1
|
Liao TJ, Xiong HY, Sakuma S, Duan RJ. The development of hooded awns in barley: From ectopic Kap1 expression to yield potential. Gene 2025; 934:149036. [PMID: 39447708 DOI: 10.1016/j.gene.2024.149036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Awns in barley have different shapes including awnless, straight, hooded, crooked, and leafy awns. The hooded awns are characterized by an appendage of the lemma, which forms a trigonal or cap-shaped structure, and even blossoms and yields fruits on barley awn. In the lemma primordia of wild-type (straight awn), cells divide and elongate to form the straight awn. However, in the lemma primordia of KNOX3 mutant (hooded awn), cells divide at various orientations without elongating, and they form hooded awns. This phenomenon is due to the upregulation of KNOX3 expression via insertion of a tandem direct duplication of 305 bp in the intron IV. Here, we summarize the development of barley hooded awn research in the following two aspects: on the one hand, the morphology, development of hooded awns, and the expression regulation of the KNOX3 gene. The latter includes ectopic expression of the KNOX3 gene, gene interactions among awn-related genes, the regulatory relationship between class I KNOX genes and hormones, as well as the influence of abiotic stresses. On the other hand, the potential performance of hooded awns in barley for yield breeding is discussed. Hooded awns have potential application value in forage, which could compensate for the disadvantage of the long straight awn in the barley straw used for feed in modern cultivars. In addition, the hooded awn produces ectopic meristems to develop complete florets, which is an interesting question and helps to understand the development, adaptation, and evolution of plant floral organs.
Collapse
Affiliation(s)
- Tian-Jiang Liao
- College of Eco-environmental Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Hui-Yan Xiong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai, China
| | - Shun Sakuma
- Faculty of Agriculture, Tottori University, 680-8553, Tottori, Japan
| | - Rui-Jun Duan
- College of Eco-environmental Engineering, Qinghai University, Xining 810016, Qinghai, China.
| |
Collapse
|
2
|
Lechon T, Kent NA, Murray JAH, Scofield S. Regulation of meristem and hormone function revealed through analysis of directly-regulated SHOOT MERISTEMLESS target genes. Sci Rep 2025; 15:240. [PMID: 39747964 PMCID: PMC11696002 DOI: 10.1038/s41598-024-83985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
The Arabidopsis Knotted1-like homeobox (KNOX) gene SHOOT MERISTEMLESS (STM) encodes a homeodomain transcription factor that operates as a central component of the gene regulatory network (GRN) controlling shoot apical meristem formation and maintenance. It regulates the expression of target genes that include transcriptional regulators associated with meristem function, particularly those involved in pluripotency and cellular differentiation, as well as genes involved in hormone metabolism and signaling. Previous studies have identified KNOX-regulated genes and their associated cis-regulatory elements in several plant species. However, little is known about STM-DNA interactions in the regulatory regions of target genes in Arabidopsis. Here, we identify and map STM binding sites in the Arabidopsis genome using global ChIP-seq analysis to reveal potential directly-regulated STM target genes. We show that in the majority of target loci, STM binds within 1 kb upstream of the TSS, with other loci showing STM binding at more distal enhancer sites, and we reveal enrichment of DNA motifs containing a TGAC and/or TGAT core in STM-bound target gene cis-regulatory elements. We further demonstrate that many STM-bound genes are transcriptionally responsive to altered levels of STM activity, and show that among these, transcriptional regulators with key roles in meristem and hormone function are highly represented. Finally, we use a subset of these target genes to perform Bayesian network analysis to infer gene regulatory associations and to construct a refined GRN for STM-mediated control of meristem function.
Collapse
Affiliation(s)
- Tamara Lechon
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Nicholas A Kent
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - James A H Murray
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
3
|
Tsuda K, Maeno A, Otake A, Kato K, Tanaka W, Hibara KI, Nonomura KI. YABBY and diverged KNOX1 genes shape nodes and internodes in the stem. Science 2024; 384:1241-1247. [PMID: 38870308 DOI: 10.1126/science.adn6748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/03/2024] [Indexed: 06/15/2024]
Abstract
Plant stems comprise nodes and internodes that specialize in solute exchange and elongation. However, their boundaries are not well defined, and how these basic units arise remains elusive. In rice with clear nodes and internodes, we found that one subclade of class I knotted1-like homeobox (KNOX1) genes for shoot meristem indeterminacy restricts node differentiation and allows internode formation by repressing YABBY genes for leaf development and genes from another node-specific KNOX1 subclade. YABBYs promote nodal vascular differentiation and limit stem elongation. YABBY and node-specific KNOX1 genes specify the pulvinus, which further elaborates the nodal structure for gravitropism. Notably, this KNOX1 subclade organization is specific to seed plants. We propose that nodes and internodes are distinct domains specified by YABBY-KNOX1 cross-regulation that diverged in early seed plants.
Collapse
Affiliation(s)
- Katsutoshi Tsuda
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Akiteru Maeno
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Ayako Otake
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kae Kato
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Ken-Ichiro Hibara
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Hyogo 656-0484, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
4
|
Fan Z, Lin S, Jiang J, Zeng Y, Meng Y, Ren J, Wu P. Dual-Model GWAS Analysis and Genomic Selection of Maize Flowering Time-Related Traits. Genes (Basel) 2024; 15:740. [PMID: 38927676 PMCID: PMC11203321 DOI: 10.3390/genes15060740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
An appropriate flowering period is an important selection criterion in maize breeding. It plays a crucial role in the ecological adaptability of maize varieties. To explore the genetic basis of flowering time, GWAS and GS analyses were conducted using an associating panel consisting of 379 multi-parent DH lines. The DH population was phenotyped for days to tasseling (DTT), days to pollen-shedding (DTP), and days to silking (DTS) in different environments. The heritability was 82.75%, 86.09%, and 85.26% for DTT, DTP, and DTS, respectively. The GWAS analysis with the FarmCPU model identified 10 single-nucleotide polymorphisms (SNPs) distributed on chromosomes 3, 8, 9, and 10 that were significantly associated with flowering time-related traits. The GWAS analysis with the BLINK model identified seven SNPs distributed on chromosomes 1, 3, 8, 9, and 10 that were significantly associated with flowering time-related traits. Three SNPs 3_198946071, 9_146646966, and 9_152140631 showed a pleiotropic effect, indicating a significant genetic correlation between DTT, DTP, and DTS. A total of 24 candidate genes were detected. A relatively high prediction accuracy was achieved with 100 significantly associated SNPs detected from GWAS, and the optimal training population size was 70%. This study provides a better understanding of the genetic architecture of flowering time-related traits and provides an optimal strategy for GS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Penghao Wu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China; (Z.F.); (S.L.); (J.J.); (Y.Z.); (Y.M.); (J.R.)
| |
Collapse
|
5
|
Gong X, Chen J, Chen Y, He Y, Jiang D. Advancements in Rice Leaf Development Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:904. [PMID: 38592944 PMCID: PMC10976080 DOI: 10.3390/plants13060904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Rice leaf morphology is a pivotal component of the ideal plant architecture, significantly impacting rice yield. The process of leaf development unfolds through three distinct stages: the initiation of leaf primordia, the establishment and maintenance of polarity, and leaf expansion. Genes regulating leaf morphology encompass transcription factors, hormones, and miRNAs. An in-depth synthesis and categorization of genes associated with leaf development, particularly those successfully cloned, hold paramount importance in unraveling the complexity of rice leaf development. Furthermore, it provides valuable insights into the potential for molecular-level manipulation of rice leaf types. This comprehensive review consolidates the stages of rice leaf development, the genes involved, molecular regulatory pathways, and the influence of plant hormones. Its objective is to establish a foundational understanding of the creation of ideal rice leaf forms and their practical application in molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | - Dagang Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (X.G.); (J.C.); (Y.C.); (Y.H.)
| |
Collapse
|
6
|
Zhang X, Meng W, Liu D, Pan D, Yang Y, Chen Z, Ma X, Yin W, Niu M, Dong N, Liu J, Shen W, Liu Y, Lu Z, Chu C, Qian Q, Zhao M, Tong H. Enhancing rice panicle branching and grain yield through tissue-specific brassinosteroid inhibition. Science 2024; 383:eadk8838. [PMID: 38452087 DOI: 10.1126/science.adk8838] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Crop yield potential is constrained by the inherent trade-offs among traits such as between grain size and number. Brassinosteroids (BRs) promote grain size, yet their role in regulating grain number is unclear. By deciphering the clustered-spikelet rice germplasm, we show that activation of the BR catabolic gene BRASSINOSTEROID-DEFICIENT DWARF3 (BRD3) markedly increases grain number. We establish a molecular pathway in which the BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 phosphorylates and stabilizes OsMADS1 transcriptional factor, which targets TERMINAL FLOWER1-like gene RICE CENTRORADIALIS2. The tissue-specific activation of BRD3 in the secondary branch meristems enhances panicle branching, minimizing negative effects on grain size, and improves grain yield. Our study showcases the power of tissue-specific hormonal manipulation in dismantling the trade-offs among various traits and thus unleashing crop yield potential in rice.
Collapse
Affiliation(s)
- Xiaoxing Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjing Meng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dapu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dezhuo Pan
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Yanzhao Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuo Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoding Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenchao Yin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mei Niu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nana Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jihong Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weifeng Shen
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Yuqin Liu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcai Chu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingfu Zhao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Hongning Tong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Huang Y, Guo J, Sun D, Guo Z, Zheng Z, Wang P, Hong Y, Liu H. Phosphatidyl Ethanolamine Binding Protein FLOWERING LOCUS T-like 12 ( OsFTL12) Regulates the Rice Heading Date under Different Day-Length Conditions. Int J Mol Sci 2024; 25:1449. [PMID: 38338728 PMCID: PMC10855395 DOI: 10.3390/ijms25031449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Plant FLOWERING LOCUS T-Like (FTL) genes often redundantly duplicate on chromosomes and functionally diverge to modulate reproductive traits. Rice harbors thirteen FTL genes, the functions of which are still not clear, except for the Hd3a and RFT genes. Here, we identified the molecular detail of OsFTL12 in rice reproductive stage. OsFTL12 encoding protein contained PEBP domain and localized into the nucleus, which transcripts specifically expressed in the shoot and leaf blade with high abundance. Further GUS-staining results show the OsFTL12 promoter activity highly expressed in the leaf and stem. OsFTL12 knock-out concurrently exhibited early flowering phenotype under the short- and long-day conditions as compared with wild-type and over-expression plants, which independently regulates flowering without an involved Hd1/Hd3a and Ehd1/RFT pathway. Further, an AT-hook protein OsATH1 was identified to act as upstream regulator of OsFTL12, as the knock-out OsATH1 elevated the OsFTL12 expression by modifying Histone H3 acetylation abundance. According to the dissection of OsFTL12 molecular functions, our study expanded the roles intellectual function of OsFTL12 in the mediating of a rice heading date.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (J.G.)
| | - Jianfu Guo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (J.G.)
| | - Dayuan Sun
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Zhenhua Guo
- Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, China;
| | - Zihao Zheng
- Department of Agronomy, Iowa State University, Ames, IA 50011-1051, USA;
| | - Ping Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu 610066, China;
| | - Yanbin Hong
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| |
Collapse
|
8
|
Yang Y, Chu C, Qian Q, Tong H. Leveraging brassinosteroids towards the next Green Revolution. TRENDS IN PLANT SCIENCE 2024; 29:86-98. [PMID: 37805340 DOI: 10.1016/j.tplants.2023.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
The use of gibberellin-related dwarfing genes significantly increased grain yield during the Green Revolution. Brassinosteroids (BRs) play a vital role in regulating agronomic traits and stress resistance. The potential of BR-related genes in crop improvement has been well demonstrated, positioning BRs as crucial targets for the next agricultural biotechnological revolution. However, BRs exert pleiotropic effects on plants, and thus present both opportunities and challenges for their application. Recent research suggests promising strategies for leveraging BR regulatory molecules for crop improvement, such as exploring function-specific genes, identifying beneficial alleles, inducing favorable mutations, and optimizing spatial hormone distribution. Advancing our understanding of the roles of BRs in plants is imperative to implement these strategies effectively.
Collapse
Affiliation(s)
- Yanzhao Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongning Tong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Jia P, Wang Y, Sharif R, Dong QL, Liu Y, Luan HA, Zhang XM, Guo SP, Qi GH. KNOTTED1-like homeobox (KNOX) transcription factors - Hubs in a plethora of networks: A review. Int J Biol Macromol 2023; 253:126878. [PMID: 37703987 DOI: 10.1016/j.ijbiomac.2023.126878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
KNOX (KNOTTED1-like HOMEOBOX) belongs to a class of important homeobox genes, which encode the homeodomain proteins binding to the specific element of target genes, and widely participate in plant development. Advancements in genetics and molecular biology research generate a large amount of information about KNOX genes in model and non-model plants, and their functions in different developmental backgrounds are gradually becoming clear. In this review, we summarize the known and presumed functions of the KNOX gene in plants, focusing on horticultural plants and crops. The classification and structural characteristics, expression characteristics and regulation, interacting protein factors, functions, and mechanisms of KNOX genes are systematically described. Further, the current research gaps and perspectives were discussed. These comprehensive data can provide a reference for the directional improvement of agronomic traits through KNOX gene regulation.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Qing-Long Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Yang Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Hao-An Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xue-Mei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Sup-Ping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Guo-Hui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
10
|
Hong L, Fletcher JC. Stem Cells: Engines of Plant Growth and Development. Int J Mol Sci 2023; 24:14889. [PMID: 37834339 PMCID: PMC10573764 DOI: 10.3390/ijms241914889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The development of both animals and plants relies on populations of pluripotent stem cells that provide the cellular raw materials for organ and tissue formation. Plant stem cell reservoirs are housed at the shoot and root tips in structures called meristems, with the shoot apical meristem (SAM) continuously producing aerial leaf, stem, and flower organs throughout the life cycle. Thus, the SAM acts as the engine of plant development and has unique structural and molecular features that allow it to balance self-renewal with differentiation and act as a constant source of new cells for organogenesis while simultaneously maintaining a stem cell reservoir for future organ formation. Studies have identified key roles for intercellular regulatory networks that establish and maintain meristem activity, including the KNOX transcription factor pathway and the CLV-WUS stem cell feedback loop. In addition, the plant hormones cytokinin and auxin act through their downstream signaling pathways in the SAM to integrate stem cell activity and organ initiation. This review discusses how the various regulatory pathways collectively orchestrate SAM function and touches on how their manipulation can alter stem cell activity to improve crop yield.
Collapse
Affiliation(s)
- Liu Hong
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Li Q, Luo S, Zhang L, Feng Q, Song L, Sapkota M, Xuan S, Wang Y, Zhao J, van der Knaap E, Chen X, Shen S. Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. HORTICULTURE RESEARCH 2023; 10:uhad108. [PMID: 37577396 PMCID: PMC10419822 DOI: 10.1093/hr/uhad108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/12/2023] [Indexed: 08/15/2023]
Abstract
Fleshy fruit shape is an important external quality trait influencing the usage of fruits and consumer preference. Thus, modification of fruit shape has become one of the major objectives for crop improvement. However, the underlying mechanisms of fruit shape regulation are poorly understood. In this review we summarize recent progress in the genetic basis of fleshy fruit shape regulation using tomato, cucumber, and peach as examples. Comparative analyses suggest that the OFP-TRM (OVATE Family Protein - TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathways are probably conserved in regulating fruit shape by primarily modulating cell division patterns across fleshy fruit species. Interestingly, cucumber homologs of FRUITFULL (FUL1), CRABS CLAW (CRC) and 1-aminocyclopropane-1-carboxylate synthase 2 (ACS2) were found to regulate fruit elongation. We also outline the recent progress in fruit shape regulation mediated by OFP-TRM and IQD pathways in Arabidopsis and rice, and propose that the OFP-TRM pathway and IQD pathway coordinate regulate fruit shape through integration of phytohormones, including brassinosteroids, gibberellic acids, and auxin, and microtubule organization. In addition, functional redundancy and divergence of the members of each of the OFP, TRM, and IQD families are also shown. This review provides a general overview of current knowledge in fruit shape regulation and discusses the possible mechanisms that need to be addressed in future studies.
Collapse
Affiliation(s)
- Qiang Li
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuangxia Luo
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Liying Zhang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qian Feng
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Lijun Song
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Manoj Sapkota
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Shuxin Xuan
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yanhua Wang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jianjun Zhao
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Xueping Chen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuxing Shen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| |
Collapse
|
12
|
Chen Y, Qi H, Yang L, Xu L, Wang J, Guo J, Zhang L, Tan Y, Pan R, Shu Q, Qian Q, Song S. The OsbHLH002/OsICE1-OSH1 module orchestrates secondary cell wall formation in rice. Cell Rep 2023; 42:112702. [PMID: 37384532 DOI: 10.1016/j.celrep.2023.112702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023] Open
Abstract
Transcriptional regulation of secondary cell wall (SCW) formation is strictly controlled by a complex network of transcription factors in vascular plants and has been shown to be mediated by a group of NAC master switches. In this study, we show that in a bHLH transcription factor, OsbHLH002/OsICE1, its loss-of-function mutant displays a lodging phenotype. Further results show that OsbHLH002 and Oryza sativa homeobox1 (OSH1) interact and share a set of common targets. In addition, the DELLA protein SLENDER RICE1, rice ortholog of KNOTTED ARABIDOPSIS THALIANA7, and OsNAC31 interact with OsbHLH002 and OSH1 and regulate their binding capacity on OsMYB61, a key regulatory factor in SCW development. Collectively, our results indicate OsbHLH002 and OSH1 as key regulators in SCW formation and shed light on molecular mechanisms of how active and repressive factors precisely orchestrate SCW synthesis in rice, which may provide a strategy for manipulating plant biomass production.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Haoyue Qi
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lijia Yang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liang Xu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiaxuan Wang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiazhuo Guo
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liang Zhang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Tan
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ronghui Pan
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qingyao Shu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Shiyong Song
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Yu J, Zhu C, Xuan W, An H, Tian Y, Wang B, Chi W, Chen G, Ge Y, Li J, Dai Z, Liu Y, Sun Z, Xu D, Wang C, Wan J. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice. Nat Commun 2023; 14:3550. [PMID: 37321989 PMCID: PMC10272163 DOI: 10.1038/s41467-023-39167-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Salinity stress progressively reduces plant growth and productivity, while plant has developed complex signaling pathways to confront salt stress. However, only a few genetic variants have been identified to mediate salt tolerance in the major crop rice, and the molecular mechanism remains poorly understood. Here, we identify ten candidate genes associated with salt-tolerance (ST) traits by performing a genome-wide association analysis in rice landraces. We characterize two ST-related genes, encoding transcriptional factor OsWRKY53 and Mitogen-activated protein Kinase Kinase OsMKK10.2, that mediate root Na+ flux and Na+ homeostasis. We further find that OsWRKY53 acts as a negative modulator regulating expression of OsMKK10.2 in promoting ion homeostasis. Furthermore, OsWRKY53 trans-represses OsHKT1;5 (high-affinity K+ transporter 1;5), encoding a sodium transport protein in roots. We show that the OsWRKY53-OsMKK10.2 and OsWRKY53-OsHKT1;5 module coordinate defenses against ionic stress. The results shed light on the regulatory mechanisms underlying plant salt tolerance.
Collapse
Affiliation(s)
- Jun Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Chengsong Zhu
- Department of Immunology, The University of Texas Southwestern Medical Centre, Dallas, TX, 75390, USA
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongzhou An
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu, 222006, China
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Yuwei Ge
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Zhaoyang Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Yan Liu
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu, 222006, China
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu, 222006, China
| | - Dayong Xu
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu, 222006, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
14
|
Naithani S, Mohanty B, Elser J, D’Eustachio P, Jaiswal P. Biocuration of a Transcription Factors Network Involved in Submergence Tolerance during Seed Germination and Coleoptile Elongation in Rice ( Oryza sativa). PLANTS (BASEL, SWITZERLAND) 2023; 12:2146. [PMID: 37299125 PMCID: PMC10255735 DOI: 10.3390/plants12112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Modeling biological processes and genetic-regulatory networks using in silico approaches provides a valuable framework for understanding how genes and associated allelic and genotypic differences result in specific traits. Submergence tolerance is a significant agronomic trait in rice; however, the gene-gene interactions linked with this polygenic trait remain largely unknown. In this study, we constructed a network of 57 transcription factors involved in seed germination and coleoptile elongation under submergence. The gene-gene interactions were based on the co-expression profiles of genes and the presence of transcription factor binding sites in the promoter region of target genes. We also incorporated published experimental evidence, wherever available, to support gene-gene, gene-protein, and protein-protein interactions. The co-expression data were obtained by re-analyzing publicly available transcriptome data from rice. Notably, this network includes OSH1, OSH15, OSH71, Sub1B, ERFs, WRKYs, NACs, ZFP36, TCPs, etc., which play key regulatory roles in seed germination, coleoptile elongation and submergence response, and mediate gravitropic signaling by regulating OsLAZY1 and/or IL2. The network of transcription factors was manually biocurated and submitted to the Plant Reactome Knowledgebase to make it publicly accessible. We expect this work will facilitate the re-analysis/re-use of OMICs data and aid genomics research to accelerate crop improvement.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| | - Bijayalaxmi Mohanty
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore;
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| |
Collapse
|
15
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
16
|
Luo X, Wei Y, Zheng Y, Wei L, Wu F, Cai Q, Xie H, Zhang J. Analysis of co-expression and gene regulatory networks associated with sterile lemma development in rice. BMC PLANT BIOLOGY 2023; 23:11. [PMID: 36604645 PMCID: PMC9817312 DOI: 10.1186/s12870-022-04012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The sterile lemma is a unique organ of the rice (Oryza sativa L.) spikelet. However, the characteristics and origin of the rice sterile lemma have not been determined unequivocally, so it is important to elucidate the molecular mechanism of the development of the sterile lemma. RESULTS In the paper, we outline the regulatory mechanism of sterile lemma development by LONG STERILE LEMMA1 (G1), which has been identified as the gene controlling sterile lemma development. Based on the comprehensive analyses of transcriptome dynamics during sterile lemma development with G1 alleles between wild-type (WT) and mutant (MT) in rice, we obtained co-expression data and regulatory networks related to sterile lemma development. Co-transfection assays of rice protoplasts confirmed that G1 affects the expression of various phytohormone-related genes by regulating a number of critical transcription factors, such as OsLBD37 and OSH1. The hormone levels in sterile lemmas from WT and MT of rice supports the hypotheses that lower auxin, lower gibberellin, and higher cytokinin concentrations are required to maintain a normal phenotype of sterile lemmas. CONCLUSION The regulatory networks have considerable reference value, and some of the regulatory relationships exhibiting strong correlations are worthy of further study. Taken together, these work provided a detailed guide for further studies into the molecular mechanism of sterile lemma development.
Collapse
Affiliation(s)
- Xi Luo
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Linyan Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Fangxi Wu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| |
Collapse
|
17
|
Zhou R, Fan M, Zhao M, Jiang X, Liu Q. Overexpression of LtKNOX1 from Lilium tsingtauense in Nicotiana benthamiana affects the development of leaf morphology. PLANT SIGNALING & BEHAVIOR 2022; 17:2031783. [PMID: 35139775 PMCID: PMC9176240 DOI: 10.1080/15592324.2022.2031783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 05/27/2023]
Abstract
Leaves are the main vegetative organs of the aboveground part of plants and play an important role in plant morphogenesis. KNOTTED-LIKE HOMEOBOX (KNOX) plays a crucial role in regulating leaf cell fate and maintaining leaf development. In this study, we analyzed LtKNOX1 from Lilium tsingtauense and illustrated its function in transgenic plants. Tissue-specific expression analysis indicated that LtKNOX1 was highly expressed in stems, young flower buds, and shoot apical meristems (SAMs). Ectopic overexpression of LtKNOX1 in Nicotiana benthamiana suggested that transformants with mild phenotypes were characterized by foliar wrinkles and mildly curled leaves; transformants with intermediate phenotypes showed severely crimped blades and narrow leaf angles, and the most severe phenotypes lacked normal SAMs and leaves. Moreover, the expression levels of genes involved in the regulation of KNOX in transgenic plants were detected, including ASYMMETRIC LEAVES1, PIN-FORMED 1, GA20-oxidase, CUP-SHAPED COTYLEDON 2, CLAVATA 1 and WUSCHEL(WUS), and the expression of other genes were down-regulated except WUS. This study contributes to our understanding of the LtKNOX1 function.
Collapse
Affiliation(s)
- Rui Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Menglong Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Mei Zhao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qinghua Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
18
|
Yang Q, Yuan C, Cong T, Wang J, Zhang Q. Genome-wide identification of three-amino-acid-loop-extension gene family and their expression profile under hormone and abiotic stress treatments during stem development of Prunus mume. FRONTIERS IN PLANT SCIENCE 2022; 13:1006360. [PMID: 36212383 PMCID: PMC9538144 DOI: 10.3389/fpls.2022.1006360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Transcription factors encoded by the three-amino-acid-loop-extension (TALE) gene family play a key role in regulating plant growth and development, and are involved in plant hormone regulatory pathways and responses to various environmental stresses. Researchers are currently studying TALE genes in different species, but Prunus mume TALE genes have not yet been studied. Therefore, based on the P. mume genome, we found a total of 23 TALE gene family members, which were distributed on eight chromosomes. TALE genes contained the characteristic domains of this family, and could be divided into KNOTTED-like homeobox (KNOX) subfamily and BEL1-like homeobox (BELL) subfamily. They can form heterodimers with each other. Fragment duplication and tandem duplication events were the main reasons for the expansion of P. mume TALE gene family members and the TALE genes were selected by different degrees of purification. The inter-species collinearity analysis showed that the relationship between P. mume and other four Prunus species was consistent with the distance of origin. Eleven members of P. mume TALE genes were specifically highly expressed in stem, mainly at the early stage of stem development. The cis-element analysis showed that the promoter of P. mume TALE genes contained a variety of hormone and abiotic stress response elements, and four TALE genes responded to two kinds of abiotic stresses and four kinds of hormones at the early stage of stem development. In conclusion, this study lays a foundation to explore the role of TALE gene family in P. mume growth and development.
Collapse
|
19
|
Fang SC, Chen JC, Chang PY, Lin HY. Co-option of the SHOOT MERISTEMLESS network regulates protocorm-like body development in Phalaenopsis aphrodite. PLANT PHYSIOLOGY 2022; 190:127-145. [PMID: 35258627 PMCID: PMC9434259 DOI: 10.1093/plphys/kiac100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/08/2022] [Indexed: 06/02/2023]
Abstract
The protocorm is a structure that is formed upon germination of an orchid seed. It lacks cotyledons and is ovoid in shape. The protocorm-like body (PLB), on the other hand, is a protocorm-like organ induced from somatic tissues. PLBs have been widely used for orchid micropropagation. Because of its unique structure and its application in the orchid industry, PLB development has drawn considerable interest from orchid and developmental biologists. Our previous genome-wide comparative transcriptome study demonstrated that protocorms and PLBs share similar molecular signatures and suggested that SHOOT MERISTEMLESS (STM)-dependent organogenesis is important for PLB development. Here, we show that overexpression of Phalaenopsis aphrodite STM (PaSTM) greatly enhances PLB regeneration from vegetative tissue-based explants of Phalaenopsis orchids, confirming its regulatory role in PLB development. Expression of PaSTM restored shoot meristem function of the Arabidopsis (Arabidopsis thaliana) stm-2 mutant. Moreover, we identified class S11 MYB transcription factors (TFs) as targets downstream of PaSTM. A cis-acting element, TTGACT, identified in the promoters of S11 MYB TFs was found to be important for PaSTM binding and activation. Overexpression of PaSTM or its downstream targets, PaMYB13, PaMYB14, and PaMYB17, enhanced de novo shoot regeneration in Arabidopsis, indicating the active role of the PaSTM-S11 PaMYB module in organogenesis. In summary, our data demonstrate that PaSTM is important for PLB development. The STM-S11 MYB regulatory module is evolutionarily conserved and may regulate shoot or shoot-related organ development in plants.
Collapse
Affiliation(s)
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Pou-Yi Chang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
20
|
Li R, Wei Z, Li Y, Shang X, Cao Y, Duan L, Ma L. SKI-INTERACTING PROTEIN interacts with SHOOT MERISTEMLESS to regulate shoot apical meristem formation. PLANT PHYSIOLOGY 2022; 189:2193-2209. [PMID: 35640153 PMCID: PMC9342996 DOI: 10.1093/plphys/kiac241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The shoot apical meristem (SAM), which is formed during embryogenesis, generates leaves, stems, and floral organs during the plant life cycle. SAM development is controlled by SHOOT MERISTEMLESS (STM), a conserved Class I KNOX transcription factor that interacts with another subclass homeodomain protein, BELL, to form a heterodimer, which regulates gene expression at the transcriptional level in Arabidopsis (Arabidopsis thaliana). Meanwhile, SKI-INTERACTING PROTEIN (SKIP), a conserved protein in eukaryotes, works as both a splicing factor and as a transcriptional regulator in plants to control gene expression at the transcriptional and posttranscriptional levels by interacting with distinct partners. Here, we show that, similar to plants with a loss of function of STM, a loss of function of SKIP or the specific knockout of SKIP in the SAM region resulted in failed SAM development and the inability of the mutants to complete their life cycle. In comparison, Arabidopsis mutants that expressed SKIP specifically in the SAM region formed a normal SAM and were able to generate a shoot system, including leaves and floral organs. Further analysis confirmed that SKIP interacts with STM in planta and that SKIP and STM regulate the expression of a similar set of genes by binding to their promoters. In addition, STM also interacts with EARLY FLOWERING 7 (ELF7), a component of Polymerase-Associated Factor 1 complex, and mutation in ELF7 exhibits similar SAM defects to that of STM and SKIP. This work identifies a component of the STM transcriptional complex and reveals the mechanism underlying SKIP-mediated SAM formation in Arabidopsis.
Collapse
Affiliation(s)
- Ruiqi Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhifeng Wei
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yan Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xudong Shang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
21
|
Tan FQ, Wang W, Li J, Lu Y, Zhu B, Hu F, Li Q, Zhao Y, Zhou DX. A coiled-coil protein associates Polycomb Repressive Complex 2 with KNOX/BELL transcription factors to maintain silencing of cell differentiation-promoting genes in the shoot apex. THE PLANT CELL 2022; 34:2969-2988. [PMID: 35512211 PMCID: PMC9338815 DOI: 10.1093/plcell/koac133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/25/2022] [Indexed: 05/06/2023]
Abstract
Polycomb repressive complex 2 (PRC2), which mediates the deposition of H3K27me3 histone marks, is important for developmental decisions in animals and plants. In the shoot apical meristem (SAM), Three Amino acid Loop Extension family KNOTTED-LIKE HOMEOBOX /BEL-like (KNOX/BELL) transcription factors are key regulators of meristem cell pluripotency and differentiation. Here, we identified a PRC2-associated coiled-coil protein (PACP) that interacts with KNOX/BELL transcription factors in rice (Oryza sativa) shoot apex cells. A loss-of-function mutation of PACP resulted in differential gene expression similar to that observed in PRC2 gene knockdown plants, reduced H3K27me3 levels, and reduced genome-wide binding of the PRC2 core component EMF2b. The genomic binding of PACP displayed a similar distribution pattern to EMF2b, and genomic regions with high PACP- and EMF2b-binding signals were marked by high levels of H3K27me3. We show that PACP is required for the repression of cell differentiation-promoting genes targeted by a rice KNOX1 protein in the SAM. PACP is involved in the recruitment or stabilization of PRC2 to genes targeted by KNOX/BELL transcription factors to maintain H3K27me3 and gene repression in dividing cells of the shoot apex. Our results provide insight into PRC2-mediated maintenance of H3K27me3 and the mechanism by which KNOX/BELL proteins regulate SAM development.
Collapse
Affiliation(s)
| | | | - Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangfang Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhao
- Authors for correspondence: (Y.Z.); (D.X.Z.)
| | | |
Collapse
|
22
|
Shimada S, Yanagawa Y, Munesada T, Horii Y, Kuriyama T, Kawashima M, Kondou Y, Yoshizumi T, Mitsuda N, Ohme-Takagi M, Makita Y, Matsui M. A collection of inducible transcription factor-glucocorticoid receptor fusion lines for functional analyses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:595-607. [PMID: 35510416 DOI: 10.1111/tpj.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis possesses approximately 2000 transcription factors (TFs) in its genome. They play pivotal roles in various biological processes but analysis of their function has been hampered by the overlapping nature of their activities. To uncover clues to their function, we generated inducible TF lines using glucocorticoid receptor (GR) fusion techniques in Arabidopsis. These TF-GR lines each express one of 1255 TFs as a fusion with the GR gene. An average 14 lines of T2 transgenic TF-GR lines were generated for each TF to monitor their function. To evaluate these transcription lines, we induced the TF-GR lines of phytochrome-interacting factor 4, which controls photomorphogenesis, with synthetic glucocorticoid dexamethasone. These phytochrome-interacting factor 4-GR lines showed the phenotype described in a previous report. We performed screening of the other TF-GR lines for TFs involved in light signaling under blue and far-red light conditions and identified 13 novel TF candidates. Among these, we found two lines showing higher anthocyanin accumulation under light conditions and we examined the regulating genes. These results indicate that the TF-GR lines can be used to dissect functionally redundant genes in plants and demonstrate that the TF-GR line collection can be used as an effective tool for functional analysis of TFs.
Collapse
Affiliation(s)
- Setsuko Shimada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yuki Yanagawa
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, 271-8510, Japan
| | - Takachika Munesada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of NanoBioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Yoko Horii
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Tomoko Kuriyama
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mika Kawashima
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Youichi Kondou
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Takeshi Yoshizumi
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Faculty of Agriculture, Takasaki University of Health and Welfare, 54 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, 305-8562, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, 305-8562, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi City, Gunma, 371-0816, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
23
|
Sheng M, Ma X, Wang J, Xue T, Li Z, Cao Y, Yu X, Zhang X, Wang Y, Xu W, Su Z. KNOX II transcription factor HOS59 functions in regulating rice grain size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:863-880. [PMID: 35167131 DOI: 10.1111/tpj.15709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Plant Knotted1-like homeobox (KNOX) genes encode homeodomain-containing transcription factors. In rice (Oryza sativa L.), little is known about the downstream target genes of KNOX Class II subfamily proteins. Here we generated chromatin immunoprecipitation (ChIP)-sequencing datasets for HOS59, a member of the rice KNOX Class II subfamily, and characterized the genome-wide binding sites of HOS59. We conducted trait ontology (TO) analysis of 9705 identified downstream target genes, and found that multiple TO terms are related to plant structure morphology and stress traits. ChIP-quantitative PCR (qPCR) was conducted to validate some key target genes. Meanwhile, our IP-MS datasets showed that HOS59 was closely associated with BELL family proteins, some grain size regulators (OsSPL13, OsSPL16, OsSPL18, SLG, etc.), and some epigenetic modification factors such as OsAGO4α and OsAGO4β, proteins involved in small interfering RNA-mediated gene silencing. Furthermore, we employed CRISPR/Cas9 editing and transgenic approaches to generate hos59 mutants and overexpression lines, respectively. Compared with wild-type plants, the hos59 mutants have longer grains and increased glume cell length, a loose plant architecture, and drooping leaves, while the overexpression lines showed smaller grain size, erect leaves, and lower plant height. The qRT-PCR results showed that mutation of the HOS59 gene led to upregulation of some grain size-related genes such as OsSPL13, OsSPL18, and PGL2. In summary, our results indicate that HOS59 may be a repressor of the downstream target genes, negatively regulating glume cell length, rice grain size, plant architecture, etc. The identified downstream target genes and possible interaction proteins of HOS59 improve our understanding of the KNOX regulatory networks.
Collapse
Affiliation(s)
- Minghao Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuelian Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiyao Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianxi Xue
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongqiu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaxin Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
24
|
Ray S, Casteel CL. Effector-mediated plant-virus-vector interactions. THE PLANT CELL 2022; 34:1514-1531. [PMID: 35277714 PMCID: PMC9048964 DOI: 10.1093/plcell/koac058] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/14/2022] [Indexed: 05/30/2023]
Abstract
Hemipterans (such as aphids, whiteflies, and leafhoppers) are some of the most devastating insect pests due to the numerous plant pathogens they transmit as vectors, which are primarily viral. Over the past decade, tremendous progress has been made in broadening our understanding of plant-virus-vector interactions, yet on the molecular level, viruses and vectors have typically been studied in isolation of each other until recently. From that work, it is clear that both hemipteran vectors and viruses use effectors to manipulate host physiology and successfully colonize a plant and that co-evolutionary dynamics have resulted in effective host immune responses, as well as diverse mechanisms of counterattack by both challengers. In this review, we focus on advances in effector-mediated plant-virus-vector interactions and the underlying mechanisms. We propose that molecular synergisms in vector-virus interactions occur in cases where both the virus and vector benefit from the interaction (mutualism). To support this view, we show that mutualisms are common in virus-vector interactions and that virus and vector effectors target conserved mechanisms of plant immunity, including plant transcription factors, and plant protein degradation pathways. Finally, we outline ways to identify true effector synergisms in the future and propose future research directions concerning the roles effectors play in plant-virus-vector interactions.
Collapse
Affiliation(s)
- Swayamjit Ray
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, New York 14850, USA
| | | |
Collapse
|
25
|
Prakash S, Rai R, Zamzam M, Ahmad O, Peesapati R, Vijayraghavan U. OsbZIP47 Is an Integrator for Meristem Regulators During Rice Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:865928. [PMID: 35498659 PMCID: PMC9044032 DOI: 10.3389/fpls.2022.865928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Stem cell homeostasis by the WUSCHEL-CLAVATA (WUS-CLV) feedback loop is generally conserved across species; however, its links with other meristem regulators can be species-specific, rice being an example. We characterized the role of rice OsbZIP47 in vegetative and reproductive development. The knockdown (KD) transgenics showed meristem size abnormality and defects in developmental progression. The size of the shoot apical meristem (SAM) in 25-day OsbZIP47KD plants was increased as compared to the wild-type (WT). Inflorescence of KD plants showed reduced rachis length, number of primary branches, and spikelets. Florets had defects in the second and third whorl organs and increased organ number. OsbZIP47KD SAM and panicles had abnormal expression for CLAVATA peptide-like signaling genes, such as FON2-LIKE CLE PROTEIN1 (FCP1), FLORAL ORGAN NUMBER 2 (FON2), and hormone pathway genes, such as cytokinin (CK) ISOPENTEYLTRANSFERASE1 (OsIPT1), ISOPENTEYLTRANSFERASE 8 (OsIPT8), auxin biosynthesis OsYUCCA6, OsYUCCA7 and gibberellic acid (GA) biosynthesis genes, such as GRAIN NUMBER PER PANICLE1 (GNP1/OsGA20OX1) and SHORTENED BASAL INTERNODE (SBI/OsGA2ox4). The effects on ABBERANT PANICLE ORGANIZATION1 (APO1), OsMADS16, and DROOPING LEAF (DL) relate to the second and third whorl floret phenotypes in OsbZIP47KD. Protein interaction assays showed OsbZIP47 partnerships with RICE HOMEOBOX1 (OSH1), RICE FLORICULA/LEAFY (RFL), and OsMADS1 transcription factors. The meta-analysis of KD panicle transcriptomes in OsbZIP47KD, OsMADS1KD, and RFLKD transgenics, combined with global OSH1 binding sites divulge potential targets coregulated by OsbZIP47, OsMADS1, OSH1, and RFL. Further, we demonstrate that OsbZIP47 redox status affects its DNA binding affinity to a cis element in FCP1, a target locus. Taken together, we provide insights on OsbZIP47 roles in SAM development, inflorescence branching, and floret development.
Collapse
|
26
|
Kusnandar AS, Itoh JI, Sato Y, Honda E, Hibara KI, Kyozuka J, Naramoto S. NARROW AND DWARF LEAF 1, the Ortholog of Arabidopsis ENHANCER OF SHOOT REGENERATION1/DORNRÖSCHEN, Mediates Leaf Development and Maintenance of the Shoot Apical Meristem in Oryza sativa L. PLANT & CELL PHYSIOLOGY 2022; 63:265-278. [PMID: 34865135 DOI: 10.1093/pcp/pcab169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
The molecular basis for leaf development, a major focus in developmental biology, remains unclear in the monocotyledonous grass, rice (Oryza sativa). Here, we performed a mutant screen in rice and identified an AP2-type transcription factor family protein, NARROW AND DWARF LEAF1 (NDL1). NDL1 is the ortholog of Arabidopsis thaliana (subsequently called Arabidopsis) ENHANCER OF SHOOT REGENERATION1 (ESR1)/DORNRÖSCHEN (DRN) and mediates leaf development and maintenance of the shoot apical meristem (SAM). Loss of function of NDL1 results in bladeless leaves and SAMs that are flat, rather than dome-shaped, and lack cell proliferation activity. This loss of function also causes reduced auxin signaling. Moreover, as is the case with Arabidopsis ESR1/DRN, NDL1 plays crucial roles in shoot regeneration. Importantly, we found that NDL1 is not expressed in the SAM but is expressed in leaf primordia. We propose that NDL1 cell autonomously regulates leaf development, but non-cell autonomously regulates SAM maintenance in rice.
Collapse
Affiliation(s)
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Yutaka Sato
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540 Japan
| | - Eriko Honda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Ken-Ichiro Hibara
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Hyogo, 656-0484 Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577 Japan
| | - Satoshi Naramoto
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810 Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577 Japan
| |
Collapse
|
27
|
Liu H, Jiang L, Wen Z, Yang Y, Singer SD, Bennett D, Xu W, Su Z, Yu Z, Cohn J, Chae H, Que Q, Liu Y, Liu C, Liu Z. Rice RS2-9, which is bound by transcription factor OSH1, blocks enhancer-promoter interactions in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:541-554. [PMID: 34773305 PMCID: PMC9303810 DOI: 10.1111/tpj.15574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/02/2021] [Indexed: 05/13/2023]
Abstract
Insulators characterized in Drosophila and mammals have been shown to play a key role in the restriction of promiscuous enhancer-promoter interactions, as well as reshaping the topological landscape of chromosomes. Yet the role of insulators in plants remains poorly understood, in large part because of a lack of well-characterized insulators and binding factor(s). In this study, we isolated a 1.2-kb RS2-9 insulator from the Oryza sativa (rice) genome that can, when interposed between an enhancer and promoter, efficiently block the activation function of both constitutive and floral organ-specific enhancers in transgenic Arabidopsis and Nicotiana tabacum (tobacco). In the rice genome, the genes flanking RS2-9 exhibit an absence of mutual transcriptional interactions, as well as a lack of histone modification spread. We further determined that O. sativa Homeobox 1 (OSH1) bound two regions of RS2-9, as well as over 50 000 additional sites in the rice genome, the majority of which resided in intergenic regions. Mutation of one of the two OSH1-binding sites in RS2-9 impaired insulation activity by up to 60%, whereas the mutation of both binding sites virtually abolished insulator function. We also demonstrated that OSH1 binding sites were associated with 72% of the boundaries of topologically associated domains (TADs) identified in the rice genome, which is comparable to the 77% of TAD boundaries bound by the insulator CCCTC-binding factor (CTCF) in mammals. Taken together, our findings indicate that OSH1-RS2-9 acts as a true insulator in plants, and highlight a potential role for OSH1 in gene insulation and topological organization in plant genomes.
Collapse
Affiliation(s)
- Huawei Liu
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Li Jiang
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Zhifeng Wen
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yingjun Yang
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- Forestry CollegeHenan University of Science and TechnologyLuoyang471023China
| | - Stacy D. Singer
- Agriculture and Agri‐Food CanadaLethbridge Research and Development CentreLethbridgeAlbertaT1J 4B1Canada
| | - Dennis Bennett
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhifang Yu
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Jonathan Cohn
- Syngenta Crop ProtectionLLCResearch Triangle ParkNorth Carolina27709USA
| | - Hyunsook Chae
- Syngenta Crop ProtectionLLCResearch Triangle ParkNorth Carolina27709USA
| | - Qiudeng Que
- Syngenta Crop ProtectionLLCResearch Triangle ParkNorth Carolina27709USA
| | - Yue Liu
- College of HorticultureQingdao Agricultural UniversityQingdao266109China
| | - Chang Liu
- Department of EpigeneticsUniversity of HohenheimStuttgart70599Germany
| | - Zongrang Liu
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
| |
Collapse
|
28
|
Su S, Hong J, Chen X, Zhang C, Chen M, Luo Z, Chang S, Bai S, Liang W, Liu Q, Zhang D. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2304-2318. [PMID: 34800075 PMCID: PMC8541776 DOI: 10.1111/pbi.13661] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 05/11/2023]
Abstract
Panicle architecture is a key determinant of grain yield in cereals, but the mechanisms governing panicle morphogenesis and organ development remain elusive. Here, we have identified a quantitative trait locus (qPA1) associated with panicle architecture using chromosome segment substitution lines from parents Nipponbare and 9311. The panicle length, branch number and grain number of Nipponbare were significantly higher than CSSL-9. Through map-based cloning and complementation tests, we confirmed that qPA1 was identical to SD1 (Semi Dwarf1), which encodes a gibberellin 20-oxidase enzyme participating in gibberellic acid (GA) biosynthesis. Transcript analysis revealed that SD1 was widely expressed during early panicle development. Analysis of sd1/osga20ox2 and gnp1/ osga20ox1 single and double mutants revealed that the two paralogous enzymes have non-redundant functions during panicle development, likely due to differences in spatiotemporal expression; GNP1 expression under control of the SD1 promoter could rescue the sd1 phenotype. The DELLA protein SLR1, a component of the GA signalling pathway, accumulated more highly in sd1 plants. We have demonstrated that SLR1 physically interacts with the meristem identity class I KNOTTED1-LIKE HOMEOBOX (KNOX) protein OSH1 to repress OSH1-mediated activation of downstream genes related to panicle development, providing a mechanistic link between gibberellin and panicle architecture morphogenesis.
Collapse
Affiliation(s)
- Su Su
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jun Hong
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouChina
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shuwei Chang
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shaoxing Bai
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouChina
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- School of Agriculture, Food and WineUniversity of AdelaideUrrbraeSAAustralia
| |
Collapse
|
29
|
Strable J, Nelissen H. The dynamics of maize leaf development: Patterned to grow while growing a pattern. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102038. [PMID: 33940553 DOI: 10.1016/j.pbi.2021.102038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Leaves are a significant component of the shoot system in grasses, functioning in light capture and photosynthesis. Leaf width, length, and angle are expressions of development that collectively define canopy architecture. Thus, the distinctive morphology of grass leaves is an interdependent readout of developmental patterning and growth along the proximal-distal, medial-lateral, and adaxial-abaxial axes. Here, we review the chronology of patterning and growth, namely along the proximal-distal axis, during maize leaf development. We underscore that patterning and growth occur simultaneously, making use of shared developmental gradients and molecular pathways.
Collapse
Affiliation(s)
- Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA 27695.
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium.
| |
Collapse
|
30
|
Gupta C, Ramegowda V, Basu S, Pereira A. Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance. Front Genet 2021; 12:652189. [PMID: 34249082 PMCID: PMC8264776 DOI: 10.3389/fgene.2021.652189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice (Oryza sativa). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.
Collapse
Affiliation(s)
- Chirag Gupta
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Venkategowda Ramegowda
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Supratim Basu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
31
|
Huang L, Hua K, Xu R, Zeng D, Wang R, Dong G, Zhang G, Lu X, Fang N, Wang D, Duan P, Zhang B, Liu Z, Li N, Luo Y, Qian Q, Yao S, Li Y. The LARGE2-APO1/APO2 regulatory module controls panicle size and grain number in rice. THE PLANT CELL 2021; 33:1212-1228. [PMID: 33693937 DOI: 10.1093/plcell/koab041] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Panicle size and grain number are important agronomic traits and influence grain yield in rice (Oryza sativa), but the molecular and genetic mechanisms underlying panicle size and grain number control remain largely unknown in crops. Here we report that LARGE2 encodes a HECT-domain E3 ubiquitin ligase OsUPL2 and regulates panicle size and grain number in rice. The loss of function large2 mutants produce large panicles with increased grain number, wide grains and leaves, and thick culms. LARGE2 regulates panicle size and grain number by repressing meristematic activity. LARGE2 is highly expressed in young panicles and grains. Biochemical analyses show that LARGE2 physically associates with ABERRANT PANICLE ORGANIZATION1 (APO1) and APO2, two positive regulators of panicle size and grain number, and modulates their stabilities. Genetic analyses support that LARGE2 functions with APO1 and APO2 in a common pathway to regulate panicle size and grain number. These findings reveal a novel genetic and molecular mechanism of the LARGE2-APO1/APO2 module-mediated control of panicle size and grain number in rice, suggesting that this module is a promising target for improving panicle size and grain number in crops.
Collapse
Affiliation(s)
- Luojiang Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kai Hua
- University of Chinese Academy of Sciences, Beijing 100039, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ruci Wang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guozheng Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xueli Lu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Na Fang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Dekai Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Penggen Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baolan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zupei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuehua Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Shanguo Yao
- University of Chinese Academy of Sciences, Beijing 100039, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
32
|
Chang Z, Xu R, Xun Q, Liu J, Zhong T, Ding Y, Ding C. OsmiR164-targeted OsNAM, a boundary gene, plays important roles in rice leaf and panicle development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:41-55. [PMID: 33368800 DOI: 10.1111/tpj.15143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
The CUP-SHAPED COTYLEDON (CUC) genes (CUC1, CUC2 and CUC3) regulate organ boundary formation in Arabidopsis. However, the functions of their homologous genes in rice (Oryza sativa) are still unknown. Here, we have identified an orthologous gene of CUC1 and CUC2 in rice, named OsNAM. Subcellular localization and yeast two-hybrid assay results have suggested that OsNAM encodes a conserved nuclear NAC (NAM/ATAF1/CUC2) protein with a transcriptional activator. The null mutant osnam-1 presented a fused leaf structure, small panicles, reduced branches and aberrant floral organ identities when compared with those of the wild type. Beta-glucuronidase staining and GFP reporter lines indicated that OsNAM was expressed in young tissues and that its boundary enrichment expression was regulated by OsmiR164. Loss-of-function mutants for OsCUC3 resulted in no obvious defects throughout rice development. The osnam oscuc3 double mutant, however, resulted in severe leaf fusion of the first two leaves, while the osnam single mutant showed a similar phenotype from the seventh leaf. These results indicated that OsNAM and OsCUC3 act redundantly for boundary specification during post-embryonic development. Overall, we describe the biological functions of OsNAM and OsCUC3 in rice development and the expression characteristics of OsNAM. This work reveals the important role of CUC genes in rice.
Collapse
Affiliation(s)
- Zhongyuan Chang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruihan Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qian Xun
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiajun Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tianhui Zhong
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, People's Republic of China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, People's Republic of China
| |
Collapse
|
33
|
Zhao B, Liu Q, Wang B, Yuan F. Roles of Phytohormones and Their Signaling Pathways in Leaf Development and Stress Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3566-3584. [PMID: 33739096 DOI: 10.1021/acs.jafc.0c07908] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phytohormones participate in various processes over the course of a plant's lifecycle. In addition to the five classical phytohormones (auxins, cytokinins, gibberellins, abscisic acid, and ethylene), phytohormones such as brassinosteroids, jasmonic acid, salicylic acid, strigolactones, and peptides also play important roles in plant growth and stress responses. Given the highly interconnected nature of phytohormones during plant development and stress responses, it is challenging to study the biological function of a single phytohormone in isolation. In the current Review, we describe the combined functions and signaling cascades (especially the shared points and pathways) of various phytohormones in leaf development, in particular, during leaf primordium initiation and the establishment of leaf polarity and leaf morphology as well as leaf development under various stress conditions. We propose a model incorporating the roles of multiple phytohormones in leaf development and stress responses to illustrate the underlying combinatorial signaling pathways. This model provides a reference for breeding stress-resistant crops.
Collapse
Affiliation(s)
- Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Qingyun Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| |
Collapse
|
34
|
Zheng L, Yang Y, Ma S, Wang W, Zhang J, Yue C, Wang Y, Song M, Hao X, Huang J. Genome-Wide Identification of Brassinosteroid Signaling Downstream Genes in Nine Rosaceae Species and Analyses of Their Roles in Stem Growth and Stress Response in Apple. Front Genet 2021; 12:640271. [PMID: 33815475 PMCID: PMC8012692 DOI: 10.3389/fgene.2021.640271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Brassinosteroid signaling downstream genes regulate many important agronomic traits in rice. However, information on such genes is limited in Arabidopsis and Rosaceae species. We identified these genes in Arabidopsis and nine Rosaceae species. They were, respectively, named based on chromosomal locations. Segmental duplication and whole-genome duplication under purifying selection, as determined by Ka/Ks analysis, likely contributed to Rosaceae gene expansion. Apple (Malus domestica), Arabidopsis, and rice genes were generally similar, while several Rosaceae genes differed from their rice homologs in various characteristics, such as gene length, subcellular localization, transmembrane topology, conserved domains, secondary structures, and responses to external signals. The brassinosteroid downstream genes in apple were, respectively, induced or repressed by five phytohormones. Furthermore, these apple downstream genes were differentially expressed in different apple grafting combinations (“Nagafu No. 2”/“Malling 9” and “Nagafu No. 2”/“Nagafu No. 2”) and long–short shoot varieties (“Yanfu No. 6” and “Nagafu No. 2”). Responses of the MdBZR genes to diverse stress signals were examined and candidate hub genes were identified. These findings indicated that several brassinosteroid signaling downstream genes in Rosaceae functionally differed from their rice homologs, and certain apple genes may play roles in plant height and stress responses. This study provided valuable information and presented enriched biological theories on brassinosteroid signaling downstream genes in apple. Identification of such genes serve to help expand apple breeding and growth. This study provides useful information for brassinosteroid signaling downstream genes.
Collapse
Affiliation(s)
- Liwei Zheng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingli Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shengjie Ma
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenming Wang
- National Tobacco Quality Supervision and Inspection Center, Zhengzhou, China
| | - Jimeng Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Caipeng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yongmei Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Maoping Song
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Xinqi Hao
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Strable J. Developmental genetics of maize vegetative shoot architecture. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:19. [PMID: 37309417 PMCID: PMC10236122 DOI: 10.1007/s11032-021-01208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01208-1.
Collapse
Affiliation(s)
- Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
- Present Address: Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
36
|
Zhang L, Zhang F, Liu F, Shen J, Wang J, Jiang M, Zhang D, Yang P, Chen Y, Song S. The lotus NnFTIP1 and NnFT1 regulate flowering time in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110677. [PMID: 33288002 DOI: 10.1016/j.plantsci.2020.110677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
In higher plants, floral signals are mainly collected and transduced to FLOWERING LOCUS T (FT) in Arabidopsis and its orthologues. The movement of FT from leaves to the shoot apical meristem (SAM) is partially mediated by FT-INTERACTING PROTEIN1 (FTIP1). Although the functions of OsFTIP1 in rice and DOFTIP1 in orchid in FT transport have also been investigated, the FTIP1 homologue in lotus (Nelumbo nucifera Gaertn.), a type of horticultural plant with high economic and cultural value, has not been isolated, and the mechanism of NnFT1 transport has not been explored. Here, we revealed that NnFTIP1 mediates the transport of NnFT1 in ectopic transgenic lines in Arabidopsis. Overexpression of NnFTIP1 in the ftip1-1 background rescued the late flowering phenotype of ftip1-1, indicating that NnFTIP1 has a conserved function as FTIP1. NnFTIP1 and NnFT1 share similar tissue expression patterns and subcellular localization. NnFTIP1 and NnFT1 interact both in vitro and in vivo. In addition, NnFTIP1 affects NnFT1 transport from leaves to the SAM. Furthermore, we found that NnUOF8, a MYB-like transcription factor, directly regulates the expression of NnFTIP1. Our results suggest that the functions of FTIP1 and FT are conserved during evolution in flowering plants.
Collapse
Affiliation(s)
- Liang Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Fan Zhang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Fangbing Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jun Shen
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiaxuan Wang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Meng Jiang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Dasheng Zhang
- Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ying Chen
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| | - Shiyong Song
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China; State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Gupta C, Ramegowda V, Basu S, Pereira A. Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance. Front Genet 2021. [PMID: 34249082 DOI: 10.1101/2020.04.29.068379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice (Oryza sativa). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.
Collapse
Affiliation(s)
- Chirag Gupta
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Venkategowda Ramegowda
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Supratim Basu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
38
|
Xia T, Chen H, Dong S, Ma Z, Ren H, Zhu X, Fang X, Chen F. OsWUS promotes tiller bud growth by establishing weak apical dominance in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1635-1647. [PMID: 33064890 DOI: 10.1111/tpj.15026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Two branching strategies are exhibited in crops: enhanced apical dominance, as in maize; or weak apical dominance, as in rice. However, the underlying mechanism of weak apical dominance remains elusive. OsWUS, an ortholog of Arabidopsis WUSCHEL (WUS) in rice, is required for tiller development. In this study, we identified and functionally characterized a low-tillering mutant decreased culm number 1 (dc1) that resulted from loss-of-function of OsWUS. The dc1 tiller buds are viable but repressed by the main culm apex, leading to stronger apical dominance than that of the wild-type (WT). Auxin response is enhanced in the dc1 mutant, and knocking out the auxin action-associated gene ABERRANT SPIKELET AND PANICLE 1 (ASP1) de-repressed growth of the tiller buds in the dc1 mutant, suggesting that OsWUS and ASP1 are both involved in outgrowth of the rice tiller bud. Decapitation triggers higher contents of cytokinins in the shoot base of the dc1 mutant compared with those in the WT, and exogenous application of cytokinin is not sufficient for sustained growth of the dc1 tiller bud. Transcriptome analysis indicated that expression levels of transcription factors putatively bound by ORYZA SATIVA HOMEOBOX 1 (OSH1) are changed in response to decapitation and display a greater fold change in the dc1 mutant than that in the WT. Collectively, these findings reveal an important role of OsWUS in tiller bud growth by influencing apical dominance, and provide the basis for an improved understanding of tiller bud development in rice.
Collapse
Affiliation(s)
- Tianyu Xia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongqi Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Sujun Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeyang Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haibo Ren
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xudong Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaohua Fang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
39
|
Galli M, Feng F, Gallavotti A. Mapping Regulatory Determinants in Plants. Front Genet 2020; 11:591194. [PMID: 33193733 PMCID: PMC7655918 DOI: 10.3389/fgene.2020.591194] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
The domestication and improvement of many plant species have frequently involved modulation of transcriptional outputs and continue to offer much promise for targeted trait engineering. The cis-regulatory elements (CREs) controlling these trait-associated transcriptional variants however reside within non-coding regions that are currently poorly annotated in most plant species. This is particularly true in large crop genomes where regulatory regions constitute only a small fraction of the total genomic space. Furthermore, relatively little is known about how CREs function to modulate transcription in plants. Therefore understanding where regulatory regions are located within a genome, what genes they control, and how they are structured are important factors that could be used to guide both traditional and synthetic plant breeding efforts. Here, we describe classic examples of regulatory instances as well as recent advances in plant regulatory genomics. We highlight valuable molecular tools that are enabling large-scale identification of CREs and offering unprecedented insight into how genes are regulated in diverse plant species. We focus on chromatin environment, transcription factor (TF) binding, the role of transposable elements, and the association between regulatory regions and target genes.
Collapse
Affiliation(s)
- Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | - Fan Feng
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States.,Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
40
|
Wang R, Liu C, Li Q, Chen Z, Sun S, Wang X. Spatiotemporal Resolved Leaf Angle Establishment Improves Rice Grain Yield via Controlling Population Density. iScience 2020; 23:101489. [PMID: 32898833 PMCID: PMC7486458 DOI: 10.1016/j.isci.2020.101489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 11/15/2022] Open
Abstract
Leaf angle is mainly determined by the lamina joint (LJ) and contributes to ideal crop architecture for high yield. Here, we dissected five successive stages with distinct cytological features of LJs spanning organogenesis to leaf angle formation and obtained the underlying stage-specific mRNAs and small RNAs, which well explained the cytological dynamics during LJ organogenesis and leaf angle plasticity. Combining the gene coexpression correlation with high-throughput promoter analysis, we identified a set of transcription factors (TFs) determining the stage- and/or cytological structure-specific profiles. The functional studies of these TFs demonstrated that cytological dynamics determined leaf angle and that the knockout rice of these TFs with erect leaves significantly enhanced yield by maintaining the proper tiller number under dense planting. This work revealed the high-resolution mechanisms of how the cytological dynamics of LJ determined leaf erectness and served as a valuable resource to remodel rice architecture for high yield by controlling population density.
Collapse
Affiliation(s)
- Rongna Wang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China
| | - Chang Liu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China
| | - Qinzhong Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhina Chen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyong Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China.
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China.
| |
Collapse
|
41
|
Zhao M, Li C, Ma X, Xia R, Chen J, Liu X, Ying P, Peng M, Wang J, Shi CL, Li J. KNOX protein KNAT1 regulates fruitlet abscission in litchi by repressing ethylene biosynthetic genes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4069-4082. [PMID: 32227110 DOI: 10.1093/jxb/eraa162] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/27/2020] [Indexed: 05/25/2023]
Abstract
Abscission is triggered by multiple environmental and developmental cues, including endogenous plant hormones. KNOTTED-LIKE HOMEOBOX (KNOX) transcription factors (TFs) play an important role in controlling abscission in plants. However, the underlying molecular mechanism of KNOX TFs in abscission is largely unknown. Here, we identified LcKNAT1, a KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1)-like protein from litchi, which regulates abscission by modulating ethylene biosynthesis. LcKNAT1 is expressed in the fruit abscission zone and its expression decreases during fruitlet abscission. Furthermore, the expression of the ethylene biosynthetic genes LcACS1, LcACS7, and LcACO2 increases in the fruit abscission zone, in parallel with the emission of ethylene in fruitlets. In vitro and in vivo assays revealed that LcKNAT1 inhibits the expression of LcACS/ACO genes by directly binding to their promoters. Moreover, ectopic expression of LcKNAT1 represses flower abscission in tomatoes. Transgenic plants expressing LcKNAT1 also showed consistently decreased expression of ACS/ACO genes. Collectively, these results indicate that LcKNAT1 represses abscission via the negative regulation of ethylene biosynthesis.
Collapse
Affiliation(s)
- Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Peiyuan Ying
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Manjun Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chun-Lin Shi
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
42
|
Xiao Y, Zhang G, Liu D, Niu M, Tong H, Chu C. GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1187-1201. [PMID: 31950543 DOI: 10.1111/tpj.14692] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 05/23/2023]
Abstract
Brassinosteroids (BRs) are a class of phytohormones that modulate several important agronomic traits in rice (Oryza sativa). GSK2 is one of the critical suppressors of BR signalling and targets transcription factors such as OsBZR1 and DLT to regulate BR responses. Here, we identified OFP3 (OVATE FAMILY PROTEIN 3) as an interactor of both GSK2 and DLT by yeast-two-hybrid screening and demonstrated that OFP3 plays a distinctly negative role in BR responses. While knockout of OFP3 promoted rice seedling growth, overexpression of OFP3 led to strong BR insensitivity, which resulted in reduced plant height, leaf angle, and grain size. Interestingly, both BR biosynthetic and signalling genes had decreased expression in the overexpression plants. OFP3 overexpression also enhanced the phenotypes of BR-deficient mutants, but largely suppressed those of BR-enhanced plants. Moreover, treatment with either BR or bikinin, a GSK3-like kinase inhibitor, induced OFP3 depletion, whereas GSK2 or brassinazole, a BR synthesis inhibitor, promoted OFP3 accumulation. Furthermore, OFP3 exhibited transcription repressor activity and was able to interact with itself as well as additional BR-related components, including OFP1, OSH1, OSH15, OsBZR1, and GF14c. Importantly, GSK2 can phosphorylate OFP3 and enhance these interactions. We propose that OFP3, as a suppressor of both BR synthesis and signalling but stabilized by GSK2, incorporates into a transcription factor complex to facilitate BR signalling control, which is critical for the proper development of various tissues.
Collapse
Affiliation(s)
- Yunhua Xiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guoxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dapu Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Niu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
43
|
Muszynski MG, Moss-Taylor L, Chudalayandi S, Cahill J, Del Valle-Echevarria AR, Alvarez-Castro I, Petefish A, Sakakibara H, Krivosheev DM, Lomin SN, Romanov GA, Thamotharan S, Dam T, Li B, Brugière N. The Maize Hairy Sheath Frayed1 ( Hsf1) Mutation Alters Leaf Patterning through Increased Cytokinin Signaling. THE PLANT CELL 2020; 32:1501-1518. [PMID: 32205456 PMCID: PMC7203929 DOI: 10.1105/tpc.19.00677] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
Leaf morphogenesis requires growth polarized along three axes-proximal-distal (P-D) axis, medial-lateral axis, and abaxial-adaxial axis. Grass leaves display a prominent P-D polarity consisting of a proximal sheath separated from the distal blade by the auricle and ligule. Although proper specification of the four segments is essential for normal morphology, our knowledge is incomplete regarding the mechanisms that influence P-D specification in monocots such as maize (Zea mays). Here, we report the identification of the gene underlying the semidominant, leaf patterning maize mutant Hairy Sheath Frayed1 (Hsf1). Hsf1 plants produce leaves with outgrowths consisting of proximal segments-sheath, auricle, and ligule-emanating from the distal blade margin. Analysis of three independent Hsf1 alleles revealed gain-of-function missense mutations in the ligand binding domain of the maize cytokinin (CK) receptor Z. mays Histidine Kinase1 (ZmHK1) gene. Biochemical analysis and structural modeling suggest the mutated residues near the CK binding pocket affect CK binding affinity. Treatment of the wild-type seedlings with exogenous CK phenocopied the Hsf1 leaf phenotypes. Results from expression and epistatic analyses indicated the Hsf1 mutant receptor appears to be hypersignaling. Our results demonstrate that hypersignaling of CK in incipient leaf primordia can reprogram developmental patterns in maize.
Collapse
Affiliation(s)
- Michael G Muszynski
- Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii 96822
| | - Lindsay Moss-Taylor
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Sivanandan Chudalayandi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - James Cahill
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | | | | | - Abby Petefish
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Dmitry M Krivosheev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Sergey N Lomin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Georgy A Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Subbiah Thamotharan
- School of Chemical and Biotechnology, SASTRA University; Thanjavur, 613401, India
| | - Thao Dam
- Corteva Agriscience, Johnston, Iowa 50131
| | - Bailin Li
- Corteva Agriscience, Johnston, Iowa 50131
| | | |
Collapse
|
44
|
Liu X, Cai WJ, Yin X, Yang D, Dong T, Feng YQ, Wu Y. Two SLENDER AND CRINKLY LEAF dioxygenases play an essential role in rice shoot development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1387-1401. [PMID: 31701152 PMCID: PMC7031069 DOI: 10.1093/jxb/erz501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
It is clear that 2-oxoglutarate-dependent dioxygenases have critical functions in salicylic acid (SA) metabolism in plants, yet their role in SA biosynthesis is poorly understood. Here, we report that two dioxygenase-encoding genes, SLENDER AND CRINKLY LEAF1 (SLC1) and SLC2, play essential roles in shoot development and SA production in rice. Overexpression of SLC1 (SLC1-OE) or SLC2 (SLC2-OE) in rice produced infertile plants with slender and crinkly leaves. Disruption of SLC1 or SLC2 led to dwarf plants, while simultaneous down-regulation of SLC1 and SLC2 resulted in a severe defect in early leaf development. Enhanced SA levels in SLC1-OE plants and decreased SA levels in slc1 and slc2 mutants were observed. Accordingly, these lines all showed altered expression of a set of SA-related genes. We demonstrated that SLC1 interacts with homeobox1 (OSH1), and that either the knotted1-like homeobox (KNOX1) or glutamate, leucine, and lysine (ELK) domain of OSH1 is sufficient for accomplishing this interaction. Collectively, our data reveal the importance of SLC1 and SLC2 in rice shoot development.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Jing Cai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tian Dong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y. Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses. THE PLANT CELL 2020; 32:295-318. [PMID: 31776234 PMCID: PMC7008487 DOI: 10.1105/tpc.19.00335] [Citation(s) in RCA: 491] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/01/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are a group of polyhydroxylated plant steroid hormones that are crucial for many aspects of a plant's life. BRs were originally characterized for their function in cell elongation, but it is becoming clear that they play major roles in plant growth, development, and responses to several stresses such as extreme temperatures and drought. A BR signaling pathway from cell surface receptors to central transcription factors has been well characterized. Here, we summarize recent progress toward understanding the BR pathway, including BR perception and the molecular mechanisms of BR signaling. Next, we discuss the roles of BRs in development and stress responses. Finally, we show how knowledge of the BR pathway is being applied to manipulate the growth and stress responses of crops. These studies highlight the complex regulation of BR signaling, multiple points of crosstalk between BRs and other hormones or stress responses, and the finely tuned spatiotemporal regulation of BR signaling.
Collapse
Affiliation(s)
- Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052, Ghent, Belgium
| | - Derui Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052, Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052, Ghent, Belgium
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
46
|
Snouffer A, Kraus C, van der Knaap E. The shape of things to come: ovate family proteins regulate plant organ shape. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:98-105. [PMID: 31837627 DOI: 10.1016/j.pbi.2019.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 05/14/2023]
Abstract
The shape of produce is an important agronomic trait. The knowledge of the cellular regulation of organ shapes can be implemented in the improvement of a variety of crops. The plant-specific Ovate Family Proteins (OFPs) regulate organ shape in Arabidopsis and many crops including rice, tomato, and melon. Although OFPs were previously described as transcriptional repressors, recent data support a role for the family in organ shape regulation through control of subcellular localization of protein complexes. OFPs interact with TONNEAU1 RECRUITMENT MOTIF (TRMs) and together they regulate cell division patterns in tomato fruit development. OFPs also respond to changes in plant hormones and responses to stress. The OFP-TRM interaction may work in conjunction with additional shape regulators such as IQ67 Domain (IQD) proteins to modulate the response to tissue level cues as well as external stimuli and stressors to form reproducible organ shapes by regulating cytoskeleton activities.
Collapse
Affiliation(s)
- Ashley Snouffer
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Rd, Athens GA, 30602 United States
| | - Carmen Kraus
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Rd, Athens GA, 30602 United States
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Rd, Athens GA, 30602 United States; Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Rd, Athens GA, 30602 United States; Department of Horticulture, University of Georgia, 111 Riverbend Rd, Athens GA, 30602 United States.
| |
Collapse
|
47
|
Jia P, Zhang C, Xing L, Li Y, Shah K, Zuo X, Zhang D, An N, Han M, Ren X. Genome-Wide Identification of the MdKNOX Gene Family and Characterization of Its Transcriptional Regulation in Malus domestica. FRONTIERS IN PLANT SCIENCE 2020; 11:128. [PMID: 32153621 PMCID: PMC7047289 DOI: 10.3389/fpls.2020.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/28/2020] [Indexed: 05/11/2023]
Abstract
Knotted1-like Homeobox (KNOX) proteins play important roles in regulating plant growth, development, and other biological processes. However, little information is available on the KNOX gene family in apple (Malus domestica Borkh.). In this study, 22 KNOX genes were identified in the apple genome. The gene structure, protein characteristics, and promoter region were characterized. The MdKNOX family members were divided into three classes based on their phylogenetic relationships. Quantitative real-time PCR analysis revealed that the majority of MdKNOX genes exhibited strongly preferential expression in buds and were significantly up-regulated during the flower induction period. The transcript levels of MdKNOX genes were responsive to treatments with flowering- and stress-related hormones. The putative upstream regulation factor MdGRF could directly bind to the promoter of MdKNOX15 and MdKNOX19, and inhibit their transcriptional activities, which were confirmed by yeast one-hybrid and dual-luciferase assays. The results provide an important foundation for future analysis of the regulation and functions of the MdKNOX gene family.
Collapse
Affiliation(s)
- Peng Jia
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Chenguang Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Youmei Li
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Kamran Shah
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Xiya Zuo
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Na An
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- *Correspondence: Mingyu Han, ; Xiaolin Ren,
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- *Correspondence: Mingyu Han, ; Xiaolin Ren,
| |
Collapse
|
48
|
Wei Z, Li J. Regulation of Brassinosteroid Homeostasis in Higher Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:583622. [PMID: 33133120 PMCID: PMC7550685 DOI: 10.3389/fpls.2020.583622] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Brassinosteroids (BRs) are known as one of the major classes of phytohormones essential for various processes during normal plant growth, development, and adaptations to biotic and abiotic stresses. Significant progress has been achieved on revealing mechanisms regulating BR biosynthesis, catabolism, and signaling in many crops and in model plant Arabidopsis. It is known that BRs control plant growth and development in a dosage-dependent manner. Maintenance of BR homeostasis is therefore critical for optimal functions of BRs. In this review, updated discoveries on mechanisms controlling BR homeostasis in higher plants in response to internal and external cues are discussed.
Collapse
|
49
|
Dong Z, Xiao Y, Govindarajulu R, Feil R, Siddoway ML, Nielsen T, Lunn JE, Hawkins J, Whipple C, Chuck G. The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression. Nat Commun 2019; 10:3810. [PMID: 31444327 PMCID: PMC6707278 DOI: 10.1038/s41467-019-11774-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/05/2019] [Indexed: 01/08/2023] Open
Abstract
Many domesticated crop plants have been bred for increased apical dominance, displaying greatly reduced axillary branching compared to their wild ancestors. In maize, this was achieved through selection for a gain-of-function allele of the TCP transcription factor teosinte branched1 (tb1). The mechanism for how a dominant Tb1 allele increased apical dominance, is unknown. Through ChIP seq, RNA seq, hormone and sugar measurements on 1 mm axillary bud tissue, we identify the genetic pathways putatively regulated by TB1. These include pathways regulating phytohormones such as gibberellins, abscisic acid and jasmonic acid, but surprisingly, not auxin. In addition, metabolites involved in sugar sensing such as trehalose 6-phosphate were increased. This suggests that TB1 induces bud suppression through the production of inhibitory phytohormones and by reducing sugar levels and energy balance. Interestingly, TB1 also putatively targets several other domestication loci, including teosinte glume architecture1, prol1.1/grassy tillers1, as well as itself. This places tb1 on top of the domestication hierarchy, demonstrating its critical importance during the domestication of maize from teosinte. The TB1 transcription factor was selected for the increased apical dominance of maize compared to its ancestor teosinte. A metabolic and genomic analysis of domesticated axillary buds suggest that TB1 achieved this by regulating phytohormone signaling, sugar metabolism and other domestication genes.
Collapse
Affiliation(s)
- Zhaobin Dong
- Plant Gene Expression Center/USDA, University of California, Berkeley, Albany, CA, 94710, USA
| | - Yuguo Xiao
- Brigham Young University, Provo, UT, 84602, USA
| | | | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Muehlenberg, 14476, Potsdam-Golm, Germany
| | | | | | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Muehlenberg, 14476, Potsdam-Golm, Germany
| | | | | | - George Chuck
- Plant Gene Expression Center/USDA, University of California, Berkeley, Albany, CA, 94710, USA.
| |
Collapse
|
50
|
Yin X, Liu X, Xu B, Lu P, Dong T, Yang D, Ye T, Feng YQ, Wu Y. OsMADS18, a membrane-bound MADS-box transcription factor, modulates plant architecture and the abscisic acid response in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3895-3909. [PMID: 31034557 PMCID: PMC6685668 DOI: 10.1093/jxb/erz198] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/16/2019] [Indexed: 05/18/2023]
Abstract
The APETALA1 (AP1)/FRUITFULL (FUL)-like transcription factor OsMADS18 plays diverse functions in rice development, but the underlying molecular mechanisms are far from fully understood. Here, we report that down-regulation of OsMADS18 expression in RNAi lines caused a delay in seed germination and young seedling growth, whereas the overexpression of OsMADS18 produced plants with fewer tillers. In targeted OsMADS18 genome-edited mutants (osmads18-cas9), an increased number of tillers, altered panicle size, and reduced seed setting were observed. The EYFP-OsMADS18 (full-length) protein was localized to the nucleus and plasma membrane but the EYFP-OsMADS18-N (N-terminus) protein mainly localized to the nucleus. The expression of OsMADS18 could be stimulated by abscisic acid (ABA), and ABA stimulation triggered the cleavage of HA-OsMADS18 and the translocation of OsMADS18 from the plasma membrane to the nucleus. The inhibitory effect of ABA on seedling growth was less effective in the OsMADS18-overexpressing plants. The expression of a set of ABA-responsive genes was significantly reduced in the overexpressing plants. The phenotypes of transgenic plants expressing EYFP-OsMADS18-N resembled those observed in the osmads18-cas9 mutants. Analysis of the interaction of OsMADS18 with OsMADS14, OsMADS15, and OsMADS57 strongly suggests an essential role for OsMADS18 in rice development.
Collapse
Affiliation(s)
- Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Buxian Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Piaoyin Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tian Dong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tiantian Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Correspondence:
| |
Collapse
|