1
|
Yan Y, Wang ML, Zhang Z, Liu G, Wei WX, Shi XT, Lan C, Zhang X, Xu S, Shehzad Baloch F, Rasheed A, Ni Z, Sun Q, Gou JY. Suppressing wheat sucrose phosphate synthase 1-B protects wheat against stripe rust. J Adv Res 2025:S2090-1232(25)00291-7. [PMID: 40316209 DOI: 10.1016/j.jare.2025.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/04/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025] Open
Abstract
INTRODUCTION Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici (Pst) is a highly destructive wheat disease that threatens global food security. Pst extracts energy from wheat by interfering with photosynthesis, leading to significant yield losses. Redirecting metabolite flux to counteract pathogens remains a major challenge in enhancing crop resilience. OBJECTIVE The primary objective of this study is to clarify the regulations of sucrose synthesis in wheat during its interaction with Pst, especially in relation to susceptibility and resistance response, and to supply genetic resources for breeding programs dedicated to ensuring food security. METHODS Utilizing bulked segregant RNA sequencing (BSR-Seq), we identified and cloned a novel susceptibility (S) gene, sucrose 6 - phosphate synthase 1 (SPS1). We investigated the transcriptional and post-translational regulations of SPS1 by Pst, the wheat APETALA2 transcription factor (wAP2), and Wheat Kinase START 1 (WKS1, Yr36) in transgenic plants using molecular and biochemical approaches. Sugar content variations were analyzed using gas chromatography-mass spectrometry (GC/MS) and colorimetric assays, while Pst infection dynamics were examined by staining or quantifying biomass and uredinial pustule densities. RESULTS Targeted mutagenesis of the Pst-inducible SPS1-B gene significantly reduced sucrose content accumulation and restricted Pst growth without compromising yield. In contrast, over-expressing SPS1-B enhanced Pst growth, confirming its role as a susceptibility (S) gene to Pst. Pst upregulated SPS1-B under optimal conditions, enhancing its own pathogenic success. Conversely, wAP2 suppressed SPS1-B transcription, reduced SPS1 protein level, and inhibited Pst infection intensity in transgenic wheat lines. Moreover, WKS1, a high-temperature adult-plant resistance protein, bound, phosphorylated, and suppressed SPS1-B at the post-translational level. CONCLUSION This study identifies SPS1-B as a pivotal molecular switch in sucrose metabolism hijacked by Pst to support its infection. The characterization of SPS1-B and its upstream regulators provides multiple genetic targets for enhancing wheat resistance against stripe rust.
Collapse
Affiliation(s)
- Yan Yan
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China; Xianghu Laboratory, Hangzhou 311231, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Meng-Lu Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Zhen Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Guoyu Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Wen-Xin Wei
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Xin-Tian Shi
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | | | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Turkey; Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Jin-Ying Gou
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Wang L, Yu Y, Li H, Lu M, Cao S, Li Z, Song H, Purnhauser L, Li J, Wu J. Integrated transcriptome and metabolome analyses reveals the mechanisms of function loss of Lr29 leaf rust resistance gene at high temperatures in wheat. FRONTIERS IN PLANT SCIENCE 2025; 16:1537921. [PMID: 40078637 PMCID: PMC11897511 DOI: 10.3389/fpls.2025.1537921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/20/2025] [Indexed: 03/14/2025]
Abstract
Leaf rust (LR) is one of the most common diseases of wheat. The resistance gene Lr29 provides wide resistance to LR, but loses its function under high temperatures. Despite the importance of this gene, the mechanism of resistance is unclear. In this study we investigated the resistance mechanism of the Lr29 gene to LR at the seedling stage, as well as the reasons behind the loss of gene function at high temperatures by using integrated transcriptome and metabolome analyses. Results suggests that the pathways of reactive oxygen species (ROS), which could be due to expression of genes including LOX (lipoxygenase), APX (ascorbate peroxidase) and GST (glutathione S-transferase), play a key role in the resistance of Lr29 to LR, furthermore flavonoids, such as epicatechin, cosmosiin, apiin, vitexin and rutin, were identified as the key metabolites linked to Lr29 resistance. We also found that, at high temperatures, Lr29 downregulated the genes and metabolites associated with glycolysis and the tricarboxylic acid (TCA) cycle, while genes and metabolites related to the shikimic acid pathway were upregulated. This study might provide a valuable theoretical foundation for the cloning of the Lr29 gene, the analysis of its disease resistance mechanism, and the understanding of how temperature affects gene function.
Collapse
Affiliation(s)
- Liwen Wang
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yang Yu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Hang Li
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Mingzhu Lu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Shubo Cao
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Ziqi Li
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Haoyuan Song
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Laszlo Purnhauser
- Laboratory of Plant Pathology, Cereal Research Non-Profit Co. Ltd., Szeged, Hungary
| | - Jinlong Li
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Jiajie Wu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
3
|
Han X, Li S, Zeng Q, Sun P, Wu D, Wu J, Yu X, Lai Z, Milne RJ, Kang Z, Xie K, Li G. Genetic engineering, including genome editing, for enhancing broad-spectrum disease resistance in crops. PLANT COMMUNICATIONS 2025; 6:101195. [PMID: 39568207 PMCID: PMC11897464 DOI: 10.1016/j.xplc.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Plant diseases, caused by a wide range of pathogens, severely reduce crop yield and quality, posing a significant threat to global food security. Developing broad-spectrum resistance (BSR) in crops is a key strategy for controlling crop diseases and ensuring sustainable crop production. Cloning disease-resistance (R) genes and understanding their underlying molecular mechanisms provide new genetic resources and strategies for crop breeding. Novel genetic engineering and genome editing tools have accelerated the study and engineering of BSR genes in crops, which is the primary focus of this review. We first summarize recent advances in understanding the plant immune system, followed by an examination of the molecular mechanisms underlying BSR in crops. Finally, we highlight diverse strategies employed to achieve BSR, including gene stacking to combine multiple R genes, multiplexed genome editing of susceptibility genes and promoter regions of executor R genes, editing cis-regulatory elements to fine-tune gene expression, RNA interference, saturation mutagenesis, and precise genomic insertions. The genetic studies and engineering of BSR are accelerating the breeding of disease-resistant cultivars, contributing to crop improvement and enhancing global food security.
Collapse
Affiliation(s)
- Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Jianguo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Lung SC, Chye ML. Mechanistic effects of lipid binding pockets within soluble signaling proteins: lessons from acyl-CoA-binding and START-domain-containing proteins. PLANT PHYSIOLOGY 2025; 197:kiae565. [PMID: 39431550 DOI: 10.1093/plphys/kiae565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
While lipids serve as important energy reserves, metabolites, and cellular constituents in all forms of life, these macromolecules also function as unique carriers of information in plant communication given their diverse chemical structures. The signal transduction process involves a sophisticated interplay between messengers, receptors, signal transducers, and downstream effectors. Over the years, an array of plant signaling proteins have been identified for their crucial roles in perceiving lipid signals. However, the mechanistic effects of lipid binding on protein functions remain largely elusive. Recent literature has presented numerous fascinating models that illustrate the significance of protein-lipid interactions in mediating signaling responses. This review focuses on the category of lipophilic signaling proteins that encompass a hydrophobic binding pocket located outside of cellular membranes and provides an update on the lessons learned from two of these structures, namely the acyl-CoA-binding and steroidogenic acute regulatory protein-related lipid transfer domains. It begins with a brief overview of the latest advances in understanding the functions of the two protein families in plant communication. The second part highlights five functional mechanisms of lipid ligands in concert with their target signaling proteins.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mee-Len Chye
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| |
Collapse
|
5
|
Yao Y, Guo W, Gou J, Hu Z, Liu J, Ma J, Zong Y, Xin M, Chen W, Li Q, Wang Z, Zhang R, Uauy C, Baloch FS, Ni Z, Sun Q. Wheat2035: Integrating pan-omics and advanced biotechnology for future wheat design. MOLECULAR PLANT 2025; 18:272-297. [PMID: 39780492 DOI: 10.1016/j.molp.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Wheat (Triticum aestivum) production is vital for global food security, providing energy and protein to millions of people worldwide. Recent advancements in wheat research have led to significant increases in production, fueled by technological and scientific innovation. Here, we summarize the major advancements in wheat research, particularly the integration of biotechnologies and a deeper understanding of wheat biology. The shift from multi-omics to pan-omics approaches in wheat research has greatly enhanced our understanding of the complex genome, genomic variations, and regulatory networks to decode complex traits. We also outline key scientific questions, potential research directions, and technological strategies for improving wheat over the next decade. Since global wheat production is expected to increase by 60% in 2050, continued innovation and collaboration are crucial. Integrating biotechnologies and a deeper understanding of wheat biology will be essential for addressing future challenges in wheat production, ensuring sustainable practices and improved productivity.
Collapse
Affiliation(s)
- Yingyin Yao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinying Gou
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jun Ma
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihao Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Ruijie Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Turkey; Department of Plant Resources and Environment, Jeju National University, Jeju City, Republic of Korea
| | - Zhongfu Ni
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qixin Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Cheaib A, Killiny N. Photosynthesis Responses to the Infection with Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:9-29. [PMID: 39536275 DOI: 10.1094/mpmi-05-24-0052-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photosynthesis, the remarkable process by which green plants synthesize nutrients using light energy, plays a crucial role in sustaining life on Earth. However, the effects of pathogens on photosynthesis are not widely understood. In general, a reduction of photosynthesis occurs upon the infection with pathogens. Two main scenarios are responsible for the reduction in photosynthetic capacity. In the first scenario, the pathogen attacks green aerial tissues, such as when caused by fungal and bacterial leaf spots and blights, which affect photosynthesis by destroying green leaf tissue or causing defoliation. This leads to a decrease in the photosynthetic area, ultimately reducing photosynthesis. Interestingly, even when the overall chlorophyll content of leaves is significantly reduced due to pathogen invasion, the remaining chlorophyll-containing leaf area may maintain or even enhance its photosynthetic efficiency. This compensatory mechanism helps mitigate the loss of photosynthetic area. However, the overall yield of the plant is still affected. The second scenario is a reduction in chlorophyll content due to chlorosis, which is characterized by yellowing of leaves. It is a common symptom of plant diseases. It refers to a reduction in the amount of chlorophyll per chloroplast rather than a decrease in chloroplast number. Diseases caused by viruses and phytoplasmas often exhibit chlorosis. While pathogens disrupt photosynthesis, plants exhibit significant adaptations to cope with these challenges. Understanding these interactions is essential for sustainable agriculture and ecosystem health. Thus, in this review, we discuss the effect of several pathogens on the photosynthesis processes and efficiency in detail. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Alissar Cheaib
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Experimental Sciences Building 2, Texas Tech University, Lubbock, TX 79409, U.S.A
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
7
|
Jan F, M P, Kaur S, Khan MA, Sheikh FA, Wani FJ, Saad AA, Singh Y, Kumar U, Gupta V, Thudi M, Saini DK, Kumar S, Varshney RK, Mir RR. Do different wheat ploidy levels respond differently against stripe rust infection: Interplay between reactive oxygen species (ROS) and the antioxidant defense system? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109259. [PMID: 39626524 DOI: 10.1016/j.plaphy.2024.109259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 02/05/2025]
Abstract
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) is the most damaging wheat disease, causing substantial losses in global wheat production and productivity. Our study aimed to unravel the complex reciprocity between reactive oxygen species and the antioxidant defense system as a source of resistance against stripe rust in diploid, tetraploid and hexaploid wheat genotypes. The significant genetic variability for stripe rust in the materials under study was evident as the genotypes showed contrasting responses during both the adult and seedling stages. Our thorough perspective on the biochemical responses of wheat genotypes to stripe rust infection revealed distinct patterns in oxidative damage, antioxidant enzymes and photosynthetic pigments. Principal component analysis revealed inverse correlations between antioxidants and ROS, underscoring their key function in maintaining the cellular redox balance and protecting plants against oxidative damage. Diploid (Ae. tauschii) wild wheat exhibited a better biochemical defense system and greater resistance to stripe rust than the tetraploid (T. durum) and hexaploid (Triticum aestivum) wheat genotypes. The antioxidant enzyme activity of durum wheat was moderate compared to diploid and hexaploid wheat genotypes. The hexaploid wheat genotypes exhibited increased ROS production, reduced antioxidant enzyme activity and decreased photosynthetic pigment levels. This study enhances understanding of the antioxidant defense system across different wheat ploidies facing stripe rust, serving as a valuable strategy for improving crop disease resistance. This study validated the biochemical response of stripe rust-resistant and susceptible candidate genotypes, which will be used to develop genetic resources for discovering stripe rust resistance genes in wheat.
Collapse
Affiliation(s)
- Farkhandah Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India
| | - Parthiban M
- Division of Entomology, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Mohd Anwar Khan
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India
| | - Farooq Ahmad Sheikh
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India
| | - Fehim Jeelani Wani
- Division of Agricultural Economics and Statistics, Faculty of Agriculture (FoA), SKUAST Kashmir, India
| | - A A Saad
- Division of Agronomy, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India
| | - Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS HaryanaAgricultural University, Hisar, 125004, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS HaryanaAgricultural University, Hisar, 125004, India; Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243006, India
| | - Vikas Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, Haryana, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. RajendraPrasad CentralAgricultural University (RPCAU), Pusa, Bihar, India
| | - Dinesh K Saini
- Department of Plant and Soil Science, Texas Tech University, TX, USA
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Rajeev Kumar Varshney
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, 6150, Australia
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India; Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
8
|
Fang N, Jia C, Chen R, An J, Kang Z, Liu J. The wheat CC-NBS-LRR protein TaRGA3 confers resistance to stripe rust by suppressing ascorbate peroxidase 6 activity. PLANT PHYSIOLOGY 2024; 197:kiae603. [PMID: 39556767 DOI: 10.1093/plphys/kiae603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune receptors that activate innate immune responses upon sensing pathogen attack. However, the molecular mechanisms by which NLR proteins initiate downstream signal transduction pathways to counteract pathogen invasion remain poorly understood. In this study, we identified the wheat (Triticum aestivum) NLR protein Resistance Gene Analogs3 (TaRGA3), which was significantly upregulated during Puccinia striiformis f. sp. tritici (Pst) infection. TaRGA3 and its coiled-coil (CC) domain, localized to the cytoplasm and nucleus, can induce cell death in Nicotiana benthamiana. Virus-induced gene silencing and overexpression suggested that TaRGA3 contributed to wheat resistance to stripe rust by facilitating reactive oxygen species (ROS) accumulation. Yeast 2-hybrid, luciferase complementation imaging, and co-immunoprecipitation assays revealed that TaRGA3 interacted with wheat protein Ascorbate Peroxidase 6 (TaAPX6). Further analysis showed that TaAPX6 specifically targeted the CC domain of TaRGA3. The TaRGA3-TaAPX6 interplay led to reduced enzyme activity of TaAPX6. Notably, TaAPX6 negatively regulated wheat resistance to Pst by removing excessive ROS accompanying Pst-induced hypersensitive responses. Our findings reveal that TaRGA3 responding to Pst infection confers enhanced wheat resistance to stripe rust, possibly by suppressing TaAPX6-modulated ROS scavenging, and demonstrate that TaRGA3 can be used to engineer stripe rust resistance in wheat.
Collapse
Affiliation(s)
- Nannan Fang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Conghui Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruolin Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiarui An
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
9
|
Li Z, Yuan C, Li S, Zhang Y, Bai B, Yang F, Liu P, Sang W, Ren Y, Singh R, Liao P, Lan C. Genetic Analysis of Stripe Rust Resistance in the Chinese Wheat Cultivar Luomai 163. PLANT DISEASE 2024; 108:3550-3561. [PMID: 39054604 DOI: 10.1094/pdis-06-24-1195-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Stripe or yellow rust (YR) caused by Puccinia striiformis tritici (Pst) is an important foliar disease affecting wheat production globally. Resistant varieties are the most economically and environmentally effective way to manage this disease. The common winter wheat (Triticum aestivum L.) cultivar Luomai 163 exhibited resistance to the Pst races CYR32 and CYR33 at the seedling stage and showed a high level of adult plant resistance in the field. To understand the genetic basis of YR resistance in this cultivar, 142 F5 recombinant inbred lines (RILs) derived from cross Apav#1 × LM163 and both parents were genotyped with the 16K SNP array and bulked segregant analysis sequencing. The analysis detected a major gene, YrLM163, at the seedling stage associated with the 1BL.1RS translocation. Additionally, three genes for resistance at the adult plant stage were detected on chromosome arms 1BL (Lr46/Yr29/Pm39/Sr58), 6BS, and 6BL in Luomai 163, whereas Apav#1 contributed resistance at a quantitative trait locus (QTL) on 2BL. These QTL explained YR disease severity variations ranging from 6.9 to 54.8%. The kompetitive allele-specific PCR (KASP) markers KASP-2BL, KASP-6BS, and KASP-6BL for the three novel loci QYr.hzau-2BL, QYr.hzau-6BS, and QYr.hzau-6BL were developed and validated. QYr.hzau-1BL, QYr.hzau-2BL, and QYr.hzau-6BS showed varying degrees of resistance to YR when present individually or in combination based on genotype and phenotype analysis of a panel of 570 wheat accessions. Six RILs combining resistance alleles of all QTL, showing higher resistance to YR in the field than Luomai 163 with disease severities of 10.7 to 16.0%, are important germplasm resources for breeding programs to develop YR-resistant wheat varieties with good agronomic traits.
Collapse
Affiliation(s)
- Zimeng Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chan Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shunda Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Fangping Yang
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Pengpeng Liu
- Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi, Xinjiang 832000, China
| | - Wei Sang
- Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi, Xinjiang 832000, China
| | - Yong Ren
- Mianyang Institute of Agricultural Science/Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, Sichuan 621023, China
| | - Ravi Singh
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco 56237E, Mexico
| | - Pingan Liao
- Luohe Academy of Agricultural Sciences, Luohe, Henan 462000, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
10
|
Wang J, Yu L, Zhao J, Fu S, Mei Y, Lou B, Zhou Y. ClBeclin1 Positively Regulates Citrus Defence Against Citrus Yellow Vein Clearing Virus Through Mediating Autophagy-Dependent Degradation of ClAPX1. MOLECULAR PLANT PATHOLOGY 2024; 25:e70041. [PMID: 39658820 PMCID: PMC11631719 DOI: 10.1111/mpp.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Autophagy, one of the most widespread and highly conserved protein degradation systems in eukaryotic cells, plays an important role in plant growth, development and stress response. Beclin 1 is a core component of the phosphatidylinositol 3-kinase (PI3K) autophagy complex and positively regulates plant immunity against viruses. The upregulation of Eureka lemon ClBeclin1 was observed in response to citrus yellow vein clearing virus (CYVCV) infection. However, the function of ClBeclin1 and the underlying mechanism during CYVCV colonisation remain unclear. Here, the resistance evaluation of the overexpression and silencing of ClBeclin1 in Eureka lemon hairy roots revealed it as a positive regulator of citrus immunity against CYVCV. Transcriptomic profiling and metabolic analyses along with genetic evidence implied that the overexpression of ClBeclin1 positively triggered reactive oxygen species (ROS)- and jasmonic acid (JA)-mediated immunity in citrus. The accumulation of ROS and JA contents was attributed to the autophagic degradation of the ROS scavenger ClAPX1 via ClBeclin1 overexpression. Exogenous application of either H2O2 or JA significantly reduced CYVCV colonisation and vein-clearing symptoms on the host. Collectively, our findings indicate that ClBeclin1 activation contributes to citrus immunity against CYVCV through triggering ROS- and JA-mediated defence responses, and the accumulation of ROS and JA resulted from the autophagic degradation of ClAPX1 by ClBeclin1.
Collapse
Affiliation(s)
- Jiajun Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science CitySouthwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest UniversityChongqingChina
| | - Ling Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science CitySouthwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest UniversityChongqingChina
| | - Jinfa Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science CitySouthwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest UniversityChongqingChina
| | - Shimin Fu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science CitySouthwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest UniversityChongqingChina
| | - Yalin Mei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science CitySouthwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest UniversityChongqingChina
| | - Binghai Lou
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North GuangxiGuangxi Academy of Specialty CropsGuilinGuangxiChina
| | - Yan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science CitySouthwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest UniversityChongqingChina
| |
Collapse
|
11
|
Wojciechowska I, Mukherjee T, Knox-Brown P, Hu X, Khosla A, Subedi B, Ahmad B, Mathews GL, Panagakis AA, Thompson KA, Peery ST, Szlachetko J, Thalhammer A, Hincha DK, Skirycz A, Schrick K. Arabidopsis PROTODERMAL FACTOR2 binds lysophosphatidylcholines and transcriptionally regulates phospholipid metabolism. THE NEW PHYTOLOGIST 2024; 244:1498-1518. [PMID: 38952028 PMCID: PMC11486602 DOI: 10.1111/nph.19917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 07/03/2024]
Abstract
Plant homeodomain leucine zipper IV (HD-Zip IV) transcription factors (TFs) contain an evolutionarily conserved steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain. While the START domain is required for TF activity, its presumed role as a lipid sensor is not clear. Here we used tandem affinity purification from Arabidopsis cell cultures to demonstrate that PROTODERMAL FACTOR2 (PDF2), a representative member that controls epidermal differentiation, recruits lysophosphatidylcholines (LysoPCs) in a START-dependent manner. Microscale thermophoresis assays confirmed that a missense mutation in a predicted ligand contact site reduces lysophospholipid binding. We additionally found that PDF2 acts as a transcriptional regulator of phospholipid- and phosphate (Pi) starvation-related genes and binds to a palindromic octamer with consensus to a Pi response element. Phospholipid homeostasis and elongation growth were altered in pdf2 mutants according to Pi availability. Cycloheximide chase experiments revealed a role for START in maintaining protein levels, and Pi starvation resulted in enhanced protein destabilization, suggesting a mechanism by which lipid binding controls TF activity. We propose that the START domain serves as a molecular sensor for membrane phospholipid status in the epidermis. Our data provide insights toward understanding how the lipid metabolome integrates Pi availability with gene expression.
Collapse
Affiliation(s)
| | - Thiya Mukherjee
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
- Donald Danforth Plant Science Center, Olivette, MO, 63132, USA
| | | | - Xueyun Hu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Aashima Khosla
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bibek Subedi
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bilal Ahmad
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Graham L Mathews
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Kyle A Thompson
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sophie T Peery
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jagoda Szlachetko
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Anja Thalhammer
- Physical Biochemistry, University of Potsdam, 14476, Potsdam, Germany
| | - Dirk K Hincha
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
12
|
Gong R, Cao H, Pan Y, Liu W, Wang Z, Chen Y, Li H, Zhao L, Huang D. Phosphatidylcholine Transfer Protein OsPCTP Interacts with Ascorbate Peroxidase OsAPX8 to Regulate Bacterial Blight Resistance in Rice. Int J Mol Sci 2024; 25:11503. [PMID: 39519057 PMCID: PMC11546617 DOI: 10.3390/ijms252111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Rice phosphatidylcholine transfer protein (PCTP), which contains a steroidogenic acute regulatory protein-related lipid transfer (START) domain, responds to bacterial blight disease. Overexpression of OsPCTP quantitatively enhances resistance to pathogen in rice, whereas depletion of it has the opposite effect. Further analysis showed that OsPCTP physically interacts with OsAPX8, a ROS scavenging enzyme, and influences ascorbate peroxidase enzymatic activity in vivo. In addition, the expression of pathogenesis-related genes PR1a, PR1b and PR10 were significantly induced in OsPCTP-OE plants compared with that in wild-type plants ZH11. Taken together, these results suggested that OsPCTP mediates bacterial blight resistance in rice through regulating the ROS defense pathway.
Collapse
Affiliation(s)
- Rong Gong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.G.); (H.C.); (Y.P.); (W.L.); (Z.W.); (Y.C.); (H.L.); (L.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Huasheng Cao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.G.); (H.C.); (Y.P.); (W.L.); (Z.W.); (Y.C.); (H.L.); (L.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Yangyang Pan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.G.); (H.C.); (Y.P.); (W.L.); (Z.W.); (Y.C.); (H.L.); (L.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Wei Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.G.); (H.C.); (Y.P.); (W.L.); (Z.W.); (Y.C.); (H.L.); (L.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Zhidong Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.G.); (H.C.); (Y.P.); (W.L.); (Z.W.); (Y.C.); (H.L.); (L.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Yibo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.G.); (H.C.); (Y.P.); (W.L.); (Z.W.); (Y.C.); (H.L.); (L.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Hong Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.G.); (H.C.); (Y.P.); (W.L.); (Z.W.); (Y.C.); (H.L.); (L.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Lei Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.G.); (H.C.); (Y.P.); (W.L.); (Z.W.); (Y.C.); (H.L.); (L.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Daoqiang Huang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.G.); (H.C.); (Y.P.); (W.L.); (Z.W.); (Y.C.); (H.L.); (L.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| |
Collapse
|
13
|
Ostermeier M, Garibay-Hernández A, Holzer VJC, Schroda M, Nickelsen J. Structure, biogenesis, and evolution of thylakoid membranes. THE PLANT CELL 2024; 36:4014-4035. [PMID: 38567528 PMCID: PMC11448915 DOI: 10.1093/plcell/koae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
Cyanobacteria and chloroplasts of algae and plants harbor specialized thylakoid membranes (TMs) that convert sunlight into chemical energy. These membranes house PSII and I, the vital protein-pigment complexes that drive oxygenic photosynthesis. In the course of their evolution, TMs have diversified in structure. However, the core machinery for photosynthetic electron transport remained largely unchanged, with adaptations occurring primarily in the light-harvesting antenna systems. Whereas TMs in cyanobacteria are relatively simple, they become more complex in algae and plants. The chloroplasts of vascular plants contain intricate networks of stacked grana and unstacked stroma thylakoids. This review provides an in-depth view of TM architectures in phototrophs and the determinants that shape their forms, as well as presenting recent insights into the spatial organization of their biogenesis and maintenance. Its overall goal is to define the underlying principles that have guided the evolution of these bioenergetic membranes.
Collapse
Affiliation(s)
| | | | | | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jörg Nickelsen
- Molecular Plant Science, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
14
|
Zhou X, Jia G, Luo Y, Li X, Cai L, Chen X, Kang Z. Fine mapping of QYrsv.swust-1BL for resistance to stripe rust in durum wheat Svevo. FRONTIERS IN PLANT SCIENCE 2024; 15:1395223. [PMID: 38933466 PMCID: PMC11204296 DOI: 10.3389/fpls.2024.1395223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious disease that affects wheat worldwide. There is a great need to develop cultivars with combinations of all-stage resistance (ASR) and adult-plant resistance (APR) genes for sustainable control of the disease. QYrsv.swust-1BL in the Italian durum wheat (Triticum turgidum ssp. durum) cultivar Svevo is effective against Pst races in China and Israel, and the gene has been previously mapped to the long arm of chromosome 1B. The gene is flanked by SNP (single nucleotide polymorphism) markers IWB5732 and IWB4839 (0.75 cM). In the present study, we used high-density 660K SNP array genotyping and the phenotypes of 137 recombinant inbred lines (RILs) to fine map the QYrsv.swust-1BL locus within a 1.066 Mb region in durum wheat Svevo (RefSeq Rel. 1.0) on chromosome arm 1BL. The identified 1.066 Mb region overlaps with a previously described map of Yr29/QYr.ucw-1BL, a stripe rust APR gene. Twenty-five candidate genes for QYrsv.swut-1BL were identified through comparing polymorphic genes within the 1.066 Mb region in the resistant cultivar. SNP markers were selected and converted to Kompetitive allele-specific polymerase chain reaction (KASP) markers. Five KASP markers based on SNP were validated in a F2 and F2:3 breeding population, providing further compelling evidence for the significant effects of QYrsv.swut-1BL. These markers should be useful in marker-assisted selection for incorporating Yr29/QYrsv.swust-1BL into new durum and common wheat cultivars for resistance to stripe rust.
Collapse
Affiliation(s)
- Xinli Zhou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Guoyun Jia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Yuqi Luo
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Lin Cai
- College of Tobacco Science of Guizhou University, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Lab of Agro-Bioengineering, Guiyang, China
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
15
|
Khan H, Krishnappa G, Kumar S, Devate NB, Rathan ND, Kumar S, Mishra CN, Ram S, Tiwari R, Parkash O, Ahlawat OP, Mamrutha HM, Singh GP, Singh G. Genome-wide association study identifies novel loci and candidate genes for rust resistance in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2024; 24:411. [PMID: 38760694 PMCID: PMC11100168 DOI: 10.1186/s12870-024-05124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Wheat rusts are important biotic stresses, development of rust resistant cultivars through molecular approaches is both economical and sustainable. Extensive phenotyping of large mapping populations under diverse production conditions and high-density genotyping would be the ideal strategy to identify major genomic regions for rust resistance in wheat. The genome-wide association study (GWAS) population of 280 genotypes was genotyped using a 35 K Axiom single nucleotide polymorphism (SNP) array and phenotyped at eight, 10, and, 10 environments, respectively for stem/black rust (SR), stripe/yellow rust (YR), and leaf/brown rust (LR). RESULTS Forty-one Bonferroni corrected marker-trait associations (MTAs) were identified, including 17 for SR and 24 for YR. Ten stable MTAs and their best combinations were also identified. For YR, AX-94990952 on 1A + AX-95203560 on 4A + AX-94723806 on 3D + AX-95172478 on 1A showed the best combination with an average co-efficient of infection (ACI) score of 1.36. Similarly, for SR, AX-94883961 on 7B + AX-94843704 on 1B and AX-94883961 on 7B + AX-94580041 on 3D + AX-94843704 on 1B showed the best combination with an ACI score of around 9.0. The genotype PBW827 have the best MTA combinations for both YR and SR resistance. In silico study identifies key prospective candidate genes that are located within MTA regions. Further, the expression analysis revealed that 18 transcripts were upregulated to the tune of more than 1.5 folds including 19.36 folds (TraesCS3D02G519600) and 7.23 folds (TraesCS2D02G038900) under stress conditions compared to the control conditions. Furthermore, highly expressed genes in silico under stress conditions were analyzed to find out the potential links to the rust phenotype, and all four genes were found to be associated with the rust phenotype. CONCLUSION The identified novel MTAs, particularly stable and highly expressed MTAs are valuable for further validation and subsequent application in wheat rust resistance breeding. The genotypes with favorable MTA combinations can be used as prospective donors to develop elite cultivars with YR and SR resistance.
Collapse
Affiliation(s)
- Hanif Khan
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Gopalareddy Krishnappa
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India.
- ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, India.
| | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Narayana Bhat Devate
- International Centre for Agriculture Research in the Dry Area - Food Legume Research Platform, Amlaha, MP, 466113, India
| | | | - Satish Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | | | - Sewa Ram
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Om Parkash
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Om Parkash Ahlawat
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | | | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| |
Collapse
|
16
|
Yoshimura K, Ishikawa T. Physiological function and regulation of ascorbate peroxidase isoforms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2700-2715. [PMID: 38367016 DOI: 10.1093/jxb/erae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
Ascorbate peroxidase (APX) reduces H2O2 to H2O by utilizing ascorbate as a specific electron donor and constitutes the ascorbate-glutathione cycle in organelles of plants including chloroplasts, cytosol, mitochondria, and peroxisomes. It has been almost 40 years since APX was discovered as an important plant-specific H2O2-scavenging enzyme, during which time many research groups have conducted molecular physiological analyses. It is now clear that APX isoforms function not only just as antioxidant enzymes but also as important factors in intracellular redox regulation through the metabolism of reactive oxygen species. The function of APX isoforms is regulated at multiple steps, from the transcriptional level to post-translational modifications of enzymes, thereby allowing them to respond flexibly to ever-changing environmental factors and physiological phenomena such as cell growth and signal transduction. In this review, we summarize the physiological functions and regulation mechanisms of expression of each APX isoform.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
17
|
Foyer CH, Kunert K. The ascorbate-glutathione cycle coming of age. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2682-2699. [PMID: 38243395 PMCID: PMC11066808 DOI: 10.1093/jxb/erae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Concepts regarding the operation of the ascorbate-glutathione cycle and the associated water/water cycle in the processing of metabolically generated hydrogen peroxide and other forms of reactive oxygen species (ROS) are well established in the literature. However, our knowledge of the functions of these cycles and their component enzymes continues to grow and evolve. Recent insights include participation in the intrinsic environmental and developmental signalling pathways that regulate plant growth, development, and defence. In addition to ROS processing, the enzymes of the two cycles not only support the functions of ascorbate and glutathione, they also have 'moonlighting' functions. They are subject to post-translational modifications and have an extensive interactome, particularly with other signalling proteins. In this assessment of current knowledge, we highlight the central position of the ascorbate-glutathione cycle in the network of cellular redox systems that underpin the energy-sensitive communication within the different cellular compartments and integrate plant signalling pathways.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Karl Kunert
- Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, 2001, South Africa
| |
Collapse
|
18
|
Wang NN, Ni P, Wei YL, Hu R, Li Y, Li XB, Zheng Y. Phosphatidic acid interacts with an HD-ZIP transcription factor GhHOX4 to influence its function in fiber elongation of cotton (Gossypium hirsutum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:423-436. [PMID: 38184843 DOI: 10.1111/tpj.16616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Upland cotton, the mainly cultivated cotton species in the world, provides over 90% of natural raw materials (fibers) for the textile industry. The development of cotton fibers that are unicellular and highly elongated trichomes on seeds is a delicate and complex process. However, the regulatory mechanism of fiber development is still largely unclear in detail. In this study, we report that a homeodomain-leucine zipper (HD-ZIP) IV transcription factor, GhHOX4, plays an important role in fiber elongation. Overexpression of GhHOX4 in cotton resulted in longer fibers, while GhHOX4-silenced transgenic cotton displayed a "shorter fiber" phenotype compared with wild type. GhHOX4 directly activates two target genes, GhEXLB1D and GhXTH2D, for promoting fiber elongation. On the other hand, phosphatidic acid (PA), which is associated with cell signaling and metabolism, interacts with GhHOX4 to hinder fiber elongation. The basic amino acids KR-R-R in START domain of GhHOX4 protein are essential for its binding to PA that could alter the nuclear localization of GhHOX4 protein, thereby suppressing the transcriptional regulation of GhHOX4 to downstream genes in the transition from fiber elongation to secondary cell wall (SCW) thickening during fiber development. Thus, our data revealed that GhHOX4 positively regulates fiber elongation, while PA may function in the phase transition from fiber elongation to SCW formation by negatively modulating GhHOX4 in cotton.
Collapse
Affiliation(s)
- Na-Na Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Ni
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ying-Li Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Rong Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
19
|
Zhao S, Chen J, Cao S, Wang H, Chen H, Wei Y, Chen Y, Shao X, Xu F. The regulation of Cytochrome f by mannose treatment in broccoli and its relationship with programmed cell death in tobacco BY-2 cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108480. [PMID: 38437751 DOI: 10.1016/j.plaphy.2024.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.
Collapse
Affiliation(s)
- Shiyi Zhao
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Jiahui Chen
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Hongfei Wang
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Hangjun Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, 310021, China
| | - Yingying Wei
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Yi Chen
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Xingfeng Shao
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Feng Xu
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China.
| |
Collapse
|
20
|
Yan Y, Li XM, Chen Y, Wu TT, Ding CH, Zhang MQ, Guo YT, Wang CY, Zhang J, Zhang X, Rasheed A, Xu S, Wang ML, Ni Z, Sun Q, Gou JY. Phosphorylation of KAT-2B by WKS1/Yr36 redirects the lipid flux to jasmonates to enhance resistance against wheat stripe rust. J Genet Genomics 2023; 50:872-882. [PMID: 37666356 DOI: 10.1016/j.jgg.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Wheat (Triticum aestivum) is one of the most essential human energy and protein sources. However, wheat production is threatened by devastating fungal diseases such as stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst). Here, we reveal that the alternations in chloroplast lipid profiles and the accumulation of jasmonate (JA) in the necrosis region activate JA signaling and trigger the host defense. The collapse of chloroplasts in the necrosis region results in accumulations of polyunsaturated membrane lipids and the lipid-derived phytohormone JA in transgenic lines of Yr36 that encodes Wheat Kinase START 1 (WKS1), a high-temperature-dependent adult plant resistance protein. WKS1.1, a protein encoded by a full-length splicing variant of WKS1, phosphorylates and enhances the activity of keto-acyl thiolase (KAT-2B), a critical enzyme catalyzing the β-oxidation reaction in JA biosynthesis. The premature stop mutant, kat-2b, accumulates less JA and shows defects in the host defense against Pst. Conversely, overexpression of KAT-2B results in a higher level of JA and limits the growth of Pst. Moreover, JA inhibits the growth and reduces pustule densities of Pst. This study illustrates the WKS1.1‒KAT-2B‒JA pathway for enhancing wheat defense against fungal pathogens to attenuate yield loss.
Collapse
Affiliation(s)
- Yan Yan
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China; Xianghu Laboratory, Hangzhou, Zhejiang 311231, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiao-Ming Li
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yun Chen
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Tian-Tian Wu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ci-Hang Ding
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mei-Qi Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yue-Ting Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chu-Yang Wang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Awais Rasheed
- International Maize and Wheat Improvement Center (CIMMYT), Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shengchun Xu
- Xianghu Laboratory, Hangzhou, Zhejiang 311231, China
| | - Meng-Lu Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Jin-Ying Gou
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Schrick K, Ahmad B, Nguyen HV. HD-Zip IV transcription factors: Drivers of epidermal cell fate integrate metabolic signals. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102417. [PMID: 37441837 PMCID: PMC10527651 DOI: 10.1016/j.pbi.2023.102417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
The leaf epidermis comprises the outermost layer of cells that protect plants against environmental stresses such as drought, ultraviolet radiation, and pathogen attack. Research over the past decades highlights the role of class IV homeodomain leucine-zipper (HD-Zip IV) transcription factors (TFs) in driving differentiation of various epidermal cell types, such as trichomes, guard cells, and pavement cells. Evolutionary origins of this family in the charophycean green algae and HD-Zip-specific gene expression in the maternal genome provide clues to unlocking their secrets which include ties to cell cycle regulation. A distinguishing feature of these TFs is the presence of a lipid binding pocket that integrates metabolic information with gene expression. Identities of metabolic partners are beginning to emerge, uncovering feedback loops to maintain epidermal cell specification. Discoveries of associated molecular mechanisms are revealing fascinating links to phospholipid and sphingolipid metabolism and mechanical signaling.
Collapse
Affiliation(s)
- Kathrin Schrick
- Molecular, Cellular, and Developmental Biology, Kansas State University, Manhattan, KS 66506, USA; Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| | - Bilal Ahmad
- Molecular, Cellular, and Developmental Biology, Kansas State University, Manhattan, KS 66506, USA; Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Hieu V Nguyen
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
22
|
Chang CY, Yang SX, Zhang MQ, Guo YT, Li XM, Yan Y, Ding CH, Niu KX, Wang ML, Li QQ, Zhang J, Zhang X, Chen S, Xie C, Ni Z, Sun Q, Gou JY. Suppression of ZEAXANTHIN EPOXIDASE 1 restricts stripe rust growth in wheat. PLANT COMMUNICATIONS 2023; 4:100608. [PMID: 37101397 PMCID: PMC10504589 DOI: 10.1016/j.xplc.2023.100608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 04/23/2023] [Indexed: 05/30/2023]
Abstract
Reducing losses caused by pathogens is an effective strategy for stabilizing crop yields. Daunting challenges remain in cloning and characterizing genes that inhibit stripe rust, a devastating disease of wheat (Triticum aestivum) caused by Puccinia striiformis f. sp. tritici (Pst). We found that suppression of wheat zeaxanthin epoxidase 1 (ZEP1) increased wheat defense against Pst. We isolated the yellow rust slower 1 (yrs1) mutant of tetraploid wheat in which a premature stop mutation in ZEP1-B underpins the phenotype. Genetic analyses revealed increased H2O2 accumulation in zep1 mutants and demonstrated a correlation between ZEP1 dysfunction and slower Pst growth in wheat. Moreover, wheat kinase START 1.1 (WKS1.1, Yr36) bound, phosphorylated, and suppressed the biochemical activity of ZEP1. A rare natural allele in the hexaploid wheat ZEP1-B promoter reduced its transcription and Pst growth. Our study thus identified a novel suppressor of Pst, characterized its mechanism of action, and revealed beneficial variants for wheat disease control. This work opens the door to stacking wheat ZEP1 variants with other known Pst resistance genes in future breeding programs to enhance wheat tolerance to pathogens.
Collapse
Affiliation(s)
- Chao-Yan Chang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shu-Xian Yang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mei-Qi Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yue-Ting Guo
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiao-Ming Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yan Yan
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ci-Hang Ding
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ke-Xin Niu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Meng-Lu Wang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qin-Quan Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Shisheng Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jin-Ying Gou
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
23
|
Jost M, Outram MA, Dibley K, Zhang J, Luo M, Ayliffe M. Plant and pathogen genomics: essential approaches for stem rust resistance gene stacks in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1223504. [PMID: 37727853 PMCID: PMC10505659 DOI: 10.3389/fpls.2023.1223504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023]
Abstract
The deployment of disease resistance genes is currently the most economical and environmentally sustainable method of crop protection. However, disease resistance genes can rapidly break down because of constant pathogen evolution, particularly when they are deployed singularly. Polygenic resistance is, therefore, considered the most durable, but combining and maintaining these genes by breeding is a laborious process as effective genes are usually unlinked. The deployment of polygenic resistance with single-locus inheritance is a promising innovation that overcomes these difficulties while enhancing resistance durability. Because of major advances in genomic technologies, increasing numbers of plant resistance genes have been cloned, enabling the development of resistance transgene stacks (RTGSs) that encode multiple genes all located at a single genetic locus. Gene stacks encoding five stem rust resistance genes have now been developed in transgenic wheat and offer both breeding simplicity and potential resistance durability. The development of similar genomic resources in phytopathogens has advanced effector gene isolation and, in some instances, enabled functional validation of individual resistance genes in RTGS. Here, the wheat stem rust pathosystem is used as an illustrative example of how host and pathogen genomic advances have been instrumental in the development of RTGS, which is a strategy applicable to many other agricultural crop species.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
24
|
Mahtha SK, Kumari K, Gaur V, Yadav G. Cavity architecture based modulation of ligand binding tunnels in plant START domains. Comput Struct Biotechnol J 2023; 21:3946-3963. [PMID: 37635766 PMCID: PMC10448341 DOI: 10.1016/j.csbj.2023.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
The Steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain represents an evolutionarily conserved superfamily of lipid transfer proteins widely distributed across the tree of life. Despite significant expansion in plants, knowledge about this domain remains inadequate in plants. In this work, we explore the role of cavity architectural modulations in START protein evolution and functional diversity. We use deep-learning approaches to generate plant START domain models, followed by surface accessibility studies and a comprehensive structural investigation of the rice START family. We validate 28 rice START domain models, delineate binding cavities, measure pocket volumes, and compare these with mammalian counterparts to understand evolution of binding preferences. Overall, plant START domains retain the ancestral α/β helix-grip signature, but we find subtle variation in cavity architectures, resulting in significantly smaller ligand-binding tunnels in the plant kingdom. We identify cavity lining residues (CLRs) responsible for reduction in ancestral tunnel space, and these appear to be class specific, and unique to plants, providing a mechanism for the observed shift in domain function. For instance, mammalian cavity lining residues A135, G181 and A192 have evolved to larger CLRs across the plant kingdom, contributing to smaller sizes, minimal STARTs being the largest, while members of type-IV HD-Zip family show almost complete obliteration of lipid binding cavities, consistent with their present-day DNA binding functions. In summary, this work quantifies plant START structural & functional divergence, bridging current knowledge gaps.
Collapse
Affiliation(s)
| | - Kamlesh Kumari
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
25
|
Lin M, Dieseth JA, Alsheikh M, Yang E, Holzapfel J, Schürmann F, Morales L, Michel S, Buerstmayr H, Bhavani S, Lillemo M. A major yellow rust resistance QTL on chromosome 6A shows increased frequency in recent Norwegian spring wheat cultivars and breeding lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:164. [PMID: 37392221 DOI: 10.1007/s00122-023-04397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/29/2023] [Indexed: 07/03/2023]
Abstract
KEY MESSAGE A major yellow rust resistance QTL, QYr.nmbu.6A, contributed consistent adult plant resistance in field trials across Europe, China, Kenya and Mexico. Puccinia striiformis f. sp. tritici, causing wheat yellow rust (YR), is one of the most devastating biotrophic pathogens affecting global wheat yields. Owing to the recent epidemic of the PstS10 race group in Europe, yellow rust has become a reoccurring disease in Norway since 2014. As all stage resistances (ASR) (or seedling resistances) are usually easily overcome by pathogen evolution, deployment of durable adult plant resistance (APR) is crucial for yellow rust resistance breeding. In this study, we assessed a Nordic spring wheat association mapping panel (n = 301) for yellow rust field resistance in seventeen field trials from 2015 to 2021, including nine locations in six countries across four different continents. Nine consistent QTL were identified across continents by genome-wide association studies (GWAS). One robust QTL on the long arm of chromosome 6A, QYr.nmbu.6A, was consistently detected in nine out of the seventeen trials. Haplotype analysis of QYr.nmbu.6A confirmed significant QTL effects in all tested environments and the effect was also validated using an independent panel of new Norwegian breeding lines. Increased frequency of the resistant haplotype was found in new varieties and breeding lines in comparison to older varieties and landraces, implying that the resistance might have been selected for due to the recent changes in the yellow rust pathogen population in Europe.
Collapse
Affiliation(s)
- Min Lin
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway
| | | | | | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Josef Holzapfel
- Secobra Saatzucht GmbH, Lagesche Str. 250, 32657, Lemgo, Germany
| | | | - Laura Morales
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, 3430, Tulln, Austria
| | - Sebastian Michel
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, 3430, Tulln, Austria
| | - Hermann Buerstmayr
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, 3430, Tulln, Austria
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), 56237 El Batan, Texcoco, Estado de Mexico, Mexico
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway.
| |
Collapse
|
26
|
Li S. Novel insight into functions of ascorbate peroxidase in higher plants: More than a simple antioxidant enzyme. Redox Biol 2023; 64:102789. [PMID: 37352686 DOI: 10.1016/j.redox.2023.102789] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
As plants are sessile organisms, they are inevitably exposed to a variety of environmental stimuli that trigger rapid changes in the generation and disposal of reactive oxygen species such as hydrogen peroxide (H2O2). A major H2O2 scavenging system in plant cells is the ascorbate-glutathione cycle, in which ascorbate peroxidase (APX) catalyzes the conversion of H2O2 into water employing ascorbate as specific electron donor. In higher plants, distinct APX isoforms can occur in multiple subcellular compartments, including chloroplasts, mitochondria, and peroxisomes and the cytosol, to modulate organellar and cellular levels of H2O2. It is well established that APX plays crucial roles in protecting plant cells against diverse environmental stresses, as well as in plant growth and development. Apart from ascorbate, recently, APXs have been found to have a broader substrate specificity and possess chaperone activity, hence participating various biological processes. In this review, we describe the antioxidant properties of APXs and highlight their novel roles beyond 'ascorbate peroxidases'.
Collapse
Affiliation(s)
- Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
27
|
Yan Y, Guo YT, Chang CY, Li XM, Zhang MQ, Ding CH, Cui D, Sun C, Ren Y, Wang ML, Xie C, Ni Z, Sun Q, Chen F, Gou 缑金营 JY. HSP90.2 modulates 2Q2-mediated wheat resistance against powdery mildew. PLANT, CELL & ENVIRONMENT 2023; 46:1935-1945. [PMID: 36890722 DOI: 10.1111/pce.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Wheat (Triticum aestivum L.) is a critical food crop feeding the world, but pathogens threaten its production. Wheat Heat Shock Protein 90.2 (HSP90.2) is a pathogen-inducible molecular chaperone folding nascent preproteins. Here, we used wheat HSP90.2 to isolate clients regulated at the posttranslational level. Tetraploid wheat hsp90.2 knockout mutant was susceptible to powdery mildew, while the HSP90.2 overexpression line was resistant, suggesting that HSP90.2 was essential for wheat resistance against powdery mildew. We next isolated 1500 clients of HSP90.2, which contained a wide variety of clients with different biological classifications. We utilized 2Q2, a nucleotide-binding leucine repeat-rich protein, as a model to investigate the potential of HSP90.2 interactome in fungal resistance. The transgenic line co-suppressing 2Q2 was more susceptible to powdery mildew, suggesting 2Q2 as a novel Pm-resistant gene. The 2Q2 protein resided in chloroplasts, and HSP90.2 played a critical role in the accumulation of 2Q2 in thylakoids. Our data provided over 1500 HSP90.2 clients with a potential regulation at the protein folding process and contributed a nontypical approach to isolate pathogenesis-related proteins.
Collapse
Affiliation(s)
- Yan Yan
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yue-Ting Guo
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chao-Yan Chang
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Xiao-Ming Li
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Mei-Qi Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Ci-Hang Ding
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Dangqun Cui
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Meng-Lu Wang
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jin-Ying Gou 缑金营
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Yan Y, Wang ML, Guo YT, Ding CH, Niu KX, Li XM, Sun C, Dong Z, Cui D, Rasheed A, Hao C, Zhang X, Guo G, Ni Z, Sun Q, Chen F, Gou 缑金营 JY. HSP90.2 promotes CO 2 assimilation rate, grain weight and yield in wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1229-1239. [PMID: 36794449 DOI: 10.1111/pbi.14032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
Abstract
Wheat fixes CO2 by photosynthesis into kernels to nourish humankind. Improving the photosynthesis rate is a major driving force in assimilating atmospheric CO2 and guaranteeing food supply for human beings. Strategies for achieving the above goal need to be improved. Here, we report the cloning and mechanism of CO2 ASSIMILATION RATE AND KERNEL-ENHANCED 1 (CAKE1) from durum wheat (Triticum turgidum L. var. durum). The cake1 mutant displayed a lower photosynthesis rate with smaller grains. Genetic studies identified CAKE1 as HSP90.2-B, encoding cytosolic molecular chaperone folding nascent preproteins. The disturbance of HSP90.2 decreased leaf photosynthesis rate, kernel weight (KW) and yield. Nevertheless, HSP90.2 over-expression increased KW. HSP90.2 recruited and was essential for the chloroplast localization of nuclear-encoded photosynthesis units, for example PsbO. Actin microfilaments docked on the chloroplast surface interacted with HSP90.2 as a subcellular track towards chloroplasts. A natural variation in the hexaploid wheat HSP90.2-B promoter increased its transcription activity, enhanced photosynthesis rate and improved KW and yield. Our study illustrated an HSP90.2-Actin complex sorting client preproteins towards chloroplasts to promote CO2 assimilation and crop production. The beneficial haplotype of Hsp90.2 is rare in modern varieties and could be an excellent molecular switch promoting photosynthesis rate to increase yield in future elite wheat varieties.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- CIMMYT-China Wheat and Maize Joint Research Center/National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Meng-Lu Wang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yue-Ting Guo
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ci-Hang Ding
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ke-Xin Niu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiao-Ming Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Congwei Sun
- CIMMYT-China Wheat and Maize Joint Research Center/National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhongdong Dong
- CIMMYT-China Wheat and Maize Joint Research Center/National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Dangqun Cui
- CIMMYT-China Wheat and Maize Joint Research Center/National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Awais Rasheed
- Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Chenyang Hao
- Key Laboratory of Crop Germplasm and Biotechnology, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Germplasm and Biotechnology, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ganggang Guo
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Feng Chen
- CIMMYT-China Wheat and Maize Joint Research Center/National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jin-Ying Gou 缑金营
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Niu KX, Chang CY, Zhang MQ, Guo YT, Yan Y, Sun HJ, Zhang GL, Li XM, Gong YL, Ding CH, Wang ML, Ni Z, Sun Q, Gou JY. Suppressing ASPARTIC PROTEASE 1 prolongs photosynthesis and increases wheat grain weight. NATURE PLANTS 2023; 9:965-977. [PMID: 37277438 DOI: 10.1038/s41477-023-01432-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
The elongation of photosynthesis, or functional staygreen, represents a feasible strategy to propel metabolite flux towards cereal kernels. However, achieving this goal remains a challenge in food crops. Here we report the cloning of wheat CO2 assimilation and kernel enhanced 2 (cake2), the mechanism underlying the photosynthesis advantages and natural alleles amenable to breeding elite varieties. A premature stop mutation in the A-genome copy of the ASPARTIC PROTEASE 1 (APP-A1) gene increased the photosynthesis rate and yield. APP1 bound and degraded PsbO, the protective extrinsic member of photosystem II critical for increasing photosynthesis and yield. Furthermore, a natural polymorphism of the APP-A1 gene in common wheat reduced APP-A1's activity and promoted photosynthesis and grain size and weight. This work demonstrates that the modification of APP1 increases photosynthesis, grain size and yield potentials. The genetic resources could propel photosynthesis and high-yield potentials in elite varieties of tetraploid and hexaploid wheat.
Collapse
Affiliation(s)
- Ke-Xin Niu
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chao-Yan Chang
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Mei-Qi Zhang
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yue-Ting Guo
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yan Yan
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Hao-Jie Sun
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Guo-Liang Zhang
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiao-Ming Li
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yi-Lin Gong
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Ci-Hang Ding
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Meng-Lu Wang
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jin-Ying Gou
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.
| |
Collapse
|
30
|
Huang S, Zhang Y, Ren H, Zhang X, Yu R, Liu S, Zeng Q, Wang Q, Yuan F, Singh RP, Bhavani S, Wu J, Han D, Kang Z. High density mapping of wheat stripe rust resistance gene QYrXN3517-1BL using QTL mapping, BSE-Seq and candidate gene analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:39. [PMID: 36897402 DOI: 10.1007/s00122-023-04282-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
Fine mapping of a major stripe rust resistance locus QYrXN3517-1BL to a 336 kb region that includes 12 candidate genes. Utilization of genetic resistance is an effective strategy to control stripe rust disease in wheat. Cultivar XINONG-3517 (XN3517) has remained highly resistant to stripe rust since its release in 2008. To understand the genetic architecture of stripe rust resistance, Avocet S (AvS) × XN3517 F6 RIL population was assessed for stripe rust severity in five field environments. The parents and RILs were genotyped by using the GenoBaits Wheat 16 K Panel. Four stable QTL from XINONG-3517 were detected on chromosome arms 1BL, 2AL, 2BL, and 6BS, named as QYrXN3517-1BL, QYrXN3517-2AL, QYrXN3517-2BL, and QYrXN3517-6BS, respectively. Based on the Wheat 660 K array and bulked segregant exome sequencing (BSE-Seq), the most effective QTL on chromosome 1BL is most likely different from the known adult plant resistance gene Yr29 and was mapped to a 1.7 cM region [336 kb, including twelve candidate genes in International Wheat Genome Sequencing Consortium (IWGSC) RefSeq version 1.0]. The 6BS QTL was identified as Yr78, and the 2AL QTL was probably same as QYr.caas-2AL or QYrqin.nwafu-2AL. The novel QTL on 2BL was effective in seedling stage against the races used in phenotyping. In addition, allele-specifc quantitative PCR (AQP) marker nwafu.a5 was developed for QYrXN3517-1BL to assist marker-assisted breeding.
Collapse
Affiliation(s)
- Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yibo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hui Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Rui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
31
|
Gou M, Balint-Kurti P, Xu M, Yang Q. Quantitative disease resistance: Multifaceted players in plant defense. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:594-610. [PMID: 36448658 DOI: 10.1111/jipb.13419] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
In contrast to large-effect qualitative disease resistance, quantitative disease resistance (QDR) exhibits partial and generally durable resistance and has been extensively utilized in crop breeding. The molecular mechanisms underlying QDR remain largely unknown but considerable progress has been made in this area in recent years. In this review, we summarize the genes that have been associated with plant QDR and their biological functions. Many QDR genes belong to the canonical resistance gene categories with predicted functions in pathogen perception, signal transduction, phytohormone homeostasis, metabolite transport and biosynthesis, and epigenetic regulation. However, other "atypical" QDR genes are predicted to be involved in processes that are not commonly associated with disease resistance, such as vesicle trafficking, molecular chaperones, and others. This diversity of function for QDR genes contrasts with qualitative resistance, which is often based on the actions of nucleotide-binding leucine-rich repeat (NLR) resistance proteins. An understanding of the diversity of QDR mechanisms and of which mechanisms are effective against which classes of pathogens will enable the more effective deployment of QDR to produce more durably resistant, resilient crops.
Collapse
Affiliation(s)
- Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC, 27695, USA
| | - Mingliang Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
32
|
Cai Y, Chen X, Li P, Ren W, Zhang Q, Wang Y, Jiang Y, Zhu P, Toyoda H, Xu L. Phosphorylation status of a conserved residue in the adenylate cyclase of Botrytis cinerea is involved in regulating photomorphogenesis, circadian rhythm, and pathogenicity. Front Microbiol 2023; 14:1112584. [PMID: 36876105 PMCID: PMC9975511 DOI: 10.3389/fmicb.2023.1112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
Adenylate cyclase (AC) regulates growth, reproduction, and pathogenicity in many fungi by synthesizing cyclic adenosine monophosphate (cAMP) and activating downstream protein kinase A (PKA). Botrytis cinerea is a typical necrotrophic plant-pathogenic fungus. It shows a typical photomorphogenic phenotype of conidiation under light and sclerotia formation under dark; both are important reproduction structures for the dispersal and stress resistance of the fungus. The report of B. cinerea adenylate cyclase (BAC) mutation showed it affects the production of conidia and sclerotia. However, the regulatory mechanisms of the cAMP signaling pathways in photomorphogenesis have not been clarified. In this study, the S1407 site was proven to be an important conserved residue in the PP2C domain which poses a remarkable impact on the phosphorylation levels and enzyme activity of the BAC and the overall phosphorylation status of total proteins. The point mutation bacS1407P , complementation bacP1407S , phosphomimetic mutation bacS1407D , and phosphodeficient mutation bacS1407A strains were used for comparison with the light receptor white-collar mutant Δbcwcl1 to elucidate the relationship between the cAMP signaling pathway and the light response. The comparison of photomorphogenesis and pathogenicity phenotype, evaluation of circadian clock components, and expression analysis of light response transcription factor genes Bcltf1, Bcltf2, and Bcltf3 showed that the cAMP signaling pathway could stabilize the circadian rhythm that is associated with pathogenicity, conidiation, and sclerotium production. Collectively, this reveals that the conserved S1407 residue of BAC is a vital phosphorylation site to regulate the cAMP signaling pathway and affects the photomorphogenesis, circadian rhythm, and pathogenicity of B. cinerea.
Collapse
Affiliation(s)
- Yunfei Cai
- School of Life Science, East China Normal University, Shanghai, China
| | - Xue Chen
- School of Life Science, East China Normal University, Shanghai, China
| | - Peixuan Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Weiheng Ren
- School of Life Science, East China Normal University, Shanghai, China
| | - Qiang Zhang
- School of Life Science, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Science, East China Normal University, Shanghai, China
| | - Yina Jiang
- School of Life Science, East China Normal University, Shanghai, China
| | - Pinkuan Zhu
- School of Life Science, East China Normal University, Shanghai, China
| | | | - Ling Xu
- School of Life Science, East China Normal University, Shanghai, China
| |
Collapse
|
33
|
Mapuranga J, Zhang N, Zhang L, Liu W, Chang J, Yang W. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:951095. [PMID: 36311120 PMCID: PMC9614308 DOI: 10.3389/fpls.2022.951095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Wheat is one of the most important staple foods on earth. Leaf rust, stem rust and stripe rust, caused by Puccini triticina, Puccinia f. sp. graminis and Puccinia f. sp. striiformis, respectively, continue to threaten wheat production worldwide. Utilization of resistant cultivars is the most effective and chemical-free strategy to control rust diseases. Convectional and molecular biology techniques identified more than 200 resistance genes and their associated markers from common wheat and wheat wild relatives, which can be used by breeders in resistance breeding programmes. However, there is continuous emergence of new races of rust pathogens with novel degrees of virulence, thus rendering wheat resistance genes ineffective. An integration of genomic selection, genome editing, molecular breeding and marker-assisted selection, and phenotypic evaluations is required in developing high quality wheat varieties with resistance to multiple pathogens. Although host genotype resistance and application of fungicides are the most generally utilized approaches for controlling wheat rusts, effective agronomic methods are required to reduce disease management costs and increase wheat production sustainability. This review gives a critical overview of the current knowledge of rust resistance, particularly race-specific and non-race specific resistance, the role of pathogenesis-related proteins, non-coding RNAs, and transcription factors in rust resistance, and the molecular basis of interactions between wheat and rust pathogens. It will also discuss the new advances on how integrated rust management methods can assist in developing more durable resistant cultivars in these pathosystems.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| |
Collapse
|
34
|
Nazareno ES, Fiedler J, Miller ME, Figueroa M, Kianian SF. A reference-anchored oat linkage map reveals quantitative trait loci conferring adult plant resistance to crown rust (Puccinia coronata f. sp. avenae). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3307-3321. [PMID: 36029319 DOI: 10.1007/s00122-022-04128-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
We mapped three adult plant resistance (APR) loci on oat chromosomes 4D and 6C and developed flanking KASP/PACE markers for marker-assisted selection and gene pyramiding. Using sequence orthology search and the available oat genomic and transcriptomic data, we surveyed these genomic regions for genes that may control disease resistance. Sources of durable disease resistance are needed to minimize yield losses in cultivated oat caused by crown rust (Puccinia coronata f. sp. avenae). In this study, we developed five oat recombinant inbred line mapping populations to identify sources of adult plant resistance from crosses between five APR donors and Otana, a susceptible variety. The preliminary bulk segregant mapping based on allele frequencies showed two regions in linkage group Mrg21 (Chr4D) that are associated with the APR phenotype in all five populations. Six markers from these regions in Chr4D were converted to high-throughput allele specific PCR assays and were used to genotype all individuals in each population. Simple interval mapping showed two peaks in Chr4D, named QPc.APR-4D.1 and QPc.APR-4D.2, which were detected in the OtanaA/CI4706-2 and OtanaA/CI9416-2 and in the Otana/PI189733, OtanaD/PI260616, and OtanaA/CI8000-4 populations, respectively. These results were validated by mapping two entire populations, Otana/PI189733 and OtanaA/CI9416, genotyped using Illumina HiSeq, in which polymorphisms were called against the OT3098 oat reference genome. Composite interval mapping results confirmed the presence of the two quantitative trait loci (QTL) located on oat chromosome 4D and an additional QTL with a smaller effect located on chromosome 6C. This mapping approach also narrowed down the physical intervals to between 5 and 19 Mb, and indicated that QPc.APR-4D.1, QPc.APR-4D.2, and QPc.APR-6C explained 43.4%, 38.5%, and 21.5% of the phenotypic variation, respectively. In a survey of the gene content of each QTL, several clusters of disease resistance genes that may contribute to APR were found. The allele specific PCR markers developed for these QTL regions would be beneficial for marker-assisted breeding, gene pyramiding, and future cloning of resistance genes from oat.
Collapse
Affiliation(s)
- Eric S Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Jason Fiedler
- US Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND, USA
| | - Marisa E Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Pairwise Plants, LLC. 807 East Main Street, Suite 4-100, Durham, NC, USA
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Shahryar F Kianian
- US Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, USA.
| |
Collapse
|
35
|
Zhang L, Liu Y, Wang Q, Wang C, Lv S, Wang Y, Wang J, Wang Y, Yuan J, Zhang H, Kang Z, Ji W. An alternative splicing isoform of wheat TaYRG1 resistance protein activates immunity by interacting with dynamin-related proteins. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5474-5489. [PMID: 35652375 DOI: 10.1093/jxb/erac245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Wheat (Triticum aestivum) is a commercially important crop and its production is seriously threatened by the fungal pathogen Puccinia striiformis f. sp. tritici West (Pst). Resistance (R) genes are critical factors that facilitate plant immune responses. Here, we report a wheat R gene NB-ARC-LRR ortholog, TaYRG1, that is associated with distinct alternative splicing events in wheat infected by Pst. The native splice variant, TaYRG1.6, encodes internal-motif-deleted polypeptides with the same N- and C-termini as TaYRG1.1, resulting in gain of function. Transient expression of protein variants in Nicotiana benthamiana showed that the NB and ARC domains, and TaYRG1.6 (half LRR domain), stimulate robust elicitor-independent cell death based on a signal peptide, although the activity was negatively modulated by the CC and complete LRR domains. Furthermore, molecular genetic analyses indicated that TaYRG1.6 enhanced resistance to Pst in wheat. Moreover, we provide multiple lines of evidence that TaYRG1.6 interacts with a dynamin-related protein, TaDrp1. Proteome profiling suggested that the TaYRG1.6-TaDrp1-DNM complex in the membrane trafficking systems may trigger cell death by mobilizing lipid and kinase signaling in the endocytosis pathway. Our findings reveal a unique mechanism by which TaYRG1 activates cell death and enhances disease resistance by reconfiguring protein structure through alternative splicing.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaohui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shikai Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
36
|
Harnessing adult-plant resistance genes to deploy durable disease resistance in crops. Essays Biochem 2022; 66:571-580. [PMID: 35912968 PMCID: PMC9528086 DOI: 10.1042/ebc20210096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Adult-plant resistance (APR) is a type of genetic resistance in cereals that is effective during the later growth stages and can protect plants from a range of disease-causing pathogens. Our understanding of the functions of APR-associated genes stems from the well-studied wheat-rust pathosystem. Genes conferring APR can offer pathogen-specific resistance or multi-pathogen resistance, whereby resistance is activated following a molecular recognition event. The breeding community prefers APR to other types of resistance because it offers broad-spectrum protection that has proven to be more durable. In practice, however, deployment of new cultivars incorporating APR is challenging because there is a lack of well-characterised APRs in elite germplasm and multiple loci must be combined to achieve high levels of resistance. Genebanks provide an excellent source of genetic diversity that can be used to diversify resistance factors, but introgression of novel alleles into elite germplasm is a lengthy and challenging process. To overcome this bottleneck, new tools in breeding for resistance must be integrated to fast-track the discovery, introgression and pyramiding of APR genes. This review highlights recent advances in understanding the functions of APR genes in the well-studied wheat-rust pathosystem, the opportunities to adopt APR genes in other crops and the technology that can speed up the utilisation of new sources of APR in genebank accessions.
Collapse
|
37
|
Bai B, Li Z, Wang H, Du X, Wu L, Du J, Lan C. Genetic Analysis of Adult Plant Resistance to Stripe Rust in Common Wheat Cultivar "Pascal". FRONTIERS IN PLANT SCIENCE 2022; 13:918437. [PMID: 35874020 PMCID: PMC9298664 DOI: 10.3389/fpls.2022.918437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Wheat stripe rust is an important foliar disease that affects the wheat yield globally. Breeding for resistant wheat varieties is one of the most economically and environmentally effective ways to control this disease. The common wheat (Triticum aestivum L.) cultivar "Pascal" exhibited susceptibility to stripe rust at the seedling stage but it showed high resistance to stripe rust at the adult plant stage over 20 years in Gansu, a hotspot of the disease in northwestern China. To understand the genetic mechanism of stripe rust resistance in this cultivar, a 55K SNP array was used to analyze the two parents and the 220 recombinant inbred lines (RILs) derived from the cross of "Huixianhong" × "Pascal." We detected three new stripe rust adult plant resistance (APR) quantitative trait locus (QTL) contributed by Pascal, viz. QYr.gaas-1AL, QYr.gaas-3DL, and QYr.gaas-5AS, using the inclusive composite interval mapping method. They were flanked by SNP markers AX-111218361-AX-110577861, AX-111460455-AX-108798599, and AX-111523523-AX-110028503, respectively, and explained the phenotypic variation ranging from 11.0 to 23.1%. Bulked segregant exome capture sequencing (BSE-Seq) was used for fine mapping of QYr.gaas-1AL and selection of candidate genes, TraesCS1A02G313700, TraesCS1A02G313800, and TraesCS1A02G314900 for QYr.gaas-1AL. KASP markers BSE-1A-12 and HXPA-3D for QYr.gaas-1AL and QYr.gaas-3DL were developed for breeders to develop durable stripe rust-resistant wheat varieties.
Collapse
Affiliation(s)
- Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Zimeng Li
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Wang
- Institute of Biotechnology, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaolin Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jiuyuan Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Caixia Lan
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
38
|
Alternative Splicing and Its Roles in Plant Metabolism. Int J Mol Sci 2022; 23:ijms23137355. [PMID: 35806361 PMCID: PMC9266299 DOI: 10.3390/ijms23137355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
Plant metabolism, including primary metabolism such as tricarboxylic acid cycle, glycolysis, shikimate and amino acid pathways as well as specialized metabolism such as biosynthesis of phenolics, alkaloids and saponins, contributes to plant survival, growth, development and interactions with the environment. To this end, these metabolic processes are tightly and finely regulated transcriptionally, post-transcriptionally, translationally and post-translationally in response to different growth and developmental stages as well as the constantly changing environment. In this review, we summarize and describe the current knowledge of the regulation of plant metabolism by alternative splicing, a post-transcriptional regulatory mechanism that generates multiple protein isoforms from a single gene by using alternative splice sites during splicing. Numerous genes in plant metabolism have been shown to be alternatively spliced under different developmental stages and stress conditions. In particular, alternative splicing serves as a regulatory mechanism to fine-tune plant metabolism by altering biochemical activities, interaction and subcellular localization of proteins encoded by splice isoforms of various genes.
Collapse
|
39
|
Unconventional R proteins in the botanical tribe Triticeae. Essays Biochem 2022; 66:561-569. [PMID: 35670039 DOI: 10.1042/ebc20210081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Plant immunity is triggered following the perception of pathogen-derived molecules by plant receptor proteins. Two protein families, membrane-localized receptor-like kinases (RLK) and intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, play key roles in pathogen perception and in the initiation of downstream signaling cascades that lead to defense responses. In addition to RLKs and NLRs, recent research has identified additional protein families that function as plant resistance (R) proteins. In particular, the botanical tribe Triticeae, which includes the globally important crop species wheat and barley, has played a significant role in the discovery of 'unconventional' R proteins. In this review, we will summarize the current knowledge on unconventional R genes in Triticeae and the proteins they encode. The knowledge on unconventional R proteins will not only broaden our understanding of plant-pathogen interactions but also have great implications for disease resistance breeding in crops.
Collapse
|
40
|
Wang JZ, van de Ven W, Xiao Y, He X, Ke H, Yang P, Dehesh K. Reciprocity between a retrograde signal and a putative metalloprotease reconfigures plastidial metabolic and structural states. SCIENCE ADVANCES 2022; 8:eabo0724. [PMID: 35658042 PMCID: PMC9166295 DOI: 10.1126/sciadv.abo0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Reconfiguration of the plastidial proteome in response to environmental cues is central to tailoring adaptive responses. To define the underlying mechanisms and consequences of these reconfigurations, we performed a suppressor screen, using a mutant (ceh1) accumulating high levels of a plastidial retrograde signaling metabolite, MEcPP. We isolated a revertant partially suppressing the dwarf stature and high salicylic acid of ceh1 and identified the mutation in a putative plastidial metalloprotease (VIR3). Biochemical analyses showed increased VIR3 levels in ceh1, accompanied by reduced abundance of VIR3-target enzymes, ascorbate peroxidase, and glyceraldehyde 3-phophate dehydrogenase B. These proteomic shifts elicited increased H2O2, salicylic acid, and MEcPP levels, as well as stromule formation. High light recapitulated VIR3-associated reconfiguration of plastidial metabolic and structural states. These results establish a link between a plastidial stress-inducible retrograde signaling metabolite and a putative metalloprotease and reveal how the reciprocity between the two components modulates plastidial metabolic and structural states, shaping adaptive responses.
Collapse
Affiliation(s)
- Jin-Zheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Wilhelmina van de Ven
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Yanmei Xiao
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Xiang He
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Panyu Yang
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
41
|
Zeng H, Xu H, Wang H, Chen H, Wang G, Bai Y, Wei Y, Shi H. LSD3 mediates the oxidative stress response through fine-tuning APX2 activity and the NF-YC15-GSTs module in cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1447-1461. [PMID: 35352421 DOI: 10.1111/tpj.15749] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/12/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) overproduction leads to oxidative damage under almost all stress conditions. Lesion-Simulating Disease (LSD), a zinc finger protein, is an important negative regulator of ROS accumulation and cell death in plants. However, the in vivo role of LSD in cassava (Manihot esculenta) and the underlying molecular mechanisms remain elusive. Here, we found that MeLSD3 is essential for the oxidative stress response in cassava. MeLSD3 physically interacted with ascorbate peroxidase 2 (MeAPX2), thereby promoting its enzymatic activity. In addition, MeLSD3 also interacted with the nuclear factor YC15 (MeNF-YC15), which also interacted with nuclear factor YA2/4 (MeNF-YA2/4) and nuclear factor YB18 (MeNF-YB18) to form an MeNF-YC15-MeNF-YA2/4-MeNF-YB18 complex. Notably, MeLSD3 positively modulated the transcriptional activation of the MeNF-YC15-MeNF-YA2/4-MeNF-YB18 complex by interacting with the CCAAT boxes of the promoters of glutathione S-transferases U37/U39 (MeGST-U37/U39), activating their transcription. When one or both of MeLSD3 and the MeNF-YC15-MeNF-YA2/4-MeNF-YB18 complex were co-silenced, cassava showed decreased oxidative stress resistance, while overexpression of MeGST-U37/U39 alleviated the oxidative stress-sensitive phenotype of these silenced plants. This study illustrates the dual roles of MeLSD3 in promoting MeAPX2 activity and MeNF-YC15-MeGST-U37/U39 regulation, which underlie the oxidative stress response in cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haoran Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Hao Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Hao Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Guanqi Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
42
|
Lu T, Zhu L, Liang Y, Wang F, Cao A, Xie S, Chen X, Shen H, Wang B, Hu M, Li R, Jin X, Li H. Comparative Proteomic Analysis Reveals the Ascorbate Peroxidase-Mediated Plant Resistance to Verticillium dahliae in Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2022; 13:877146. [PMID: 35665163 PMCID: PMC9161280 DOI: 10.3389/fpls.2022.877146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
In previous research on the resistance of cotton to Verticillium wilt (VW), Gossypium hirsutum and G. barbadense were usually used as the susceptible and resistant cotton species, despite their different genetic backgrounds. Herein, we present data independent acquisition (DIA)-based comparative proteomic analysis of two G. barbadense cultivars differing in VW tolerance, susceptible XH7 and resistant XH21. A total of 4,118 proteins were identified, and 885 of them were differentially abundant proteins (DAPs). Eight co-expressed modules were identified through weighted gene co-expression network analysis. GO enrichment analysis of the module that significantly correlated with V. dahliae infection time revealed that oxidoreductase and peroxidase were the most significantly enriched GO terms. The last-step rate-limiting enzyme for ascorbate acid (AsA) biosynthesis was further uncovered in the significantly enriched GO terms of the 184 XH21-specific DAPs. Additionally, the expression of ascorbate peroxidase (APX) members showed quick accumulation after inoculation. Compared to XH7, XH21 contained consistently higher AsA contents and rapidly increased levels of APX expression, suggesting their potential importance for the resistance to V. dahliae. Silencing GbAPX1/12 in both XH7 and XH 21 resulted in a dramatic reduction in VW resistance. Our data indicate that APX-mediated oxidoreductive metabolism is important for VW resistance in cotton.
Collapse
Affiliation(s)
- Tianxin Lu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Liping Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Yuxuan Liang
- Research Center for Wild Animal and Plant Resource Protection and Utilization, Qiongtai Normal University, Haikou, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Beini Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Man Hu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Rong Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Xiang Jin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
- Research Center for Wild Animal and Plant Resource Protection and Utilization, Qiongtai Normal University, Haikou, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
43
|
He X, Meng H, Wang H, He P, Chang Y, Wang S, Wang C, Li L, Wang C. Quantitative proteomic sequencing of F 1 hybrid populations reveals the function of sorbitol in apple resistance to Botryosphaeria dothidea. HORTICULTURE RESEARCH 2022; 9:uhac115. [PMID: 35937862 PMCID: PMC9346975 DOI: 10.1093/hr/uhac115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/02/2022] [Indexed: 06/08/2023]
Abstract
Apple ring rot, which is caused by Botryosphaeria dothidea, is one of the most devastating diseases of apple. However, the lack of a known molecular resistance mechanism limits the development of resistance breeding. Here, the 'Golden Delicious' and 'Fuji Nagafu No. 2' apple cultivars were crossed, and a population of 194 F 1 individuals was generated. The hybrids were divided into five categories according to their differences in B. dothidea resistance during three consecutive years. Quantitative proteomic sequencing was performed to analyze the molecular mechanism of the apple response to B. dothidea infection. Hierarchical clustering and weighted gene coexpression network analysis revealed that photosynthesis was significantly correlated with the resistance of apple to B. dothidea. The level of chlorophyll fluorescence in apple functional leaves increased progressively as the level of disease resistance improved. However, the content of soluble sugar decreased with the improvement of disease resistance. Further research revealed that sorbitol, the primary photosynthetic product, played major roles in apple resistance to B. dothidea. Increasing the content of sorbitol by overexpressing MdS6PDH1 dramatically enhanced resistance of apple calli to B. dothidea by activating the expression of salicylic acid signaling pathway-related genes. However, decreasing the content of sorbitol by silencing MdS6PDH1 showed the opposite phenotype. Furthermore, exogenous sorbitol treatment partially restored the resistance of MdS6PDH1-RNAi lines to B. dothidea. Taken together, these findings reveal that sorbitol is an important metabolite that regulates the resistance of apple to B. dothidea and offer new insights into the mechanism of plant resistance to pathogens.
Collapse
Affiliation(s)
| | | | - Haibo Wang
- Shandong Institute of Pomology, Taian, Shandong 271000, China
| | - Ping He
- Shandong Institute of Pomology, Taian, Shandong 271000, China
| | - Yuansheng Chang
- Shandong Institute of Pomology, Taian, Shandong 271000, China
| | - Sen Wang
- Shandong Institute of Pomology, Taian, Shandong 271000, China
| | - Chuanzeng Wang
- Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | | | | |
Collapse
|
44
|
Yang F, Miao Y, Liu Y, Botella JR, Li W, Li K, Song CP. Function of Protein Kinases in Leaf Senescence of Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:864215. [PMID: 35548290 PMCID: PMC9083415 DOI: 10.3389/fpls.2022.864215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is an evolutionarily acquired process and it is critical for plant fitness. During senescence, macromolecules and nutrients are disassembled and relocated to actively growing organs. Plant leaf senescence process can be triggered by developmental cues and environmental factors, proper regulation of this process is essential to improve crop yield. Protein kinases are enzymes that modify their substrates activities by changing the conformation, stability, and localization of those proteins, to play a crucial role in the leaf senescence process. Impressive progress has been made in understanding the role of different protein kinases in leaf senescence recently. This review focuses on the recent progresses in plant leaf senescence-related kinases. We summarize the current understanding of the function of kinases on senescence signal perception and transduction, to help us better understand how the orderly senescence degeneration process is regulated by kinases, and how the kinase functions in the intricate integration of environmental signals and leaf age information.
Collapse
Affiliation(s)
- Fengbo Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuyue Liu
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jose R. Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Kun Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
45
|
Zhang D, Tang J, Wei K, Jia S, Jiang Y, Cai H, Mao P, Li M. Physiological and Molecular Responses of Zoysia japonica to Rust Infection. Int J Mol Sci 2022; 23:ijms23084185. [PMID: 35457004 PMCID: PMC9026483 DOI: 10.3390/ijms23084185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Zoysiagrass (Zoysia japonica) is a popular turfgrass species and is widely used for sport turf and urban landscape. Zoysiagrass is often infected by Puccinia zoysiae, which causes a loss in turf quality. The physiological and molecular mechanisms of rust resistance are poorly understood in this species. In this study, the rust-resistant and susceptible lines of zoysiagrass were inoculated with P. zoysiae, and alterations of leaf cell structure, physiological indicators and transcriptomic response were investigated at the various stages of inoculation. After inoculation, the cell membranes, nucleus, mitochondria, and chloroplast were all impaired, followed by abnormal physiological metabolism. The damage occurred earlier and more severely in the susceptible line. Changes in electrolyte leakage and chlorophyll content varied with the genotype and the inoculation stages. The transcriptome analysis showed that plant hormones, MAPK signal transduction pathway, photosynthesis and energy generation pathways were significantly enriched in the early response, in both the resistant and susceptible lines. The results provided insights into the physiological and molecular mechanisms of rust disease resistance and would benefit the breeding of rust-resistant varieties in zoysiagrass and related turfgrass species.
Collapse
Affiliation(s)
- Di Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (J.T.); (K.W.); (S.J.); (H.C.); (P.M.)
| | - Jun Tang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (J.T.); (K.W.); (S.J.); (H.C.); (P.M.)
| | - Kai Wei
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (J.T.); (K.W.); (S.J.); (H.C.); (P.M.)
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (J.T.); (K.W.); (S.J.); (H.C.); (P.M.)
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA;
| | - Hongwei Cai
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (J.T.); (K.W.); (S.J.); (H.C.); (P.M.)
| | - Peisheng Mao
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (J.T.); (K.W.); (S.J.); (H.C.); (P.M.)
| | - Manli Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (J.T.); (K.W.); (S.J.); (H.C.); (P.M.)
- Correspondence:
| |
Collapse
|
46
|
Bouvet L, Holdgate S, James L, Thomas J, Mackay IJ, Cockram J. The evolving battle between yellow rust and wheat: implications for global food security. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:741-753. [PMID: 34821981 PMCID: PMC8942934 DOI: 10.1007/s00122-021-03983-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/21/2021] [Indexed: 05/04/2023]
Abstract
Wheat (Triticum aestivum L.) is a global commodity, and its production is a key component underpinning worldwide food security. Yellow rust, also known as stripe rust, is a wheat disease caused by the fungus Puccinia striiformis Westend f. sp. tritici (Pst), and results in yield losses in most wheat growing areas. Recently, the rapid global spread of genetically diverse sexually derived Pst races, which have now largely replaced the previous clonally propagated slowly evolving endemic populations, has resulted in further challenges for the protection of global wheat yields. However, advances in the application of genomics approaches, in both the host and pathogen, combined with classical genetic approaches, pathogen and disease monitoring, provide resources to help increase the rate of genetic gain for yellow rust resistance via wheat breeding while reducing the carbon footprint of the crop. Here we review key elements in the evolving battle between the pathogen and host, with a focus on solutions to help protect future wheat production from this globally important disease.
Collapse
Affiliation(s)
- Laura Bouvet
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Sarah Holdgate
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Lucy James
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Jane Thomas
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Ian J Mackay
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Scotland's Rural College (SRUC), The King's Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - James Cockram
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| |
Collapse
|
47
|
Li S, Lin D, Zhang Y, Deng M, Chen Y, Lv B, Li B, Lei Y, Wang Y, Zhao L, Liang Y, Liu J, Chen K, Liu Z, Xiao J, Qiu JL, Gao C. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 2022; 602:455-460. [PMID: 35140403 DOI: 10.1038/s41586-022-04395-9] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Disruption of susceptibility (S) genes in crops is an attractive breeding strategy for conferring disease resistance1,2. However, S genes are implicated in many essential biological functions and deletion of these genes typically results in undesired pleiotropic effects1. Loss-of-function mutations in one such S gene, Mildew resistance locus O (MLO), confers durable and broad-spectrum resistance to powdery mildew in various plant species2,3. However, mlo-associated resistance is also accompanied by growth penalties and yield losses3,4, thereby limiting its widespread use in agriculture. Here we describe Tamlo-R32, a mutant with a 304-kilobase pair targeted deletion in the MLO-B1 locus of wheat that retains crop growth and yields while conferring robust powdery mildew resistance. We show that this deletion results in an altered local chromatin landscape, leading to the ectopic activation of Tonoplast monosaccharide transporter 3 (TaTMT3B), and that this activation alleviates growth and yield penalties associated with MLO disruption. Notably, the function of TMT3 is conserved in other plant species such as Arabidopsis thaliana. Moreover, precision genome editing facilitates the rapid introduction of this mlo resistance allele (Tamlo-R32) into elite wheat varieties. This work demonstrates the ability to stack genetic changes to rescue growth defects caused by recessive alleles, which is critical for developing high-yielding crop varieties with robust and durable disease resistance.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dexing Lin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yunwei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Deng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bin Lv
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Lei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Long Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yueting Liang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jinxing Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China. .,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
48
|
Zatybekov A, Genievskaya Y, Rsaliyev A, Maulenbay A, Yskakova G, Savin T, Turuspekov Y, Abugalieva S. Identification of Quantitative Trait Loci for Leaf Rust and Stem Rust Seedling Resistance in Bread Wheat Using a Genome-Wide Association Study. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010074. [PMID: 35009078 PMCID: PMC8747073 DOI: 10.3390/plants11010074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 05/22/2023]
Abstract
In recent years, leaf rust (LR) and stem rust (SR) have become a serious threat to bread wheat production in Kazakhstan. Most local cultivars are susceptible to these rusts, which has affected their yield and quality. The development of new cultivars with high productivity and LR and SR disease resistance, including using marker-assisted selection, is becoming an important priority in local breeding projects. Therefore, the search for key genetic factors controlling resistance in all plant stages, including the seedling stage, is of great significance. In this work, we applied a genome-wide association study (GWAS) approach using 212 local bread wheat accessions that were phenotyped for resistance to specific races of Puccinia triticina Eriks. (Pt) and Puccinia graminis f. sp. tritici (Pgt) at the seedling stages. The collection was genotyped using a 20 K Illumina iSelect SNP assay, and 11,150 polymorphic SNP markers were selected for the association mapping. Using a mixed linear model, we identified 11 quantitative trait loci (QTLs) for five out of six specific races of Pt and Pgt. The comparison of the results from this GWAS with those from previously published work showed that nine out of eleven QTLs for LR and SR resistance had been previously reported in a GWAS study at the adult plant stages of wheat growth. Therefore, it was assumed that these nine common identified QTLs were effective for all-stage resistance to LR and SR, and the two other QTLs appear to be novel QTLs. In addition, five out of these nine QTLs that had been identified earlier were found to be associated with yield components, suggesting that they may directly influence the field performance of bread wheat. The identified QTLs, including novel QTLs found in this study, may play an essential role in the breeding process for improving wheat resistance to LR and SR.
Collapse
Affiliation(s)
- Alibek Zatybekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.Z.); (Y.G.); (Y.T.)
| | - Yuliya Genievskaya
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.Z.); (Y.G.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Aralbek Rsaliyev
- Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, Gvardeisky 080409, Kazakhstan; (A.R.); (A.M.); (G.Y.)
| | - Akerke Maulenbay
- Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, Gvardeisky 080409, Kazakhstan; (A.R.); (A.M.); (G.Y.)
| | - Gulbahar Yskakova
- Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, Gvardeisky 080409, Kazakhstan; (A.R.); (A.M.); (G.Y.)
| | - Timur Savin
- Department of Science, S. Seifullin Kazakh Agro Technical University, Nur-Sultan 010011, Kazakhstan;
| | - Yerlan Turuspekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.Z.); (Y.G.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Saule Abugalieva
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.Z.); (Y.G.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Correspondence:
| |
Collapse
|
49
|
Song Y, Feng L, Alyafei MAM, Jaleel A, Ren M. Function of Chloroplasts in Plant Stress Responses. Int J Mol Sci 2021; 22:ijms222413464. [PMID: 34948261 PMCID: PMC8705820 DOI: 10.3390/ijms222413464] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
The chloroplast has a central position in oxygenic photosynthesis and primary metabolism. In addition to these functions, the chloroplast has recently emerged as a pivotal regulator of plant responses to abiotic and biotic stress conditions. Chloroplasts have their own independent genomes and gene-expression machinery and synthesize phytohormones and a diverse range of secondary metabolites, a significant portion of which contribute the plant response to adverse conditions. Furthermore, chloroplasts communicate with the nucleus through retrograde signaling, for instance, reactive oxygen signaling. All of the above facilitate the chloroplast’s exquisite flexibility in responding to environmental stresses. In this review, we summarize recent findings on the involvement of chloroplasts in plant regulatory responses to various abiotic and biotic stresses including heat, chilling, salinity, drought, high light environmental stress conditions, and pathogen invasions. This review will enrich the better understanding of interactions between chloroplast and environmental stresses, and will lay the foundation for genetically enhancing plant-stress acclimatization.
Collapse
Affiliation(s)
- Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Mohammed Abdul Muhsen Alyafei
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.A.M.A.); (A.J.)
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.A.M.A.); (A.J.)
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-(13)-527313471
| |
Collapse
|
50
|
Liu Y, Zhu G, Zhu Z, Chen L, Niu H, He W, Tong H, Song J, Zhang Y, Ma D, Gao C. Investigation and Genome-Wide Association Analysis of Fusarium Seedling Blight Resistance in Chinese Elite Wheat Lines. FRONTIERS IN PLANT SCIENCE 2021; 12:777494. [PMID: 34868179 PMCID: PMC8635748 DOI: 10.3389/fpls.2021.777494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Fusarium seedling blight (FSB) is an important disease of wheat occurring as part of the Fusarium disease complex consisting also of Fusarium head blight (FHB). 240 Chinese elite cultivars and lines were evaluated in greenhouse experiments for FSB resistance and genotyped using the wheat 90 K single nucleotide polymorphism arrays. Among them, 23 accessions had an average lesion length of less than 0.6 cm, exhibiting potential for breeding for FSB resistance in wheat. Jingfumai 1 and Yangmai 11 had a relatively high resistance to both FSB and FHB simultaneously. Six relatively stable quantitative trait loci (QTLs) were detected on chromosome arms 1DL, 3AS, 3BL, 6BL, 7AL, and Un using the mixed linear model approach, interpreting 4.83-7.53% of phenotypic variation. There was a negative correlation between the average FSB lesion length and the BLUE FHB index with a low coefficient, and resistance to both diseases appeared to be conferred by different QTLs across the same population. Four KASP markers were detected on 1DL, 3AS, 3BL, and 6BL in QTLs to facilitate marker-assisted selection. Combined with transcriptome data analysis, eight defense-related genes were considered as candidates for mapping QTLs. The resistant elite germplasm, mapped QTLs, and KASP markers developed in this study are useful resources for enhancing Fusarium seedling blight in wheat breeding.
Collapse
Affiliation(s)
- Yike Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Engineering and Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
- Center of Wheat, Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Guang Zhu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Engineering and Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhangwang Zhu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Engineering and Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lin Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Engineering and Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hongli Niu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Weijie He
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Engineering and Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hanwen Tong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Engineering and Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jinghan Song
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Engineering and Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yuqing Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Engineering and Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dongfang Ma
- Center of Wheat, Wheat Disease Biology Research Station for Central China, Wuhan, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Chunbao Gao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Engineering and Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
- Center of Wheat, Wheat Disease Biology Research Station for Central China, Wuhan, China
| |
Collapse
|