1
|
Zhao QP, Miao BL, Zhu JD, Li XK, Fu XL, Han MY, Wu QQ, Niu QH, Zhang X, Zhao X. Sec24C Participates in Cuticular Wax Transport by Facilitating Plasma Membrane Localization of ABCG5. PLANT, CELL & ENVIRONMENT 2025; 48:3012-3026. [PMID: 39676447 DOI: 10.1111/pce.15320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Cuticular waxes synthesised in the endoplasmic reticulum of epidermal cells must be exported to the outer surface of the epidermis to fulfil their barrier function. Beyond transmembrane trafficking mediated by ABC transporters, little is known about the movement of wax molecules. In this study, we characterise a mutant named sugar-associated vitrified 1 (sav1), which exhibits a vitrified phenotype and displays a reduced root length when cultivated on sugar-free medium. The mutation in SAV1, which encodes the protein Sec. 24C, leads to ultrastructural alterations in cuticle membranes, decreased deposition of epicuticular wax crystals, and modifications in the chemical composition of very-long-chain fatty acids in cuticular waxes. SAV1 is a membrane protein and expressed during the early stages of seedling development. The defective phenotype of sav1-1 in sugar-free medium resembles that of abcg5, which encodes an ATP-BINDING CASSETTE TRANSPORTER subfamily G 5 (ABCG5) protein involved in cuticle layer formation. Further investigations reveal that SAV1 interacts with ABCG5, influencing the membrane localisation of ABCG5. Collectively, our results suggest that SAV1 plays a critical role in wax transport by altering the subcellular localisation of ABCG5.
Collapse
Affiliation(s)
- Qing-Ping Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- College of Life Science, Nanyang Normal University, Nanyang, China
| | - Bai-Ling Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jin-Dong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xing-Kun Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang-Lin Fu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Meng-Yuan Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qi-Qi Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiu-Hong Niu
- College of Life Science, Nanyang Normal University, Nanyang, China
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Gabarayeva NI. Tapetum uncommon behavior, orbicule development, and pollenkitt: mini-review, with new data on orbicule simulations. PROTOPLASMA 2025:10.1007/s00709-025-02053-1. [PMID: 40272525 DOI: 10.1007/s00709-025-02053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025]
Abstract
This special mini-review was planned as a synthesis of current understanding of the role of tapetum and orbicules, of the knowledge on pollenkitt, with addition of our own data on experimental orbicule simulation. The aim was to show the development of knowledge and ideas through time. Tapetum types are so changeable that the idea of norm becomes ghostly. The review is based on our own and other authors' results. Cyclic-invasive tapeta, surprising exine-like tapetal surface, direct connections of tapetum with microspores via filaments are probably not rare phenomena. Our in vitro experiments on microspore exine simulations, which have led also to appearance of orbicule-like structures, support the view of their by-product nature, based on self-assembly. Different types of orbicules and their development are examined. Tapetum and orbicule functions and especially pollenkitt production are reviewed, together with the data on sporopollenin. Some concise data on molecular and genetic studies are added.
Collapse
Affiliation(s)
- Nina I Gabarayeva
- Komarov Botanical Institute, Popov st. 2, 197376, St. Petersburg, Russia.
| |
Collapse
|
3
|
Gao YJ, Zhang YL, Wang WH, Latif A, Wang YT, Tang WQ, Pu CX, Sun Y. Protein phosphatase 2A B'α and B'β promote pollen wall construction partially through BRASSINAZOLE-RESISTANT 1-activated cysteine protease gene CEP1 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1735-1751. [PMID: 39798077 DOI: 10.1093/jxb/eraf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/09/2025] [Indexed: 01/13/2025]
Abstract
A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of the tapetum. Our results demonstrated an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grain harboured sticky remnants and tectum breakages, resulting in failed release. B'α and B'β functioned partially through dephosphorylating and activating BRASSINAZOLE-RESISTANT 1 (BZR1). The bzr1 bes1 double and higher-order mutants of this BZR1/BES1 family displayed similar defects in the pollen wall, while bzr1-1D, having an active form of the BRZ1 protein, exhibited fertile pollen grains in a B'α and B'β dependent manner. Correspondingly, the level of phospho-BZR1 was increased and dephospho-BZR1 was decreased in b'aβ and bzr1-1D/b'aβ at anther stages 8-9 as compared with Col-0 and bzr1-1D, respectively. A cysteine protease gene CEP1 was identified as a BZR1 target, whose transcriptional activation necessitates brassinosteroid (BR)-responsive elements in the promoter region and the BZR1 DNA binding domain. The mRNA level of CEP1 at stages 8-9 was extremely low in bzr1 and bzr1 bes1, but higher in Col-0 and bzr1-1D depending on B'α and B'β. Furthermore, cep1 mutants displayed similar defects in the pollen wall. In brief, this study uncovered a PP2A-BZR1-CEP1 regulatory module, providing a new insight into pollen maturation mechanisms.
Collapse
Affiliation(s)
- Ying-Jie Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yu-Lan Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wen-Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ammara Latif
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yue-Tian Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Wen-Qiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Cui-Xia Pu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
4
|
Muro K, Yamasaki A, Matsumoto M, Tanaka YK, Ogra Y, Fujiwara T, Yoshinari A, Takano J. The polar-localized borate exporter BOR1 facilitates boron transport in tapetal cells to the developing pollen grains. PLANT PHYSIOLOGY 2025; 197:kiaf100. [PMID: 40106664 PMCID: PMC11953027 DOI: 10.1093/plphys/kiaf100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 03/22/2025]
Abstract
Boron is an essential micronutrient required for plant cell wall integrity, as it is necessary for crosslinking the pectic polysaccharide rhamnogalacturonan II. Reproductive organs require a greater amount of boron for development and growth compared with vegetative organs. However, the mechanism by which plants distribute boron to specific organs is not fully understood. Under boron-limited conditions, the borate exporter BOR1 plays a central role in transporting boron from the roots to the shoots in Arabidopsis (Arabidopsis thaliana). Here, we found that BOR1 is expressed in the tapetal cells of young anthers in unopened buds, showing polar localization toward the locule where microspores develop. Tapetum-localized BOR1 undergoes endocytosis and is subsequently degraded during anther development. BOR1 degradation occurs independently of the lysine residue at Position 590 of BOR1, which is responsible for high boron-induced ubiquitination and degradation. Loss-of-function bor1 mutants exhibit disrupted pollen structure, causing reduced fertility under boron-sufficient conditions in the wild type. These phenotypes were rescued by supplementing with high boron concentrations. Furthermore, inflorescence stem grafting experiments suggested that BOR1-dependent boron transport in the flower is necessary for pollen development and subsequent fertilization under boron-sufficient conditions. Our findings suggest the borate exporter BOR1, together with the previously described boric acid channel NIP7;1, facilitates boron transport in tapetal cells toward the locule, thereby supporting pollen development in young anthers under boron-limited conditions.
Collapse
Affiliation(s)
- Keita Muro
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Arisa Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Maki Matsumoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Akira Yoshinari
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Junpei Takano
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka 599-8531, Japan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
| |
Collapse
|
5
|
Huang Z, Bie H, Li M, Xia L, Chen L, Chen Y, Wang L, Gan Z, Cao K. Integrated GWAS, BSA-seq, and RNA-seq analyses to identify candidate genes associated with male fertility trait in peach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109525. [PMID: 39837212 DOI: 10.1016/j.plaphy.2025.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
Male sterility in peach (Prunus persica L.), characterized by the absence of fertile pollen grains in the anther, is determined by a recessive allele in homozygosis of the major gene located on chromosome 6. Developing tightly linked molecular markers can help identify appropriate peach parents or male-sterile plants for early culling in segregating progenies, thereby increasing breeding efficiency. In this study, we performed comprehensive research integrating genome-wide association study, bulked segregant analysis, and tissue-specific transcriptome sequencing for precisely characterizing the genes associated with male sterility and fertility in peach. We identified the candidate gene Prupe.6G027000, which encodes an ATP-binding cassette transporter G family member 26 (ABCG26), as a reliable candidate for controlling the targeted traits, as indicated by gene expression profiling and validated by quantitative real-time polymerase chain reaction, in situ hybridization, and virus-induced gene silencing. Prupe.6G027000 was transcribed preferentially on the tapetum and microspore surface, and its transient silencing caused severe pollen abortion in peach. The genotypes of nonsynonymous single-nucleotide variation (T > C) harbored in the coding region of Prupe.6G027000 exhibited approximately 96.2% consistency with male fertile or sterile phenotype in 579 peach accessions. These findings lay the foundation for dissecting the genetic basis of male fertility traits, and facilitating the establishment of a marker-assisted selection system in peaches.
Collapse
Affiliation(s)
- Zhenyu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Hangling Bie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Lehan Xia
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Long Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yuling Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lirong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Zengyu Gan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Ke Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China.
| |
Collapse
|
6
|
Xu W, Peng X, Li Y, Zeng X, Yan W, Wang C, Wang CR, Chen S, Xu C, Tang X. OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice. RICE (NEW YORK, N.Y.) 2024; 17:54. [PMID: 39207611 PMCID: PMC11362464 DOI: 10.1186/s12284-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Pollen is encased in a robust wall that shields the male gametophyte from various stresses and aids in pollination. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. The exine is mainly composed of sporopollenin, which is biopolymers of aliphatic lipids and phenolics. The process of exine formation has been the subject of extensive research, yet the underlying molecular mechanisms remain elusive. In this study, we identified a rice mutant of the OsSNDP4 gene that is impaired in pollen development. We demonstrated that OsSNDP4, a putative Sec14-nodulin domain protein, exhibits a preference for binding to phosphatidylinositol (3)-phosphate [PI(3)P], a lipid primarily found in endosomal and vacuolar membranes. The OsSNDP4 protein was detected in association with the endoplasmic reticulum (ER), vacuolar membranes, and the nucleus. OsSNDP4 expression was detected in all tested organs but was notably higher in anthers during exine development. Loss of OsSNDP4 function led to abnormal vacuole dynamics, inhibition in Ubisch body development, and premature degradation of cellular contents and organelles in the tapetal cells. Microspores from the ossndp4 mutant plant displayed abnormal exine formation, abnormal vacuole enlargement, and ultimately, pollen abortion. RNA-seq assay revealed that genes involved in the biosynthesis of fatty acid and secondary metabolites, the biosynthesis of lipid polymers, and exosome formation were enriched among the down-regulated genes in the mutant anthers, which correlated with the morphological defects observed in the mutant anthers. Base on these findings, we propose that OsSNDP4 regulates pollen development by binding to PI(3)P and influencing the dynamics of membrane systems. The involvement of membrane systems in the regulation of sporopollenin biosynthesis, Ubisch body formation, and exine formation provides a novel mechanism regulating pollen wall development.
Collapse
Affiliation(s)
- Weitao Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinhuang Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Rui Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shunquan Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| |
Collapse
|
7
|
Lai Z, Wang J, Fu Y, Wang M, Ma H, Peng S, Chang F. Revealing the role of CCoAOMT1: fine-tuning bHLH transcription factors for optimal anther development. SCIENCE CHINA. LIFE SCIENCES 2024; 67:565-578. [PMID: 38097889 DOI: 10.1007/s11427-023-2461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/12/2023] [Indexed: 03/05/2024]
Abstract
The tapetum, a crucial innermost layer encompassing male reproductive cells within the anther wall, plays a pivotal role in normal pollen development. The transcription factors (TFs) bHLH010/089/091 redundantly facilitate the rapid nuclear accumulation of DYSFUNCTIONAL TAPETUM 1, a gatekeeper TF in the tapetum. Nevertheless, the regulatory mechanisms governing the activity of bHLH010/089/091 remain unknown. In this study, we reveal that caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1) is a negative regulator affecting the nuclear localization and function of bHLH010 and bHLH089, probably through their K259 site. Our findings underscore that CCoAOMT1 promotes the nuclear export and degradation of bHLH010 and bHLH089. Intriguingly, elevated CCoAOMT1 expression resulted in defective pollen development, mirroring the phenotype observed in bhlh010 bhlh089 mutants. Moreover, our investigation revealed that the K259A mutation in the bHLH089 protein disrupted its translocation from the nucleus to the cytosol and impeded its degradation induced by CCoAOMT1. Importantly, transgenic plants with the probHLH089::bHLH089K259A construct failed to rescue proper pollen development or gene expression in bhlh010 bhlh089 mutants. Collectively, these findings emphasize the need to maintain balanced TF homeostasis for male fertility. They firmly establish CCoAOMT1 as a pivotal regulator that is instrumental in achieving equilibrium between the induction of the tapetum transcriptional network and ensuring appropriate anther development.
Collapse
Affiliation(s)
- Zesen Lai
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- School of Tropical Agriculture and Forestry, Agriculture-Rural Affairs and Rural Revitalization, Hainan University, Haikou, 570228, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jianzheng Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ying Fu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Menghan Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Shiqing Peng
- School of Tropical Agriculture and Forestry, Agriculture-Rural Affairs and Rural Revitalization, Hainan University, Haikou, 570228, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Fang Chang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
8
|
Xu J, Liao R, Xue M, Shang S, Zhou M, Liu Z, Feng H, Huang S. Mutations in BrABCG26, encoding an ATP-binding cassette transporter, are responsible for male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:63. [PMID: 38427048 DOI: 10.1007/s00122-024-04573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
KEY MESSAGE The gene BrABCG26 responsible for male sterility of Chinese cabbage was confirmed by two allelic mutants. Male-sterile lines are an important way of heterosis utilization in Chinese cabbage. In this study, two allelic male-sterile mutants msm3-1 and msm3-2 were obtained from a Chinese cabbage double haploid (DH) line 'FT' by using EMS-mutagenesis. Compared to the wild-type 'FT,' the stamens of mutants were completely degenerated and had no pollen, and other characters had no obvious differences. Cytological observation revealed that the failure of vacuolation of the mononuclear microspore, accompanied by abnormal tapetal degradation, resulted in anther abortion in mutants. Genetic analysis showed that a recessive gene controlled the mutant trait. MutMap combined with kompetitive allele specific PCR genotyping analyses showed that BraA01g038270.3C, encoding a transporter ABCG26 that played a vital role in pollen wall formation, was the candidate gene for msm3-1, named BrABCG26. Compared with wild-type 'FT,' the mutations existed on the second exon (C to T) and the sixth exon (C to T) of BrABCG26 gene in mutants msm3-1 and msm3-2, leading to the loss-of-function truncated protein, which verified the BrABCG26 function in stamen development. Subcellular localization and expression pattern analysis indicated that BrABCG26 was localized in the nucleus and was expressed in all organs, with the highest expression in flower buds. Compared to the wild-type 'FT,' the expressions of BrABCG26 were significantly reduced in flower buds and anthers of mutants. Promoter activity analysis showed that a strong GUS signal was detected in flower buds. These results indicated that BrABCG26 is responsible for the male sterility of msm3 mutants in Chinese cabbage.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Ruiqi Liao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Meihui Xue
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shayu Shang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Mingwei Zhou
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
9
|
Wiese AJ, Torutaeva E, Honys D. The transcription factors and pathways underpinning male reproductive development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1354418. [PMID: 38390292 PMCID: PMC10882072 DOI: 10.3389/fpls.2024.1354418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
As Arabidopsis flowers mature, specialized cells within the anthers undergo meiosis, leading to the production of haploid microspores that differentiate into mature pollen grains, each containing two sperm cells for double fertilization. During pollination, the pollen grains are dispersed from the anthers to the stigma for subsequent fertilization. Transcriptomic studies have identified a large number of genes expressed over the course of male reproductive development and subsequent functional characterization of some have revealed their involvement in floral meristem establishment, floral organ growth, sporogenesis, meiosis, microsporogenesis, and pollen maturation. These genes encode a plethora of proteins, ranging from transcriptional regulators to enzymes. This review will focus on the regulatory networks that control male reproductive development, starting from flower development and ending with anther dehiscence, with a focus on transcription factors and some of their notable target genes.
Collapse
Affiliation(s)
- Anna Johanna Wiese
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Elnura Torutaeva
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - David Honys
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
10
|
Yang W, Yao D, Duan H, Zhang J, Cai Y, Lan C, Zhao B, Mei Y, Zheng Y, Yang E, Lu X, Zhang X, Tang J, Yu K, Zhang X. VAMP726 from maize and Arabidopsis confers pollen resistance to heat and UV radiation by influencing lignin content of sporopollenin. PLANT COMMUNICATIONS 2023; 4:100682. [PMID: 37691288 PMCID: PMC10721520 DOI: 10.1016/j.xplc.2023.100682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Sporopollenin in the pollen cell wall protects male gametophytes from stresses. Phenylpropanoid derivatives, including guaiacyl (G) lignin units, are known to be structural components of sporopollenin, but the exact composition of sporopollenin remains to be fully resolved. We analyzed the phenylpropanoid derivatives in sporopollenin from maize and Arabidopsis by thioacidolysis coupled with nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). The NMR and GC-MS results confirmed the presence of p-hydroxyphenyl (H), G, and syringyl (S) lignin units in sporopollenin from maize and Arabidopsis. Strikingly, H units account for the majority of lignin monomers in sporopollenin from these species. We next performed a genome-wide association study to explore the genetic basis of maize sporopollenin composition and identified a vesicle-associated membrane protein (ZmVAMP726) that is strongly associated with lignin monomer composition of maize sporopollenin. Genetic manipulation of VAMP726 affected not only lignin monomer composition in sporopollenin but also pollen resistance to heat and UV radiation in maize and Arabidopsis, indicating that VAMP726 is functionally conserved in monocot and dicot plants. Our work provides new insight into the lignin monomers that serve as structural components of sporopollenin and characterizes VAMP726, which affects sporopollenin composition and stress resistance in pollen.
Collapse
Affiliation(s)
- Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Dongdong Yao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China; National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yaling Cai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yong Mei
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Erbing Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoduo Lu
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; The Shennong Laboratory, Zhengzhou 450002, China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
11
|
Qiao Y, Hou B, Qi X. Biosynthesis and transport of pollen coat precursors in angiosperms. NATURE PLANTS 2023; 9:864-876. [PMID: 37231040 DOI: 10.1038/s41477-023-01413-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
The pollen coat is a hydrophobic mixture on the pollen grain surface, which plays an important role in protecting male gametes from various environmental stresses and microorganism attacks, and in pollen-stigma interactions during pollination in angiosperms. An abnormal pollen coat can result in humidity-sensitive genic male sterility (HGMS), which can be used in two-line hybrid crop breeding. Despite the crucial functions of the pollen coat and the application prospect of its mutants, few studies have focused on pollen coat formation. In this Review, the morphology, composition and function of different types of pollen coat are assessed. On the basis of the ultrastructure and development process of the anther wall and exine found in rice and Arabidopsis, the genes and proteins involved in the biosynthesis of pollen coat precursors and the possible transport and regulation process are sorted. Additionally, current challenges and future perspectives, including potential strategies utilizing HGMS genes in heterosis and plant molecular breeding, are highlighted.
Collapse
Affiliation(s)
- Yuyuan Qiao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingzhu Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Comprehensive Insight into Tapetum-Mediated Pollen Development in Arabidopsis thaliana. Cells 2023; 12:cells12020247. [PMID: 36672181 PMCID: PMC9857336 DOI: 10.3390/cells12020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
In flowering plants, pollen development is a key process that is essential for sexual reproduction and seed set. Molecular and genetic studies indicate that pollen development is coordinatedly regulated by both gametophytic and sporophytic factors. Tapetum, the somatic cell layer adjacent to the developing male meiocytes, plays an essential role during pollen development. In the early anther development stage, the tapetal cells secrete nutrients, proteins, lipids, and enzymes for microsporocytes and microspore development, while initiating programmed cell death to provide critical materials for pollen wall formation in the late stage. Therefore, disrupting tapetum specification, development, or function usually leads to serious defects in pollen development. In this review, we aim to summarize the current understanding of tapetum-mediated pollen development and illuminate the underlying molecular mechanism in Arabidopsis thaliana.
Collapse
|
13
|
Sun N, Li C, Jiang X, Gai Y. Transcriptomic Insights into Functions of LkABCG36 and LkABCG40 in Nicotiana tabacum. PLANTS (BASEL, SWITZERLAND) 2023; 12:227. [PMID: 36678941 PMCID: PMC9860546 DOI: 10.3390/plants12020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
ATP-binding cassette transporters (ABC transporters) play crucial physiological roles in plants, such as being involved in the growth and development of organs, nutrient acquisition, response to biotic and abiotic stress, disease resistance, and the interaction of the plant with its environment. The ABCG subfamily of proteins are involved in the process of plant vegetative organ development. In contrast, the functions of the ABCG36 and ABCG40 transporters have received considerably less attention. Here, we investigated changes in the transcriptomic data of the stem tissue of transgenic tobacco (Nicotiana tabacum) with LkABCG36 and LkABCG40 (Larix kaempferi) overexpression, and compared them with those of the wild type (WT). Compared with the WT, we identified 1120 and 318 differentially expressed genes (DEGs) in the LkABCG36 and LkABCG40 groups, respectively. We then annotated the function of the DEGs against the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The results showed enrichment in cell wall biogenesis and hormone signal transduction functional classes in transgenic LkABCG36 tobacco. In transgenic LkABCG40 tobacco, the enrichment was involved in metabolic and biosynthetic processes, mainly those related to environmental adaptation. In addition, among these DEGs, many auxin-related genes were significantly upregulated in the LkABCG36 group, and we found key genes involved in environmental adaptation in the LkABCG40 group, including an encoding resistance protein and a WRKY transcription factor. These results suggest that LkABCG36 and LkABCG40 play important roles in plant development and environmental adaptation. LkABCG36 may promote plant organ growth and development by increasing auxin transport, whereas LkABCG40 may inhibit the expression of WRKY to improve the resistance of transgenic tobacco. Our results are beneficial to researchers pursuing further study of the functions of ABCG36 and ABCG40.
Collapse
Affiliation(s)
- Nan Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Can Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| |
Collapse
|
14
|
bHLH010/089 Transcription Factors Control Pollen Wall Development via Specific Transcriptional and Metabolic Networks in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms231911683. [PMID: 36232985 PMCID: PMC9570398 DOI: 10.3390/ijms231911683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
The pollen wall is a specialized extracellular cell wall that protects male gametophytes from various environmental stresses and facilitates pollination. Here, we reported that bHLH010 and bHLH089 together are required for the development of the pollen wall by regulating their specific downstream transcriptional and metabolic networks. Both the exine and intine structures of bhlh010 bhlh089 pollen grains were severely defective. Further untargeted metabolomic and transcriptomic analyses revealed that the accumulation of pollen wall morphogenesis-related metabolites, including polysaccharides, glyceryl derivatives, and flavonols, were significantly changed, and the expression of such metabolic enzyme-encoding genes and transporter-encoding genes related to pollen wall morphogenesis was downregulated in bhlh010 bhlh089 mutants. Among these downstream target genes, CSLB03 is a novel target with no biological function being reported yet. We found that bHLH010 interacted with the two E-box sequences at the promoter of CSLB03 and directly activated the expression of CSLB03. The cslb03 mutant alleles showed bhlh010 bhlh089–like pollen developmental defects, with most of the pollen grains exhibiting defective pollen wall structures.
Collapse
|
15
|
Liu C, Li Z, Tian D, Xu M, Pan J, Wu H, Wang C, Otegui MS. AP1/2β-mediated exocytosis of tapetum-specific transporters is required for pollen development in Arabidopsis thaliana. THE PLANT CELL 2022; 34:3961-3982. [PMID: 35766888 PMCID: PMC9516047 DOI: 10.1093/plcell/koac192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
AP-1 and AP-2 adaptor protein (AP) complexes mediate clathrin-dependent trafficking at the trans-Golgi network (TGN) and the plasma membrane, respectively. Whereas AP-1 is required for trafficking to plasma membrane and vacuoles, AP-2 mediates endocytosis. These AP complexes consist of four subunits (adaptins): two large subunits (β1 and γ for AP-1 and β2 and α for AP-2), a medium subunit μ, and a small subunit σ. In general, adaptins are unique to each AP complex, with the exception of β subunits that are shared by AP-1 and AP-2 in some invertebrates. Here, we show that the two putative Arabidopsis thaliana AP1/2β adaptins co-assemble with both AP-1 and AP-2 subunits and regulate exocytosis and endocytosis in root cells, consistent with their dual localization at the TGN and plasma membrane. Deletion of both β adaptins is lethal in plants. We identified a critical role of β adaptins in pollen wall formation and reproduction, involving the regulation of membrane trafficking in the tapetum and pollen germination. In tapetal cells, β adaptins localize almost exclusively to the TGN and mediate exocytosis of the plasma membrane transporters such as ATP-binding cassette (ABC)G9 and ABCG16. This study highlights the essential role of AP1/2β adaptins in plants and their specialized roles in specific cell types.
Collapse
Affiliation(s)
- Chan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhimin Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dan Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haijun Wu
- Authors for correspondence: (M.S.O.); (C.W.); (H.W.)
| | - Chao Wang
- Authors for correspondence: (M.S.O.); (C.W.); (H.W.)
| | | |
Collapse
|
16
|
Fang C, Wu S, Niu C, Hou Q, An X, Wei X, Zhao L, Jiang Y, Liu X, Wan X. Triphasic regulation of ZmMs13 encoding an ABCG transporter is sequentially required for callose dissolution, pollen exine and anther cuticle formation in maize. J Adv Res 2022:S2090-1232(22)00208-9. [PMID: 36130683 DOI: 10.1016/j.jare.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION ATP Binding Cassette G (ABCG) transporters are associated with plant male reproduction, while their regulatory mechanisms underlying anther and pollen development remain largely unknown. OBJECTIVES Identify and characterize a male-sterility gene ZmMs13 encoding an ABCG transporter in modulating anther and pollen development in maize. METHODS Phenotypic, cytological observations, and histochemistry staining were performed to characterize the ms13-6060 mutant. Map-based cloning and CRISPR/Cas9 gene editing were used to identify ZmMs13 gene. RNA-seq data and qPCR analyses, phylogenetic and microsynteny analyses, transient dual-luciferase reporter and EMSA assays, subcellular localization, and ATPase activity and lipidomic analyses were carried out to determine the regulatory mechanisms of ZmMs13 gene. RESULTS Maize ms13-6060 mutant displays complete male sterility with delayed callose degradation, premature tapetal programmed cell death (PCD), and defective pollen exine and anther cuticle formation. ZmMs13 encodes a plasm membrane (PM)- and endoplasmic reticulum (ER)-localized half-size ABCG transporter (ZmABCG2a). The allele of ZmMs13 in ms13-6060 mutant has one amino acid (I311) deletion due to a 3-bp deletion in its fourth exon. The I311 and other conserved amino acid K99 are essential for the ATPase and lipid binding activities of ZmMS13. ZmMs13 is specifically expressed in anthers with three peaks at stages S5, S8b, and S10, which are successively regulated by transcription factors ZmbHLH122, ZmMYB84, and ZmMYB33-1/-2 at these three stages. The triphasic regulation of ZmMs13 is sequentially required for callose dissolution, tapetal PCD and pollen exine development, and anther cuticle formation, corresponding to transcription alterations of callose-, ROS-, PCD-, sporopollenin-, and anther cuticle-related genes in ms13-6060 anthers. CONCLUSION ms13-6060 mutation with one key amino acid (I311) deletion greatly reduces ZmMS13 ATPase and lipid binding activities and displays multiple effects during maize male reproduction. Our findings provide new insights into molecular mechanisms of ABCG transporters controlling anther and pollen development and male fertility in plants.
Collapse
Affiliation(s)
- Chaowei Fang
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Canfang Niu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Lina Zhao
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yilin Jiang
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China
| | - Xinze Liu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| |
Collapse
|
17
|
ATP-Binding Cassette G Transporters and Their Multiple Roles Especially for Male Fertility in Arabidopsis, Rice and Maize. Int J Mol Sci 2022; 23:ijms23169304. [PMID: 36012571 PMCID: PMC9409143 DOI: 10.3390/ijms23169304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette subfamily G (ABCG) transporters are extensive in plants and play essential roles in various processes influencing plant fitness, but the research progress varies greatly among Arabidopsis, rice and maize. In this review, we present a consolidated nomenclature and characterization of the whole 51 ABCG transporters in maize, perform a phylogenetic analysis and classification of the ABCG subfamily members in maize, and summarize the latest research advances in ABCG transporters for these three plant species. ABCG transporters are involved in diverse processes in Arabidopsis and rice, such as anther and pollen development, vegetative and female organ development, abiotic and biotic stress response, and phytohormone transport, which provide useful clues for the functional investigation of ABCG transporters in maize. Finally, we discuss the current challenges and future perspectives for the identification and mechanism analysis of substrates for plant ABCG transporters. This review provides a basic framework for functional research and the potential application of ABCG transporters in multiple plants, including maize.
Collapse
|
18
|
Ichino T, Yazaki K. Modes of secretion of plant lipophilic metabolites via ABCG transporter-dependent transport and vesicle-mediated trafficking. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102184. [PMID: 35217474 DOI: 10.1016/j.pbi.2022.102184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Many lipophilic metabolites produced by terrestrial plants are deposited on plant surfaces to protect them from abiotic and biotic stresses. Plant-derived lipophilic metabolites include apoplastic biopolymers, such as wax, cutin, sporopollenin, suberin, and lignin, as well as low-molecular-weight secondary metabolites. These secreted molecules confer adaptive toughness and robustness on plants. The mechanisms responsible for the secretion of these lipophilic metabolites remain unclear, although two pathways, mediated by transporters and vesicles, have been proposed. Recent genetic and biochemical studies have shown that G-type ATP-binding cassette (ABCG) transporters and membrane trafficking factors are involved in the apoplastic accumulation of lipophilic metabolites in plants. These two distinctive modes of secretion may be either exclusive or collaborative. This review describes these transporter-dependent and vesicle-mediated mechanisms underlying the secretion of lipophilic metabolites.
Collapse
Affiliation(s)
- Takuji Ichino
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan.
| |
Collapse
|
19
|
Chen L, Ji C, Zhou D, Gou X, Tang J, Jiang Y, Han J, Liu YG, Chen L, Xie Y. OsLTP47 may function in a lipid transfer relay essential for pollen wall development in rice. J Genet Genomics 2022; 49:481-491. [PMID: 35331929 DOI: 10.1016/j.jgg.2022.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
Abstract
In plants, lipid transfer proteins (LTPs) transport pollen wall constituents from the tapetum to the exine, a process essential for pollen wall development. However, the functional cooperation of different LTPs in pollen wall development is not well understood. In this study, we have identified and characterized a grass-specific LTP gene, OsLTP47, an important regulator of pollen wall formation in rice (Oryza sativa). OsLTP47 encodes a membrane-localized LTP and in vitro lipid-binding assays confirms that OsLTP47 has lipid-binding activity. Dysfunction of OsLTP47 causes disordered lipid metabolism and defective pollen walls, leading to male sterility. Yeast two-hybrid and pull-down assays reveal that OsLTP47 physically interacts with another LTP, OsC6. These findings suggest that the plasma membrane-localized OsLTP47 may function as a mediator in a lipid transfer relay through association with cytosolic and/or locular OsC6 for pollen wall development and that various LTPs may function in a coordinated manner to transport lipid molecules during pollen wall development.
Collapse
Affiliation(s)
- Libin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Chonghui Ji
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Degui Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xin Gou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jianian Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yongjie Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
20
|
Huang C, Li Y, Wang K, Xi J, Xu Y, Hong J, Si X, Ye H, Lyu S, Xia G, Wang J, Li P, Xing Y, Wang Y, Huang J. Integrated transcriptome and proteome analysis of developing embryo reveals the mechanisms underlying the high levels of oil accumulation in Carya cathayensis Sarg. TREE PHYSIOLOGY 2022; 42:684-702. [PMID: 34409460 DOI: 10.1093/treephys/tpab112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Hickory (Carya cathayensis Sarg.) is an extraordinary nut-bearing deciduous arbor with high content of oil in its embryo. However, the molecular mechanism underlying high oil accumulation is mostly unknown. Here, we reported that the lipid droplets and oil accumulation gradually increased with the embryo development and the oil content was up to ~76% at maturity. Furthermore, transcriptome and proteome analysis of developing hickory embryo identified 32,907 genes and 9857 proteins. Time-series analysis of gene expressions showed that these genes were divided into 12 clusters and lipid metabolism-related genes were enriched in Cluster 3, with the highest expression levels at 95 days after pollination (S2). Differentially expressed genes and proteins indicated high correlation, and both were enriched in the lipid metabolism. Notably, the genes involved in biosynthesis, transport of fatty acid/lipid and lipid droplets formation had high expression levels at S2, while the expression levels of other genes required for suberin/wax/cutin biosynthesis and lipid degradation were very low at all the sampling time points, ultimately promoting the accumulation of oil. Quantitative reverse-transcription PCR analysis also verified the results of RNA-seq. The co-regulatory networks of lipid metabolism were further constructed and WRINKLED1 (WRI1) was a core transcriptional factor located in the nucleus. Of note, CcWRI1A/B could directly activate the expression of some genes (CcBCCP2A, CcBCCP2B, CcFATA and CcFAD3) required for fatty acid synthesis. These results provided in-depth evidence for revealing the molecular mechanism of high oil accumulation in hickory embryo.
Collapse
Affiliation(s)
- Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Jianwei Xi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yifan Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Junyan Hong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Xiaolin Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Hongyu Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Guohua Xia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Jianhua Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Peipei Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yulin Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yige Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
21
|
Liu YJ, Li D, Gong J, Wang YB, Chen ZB, Pang BS, Chen XC, Gao JG, Yang WB, Zhang FT, Tang YM, Zhao CP, Gao SQ. Comparative transcriptome and DNA methylation analysis in temperature-sensitive genic male sterile wheat BS366. BMC Genomics 2021; 22:911. [PMID: 34930131 PMCID: PMC8686610 DOI: 10.1186/s12864-021-08163-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Known as the prerequisite component for the heterosis breeding system, the male sterile line determines the hybrid yield and seed purity. Therefore, a deep understanding of the mechanism and gene network that leads to male sterility is crucial. BS366, a temperature-sensitive genic male sterile (TGMS) line, is male sterile under cold conditions (12 °C with 12 h of daylight) but fertile under normal temperature (20 °C with 12 h of daylight). Results During meiosis, BS366 was defective in forming tetrads and dyads due to the abnormal cell plate. During pollen development, unusual vacuolated pollen that could not accumulate starch grains at the binucleate stage was also observed. Transcriptome analysis revealed that genes involved in the meiotic process, such as sister chromatid segregation and microtubule-based movement, were repressed, while genes involved in DNA and histone methylation were induced in BS366 under cold conditions. MethylRAD was used for reduced DNA methylation sequencing of BS366 spikes under both cold and control conditions. The differentially methylated sites (DMSs) located in the gene region were mainly involved in carbohydrate and fatty acid metabolism, lipid metabolism, and transport. Differentially expressed and methylated genes were mainly involved in cell division. Conclusions These results indicated that the methylation of genes involved in carbon metabolism or fatty acid metabolism might contribute to male sterility in BS366 spikes, providing novel insight into the molecular mechanism of wheat male sterility. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08163-3.
Collapse
Affiliation(s)
- Yong-Jie Liu
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Dan Li
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Jie Gong
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Yong-Bo Wang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhao-Bo Chen
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bin-Shuang Pang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Xian-Chao Chen
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian-Gang Gao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wei-Bing Yang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Feng-Ting Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Yi-Miao Tang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China.
| | - Chang-Ping Zhao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China.
| | - Shi-Qing Gao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China.
| |
Collapse
|
22
|
Zhou T, Yang Y, Li T, Liu H, Zhou F, Zhao Y. Sesame β-ketoacyl-acyl carrier protein synthase I regulates pollen development by interacting with an adenosine triphosphate-binding cassette transporter in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2021; 173:1048-1062. [PMID: 34270100 DOI: 10.1111/ppl.13501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Male gametogenesis is an important biological process critical for seed formation and successful breeding. Understanding the molecular mechanisms of male fertility might facilitate hybrid breeding and increase crop yields. Sesame anther development is largely unknown. Here, a sesame β-ketoacyl-[acyl carrier protein] synthase I (SiKASI) was cloned and characterized as being involved in pollen and pollen wall development. Immunohistochemical analysis showed that the spatiotemporal expression of SiKASI protein was altered in sterile sesame anthers compared with fertile anthers. In addition, SiKASI overexpression in Arabidopsis caused male sterility. Cytological observations revealed defective microspore and pollen wall development in SiKASI-overexpressing plants. Aberrant lipid droplets were detected in the tapetal cells of SiKASI-overexpressing plants, and most of the microspores of transgenic plants contained few cytoplasmic inclusions, with irregular pollen wall components embedded on their surfaces. Moreover, the fatty acid metabolism and the expression of a sporopollenin biosynthesis-related gene set were altered in the anthers of SiKASI-overexpressing plants. Additionally, SiKASI interacted with an adenosine triphosphate (ATP)-binding cassette (ABC) transporter. Taken together, our findings suggested that SiKASI was crucial for fatty acid metabolism and might interact with ABCG18 for normal pollen fertility in Arabidopsis.
Collapse
Affiliation(s)
- Ting Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuanxiao Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Tianyu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hongyan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Fang Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yingzhong Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
23
|
Li S, Yaermaimaiti S, Tian XM, Wang ZW, Xu WJ, Luo J, Kong LY. Dynamic metabolic and transcriptomic profiling reveals the biosynthetic characteristics of hydroxycinnamic acid amides (HCAAs) in sunflower pollen. Food Res Int 2021; 149:110678. [PMID: 34600680 DOI: 10.1016/j.foodres.2021.110678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022]
Abstract
Sunflower pollen is a natural nutritious food with a long history and multiple functions, however, the main chemical components apart from flavonoids and their biosynthesis processes have not been thoroughly investigated. In this study, seven hydroxycinnamic acid amides (HCAAs) (1-7) abundant in sunflower pollen were isolated and identified as one type of the pollen's main chemicals. For a comprehensive understanding of HCAA biosynthesis in Helianthus annuus flowers, RNA-seq, metabolomics, and key genes related to biosynthesis in the sunflower were studied. A large number of compounds at different sunflower growth stages (the 7th, 14th, 21st, and 28th days) and high expression levels of related genes in the transcriptome were detected. A molecular network was constructed to clarify the synthetic pathway of HCAAs, which revealed high transcriptional levels of spermidine hydroxycinnamoyl transferase genes (HaSHT2795 and HaSHT2436) in 14-21-days-old flowers. HaSHT2795 enzymes catalyze tri-coumaroylspermidine formation, and virus-induced gene silencing to inhibit HaSHT2795 and HaSHT2436 could significantly reduce the synthesis of hydroxycinnamic acid amides in sunflower pollen. HCAAs were inferred to be related to the formation of pollen walls and the health effects of pollen. Analyzing HCAA biosynthesis and accumulation in H. annuus pollen will be helpful to understand the functions of HCAAs in the development of pollen and its nutritional value.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Saimijiang Yaermaimaiti
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Meng Tian
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zi-Wen Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wen-Jun Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jun Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
24
|
Wang R, Dobritsa AA. Loss of THIN EXINE2 disrupts multiple processes in the mechanism of pollen exine formation. PLANT PHYSIOLOGY 2021; 187:133-157. [PMID: 34618131 PMCID: PMC8418410 DOI: 10.1093/plphys/kiab244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 05/25/2023]
Abstract
Exine, the sporopollenin-based outer layer of the pollen wall, forms through an unusual mechanism involving interactions between two anther cell types: developing pollen and tapetum. How sporopollenin precursors and other components required for exine formation are delivered from tapetum to pollen and assemble on the pollen surface is still largely unclear. Here, we characterized an Arabidopsis (Arabidopsis thaliana) mutant, thin exine2 (tex2), which develops pollen with abnormally thin exine. The TEX2 gene (also known as REPRESSOR OF CYTOKININ DEFICIENCY1 (ROCK1)) encodes a putative nucleotide-sugar transporter localized to the endoplasmic reticulum. Tapetal expression of TEX2 is sufficient for proper exine development. Loss of TEX2 leads to the formation of abnormal primexine, lack of primary exine elements, and subsequent failure of sporopollenin to correctly assemble into exine structures. Using immunohistochemistry, we investigated the carbohydrate composition of the tex2 primexine and found it accumulates increased amounts of arabinogalactans. Tapetum in tex2 accumulates prominent metabolic inclusions which depend on the sporopollenin polyketide biosynthesis and transport and likely correspond to a sporopollenin-like material. Even though such inclusions have not been previously reported, we show mutations in one of the known sporopollenin biosynthesis genes, LAP5/PKSB, but not in its paralog LAP6/PKSA, also lead to accumulation of similar inclusions, suggesting separate roles for the two paralogs. Finally, we show tex2 tapetal inclusions, as well as synthetic lethality in the double mutants of TEX2 and other exine genes, could be used as reporters when investigating genetic relationships between genes involved in exine formation.
Collapse
Affiliation(s)
- Rui Wang
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| | - Anna A. Dobritsa
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
25
|
Grienenberger E, Quilichini TD. The Toughest Material in the Plant Kingdom: An Update on Sporopollenin. FRONTIERS IN PLANT SCIENCE 2021; 12:703864. [PMID: 34539697 PMCID: PMC8446667 DOI: 10.3389/fpls.2021.703864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 05/16/2023]
Abstract
The extreme chemical and physical recalcitrance of sporopollenin deems this biopolymer among the most resilient organic materials on Earth. As the primary material fortifying spore and pollen cell walls, sporopollenin is touted as a critical innovation in the progression of plant life to a terrestrial setting. Although crucial for its protective role in plant reproduction, the inert nature of sporopollenin has challenged efforts to determine its composition for decades. Revised structural, chemical, and genetic experimentation efforts have produced dramatic advances in elucidating the molecular structure of this biopolymer and the mechanisms of its synthesis. Bypassing many of the challenges with material fragmentation and solubilization, insights from functional characterizations of sporopollenin biogenesis in planta, and in vitro, through a gene-targeted approach suggest a backbone of polyhydroxylated polyketide-based subunits and remarkable conservation of biochemical pathways for sporopollenin biosynthesis across the plant kingdom. Recent optimization of solid-state NMR and targeted degradation methods for sporopollenin analysis confirms polyhydroxylated α-pyrone subunits, as well as hydroxylated aliphatic units, and unique cross-linkage heterogeneity. We examine the cross-disciplinary efforts to solve the sporopollenin composition puzzle and illustrate a working model of sporopollenin's molecular structure and biosynthesis. Emerging controversies and remaining knowledge gaps are discussed, including the degree of aromaticity, cross-linkage profiles, and extent of chemical conservation of sporopollenin among land plants. The recent developments in sporopollenin research present diverse opportunities for harnessing the extraordinary properties of this abundant and stable biomaterial for sustainable microcapsule applications and synthetic material designs.
Collapse
Affiliation(s)
- Etienne Grienenberger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Teagen D. Quilichini
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
26
|
Goodman K, Paez-Valencia J, Pennington J, Sonntag A, Ding X, Lee HN, Ahlquist PG, Molina I, Otegui MS. ESCRT components ISTL1 andLIP5 are required for tapetal function and pollen viability. THE PLANT CELL 2021; 33:2850-2868. [PMID: 34125207 PMCID: PMC8408459 DOI: 10.1093/plcell/koab132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/07/2021] [Indexed: 05/03/2023]
Abstract
Pollen wall assembly is crucial for pollen development and plant fertility. The durable biopolymer sporopollenin and the constituents of the tryphine coat are delivered to developing pollen grains by the highly coordinated secretory activity of the surrounding tapetal cells. The role of membrane trafficking in this process, however, is largely unknown. In this study, we used Arabidopsis thaliana to characterize the role of two late-acting endosomal sorting complex required for transport (ESCRT) components, ISTL1 and LIP5, in tapetal function. Plants lacking ISTL1 and LIP5 form pollen with aberrant exine patterns, leading to partial pollen lethality. We found that ISTL1 and LIP5 are required for exocytosis of plasma membrane and secreted proteins in the tapetal cells at the free microspore stage, contributing to pollen wall development and tryphine deposition. Whereas the ESCRT machinery is well known for its role in endosomal trafficking, the function of ISTL1 and LIP5 in exocytosis is not a typical ESCRT function. The istl1 lip5 double mutants also show reduced intralumenal vesicle concatenation in multivesicular endosomes in both tapetal cells and developing pollen grains as well as morphological defects in early endosomes/trans-Golgi networks, suggesting that late ESCRT components function in the early endosomal pathway and exocytosis.
Collapse
Affiliation(s)
- Kaija Goodman
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Julio Paez-Valencia
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Janice Pennington
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Annika Sonntag
- Department of Biology, Algoma University, Ontario P6A 2G4, Canada
| | - Xinxin Ding
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Han Nim Lee
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Paul G. Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Oncology and Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
- Morgridge Institute for Research, Madison, Wisconsin 53706, USA
| | - Isabel Molina
- Department of Biology, Algoma University, Ontario P6A 2G4, Canada
| | - Marisa S. Otegui
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Author for Correspondence:
| |
Collapse
|
27
|
Li P, Tian J, Guo C, Luo S, Li J. Interaction of gibberellin and other hormones in almond anthers: phenotypic and physiological changes and transcriptomic reprogramming. HORTICULTURE RESEARCH 2021; 8:94. [PMID: 33931608 PMCID: PMC8087710 DOI: 10.1038/s41438-021-00527-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Low temperature causes anther dysfunction, severe pollen sterility and, ultimately, major yield losses in crop plants. Previous studies have shown that the gibberellic acid (GA) metabolic pathway plays an important role in this process by regulating tapetum function and pollen development. However, the interaction mechanism of GA with other hormones mediating anther development is still unclear. Herein, we collected and analyzed almond (Amygdalus communis L.) anthers at the meiosis, tetrad, 1-nucleus, and mature 2-nucleus stages. The growth rate per 1000 anthers exhibited a significant positive correlation with the total bioactive GA compound content, and the levels of all bioactive GA compounds were highest in the 1-nucleus pollen stage. GA3 treatment experiments indicated that exogenous GA3 increased the levels of indole-3-acetic acid (IAA), trans-zeatin (tZ), and jasmonic acid (JA) and decreased the levels of salicylic acid (SA) and abscisic acid (ABA); moreover, GA3 improved pollen viability and quantities under cold conditions, whereas PP333 (paclobutrazol, an inhibitor of GA biosynthesis) was antagonistic with GA3 in controlling anther development. RNA-seq and qRT-PCR results showed that GA played an important role in anther development by regulating the expression of other phytohormone pathway genes, dehydration-responsive element-binding/C-repeat binding factor (DREB1/CBF)-mediated signaling genes, and anther development pathway genes. Our results reveal the novel finding that GA interacts with other hormones to balance anther development under normal- and low-temperature conditions in almond.
Collapse
Affiliation(s)
- Peng Li
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Jia Tian
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Changkui Guo
- School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| | - Shuping Luo
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jiang Li
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
28
|
Wang K, Zhao X, Pang C, Zhou S, Qian X, Tang N, Yang N, Xu P, Xu X, Gao J. IMPERFECTIVE EXINE FORMATION (IEF) is required for exine formation and male fertility in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 105:625-635. [PMID: 33481140 DOI: 10.1007/s11103-020-01114-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE IEF, a novel plasma plasma membrane protein, is important for exine formation in Arabidopsis. Exine, an important part of pollen wall, is crucial for male fertility. The major component of exine is sporopollenin which are synthesized and secreted by tapetum. Although sporopollenin synthesis has been well studied, the transportation of it remains elusive. To understand it, we analyzed the gene expression pattern in tapetal microdissection data, and investigated the potential transporter genes that are putatively regulated by ABORTED MICROSPORES (AMS). Among these genes, we identified IMPERFECTIVE EXINE FORMATION (IEF) that is important for exine formation. Compared to the wild type, ief mutants exhibit severe male sterility and pollen abortion, suggesting IEF is crucial for pollen development and male fertility. Using both scanning and transmission electron microscopes, we showed that exine structure was not well defined in ief mutant. The transient expression of IEF-GFP driven by the 35S promoter indicated that IEF-GFP was localized in plasma membrane. Furthermore, AMS can specifically activate the expression of promoterIEF:LUC in vitro, which suggesting AMS regulates IEF for exine formation. The expression of ATP-BINDING CASSETTE TRANSPORTER G26 (AGCB26) was not affected in ief mutants. In addition, SEM and TEM data showed that the sporopollenin deposition is more defective in abcg26/ief-2 than that of in abcg26, which suggesting that IEF is involved in an independent sporopollenin transportation pathway. This work reveal a novel gene, IEF regulated by AMS that is essential for exine formation.
Collapse
Affiliation(s)
- Kaiqi Wang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xin Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chaoting Pang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Sida Zhou
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xuexue Qian
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Nan Tang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Naiying Yang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ping Xu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaofeng Xu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Jufang Gao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
29
|
Roumani M, Besseau S, Gagneul D, Robin C, Larbat R. Phenolamides in plants: an update on their function, regulation, and origin of their biosynthetic enzymes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2334-2355. [PMID: 33315095 DOI: 10.1093/jxb/eraa582] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Phenolamides represent a family of specialized metabolites, consisting of the association of hydroxycinnamic acid derivatives with aliphatic or aromatic amines. Since the discovery of the first phenolamide in the late 1940s, decades of phytochemical analyses have revealed a high structural diversity for this family and a wide distribution in the plant kingdom. The occurrence of structurally diverse phenolamides in almost all plant organs has led to early hypotheses on their involvement in floral initiation and fertility, as well as plant defense against biotic and abiotic stress. In the present work, we critically review the literature ascribing functional hypotheses to phenolamides and recent evidence on the control of their biosynthesis in response to biotic stress. We additionally provide a phylogenetic analysis of the numerous N-hydroxycinnamoyltransferases involved in the synthesis of phenolamides and discuss the potential role of other enzyme families in their diversification. The data presented suggest multiple evolutionary events that contributed to the extension of the taxonomic distribution and diversity of phenolamides.
Collapse
Affiliation(s)
- Marwa Roumani
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Sébastien Besseau
- EA 2106, Biomolécules et biotechnologies végétales (BBV), Université de Tours, Tours, France
| | - David Gagneul
- UMR 1158, BioEcoAgro, Université de Lille, INRAe, Université de Liège, UPJV, YNCREA, Université d'Artois, Université Littoral Côte d'Opale, Institut Charles Viollette (ICV), Lille, France
| | - Christophe Robin
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Romain Larbat
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| |
Collapse
|
30
|
Kobayashi K, Akita K, Suzuki M, Ohta D, Nagata N. Fertile Arabidopsis cyp704b1 mutant, defective in sporopollenin biosynthesis, has a normal pollen coat and lipidic organelles in the tapetum. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:109-116. [PMID: 34177330 PMCID: PMC8215455 DOI: 10.5511/plantbiotechnology.20.1214b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/14/2020] [Indexed: 06/01/2023]
Abstract
The exine acts as a protectant of the pollen from environmental stresses, and the pollen coat plays an important role in the attachment and recognition of the pollen to the stigma. The pollen coat is made of lipidic organelles in the tapetum. The pollen coat is necessary for fertility, as pollen coat-less mutants, such as those deficient in sterol biosynthesis, show severe male sterility. In contrast, the exine is made of sporopollenin precursors that are biosynthesized in the tapetum. Some mutants involved in sporopollenin biosynthesis lose the exine but show the fertile phenotype. One of these mutants, cyp704b1, was reported to lose not only the exine but also the pollen coat. To identify the cause of the fertile phenotype of the cyp704b1 mutant, the detailed structures of the tapetum tissue and pollen surface in the mutant were analyzed. As a result, the cyp704b1 mutant completely lost the normal exine but had high-electron-density granules localized where the exine should be present. Furthermore, normal lipidic organelles in the tapetum and pollen coat embedded between high-electron-density granules on the pollen surface were observed, unlike in a previous report, and the pollen coat was attached to the stigma. Therefore, the pollen coat is necessary for fertility, and the structure that functions like the exine, such as high-electron-density granules, on the pollen surface may play important roles in retaining the pollen coat in the cyp704b1 mutant.
Collapse
Affiliation(s)
- Keiko Kobayashi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyoku, Tokyo 112-8681, Japan
| | - Kae Akita
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyoku, Tokyo 112-8681, Japan
| | - Masashi Suzuki
- Faculty of Social Information Studies, Otsuma Women’s University, 12 Sanbancho, Chiyoda-ku, Tokyo 102-8357, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Noriko Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyoku, Tokyo 112-8681, Japan
| |
Collapse
|
31
|
Gräfe K, Schmitt L. The ABC transporter G subfamily in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:92-106. [PMID: 32459300 DOI: 10.1093/jxb/eraa260] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/21/2020] [Indexed: 05/02/2023]
Abstract
ABC transporters are ubiquitously present in all kingdoms and mediate the transport of a large spectrum of structurally different compounds. Plants possess high numbers of ABC transporters in relation to other eukaryotes; the ABCG subfamily in particular is extensive. Earlier studies demonstrated that ABCG transporters are involved in important processes influencing plant fitness. This review summarizes the functions of ABCG transporters present in the model plant Arabidopsis thaliana. These transporters take part in diverse processes such as pathogen response, diffusion barrier formation, or phytohormone transport. Studies involving knockout mutations reported pleiotropic phenotypes of the mutants. In some cases, different physiological roles were assigned to the same protein. The actual transported substrate(s), however, still remain to be determined for the majority of ABCG transporters. Additionally, the proposed substrate spectrum of different ABCG proteins is not always reflected by sequence identities between ABCG members. Applying only reverse genetics is thereby insufficient to clearly identify the substrate(s). We therefore stress the importance of in vitro studies in addition to in vivo studies in order to (i) clarify the substrate identity; (ii) determine the transport characteristics including directionality; and (iii) identify dimerization partners of the half-size proteins, which might in turn affect substrate specificity.
Collapse
Affiliation(s)
- Katharina Gräfe
- Institute of Biochemistry and Cluster of Excellence on Plant Sciences CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry and Cluster of Excellence on Plant Sciences CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
32
|
Delli-Ponti R, Shivhare D, Mutwil M. Using Gene Expression to Study Specialized Metabolism-A Practical Guide. FRONTIERS IN PLANT SCIENCE 2021; 11:625035. [PMID: 33510763 PMCID: PMC7835209 DOI: 10.3389/fpls.2020.625035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 05/25/2023]
Abstract
Plants produce a vast array of chemical compounds that we use as medicines and flavors, but these compounds' biosynthetic pathways are still poorly understood. This paucity precludes us from modifying, improving, and mass-producing these specialized metabolites in suitable bioreactors. Many of the specialized metabolites are expressed in a narrow range of organs, tissues, and cell types, suggesting a tight regulation of the responsible biosynthetic pathways. Fortunately, with unprecedented ease of generating gene expression data and with >200,000 publicly available RNA sequencing samples, we are now able to study the expression of genes from hundreds of plant species. This review demonstrates how gene expression can elucidate the biosynthetic pathways by mining organ-specific genes, gene expression clusters, and applying various types of co-expression analyses. To empower biologists to perform these analyses, we showcase these analyses using recently published, user-friendly tools. Finally, we analyze the performance of co-expression networks and show that they are a valuable addition to elucidating multiple the biosynthetic pathways of specialized metabolism.
Collapse
Affiliation(s)
| | | | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
33
|
Li H, Kim YJ, Yang L, Liu Z, Zhang J, Shi H, Huang G, Persson S, Zhang D, Liang W. Grass-Specific EPAD1 Is Essential for Pollen Exine Patterning in Rice. THE PLANT CELL 2020; 32:3961-3977. [PMID: 33093144 PMCID: PMC7721331 DOI: 10.1105/tpc.20.00551] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 05/20/2023]
Abstract
The highly variable and species-specific pollen surface patterns are formed by sporopollenin accumulation. The template for sporopollenin deposition and polymerization is the primexine that appears on the tetrad surface, but the mechanism(s) by which primexine guides exine patterning remain elusive. Here, we report that the Poaceae-specific EXINE PATTERN DESIGNER 1 (EPAD1), which encodes a nonspecific lipid transfer protein, is required for primexine integrity and pollen exine patterning in rice (Oryza sativa). Disruption of EPAD1 leads to abnormal exine pattern and complete male sterility, although sporopollenin biosynthesis is unaffected. EPAD1 is specifically expressed in male meiocytes, indicating that reproductive cells exert genetic control over exine patterning. EPAD1 possesses an N-terminal signal peptide and three redundant glycosylphosphatidylinositol (GPI)-anchor sites at its C terminus, segments required for its function and localization to the microspore plasma membrane. In vitro assays indicate that EPAD1 can bind phospholipids. We propose that plasma membrane lipids bound by EPAD1 may be involved in recruiting and arranging regulatory proteins in the primexine to drive correct exine deposition. Our results demonstrate that EPAD1 is a meiocyte-derived determinant that controls primexine patterning in rice, and its orthologs may play a conserved role in the formation of grass-specific exine pattern elements.
Collapse
Affiliation(s)
- HuanJun Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Jin Kim
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang 50463, Republic of Korea
| | - Liu Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ze Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haotian Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Otegui MS. High-Pressure Freezing and Freeze Substitution for Transmission Electron Microscopy Imaging and Immunogold-Labeling. Methods Mol Biol 2020; 2200:337-347. [PMID: 33175386 DOI: 10.1007/978-1-0716-0880-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Electron microscopy enables the unbiased imaging of organelles and cellular structures at nano-meter scale resolution. The combination of cryofixation/freeze-substitution methods with other imaging techniques such as correlative light and electron microscopy (CLEM), electron tomography (ET), and immunogold-labeling provides unique opportunities to understand structural changes associated with cellular processes. This chapter presents the main steps in the preparation of Arabidopsis thaliana roots, cotyledons, anthers, and developing seeds by high-pressure freezing and freeze-substitution for structural analysis and immunogold-labeling using transmission electron microscopy.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA. .,Laboratory of Molecular and Cellular Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
35
|
Huo Y, Pei Y, Tian Y, Zhang Z, Li K, Liu J, Xiao S, Chen H, Liu J. IRREGULAR POLLEN EXINE2 Encodes a GDSL Lipase Essential for Male Fertility in Maize. PLANT PHYSIOLOGY 2020; 184:1438-1454. [PMID: 32913046 PMCID: PMC7608179 DOI: 10.1104/pp.20.00105] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/02/2020] [Indexed: 05/19/2023]
Abstract
Anther cuticle and pollen exine are two physical barriers protecting plant reproductive cells against environmental stresses; defects in either often cause male sterility. Here, we report the characterization of a male-sterile mutant irregular pollen exine2 (ipe2) of maize (Zea mays), which displays shrunken anthers and no starch accumulation in mature pollen grains. We cloned the causal gene IPE2 and confirmed its role in male fertility in maize with a set of complementary experiments. IPE2 is specifically expressed in maize developing anthers during stages 8 to 9 and encodes an endoplasmic-reticulum-localized GDSL lipase. Dysfunction of IPE2 resulted in delayed degeneration of tapetum and middle layer, leading to defective formation of anther cuticle and pollen exine, and complete male sterility. Aliphatic metabolism was greatly altered, with the contents of lipid constituents, especially C16/C18 fatty acids and their derivatives, significantly reduced in ipe2 developing anthers. Our study elucidates GDSL function in anther and pollen development and provides a promising genetic resource for breeding hybrid maize.
Collapse
Affiliation(s)
- Yanqing Huo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Yuanrong Pei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Youhui Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Kai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Senlin Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
36
|
Xu L, Liu T, Xiong X, Liu W, Yu Y, Cao J. Overexpression of Two CCCH-type Zinc-Finger Protein Genes Leads to Pollen Abortion in Brassica campestris ssp. chinensis. Genes (Basel) 2020; 11:E1287. [PMID: 33138166 PMCID: PMC7693475 DOI: 10.3390/genes11111287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
The pollen grains produced by flowering plants are vital for sexual reproduction. Previous studies have shown that two CCCH-type zinc-finger protein genes in Brassica campestris, BcMF30a and BcMF30c, are involved in pollen development. Due to their possible functional redundancy, gain-of-function analysis is helpful to reveal their respective biological functions. Here, we found that the phenotypes of BcMF30a and BcMF30c overexpression transgenic plants driven by their native promoters were similar, suggesting their functional redundancy. The results showed that the vegetative growth was not affected in both transgenic plants, but male fertility was reduced. Further analysis found that the abortion of transgenic pollen was caused by the degradation of pollen contents from the late uninucleate microspore stage. Subcellular localization analysis demonstrated that BcMF30a and BcMF30c could localize in cytoplasmic foci. Combined with the studies of other CCCH-type genes, we speculated that the overexpression of these genes can induce the continuous assembly of abnormal cytoplasmic foci, thus resulting in defective plant growth and development, which, in this study, led to pollen abortion. Both the overexpression and knockout of BcMF30a and BcMF30c lead to abnormal pollen development, indicating that the appropriate expression levels of these two genes are critical for the maintenance of normal pollen development.
Collapse
Affiliation(s)
- Liai Xu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Tingting Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Xingpeng Xiong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Weimiao Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Youjian Yu
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Lin’an 311300, China;
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| |
Collapse
|
37
|
Zhu L, He S, Liu Y, Shi J, Xu J. Arabidopsis FAX1 mediated fatty acid export is required for the transcriptional regulation of anther development and pollen wall formation. PLANT MOLECULAR BIOLOGY 2020; 104:187-201. [PMID: 32681357 DOI: 10.1007/s11103-020-01036-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/12/2020] [Indexed: 05/25/2023]
Abstract
The mutation of FAX1 (Fatty Acid Export 1) disrupts ROS homeostasis and suppresses transcription activity of DYT1-TDF1-AMS-MS188 genetic network, leading to atypical tapetum PCD and defective pollen formation in Arabidopsis. Fatty acids (FAs) have multiple important biological functions and exert diverse cellular effects through modulating Reactive Oxygen Species (ROS) homeostasis. Arabidopsis FAX1 (Fatty Acid Export 1) mediates the export of de novo synthesized FA from chloroplast and loss of function of FAX1 impairs male fertility. However, mechanisms underlying the association of FAX1-mediated FA export with male sterility remain enigmatic. In this study, by using an integrated approach that included morphological, cytological, histological, and molecular analyses, we revealed that loss of function of FAX1 breaks cellular FA/lipid homeostasis, which disrupts ROS homeostasis and suppresses transcriptional activation of the DYT1-TDF1-AMS-MS188 genetic network of anther development, impairing tapetum development and pollen wall formation, and resulting in male sterility. This study provides new insights into the regulatory network for male reproduction in plants, highlighting an important role of FA export-mediated ROS homeostasis in the process.
Collapse
Affiliation(s)
- Lu Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Siyang He
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - YanYan Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Jie Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
38
|
Zhang G, Ahmad MZ, Chen B, Manan S, Zhang Y, Jin H, Wang X, Zhao J. Lipidomic and transcriptomic profiling of developing nodules reveals the essential roles of active glycolysis and fatty acid and membrane lipid biosynthesis in soybean nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1351-1371. [PMID: 32412123 DOI: 10.1111/tpj.14805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 05/11/2023]
Abstract
Symbiotic rhizobia-legume interactions are energy-demanding processes, and the carbon supply from host cells that is critically required for nodulation and nitrogen fixation is not fully understood. Investigation of the lipidomic and carbohydrate profiles with the transcriptome of developing nodules revealed highly activated glycolysis, fatty acid (FA), 2-monoacylglycerol (2-MAG), and membrane lipid biosynthesis and transport during nodule development. RNA-sequence profiling of metabolic genes in roots and developing nodules highlighted the enhanced expression of genes involved in the biosynthesis and transport of FAs, membrane lipids, and 2-MAG in rhizobia-soybean symbioses via the RAML-WRI-FatM-GPAT-STRL pathway, which is similar to that in legume-arbuscular mycorrhizal fungi symbiosis. The essential roles of the metabolic pathway during soybean nodulation were further supported by analysis of transgenic hairy roots overexpressing soybean GmWRI1b-OE and GmLEC2a-OE. GmLEC2a-OE hairy roots produced fewer nodules, in contrast to GmWRI1b-OE hairy roots. GmLEC2a-OE hairy roots displayed different or even opposite expression patterns of the genes involved in glycolysis and the synthesis of FAs, 2-MAG, TAG, and membrane lipids compared to GmWRI1b-OE hairy roots. Glycolysis, FA and membrane lipid biosynthesis were repressed in GmLEC2a-OE but increased in GmWRI1b-OE hairy roots, which may account for the reduced nodulation in GmLEC2a-OE hairy roots but increased nodulation in GmWRI1b-OE hairy roots. These data show that active FA, 2-MAG and membrane lipid biosynthesis are essential for nodulation and rhizobia-soybean symbioses. These data shed light on essential and complex lipid metabolism for soybean nodulation and nodule development, laying the foundation for the future detailed investigation of soybean nodulation.
Collapse
Affiliation(s)
- Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Z Ahmad
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sehrish Manan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanan Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
39
|
Liang X, Li SW, Gong LM, Li S, Zhang Y. COPII Components Sar1b and Sar1c Play Distinct Yet Interchangeable Roles in Pollen Development. PLANT PHYSIOLOGY 2020; 183:974-985. [PMID: 32327549 PMCID: PMC7333728 DOI: 10.1104/pp.20.00159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 05/04/2023]
Abstract
The development of pollen is a prerequisite for double fertilization in angiosperms. Coat protein complex II (COPII) mediates anterograde transport of vesicles from the endoplasmic reticulum to the Golgi. Components of the COPII complex have been reported to regulate either sporophytic or gametophytic control of pollen development. The Arabidopsis (Arabidopsis thaliana) genome encodes five Sar1 isoforms, the small GTPases essential for COPII formation. By using a dominant negative approach, Sar1 isoforms were proposed to have distinct cargo specificity despite their sequence similarity. Here, we examined the functions of three Sar1 isoforms through analysis of transfer DNA insertion mutants and CRISPR/Cas9-generated mutants. We report that functional loss of Sar1b caused malfunction of tapetum, leading to male sterility. Ectopic expression of Sar1c could compensate for Sar1b loss of function in sporophytic control of pollen development, suggesting that they are interchangeable. Functional distinction between Sar1b and Sar1c may have resulted from their different gene transcription levels based on expression analyses. On the other hand, Sar1b and Sar1c redundantly mediate male gametophytic development such that the sar1b;sar1c microspores aborted at anther developmental stage 10. This study uncovers the role of Sar1 isoforms in both sporophytic and gametophytic control of pollen development. It also suggests that distinct functions of Sar1 isoforms may be caused by their distinct transcription programs.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shan-Wei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Li-Min Gong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
40
|
Pan X, Yan W, Chang Z, Xu Y, Luo M, Xu C, Chen Z, Wu J, Tang X. OsMYB80 Regulates Anther Development and Pollen Fertility by Targeting Multiple Biological Pathways. PLANT & CELL PHYSIOLOGY 2020; 61:988-1004. [PMID: 32142141 PMCID: PMC7217667 DOI: 10.1093/pcp/pcaa025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/01/2020] [Indexed: 05/13/2023]
Abstract
Pollen development is critical to the reproductive success of flowering plants, but how it is regulated is not well understood. Here, we isolated two allelic male-sterile mutants of OsMYB80 and investigated how OsMYB80 regulates male fertility in rice. OsMYB80 was barely expressed in tissues other than anthers, where it initiated the expression during meiosis, reached the peak at the tetrad-releasing stage and then quickly declined afterward. The osmyb80 mutants exhibited premature tapetum cell death, lack of Ubisch bodies, no exine and microspore degeneration. To understand how OsMYB80 regulates anther development, RNA-seq analysis was conducted to identify genes differentially regulated by OsMYB80 in rice anthers. In addition, DNA affinity purification sequencing (DAP-seq) analysis was performed to identify DNA fragments interacting with OsMYB80 in vitro. Overlap of the genes identified by RNA-seq and DAP-seq revealed 188 genes that were differentially regulated by OsMYB80 and also carried an OsMYB80-interacting DNA element in the promoter. Ten of these promoter elements were randomly selected for gel shift assay and yeast one-hybrid assay, and all showed OsMYB80 binding. The 10 promoters also showed OsMYB80-dependent induction when co-expressed in rice protoplast. Functional annotation of the 188 genes suggested that OsMYB80 regulates male fertility by directly targeting multiple biological processes. The identification of these genes significantly enriched the gene networks governing anther development and provided much new information for the understanding of pollen development and male fertility.
Collapse
Affiliation(s)
- Xiaoying Pan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
- Corresponding authors: Xiaoyan Tang, E-mail, ; Fax, +86 020 85211372; Jianxin Wu, E-mail, ; Fax, +86 020 85211372; Zhufeng Chen; E-mail, ; Fax, + 86 2085211372
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Corresponding authors: Xiaoyan Tang, E-mail, ; Fax, +86 020 85211372; Jianxin Wu, E-mail, ; Fax, +86 020 85211372; Zhufeng Chen; E-mail, ; Fax, + 86 2085211372
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
- Corresponding authors: Xiaoyan Tang, E-mail, ; Fax, +86 020 85211372; Jianxin Wu, E-mail, ; Fax, +86 020 85211372; Zhufeng Chen; E-mail, ; Fax, + 86 2085211372
| |
Collapse
|
41
|
Grunewald S, Marillonnet S, Hause G, Haferkamp I, Neuhaus HE, Veß A, Hollemann T, Vogt T. The Tapetal Major Facilitator NPF2.8 Is Required for Accumulation of Flavonol Glycosides on the Pollen Surface in Arabidopsis thaliana. THE PLANT CELL 2020; 32:1727-1748. [PMID: 32156687 PMCID: PMC7203936 DOI: 10.1105/tpc.19.00801] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 05/02/2023]
Abstract
The exine of angiosperm pollen grains is usually covered by a complex mix of metabolites including pollen-specific hydroxycinnamic acid amides (HCAAs) and flavonoid glycosides. Although the biosynthetic pathways resulting in the formation of HCAAs and flavonol glycosides have been characterized, it is unclear how these compounds are transported to the pollen surface. In this report we provide several lines of evidence that a member of the nitrate/peptide transporter family is required for the accumulation and transport of pollen-specific flavonol 3-o-sophorosides, characterized by a glycosidic β-1,2-linkage, to the pollen surface of Arabidopsis (Arabidopsis thaliana). Ectopic, transient expression in Nicotiana benthamiana epidermal leaf cells demonstrated localization of this flavonol sophoroside transporter (FST1) at the plasmalemma when fused to green fluorescent protein (GFP). We also confirmed the tapetum-specific expression of FST1 by GFP reporter lines driven by the FST1 promoter. In vitro characterization of FST1 activity was achieved by microbial uptake assays based on 14C-labeled flavonol glycosides. Finally, rescue of an fst1 insertion mutant by complementation with an FST1 genomic fragment restored the accumulation of flavonol glycosides in pollen grains to wild-type levels, corroborating the requirement of FST1 for transport of flavonol-3-o-sophorosides from the tapetum to the pollen surface.
Collapse
Affiliation(s)
- Stephan Grunewald
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Gerd Hause
- University Biocenter, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Ilka Haferkamp
- Plant Physiology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Astrid Veß
- Institute of Physiological Chemistry, Martin Luther University Halle-Wittenberg, D-06114 Halle (Saale), Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry, Martin Luther University Halle-Wittenberg, D-06114 Halle (Saale), Germany
| | - Thomas Vogt
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| |
Collapse
|
42
|
Gupta BB, Selter LL, Baranwal VK, Arora D, Mishra SK, Sirohi P, Poonia AK, Chaudhary R, Kumar R, Krattinger SG, Chauhan H. Updated inventory, evolutionary and expression analyses of G (PDR) type ABC transporter genes of rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:429-439. [PMID: 31419645 DOI: 10.1016/j.plaphy.2019.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
ABC transporters constitute the largest family of transporter proteins in living organisms and divided into eight subfamilies, from A-H. ABCG members, specific to plants and fungi, belong to subfamily G. In this study, we provide updated inventory, detailed account of phylogeny, gene structure characteristics, and expression profiling during reproductive development, abiotic and biotic stresses of members of ABCG gene family in rice along with reannotation and cloning of FL-cDNA of OsABCG50/PDR23. We observed that of the 22 ABCGs/PDRs, four genes evolved as a result of gene duplication events and their expression pattern changed after duplication. Analysis of expression revealed seed and developmental stage preferential expression of five ABCG/PDR members. Transcript levels of eight ABCGs/PDRs were affected by abiotic and biotic stresses. Expression of seven ABCG/PDR genes was also altered by hormonal elicitors. The modulated expression is nicely correlated with the presence of tissue/stress specific cis-acting elements present in putative promoter region.
Collapse
Affiliation(s)
| | - Liselotte L Selter
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Vinay K Baranwal
- Swami Devanand Post Graduate College, Math-Lar, Deoria, U. P, India
| | - Deepanksha Arora
- Indian Institute of Technology Roorkee, India; VIB Department of Plant Systems Biology, Ghent University, Belgium
| | | | | | | | | | - Rahul Kumar
- School of Life Sciences, University of Hyderabad, India
| | - Simon G Krattinger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland; King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Thuwal, Saudi Arabia
| | | |
Collapse
|
43
|
Shanmugarajah K, Linka N, Gräfe K, Smits SHJ, Weber APM, Zeier J, Schmitt L. ABCG1 contributes to suberin formation in Arabidopsis thaliana roots. Sci Rep 2019; 9:11381. [PMID: 31388073 DOI: 10.1007/978-94-007-7864-1_123-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/26/2019] [Indexed: 05/19/2023] Open
Abstract
Diffusion barriers enable plant survival under fluctuating environmental conditions. They control internal water potential and protect against biotic or abiotic stress factors. How these protective molecules are deposited to the extracellular environment is poorly understood. We here examined the role of the Arabidopsis ABC half-size transporter AtABCG1 in the formation of the extracellular root suberin layer. Quantitative analysis of extracellular long-chain fatty acids and aliphatic alcohols in the atabcg1 mutants demonstrated altered root suberin composition, specifically a reduction in longer chain dicarboxylic acids, fatty alcohols and acids. Accordingly, the ATP-hydrolyzing activity of heterologous expressed and purified AtABCG1 was strongly stimulated by fatty alcohols (C26-C30) and fatty acids (C24-C30) in a chain length dependent manner. These results are a first indication for the function of AtABCG1 in the transport of longer chain aliphatic monomers from the cytoplasm to the apoplastic space during root suberin formation.
Collapse
Affiliation(s)
- Kalpana Shanmugarajah
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Katharina Gräfe
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
44
|
Shanmugarajah K, Linka N, Gräfe K, Smits SHJ, Weber APM, Zeier J, Schmitt L. ABCG1 contributes to suberin formation in Arabidopsis thaliana roots. Sci Rep 2019; 9:11381. [PMID: 31388073 PMCID: PMC6684660 DOI: 10.1038/s41598-019-47916-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Diffusion barriers enable plant survival under fluctuating environmental conditions. They control internal water potential and protect against biotic or abiotic stress factors. How these protective molecules are deposited to the extracellular environment is poorly understood. We here examined the role of the Arabidopsis ABC half-size transporter AtABCG1 in the formation of the extracellular root suberin layer. Quantitative analysis of extracellular long-chain fatty acids and aliphatic alcohols in the atabcg1 mutants demonstrated altered root suberin composition, specifically a reduction in longer chain dicarboxylic acids, fatty alcohols and acids. Accordingly, the ATP-hydrolyzing activity of heterologous expressed and purified AtABCG1 was strongly stimulated by fatty alcohols (C26–C30) and fatty acids (C24–C30) in a chain length dependent manner. These results are a first indication for the function of AtABCG1 in the transport of longer chain aliphatic monomers from the cytoplasm to the apoplastic space during root suberin formation.
Collapse
Affiliation(s)
- Kalpana Shanmugarajah
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Katharina Gräfe
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Heinrich-Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany. .,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
45
|
Wu Y, Li Y, Li Y, Ma Y, Zhao Y, Wang C, Chi H, Chen M, Ding Y, Guo X, Min L, Zhang X. Proteomic analysis reveals that sugar and fatty acid metabolisms play a central role in sterility of the male-sterile line 1355A of cotton. J Biol Chem 2019; 294:7057-7067. [PMID: 30862676 PMCID: PMC6497933 DOI: 10.1074/jbc.ra118.006878] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/22/2019] [Indexed: 11/06/2022] Open
Abstract
Cotton (Gossypium spp.) is one of the most important economic crops and exhibits yield-improving heterosis in specific hybrid combinations. The genic male-sterility system is the main strategy used for producing heterosis in cotton. To better understand the mechanisms of male sterility in cotton, we carried out two-dimensional electrophoresis (2-DE) and label-free quantitative proteomics analysis in the anthers of two near-isogenic lines, the male-sterile line 1355A and the male-fertile line 1355B. We identified 39 and 124 proteins that were significantly differentially expressed between these two lines in the anthers at the tetrad stage (stage 7) and uninucleate pollen stage (stage 8), respectively. Gene ontology-based analysis revealed that these differentially expressed proteins were mainly associated with pyruvate, carbohydrate, and fatty acid metabolism. Biochemical analysis revealed that in the anthers of line 1355A, glycolysis was activated, which was caused by a reduction in fructose, glucose, and other soluble sugars, and that accumulation of acetyl-CoA was increased along with a significant increase in C14:0 and C18:1 free fatty acids. However, the activities of pyruvate dehydrogenase and fatty acid biosynthesis were inhibited and fatty acid β-oxidation was activated at the translational level in 1355A. We speculate that in the 1355A anther, high rates of glucose metabolism may promote fatty acid synthesis to enable anther growth. These results provide new insights into the molecular mechanism of genic male sterility in upland cotton.
Collapse
Affiliation(s)
- Yuanlong Wu
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Yanlong Li
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Yaoyao Li
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Yizan Ma
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Yunlong Zhao
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Chaozhi Wang
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Huabin Chi
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Miao Chen
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Yuanhao Ding
- From the National Key Laboratory of Crop Genetic Improvement and
| | - Xiaoping Guo
- the College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Ling Min
- From the National Key Laboratory of Crop Genetic Improvement and
| | - XianLong Zhang
- From the National Key Laboratory of Crop Genetic Improvement and
| |
Collapse
|
46
|
Shen X, Xu L, Liu Y, Dong H, Zhou D, Zhang Y, Lin S, Cao J, Huang L. Comparative transcriptome analysis and ChIP-sequencing reveals stage-specific gene expression and regulation profiles associated with pollen wall formation in Brassica rapa. BMC Genomics 2019; 20:264. [PMID: 30943898 PMCID: PMC6446297 DOI: 10.1186/s12864-019-5637-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/24/2019] [Indexed: 12/05/2022] Open
Abstract
Background Genic male sterility (GMS) line is an important approach to utilize heterosis in Brassica rapa, one of the most widely cultivated vegetable crops in Northeast Asia. However, the molecular genetic mechanisms of GMS remain to be largely unknown. Results Detailed phenotypic observation of ‘Bcajh97-01A/B’, a B. rapa genic male sterile AB line in this study revealed that the aberrant meiotic cytokinesis and premature tapetal programmed cell death occurring in the sterile line ultimately resulted in microspore degeneration and pollen wall defect. Further gene expression profile of the sterile and fertile floral buds of ‘Bcajh97-01A/B’ at five typical developmental stages during pollen development supported the result of phenotypic observation and identified stage-specific genes associated with the main events associated with pollen wall development, including tapetum development or functioning, callose metabolism, pollen exine formation and cell wall modification. Additionally, by using ChIP-sequencing, the genomic and gene-level distribution of trimethylated histone H3 lysine 4 (H3K4) and H3K27 were mapped on the fertile floral buds, and a great deal of pollen development-associated genes that were covalently modified by H3K4me3 and H3K27me3 were identified. Conclusions Our study provids a deeper understanding into the gene expression and regulation network during pollen development and pollen wall formation in B. rapa, and enabled the identification of a set of candidate genes for further functional annotation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5637-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiuping Shen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Liai Xu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Yanhong Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Heng Dong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Yuzhi Zhang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325000, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Ning L, Wang H, Li D, Lin Z, Li Y, Zhao W, Chao H, Miao L, Li M. Transcriptomic and Proteomic Analysis of Shaan2A Cytoplasmic Male Sterility and Its Maintainer Line in Brassica napus. FRONTIERS IN PLANT SCIENCE 2019; 10:252. [PMID: 30886625 PMCID: PMC6409359 DOI: 10.3389/fpls.2019.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Cytoplasmic male sterility (CMS) lines are widely used for hybrid production in Brassica napus. The Shaan2A CMS system is one of the most important in China and has been used for decades; however, the male sterility mechanism underlying Shaan2A CMS remains unknown. Here, we performed transcriptomic and proteomic analysis, combined with additional morphological observation, in the Shaan2A CMS. Sporogenous cells, endothecium, middle layer, and tapetum could not be clearly distinguished in Shaan2A anthers. Furthermore, Shaan2A anther chloroplasts contained fewer starch grains than those in Shaan2B (a near-isogenic line of Shaan2A), and the lamella structure of chloroplasts in Shaan2A anther wall cells was obviously aberrant. Transcriptomic analysis revealed differentially expressed genes (DEGs) mainly related to carbon metabolism, lipid and flavonoid metabolism, and the mitochondrial electron transport/ATP synthesis pathway. Proteomic results showed that differentially expressed proteins were mainly associated with carbohydrate metabolism, energy metabolism, and genetic information processing pathways. Importantly, nine gene ontology categories associated with anther and pollen development were enriched among down-regulated DEGs at the young bud (YB) stage, including microsporogenesis, sporopollenin biosynthetic process, and tapetal layer development. Additionally, 464 down-regulated transcription factor (TF) genes were identified at the YB stage, including some related to early anther differentiation such as SPOROCYTELESS (SPL, also named NOZZLE, NZZ), DYSFUNCTIONAL TAPETUM 1 (DYT1), MYB80 (formerly named MYB103), and ABORTED MICROSPORES (AMS). These results suggested that the sterility gene in the Shaan2A mitochondrion might suppress expression of these TF genes in the nucleus, affecting early anther development. Finally, we constructed an interaction network of candidate proteins based on integrative analysis. The present study provides new insights into the molecular mechanism of Shaan2A CMS in B. napus.
Collapse
Affiliation(s)
- Luyun Ning
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Dianrong Li
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Zhiwei Lin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghong Li
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liyun Miao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
48
|
Gene network analysis of senescence-associated genes in annual plants and comparative assessment of aging in perennials and animals. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
49
|
Delporte M, Bernard G, Legrand G, Hielscher B, Lanoue A, Molinié R, Rambaud C, Mathiron D, Besseau S, Linka N, Hilbert JL, Gagneul D. A BAHD neofunctionalization promotes tetrahydroxycinnamoyl spermine accumulation in the pollen coat of the Asteraceae family. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5355-5371. [PMID: 30169823 DOI: 10.1093/jxb/ery320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/06/2018] [Indexed: 05/29/2023]
Abstract
In eudicotyledons, accumulation of trihydroxycinnamoyl spermidine that is restricted to the pollen wall constitutes an evolutionary conserved trait. However, the role of this compound, which is synthetized by the BAHD enzyme spermidine hydroxycinnamoyl transferase (SHT), is still a matter of debate. Here, we show that this particular phenolamide is replaced by tetrahydroxycinnamoyl spermine in the pollen coat of the Asteraceae. Phylogenetic analyses combined with quantitative RT-PCR experiments allowed the identification of two homologous genes from Cichorium intybus (chicory) putatively involved in its metabolism. In vitro biochemical characterization of the two enzymes, named CiSHT1 and CiSHT2, confirmed the capability of recombinant proteins to synthesize spermine as well as spermidine derivatives. The wild-type metabolic phenotype was partially restored in an Arabidopsis sht mutant expressing CiSHT2. Strikingly, the transgenic plants also accumulated spermine derivatives that were absent in the wild-type. Overexpression of CiSHT2 in chicory hairy roots led to the accumulation of spermine derivatives, confirming its in vivo function. Complementary sequence analyses revealed the presence of an amino acid motif typical of the SHTs among the BAHD enzyme family. Our results highlight a recent neofunctionalization among the SHTs that has promoted the emergence of new phenolamides in the Asteraceae, which could potentially have contributed to the evolutionary success of this family.
Collapse
Affiliation(s)
- Marianne Delporte
- EA 7394, USC INRA 1411, Institut Charles Viollette (ICV), Agro-food and Biotechnology Research Institute, Université de Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, Cité Scientifique, Villeneuve d'Ascq, France
| | - Guillaume Bernard
- EA 7394, USC INRA 1411, Institut Charles Viollette (ICV), Agro-food and Biotechnology Research Institute, Université de Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, Cité Scientifique, Villeneuve d'Ascq, France
| | - Guillaume Legrand
- EA 7394, USC INRA 1411, Institut Charles Viollette (ICV), Agro-food and Biotechnology Research Institute, Université de Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, Cité Scientifique, Villeneuve d'Ascq, France
| | - Björn Hielscher
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstrasse, Düsseldorf, Germany
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA, Université de Tours, Tours, France
| | - Roland Molinié
- Biologie des Plantes & Innovation (EA 3900 BIOPI), Université de Picardie Jules Verne, Amiens Cedex, France
| | - Caroline Rambaud
- EA 7394, USC INRA 1411, Institut Charles Viollette (ICV), Agro-food and Biotechnology Research Institute, Université de Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, Cité Scientifique, Villeneuve d'Ascq, France
| | - David Mathiron
- Plateforme Analytique (PFA), Université de Picardie Jules Verne, Amiens Cedex, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA, Université de Tours, Tours, France
| | - Nicole Linka
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstrasse, Düsseldorf, Germany
| | - Jean-Louis Hilbert
- EA 7394, USC INRA 1411, Institut Charles Viollette (ICV), Agro-food and Biotechnology Research Institute, Université de Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, Cité Scientifique, Villeneuve d'Ascq, France
| | - David Gagneul
- EA 7394, USC INRA 1411, Institut Charles Viollette (ICV), Agro-food and Biotechnology Research Institute, Université de Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, Cité Scientifique, Villeneuve d'Ascq, France
| |
Collapse
|
50
|
Vogt T. Unusual spermine-conjugated hydroxycinnamic acids on pollen: function and evolutionary advantage. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5311-5315. [PMID: 30476279 PMCID: PMC6255709 DOI: 10.1093/jxb/ery359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Thomas Vogt
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Halle (Saale), Germany
| |
Collapse
|