, endogenous free salicylic acid (SA) was more abundant in wild Chinese Vitis species than in 'Thompson Seedless' under pathogen-free condition. During En NAFU1 colonization, SA conjugates accumulated higher in wild grapevines than in 'Thompson Seedless'. In addition, the species-specific expression patterns of defense-associated genes during En NAFU1 colonization indicated that mechanisms underlying powdery mildew resistance are divergent among different wild Chinese Vitis species. These results contribute to understanding of mechanisms underlying defense responses of wild Chinese Vitis species against powdery mildew.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Yu-Rong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Lu-Shan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Yue-Jin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
24
|
Ashraf MA, Rahman A. Cold stress response in Arabidopsis thaliana is mediated by GNOM ARF-GEF. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:500-516. [PMID: 30362633 DOI: 10.1111/tpj.14137] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 05/29/2023]
Abstract
Endosomal trafficking plays an important role in regulating plant growth and development both at optimal and stressed conditions. Cold stress response in Arabidopsis root is directly linked to inhibition of the endosomal trafficking of auxin efflux carriers. However, the cellular components that link cold stress and the endosomal trafficking remain elusive. By screening available endosomal trafficking mutants against root growth recovery response under cold stress, we identified GNOM, a SEC7 containing ARF-GEF, as a major modulator of cold response. Contrasting response of partial loss of function mutant gnomB4049/emb30-1 and the engineered Brefeldin A (BFA)-resistant GNOM line, both of which contain mutations within SEC7 domain, to cold stress at the whole-plant level highlights the importance of this domain in modulating the cold response pathway of plants. Cold stress selectively and transiently inhibits GNOM expression. The engineered point mutation at 696 amino acid position (Methionine to Leucine) that makes GNOM resistant to BFA in fact results in overexpression of GNOM both at transcriptional and translational levels, and also alters its subcellular localization. Overexpression and altered cellular localization of GNOM were found to be directly linked to conferring striking cold-resistant phenotype in Arabidopsis. Collectively, these results provide a mechanistic link between GNOM, BFA-sensitive GNOM-regulated trafficking and cold stress.
Collapse
Affiliation(s)
- Mohammad A Ashraf
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-8550, Japan
| | - Abidur Rahman
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-8550, Japan
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
- Agro-Innovation Center, Iwate University, Morioka, Japan
| |
Collapse
|
25
|
Jimenez-Quesada MJ, Traverso JA, Potocký M, Žárský V, Alché JDD. Generation of Superoxide by OeRbohH, a NADPH Oxidase Activity During Olive ( Olea europaea L.) Pollen Development and Germination. FRONTIERS IN PLANT SCIENCE 2019; 10:1149. [PMID: 31608092 PMCID: PMC6761571 DOI: 10.3389/fpls.2019.01149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/22/2019] [Indexed: 05/22/2023]
Abstract
Reactive oxygen species (ROS) are produced in the olive reproductive organs as the result of intense metabolism. ROS production and pattern of distribution depend on the developmental stage, supposedly playing a broad panel of functions, which include defense and signaling between pollen and pistil. Among ROS-producing mechanisms, plasma membrane NADPH-oxidase activity is being highlighted in plant tissues, and two enzymes of this type have been characterized in Arabidopsis thaliana pollen (RbohH and RbohJ), playing important roles in pollen physiology. Besides, pollen from different species has shown distinct ROS production mechanism and patterns of distribution. In the olive reproductive tissues, a significant production of superoxide has been described. However, the enzymes responsible for such generation are unknown. Here, we have identified an Rboh-type gene (OeRbohH), mainly expressed in olive pollen. OeRbohH possesses a high degree of identity with RbohH and RbohJ from Arabidopsis, sharing most structural features and motifs. Immunohistochemistry experiments allowed us to localize OeRbohH throughout pollen ontogeny as well as during pollen tube elongation. Furthermore, the balanced activity of tip-localized OeRbohH during pollen tube growth has been shown to be important for normal pollen physiology. This was evidenced by the fact that overexpression caused abnormal phenotypes, whereas incubation with specific NADPH oxidase inhibitor or gene knockdown lead to impaired ROS production and subsequent inhibition of pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- María José Jimenez-Quesada
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - José Angel Traverso
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Viktor Žárský
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada, Spain
- *Correspondence: Juan de Dios Alché,
| |
Collapse
|
26
|
Wang Z, Li X, Wang X, Liu N, Xu B, Peng Q, Guo Z, Fan B, Zhu C, Chen Z. Arabidopsis Endoplasmic Reticulum-Localized UBAC2 Proteins Interact with PAMP-INDUCED COILED-COIL to Regulate Pathogen-Induced Callose Deposition and Plant Immunity. THE PLANT CELL 2019; 31:153-171. [PMID: 30606781 PMCID: PMC6391690 DOI: 10.1105/tpc.18.00334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/26/2018] [Accepted: 12/27/2018] [Indexed: 05/27/2023]
Abstract
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is initiated upon PAMP recognition by pattern recognition receptors (PRR). PTI signals are transmitted through activation of mitogen-activated protein kinases (MAPKs), inducing signaling and defense processes such as reactive oxygen species (ROS) production and callose deposition. Here, we examine mutants for two Arabidopsis thaliana genes encoding homologs of UBIQUITIN-ASSOCIATED DOMAIN-CONTAINING PROTEIN 2 (UBAC2), a conserved endoplasmic reticulum (ER) protein implicated in ER protein quality control. The ubac2 mutants were hypersusceptible to a type III secretion-deficient strain of the bacterial pathogen Pseudomonas syringae, indicating a PTI defect. The ubac2 mutants showed normal PRR biogenesis, MAPK activation, ROS burst, and PTI-associated gene expression. Pathogen- and PAMP-induced callose deposition, however, was compromised in ubac2 mutants. UBAC2 proteins interact with the plant-specific long coiled-coil protein PAMP-INDUCED COILED COIL (PICC), and picc mutants were compromised in callose deposition and PTI. Compromised callose deposition in the ubac2 and picc mutants was associated with reduced accumulation of the POWDERY MILDEW RESISTANT 4 (PMR4) callose synthase, which is responsible for pathogen-induced callose synthesis. Constitutive overexpression of PMR4 restored pathogen-induced callose synthesis and PTI in the ubac2 and picc mutants. These results uncover an ER pathway involving the conserved UBAC2 and plant-specific PICC proteins that specifically regulate pathogen-induced callose deposition in plant innate immunity.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
| | - Xifeng Li
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Xiaoting Wang
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095 China
| | - Nana Liu
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Binjie Xu
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Qi Peng
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- Institute of Economic Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Zhifu Guo
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
27
|
Tomczynska I, Stumpe M, Mauch F. A conserved RxLR effector interacts with host RABA-type GTPases to inhibit vesicle-mediated secretion of antimicrobial proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:187-203. [PMID: 29671919 DOI: 10.1111/tpj.13928] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 05/20/2023]
Abstract
Plant pathogens of the oomycete genus Phytophthora produce virulence factors, known as RxLR effector proteins that are transferred into host cells to suppress disease resistance. Here, we analyse the function of the highly conserved RxLR24 effector of Phytophthora brassicae. RxLR24 was expressed early in the interaction with Arabidopsis plants and ectopic expression in the host enhanced leaf colonization and zoosporangia formation. Co-immunoprecipitation (Co-IP) experiments followed by mass spectrometry identified different members of the RABA GTPase family as putative RxLR24 targets. Physical interaction of RxLR24 or its homologue from the potato pathogen Phytophthora infestans with different RABA GTPases of Arabidopsis or potato, respectively, was confirmed by reciprocal Co-IP. In line with the function of RABA GTPases in vesicular secretion, RxLR24 co-localized with RABA1a to vesicles and the plasma membrane. The effect of RxLR24 on the secretory process was analysed with fusion constructs of secreted antimicrobial proteins with a pH-sensitive GFP tag. PATHOGENESIS RELATED PROTEIN 1 (PR-1) and DEFENSIN (PDF1.2) were efficiently exported in control tissue, whereas in the presence of RxLR24 they both accumulated in the endoplasmic reticulum. Together our results imply a virulence function of RxLR24 effectors as inhibitors of RABA GTPase-mediated vesicular secretion of antimicrobial PR-1, PDF1.2 and possibly other defence-related compounds.
Collapse
Affiliation(s)
- Iga Tomczynska
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| |
Collapse
|
28
|
Kulich I, Vojtíková Z, Sabol P, Ortmannová J, Neděla V, Tihlaříková E, Žárský V. Exocyst Subunit EXO70H4 Has a Specific Role in Callose Synthase Secretion and Silica Accumulation. PLANT PHYSIOLOGY 2018; 176:2040-2051. [PMID: 29301954 PMCID: PMC5841730 DOI: 10.1104/pp.17.01693] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/02/2018] [Indexed: 05/20/2023]
Abstract
Biogenesis of the plant secondary cell wall involves many important aspects, such as phenolic compound deposition and often silica encrustation. Previously, we demonstrated the importance of the exocyst subunit EXO70H4 for biogenesis of the trichome secondary cell wall, namely for deposition of the autofluorescent and callose-rich cell wall layer. Here, we reveal that EXO70H4-driven cell wall biogenesis is constitutively active in the mature trichome, but also can be activated elsewhere upon pathogen attack, giving this study a broader significance with an overlap into phytopathology. To address the specificity of EXO70H4 among the EXO70 family, we complemented the exo70H4-1 mutant by 18 different Arabidopsis (Arabidopsis thaliana) EXO70 paralogs subcloned under the EXO70H4 promoter. Only EXO70H4 had the capacity to rescue the exo70H4-1 trichome phenotype. Callose deposition phenotype of exo70H4-1 mutant is caused by impaired secretion of PMR4, a callose synthase responsible for the synthesis of callose in the trichome. PMR4 colocalizes with EXO70H4 on plasma membrane microdomains that do not develop in the exo70H4-1 mutant. Using energy-dispersive x-ray microanalysis, we show that both EXO70H4- and PMR4-dependent callose deposition in the trichome are essential for cell wall silicification.
Collapse
Affiliation(s)
- Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Zdeňka Vojtíková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Peter Sabol
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Jitka Ortmannová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vilém Neděla
- Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Eva Tihlaříková
- Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
29
|
Pizarro L, Leibman-Markus M, Schuster S, Bar M, Avni A. SlPRA1A/RAB attenuate EIX immune responses via degradation of LeEIX2 pattern recognition receptor. PLANT SIGNALING & BEHAVIOR 2018; 13:e1467689. [PMID: 29944445 PMCID: PMC6103275 DOI: 10.1080/15592324.2018.1467689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pattern recognition receptors (PRR) are plasma membrane (PM) proteins that recognize microbe-associated molecular patterns (MAMPs), triggering an immune response. PRR are classified as receptor like kinases (RLKs) or receptor like proteins (RLPs). The PM localization of PRRs, which is crucial for their availability to sense MAMPs, depends on their appropriate trafficking through the endomembrane system. Recently, we have identified SlPRA1A, a prenylated RAB acceptor type-1 (PRA1) from S. lycopersicum, as a regulator of RLP-PRR localization and protein levels. SlPRA1A overexpression strongly decreases RLP-PRR protein levels, particularly those of LeEIX2, redirecting it to the vacuole for degradation. Interestingly, SlPRA1A does not affect RLK-PRRs, indicating its activity to be specific to RLP-PRR systems. As PRA1 proteins stabilize RABs on membranes, promoting RABs activity, we aimed to identify a RAB target of SlPRA1A. Screening of a set of A. thaliana RABs revealed that AtRABA1e is able to mimic SlPRA1A activity. Through live cell imaging, we observed that SlPRA1A enhances AtRABA1e localization on SlPRA1A positive punctuated structures. These results indicate that AtRABA1e is a putative target of SlPRA1, and a co-regulator of LeEIX2 trafficking and degradation.
Collapse
Affiliation(s)
- L. Pizarro
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - M. Leibman-Markus
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - S. Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - M. Bar
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Rishon LeZion, Israel
| | - A. Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- CONTACT A. Avni School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Keppler BD, Song J, Nyman J, Voigt CA, Bent AF. 3-Aminobenzamide Blocks MAMP-Induced Callose Deposition Independently of Its Poly(ADPribosyl)ation Inhibiting Activity. FRONTIERS IN PLANT SCIENCE 2018; 9:1907. [PMID: 30619442 PMCID: PMC6305757 DOI: 10.3389/fpls.2018.01907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/07/2018] [Indexed: 05/15/2023]
Abstract
Cell wall reinforcement with callose is a frequent plant response to infection. Poly(ADP-ribosyl)ation is a protein post-translational modification mediated by poly(ADP-ribose) polymerases (PARPs). Poly(ADP-ribosyl)ation has well-known roles in DNA damage repair and has more recently been shown to contribute to plant immune responses. 3-aminobenzamide (3AB) is an established PARP inhibitor and it blocks the callose deposition elicited by flg22 or elf18, two microbe-associated molecular patterns (MAMPs). However, we report that an Arabidopsis parp1parp2parp3 triple mutant does not exhibit loss of flg22-induced callose deposition. Additionally, the more specific PARP inhibitors PJ-34 and INH2BP inhibit PARP activity in Arabidopsis but do not block MAMP-induced callose deposition. These data demonstrate off-target activity of 3AB and indicate that 3AB inhibits callose deposition through a mechanism other than poly(ADP-ribosyl)ation. POWDERY MILDEW RESISTANT 4 (PMR4) is the callose synthase responsible for the majority of MAMP- and wound-induced callose deposition in Arabidopsis. 3AB does not block wound-induced callose deposition, and 3AB does not reduce the PMR4 mRNA abundance increase in response to flg22. Levels of PMR4-HA protein increase in response to flg22, and increase even more in flg22 + 3AB despite no callose being produced. The callose synthase inhibitor 2-deoxy-D-glucose does not cause similar impacts on PMR4-HA protein levels. Beyond MAMPs, we find that 3AB also reduces callose deposition induced by powdery mildew (Golovinomyces cichoracearum) and impairs the penetration resistance of a PMR4 overexpression line. 3AB thus reveals pathogenesis-associated pathways that activate callose synthase enzymatic activity distinct from those that elevate PMR4 mRNA and protein abundance.
Collapse
Affiliation(s)
- Brian D. Keppler
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, United States
| | - Junqi Song
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, United States
| | - Jackson Nyman
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, United States
| | - Christian A. Voigt
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Andrew F. Bent
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, United States
- *Correspondence: Andrew F. Bent,
| |
Collapse
|
31
|
Amsbury S, Kirk P, Benitez-Alfonso Y. Emerging models on the regulation of intercellular transport by plasmodesmata-associated callose. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:105-115. [PMID: 29040641 DOI: 10.1093/jxb/erx337] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The intercellular transport of molecules through membranous channels that traverse the cell walls-so-called plasmodesmata-is of fundamental importance for plant development. Regulation of plasmodesmata aperture (and transport capacity) is mediated by changes in the flanking cell walls, mainly via the synthesis/degradation (turnover) of the (1,3)-β-glucan polymer callose. The role of callose in organ development and in plant environmental responses is well recognized, but detailed understanding of the mechanisms regulating its accumulation and its effects on the structure and permeability of the channels is still missing. We compiled information on the molecular components and signalling pathways involved in callose turnover at plasmodesmata and, more generally, on the structural and mechanical properties of (1,3)-β-glucan polymers in cell walls. Based on this revision, we propose models integrating callose, cell walls, and the regulation of plasmodesmata structure and intercellular communication. We also highlight new tools and interdisciplinary approaches that can be applied to gain further insight into the effects of modifying callose in cell walls and its consequences for intercellular signalling.
Collapse
Affiliation(s)
- Sam Amsbury
- Centre for Plant Science, School of Biology, University of Leeds, UK
| | - Philip Kirk
- Centre for Plant Science, School of Biology, University of Leeds, UK
| | | |
Collapse
|
32
|
LaMontagne ED, Heese A. Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:114-121. [PMID: 28915433 DOI: 10.1016/j.pbi.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/01/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses.
Collapse
Affiliation(s)
- Erica D LaMontagne
- University of Missouri, Div. of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA
| | - Antje Heese
- University of Missouri, Div. of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA.
| |
Collapse
|
33
|
Zhang Y, Wang X, Rong W, Yang J, Li Z, Wu L, Zhang G, Ma Z. Histochemical Analyses Reveal That Stronger Intrinsic Defenses in Gossypium barbadense Than in G. hirsutum Are Associated With Resistance to Verticillium dahliae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:984-996. [PMID: 28850286 DOI: 10.1094/mpmi-03-17-0067-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Verticillium wilt, caused by Verticillium dahliae Kleb., is a serious threat to cotton (Gossypium spp.) crop production. To enhance our understanding of the plant's complex defensive mechanism, we examined colonization patterns and interactions between V. dahliae and two cotton species, the resistant G. barbadense and the susceptible G. hirsutum. Microscopic examinations and grafting experiments showed that the progression of infection was restricted within G. barbadense. At all pre- and postinoculation sampling times, levels of salicylic acid (SA) were also higher in that species than in G. hirsutum. Comparative RNA-Seq analyses indicated that infection induced dramatic changes in the expression of thousands of genes in G. hirsutum, whereas those changes were fewer and weaker in G. barbadense. Investigations of the morphological and biochemical nature of cell-wall barriers demonstrated that depositions of lignin, phenolic compounds, and callose were significantly higher in G. barbadense. To determine the contribution of a known resistance gene to these processes, we silenced GbEDS1 and found that the transformed plants had decreased SA production, which led to the upregulation of PLASMODESMATA-LOCATED PROTEIN (PDLP) 1 and PDLP6. This was followed by a decline in callose deposition in the plasmodesmata, which then led to increased pathogen susceptibility. This comparison between resistant and susceptible species indicated that both physical and chemical mechanisms play important roles in the defenses of cotton against V. dahliae.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Xingfen Wang
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Wei Rong
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Jun Yang
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Zhikun Li
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Liqiang Wu
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Guiyin Zhang
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Zhiying Ma
- Department of Agronomy, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People's Republic of China
| |
Collapse
|
34
|
Gu Y, Zavaliev R, Dong X. Membrane Trafficking in Plant Immunity. MOLECULAR PLANT 2017; 10:1026-1034. [PMID: 28698057 PMCID: PMC5673114 DOI: 10.1016/j.molp.2017.07.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 05/20/2023]
Abstract
Plants employ sophisticated mechanisms to interact with pathogenic as well as beneficial microbes. Of those, membrane trafficking is key in establishing a rapid and precise response. Upon interaction with pathogenic microbes, surface-localized immune receptors undergo endocytosis for signal transduction and activity regulation while cell wall components, antimicrobial compounds, and defense proteins are delivered to pathogen invasion sites through polarized secretion. To sustain mutualistic associations, host cells also reprogram the membrane trafficking system to accommodate invasive structures of symbiotic microbes. Here, we provide an analysis of recent advances in understanding the roles of secretory and endocytic membrane trafficking pathways in plant immune activation. We also discuss strategies deployed by adapted microbes to manipulate these pathways to subvert or inhibit plant defense.
Collapse
Affiliation(s)
- Yangnan Gu
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
35
|
Abstract
The superfamily of small monomeric GTPases originated in a common ancestor of eukaryotic multicellular organisms and, since then, it has evolved independently in each lineage to cope with the environmental challenges imposed by their different life styles. Members of the small GTPase family function in the control of vesicle trafficking, cytoskeleton rearrangements and signaling during crucial biological processes, such as cell growth and responses to environmental cues. In this review, we discuss the emerging roles of these small GTPases in the pathogenic and symbiotic interactions established by plants with microorganisms present in their nearest environment, in which membrane trafficking is crucial along the different steps of the interaction, from recognition and signal transduction to nutrient exchange.
Collapse
Affiliation(s)
- Claudio Rivero
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - Soledad Traubenik
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - María Eugenia Zanetti
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - Flavio Antonio Blanco
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| |
Collapse
|
36
|
Christie N, Myburg AA, Joubert F, Murray SL, Carstens M, Lin YC, Meyer J, Crampton BG, Christensen SA, Ntuli JF, Wighard SS, Van de Peer Y, Berger DK. Systems genetics reveals a transcriptional network associated with susceptibility in the maize-grey leaf spot pathosystem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:746-763. [PMID: 27862526 DOI: 10.1111/tpj.13419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 05/20/2023]
Abstract
We used a systems genetics approach to elucidate the molecular mechanisms of the responses of maize to grey leaf spot (GLS) disease caused by Cercospora zeina, a threat to maize production globally. Expression analysis of earleaf samples in a subtropical maize recombinant inbred line population (CML444 × SC Malawi) subjected in the field to C. zeina infection allowed detection of 20 206 expression quantitative trait loci (eQTLs). Four trans-eQTL hotspots coincided with GLS disease QTLs mapped in the same field experiment. Co-expression network analysis identified three expression modules correlated with GLS disease scores. The module (GY-s) most highly correlated with susceptibility (r = 0.71; 179 genes) was enriched for the glyoxylate pathway, lipid metabolism, diterpenoid biosynthesis and responses to pathogen molecules such as chitin. The GY-s module was enriched for genes with trans-eQTLs in hotspots on chromosomes 9 and 10, which also coincided with phenotypic QTLs for susceptibility to GLS. This transcriptional network has significant overlap with the GLS susceptibility response of maize line B73, and may reflect pathogen manipulation for nutrient acquisition and/or unsuccessful defence responses, such as kauralexin production by the diterpenoid biosynthesis pathway. The co-expression module that correlated best with resistance (TQ-r; 1498 genes) was enriched for genes with trans-eQTLs in hotspots coinciding with GLS resistance QTLs on chromosome 9. Jasmonate responses were implicated in resistance to GLS through co-expression of COI1 and enrichment of genes with the Gene Ontology term 'cullin-RING ubiquitin ligase complex' in the TQ-r module. Consistent with this, JAZ repressor expression was highly correlated with the severity of GLS disease in the GY-s susceptibility network.
Collapse
Affiliation(s)
- Nanette Christie
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, Department of Biochemistry, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Fourie Joubert
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, Department of Biochemistry, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Shane L Murray
- Centre for Proteomic and Genomic Research, 0A Anzio Rd, Observatory, Cape Town, 7925, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | - Maryke Carstens
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Yao-Cheng Lin
- Department of Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Jacqueline Meyer
- Centre for Proteomic and Genomic Research, 0A Anzio Rd, Observatory, Cape Town, 7925, South Africa
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Bridget G Crampton
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Shawn A Christensen
- Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, 32608, USA
| | - Jean F Ntuli
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | - Sara S Wighard
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Genetics, Genomics Research Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Dave K Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
37
|
Jwa NS, Hwang BK. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1687. [PMID: 29033963 PMCID: PMC5627460 DOI: 10.3389/fpls.2017.01687] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/13/2017] [Indexed: 05/03/2023]
Abstract
Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.
Collapse
Affiliation(s)
- Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
- *Correspondence: Nam-Soo Jwa,
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
38
|
Schneider R, Hanak T, Persson S, Voigt CA. Cellulose and callose synthesis and organization in focus, what's new? CURRENT OPINION IN PLANT BIOLOGY 2016; 34:9-16. [PMID: 27479608 DOI: 10.1016/j.pbi.2016.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 05/02/2023]
Abstract
Plant growth and development are supported by plastic but strong cell walls. These walls consist largely of polysaccharides that vary in content and structure. Most of the polysaccharides are produced in the Golgi apparatus and are then secreted to the apoplast and built into the growing walls. However, the two glucan polymers cellulose and callose are synthesized at the plasma membrane by cellulose or callose synthase complexes, respectively. Cellulose is the most common cell wall polymer in land plants and provides strength to the walls to support directed cell expansion. In contrast, callose is integral to specialized cell walls, such as the cell plate that separates dividing cells and growing pollen tube walls, and maintains important functions during abiotic and biotic stress responses. The last years have seen a dramatic increase in our understanding of how cellulose and callose are manufactured, and new factors that regulate the synthases have been identified. Much of this knowledge has been amassed via various microscopy-based techniques, including various confocal techniques and super-resolution imaging. Here, we summarize and synthesize recent findings in the fields of cellulose and callose synthesis in plant biology.
Collapse
Affiliation(s)
- René Schneider
- School of BioSciences, University of Melbourne, 3010 Parkville, Melbourne, Australia
| | - Tobias Hanak
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Staffan Persson
- School of BioSciences, University of Melbourne, 3010 Parkville, Melbourne, Australia.
| | - Christian A Voigt
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
39
|
Wang WM, Liu PQ, Xu YJ, Xiao S. Protein trafficking during plant innate immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:284-98. [PMID: 26345282 DOI: 10.1111/jipb.12426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/06/2015] [Indexed: 05/20/2023]
Abstract
Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell's protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major components of the trafficking machineries engaged.
Collapse
Affiliation(s)
- Wen-Ming Wang
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng-Qiang Liu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-Ju Xu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland, Rockville, MD, 20850, USA
| |
Collapse
|
40
|
Kuhn H, Kwaaitaal M, Kusch S, Acevedo-Garcia J, Wu H, Panstruga R. Biotrophy at Its Best: Novel Findings and Unsolved Mysteries of the Arabidopsis-Powdery Mildew Pathosystem. THE ARABIDOPSIS BOOK 2016; 14:e0184. [PMID: 27489521 PMCID: PMC4957506 DOI: 10.1199/tab.0184] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It is generally accepted in plant-microbe interactions research that disease is the exception rather than a common outcome of pathogen attack. However, in nature, plants with symptoms that signify colonization by obligate biotrophic powdery mildew fungi are omnipresent. The pervasiveness of the disease and the fact that many economically important plants are prone to infection by powdery mildew fungi drives research on this interaction. The competence of powdery mildew fungi to establish and maintain true biotrophic relationships renders the interaction a paramount example of a pathogenic plant-microbe biotrophy. However, molecular details underlying the interaction are in many respects still a mystery. Since its introduction in 1990, the Arabidopsis-powdery mildew pathosystem has become a popular model to study molecular processes governing powdery mildew infection. Due to the many advantages that the host Arabidopsis offers in terms of molecular and genetic tools this pathosystem has great capacity to answer some of the questions of how biotrophic pathogens overcome plant defense and establish a persistent interaction that nourishes the invader while in parallel maintaining viability of the plant host.
Collapse
Affiliation(s)
- Hannah Kuhn
- RWTH Aachen University, Institute for Biology I, Unit of Plant
Molecular Cell Biology, Worringerweg 1, D-52056 Aachen, Germany
- Address correspondence to
| | | | | | | | | | | |
Collapse
|
41
|
Faulkner C. A cellular backline: specialization of host membranes for defence. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1565-71. [PMID: 25716696 DOI: 10.1093/jxb/erv021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In plant-pathogen interactions, the host plasma membrane serves as a defence front for pathogens that invade from the extracellular environment. As such, the lipid bilayer acts as a scaffold that targets and delivers defence responses to the site of attack. During pathogen infection, numerous changes in plasma membrane composition, organization, and structure occur. There is increasing evidence that this facilitates the execution of a variety of responses, highlighting the regulatory role membranes play in cellular responses. Membrane microdomains such as lipid rafts are hypothesized to create signalling platforms for receptor signalling in response to pathogen perception and for callose synthesis. Further, the genesis of pathogen-associated structures such as papillae and the extra-haustorial membrane necessitates polarization of membranes and membrane trafficking pathways. Unlocking the mechanisms by which this occurs will enable greater understanding of how targeted defences, some of which result in resistance, are executed. This review will survey some of the changes that occur in host membranes during pathogen attack and how these are associated with the generation of defence responses.
Collapse
Affiliation(s)
- Christine Faulkner
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
42
|
Ebine K, Ueda T. Roles of membrane trafficking in plant cell wall dynamics. FRONTIERS IN PLANT SCIENCE 2015; 6:878. [PMID: 26539200 PMCID: PMC4609830 DOI: 10.3389/fpls.2015.00878] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 10/02/2015] [Indexed: 05/18/2023]
Abstract
The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall.
Collapse
Affiliation(s)
- Kazuo Ebine
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- *Correspondence: Kazuo Ebine,
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| |
Collapse
|
43
|
Antignani V, Klocko AL, Bak G, Chandrasekaran SD, Dunivin T, Nielsen E. Recruitment of PLANT U-BOX13 and the PI4Kβ1/β2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis. THE PLANT CELL 2015; 27:243-61. [PMID: 25634989 PMCID: PMC4330583 DOI: 10.1105/tpc.114.134262] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/28/2014] [Accepted: 01/09/2015] [Indexed: 05/19/2023]
Abstract
Protection against microbial pathogens involves the activation of cellular immune responses in eukaryotes, and this cellular immunity likely involves changes in subcellular membrane trafficking. In eukaryotes, members of the Rab GTPase family of small monomeric regulatory GTPases play prominent roles in the regulation of membrane trafficking. We previously showed that RabA4B is recruited to vesicles that emerge from trans-Golgi network (TGN) compartments and regulates polarized membrane trafficking in plant cells. As part of this regulation, RabA4B recruits the closely related phosphatidylinositol 4-kinase (PI4K) PI4Kβ1 and PI4Kβ2 lipid kinases. Here, we identify a second Arabidopsis thaliana RabA4B-interacting protein, PLANT U-BOX13 (PUB13), which has recently been identified to play important roles in salicylic acid (SA)-mediated defense signaling. We show that PUB13 interacts with RabA4B through N-terminal domains and with phosphatidylinositol 4-phosphate (PI-4P) through a C-terminal armadillo domain. Furthermore, we demonstrate that a functional fluorescent PUB13 fusion protein (YFP-PUB13) localizes to TGN and Golgi compartments and that PUB13, PI4Kβ1, and PI4Kβ2 are negative regulators of SA-mediated induction of pathogenesis-related gene expression. Taken together, these results highlight a role for RabA4B and PI-4P in SA-dependent defense responses.
Collapse
Affiliation(s)
- Vincenzo Antignani
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Amy L Klocko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Gwangbae Bak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Suma D Chandrasekaran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Taylor Dunivin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|