1
|
Yu XN, Guo Y, Yang Q, Yu H, Lu MJ, Zhao L, Jin ZS, Xu XN, Feng JY, Wen YQ. Chimeric mutations in grapevine ENHANCED DISEASE RESISTANCE1 improve resistance to powdery mildew without growth penalty. PLANT PHYSIOLOGY 2024; 195:1995-2015. [PMID: 38507576 DOI: 10.1093/plphys/kiae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
Grapevine (Vitis vinifera L.) incurs severe quality degradation and yield loss from powdery mildew, a major fungal disease caused by Erysiphe necator. ENHANCED DISEASE RESISTANCE1 (EDR1), a Raf-like mitogen-activated protein kinase kinase kinase, negatively regulates defense responses against powdery mildew in Arabidopsis (Arabidopsis thaliana). However, little is known about the role of the putatively orthologous EDR1 gene in grapevine. In this study, we obtained grapevine VviEDR1-edited lines using CRISPR/Cas9. Plantlets containing homozygous and bi-allelic indels in VviEDR1 developed leaf lesions shortly after transplanting into the soil and died at the seedling stage. Transgenic plants expressing wild-type VviEDR1 and mutant Vviedr1 alleles as chimera (designated as VviEDR1-chi) developed normally and displayed enhanced resistance to powdery mildew. Interestingly, VviEDR1-chi plants maintained a spatiotemporally distinctive pattern of VviEDR1 mutagenesis: while almost no mutations were detected from terminal buds, ensuring normal function of the apical meristem, mutations occurred in young leaves and increased as leaves matured, resulting in resistance to powdery mildew. Further analysis showed that the resistance observed in VviEDR1-chi plants was associated with callose deposition, increased production of salicylic acid and ethylene, H2O2 production and accumulation, and host cell death. Surprisingly, no growth penalty was observed with VviEDR1-chi plants. Hence, this study demonstrated a role of VviEDR1 in the negative regulation of resistance to powdery mildew in grapevine and provided an avenue for engineering powdery mildew resistance in grapevine.
Collapse
Affiliation(s)
- Xue-Na Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Ye Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Qianling Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Haiyan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Meng-Jiao Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Liang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Zhuo-Shuai Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Xiang-Nan Xu
- Institute of Plant Nutrition, Resource and Environment, Beijing Academy of Agriculture and Forestry Sciences, Shuguanghuayuan Mid Road 9, Haidian District, Beijing 100097, China
| | - Jia-Yue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Bigini V, Sillo F, Giulietti S, Pontiggia D, Giovannini L, Balestrini R, Savatin DV. Oligogalacturonide application increases resistance to Fusarium head blight in durum wheat. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3070-3091. [PMID: 38334507 DOI: 10.1093/jxb/erae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Fusariosis causes substantial yield losses in the wheat crop worldwide and compromises food safety because of the presence of toxins associated with the fungal disease. Among the current approaches to crop protection, the use of elicitors able to activate natural defense mechanisms in plants is a strategy gaining increasing attention. Several studies indicate that applications of plant cell-wall-derived elicitors, such as oligogalacturonides (OGs) derived from partial degradation of pectin, induce local and systemic resistance against plant pathogens. The aim of this study was to establish the efficacy of OGs in protecting durum wheat (Triticum turgidum subsp. durum), which is characterized by an extreme susceptibility to Fusarium graminearum. To evaluate the functionality of OGs, spikes and seedlings of cv. Svevo were inoculated with OGs, F. graminearum spores, and a co-treatment of both. Results demonstrated that OGs are active elicitors of wheat defenses, triggering typical immune marker genes and determining regulation of fungal genes. Moreover, bioassays on spikes and transcriptomic analyses on seedlings showed that OGs can regulate relevant physiological processes in Svevo with dose-dependent specificity. Thus, the OG sensing system plays an important role in fine tuning immune signaling pathways in durum wheat.
Collapse
Affiliation(s)
- Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - Sarah Giulietti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Department of Biology and biotechnologies 'Charles Darwin', Sapienza University of Rome, Ple Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Pontiggia
- Department of Biology and biotechnologies 'Charles Darwin', Sapienza University of Rome, Ple Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Ple Aldo Moro, 5 00185 Rome, Italy
| | - Luca Giovannini
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - Daniel V Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
3
|
Liang J, Lu L, Zhou H, Fang J, Zhao Y, Hou H, Chen L, Cao C, Yang D, Diao Z, Tang D, Li S. Receptor-like kinases OsRLK902-1 and OsRLK902-2 form immune complexes with OsRLCK185 to regulate rice blast resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1565-1579. [PMID: 37976240 DOI: 10.1093/jxb/erad460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Receptor-like kinases (RLKs) are major regulators of the plant immune response and play important roles in the perception and transmission of immune signals. RECEPTOR LIKE KINASE 902 (RLK902) is at the key node in leucine-rich repeat receptor-like kinase interaction networks and positively regulates resistance to the bacterial pathogen Pseudomonas syringae in Arabidopsis. However, the function of RLK902 in fungal disease resistance remains obscure. In this study, we found that the expression levels of OsRLK902-1 and OsRLK902-2, encoding two orthologues of RLK902 in rice, were induced by Magnaporthe oryzae, chitin, and flg22 treatment. osrlk902-1 and osrlk902-2 knockout mutants displayed enhanced susceptibility to M. oryzae. Interestingly, the osrlk902-1 rlk902-2 double mutant exhibited similar disease susceptibility, hydrogen peroxide production, and callose deposition to the two single mutants. Further investigation showed that OsRLK902-1 interacts with and stabilizes OsRLK902-2. The two OsRLKs form a complex with OsRLCK185, a key regulator in chitin-triggered immunity, and stabilize it. Taken together, our data demonstrate that OsRLK902-1 and OsRLK902-2, as well as OsRLCK185 function together in regulating disease resistance to M. oryzae in rice.
Collapse
Affiliation(s)
- Jiahui Liang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Houli Zhou
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianbo Fang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaofei Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Hongna Hou
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lizhe Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Cao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dewei Yang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
| | - Zhijuan Diao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Pan T, Liu Y, Hu X, Li P, Lin C, Tang Y, Tang W, Liu Y, Guo L, Kim C, Fang J, Lin H, Wu Z, Blumwald E, Wang S. Stress-induced endocytosis from chloroplast inner envelope membrane is mediated by CHLOROPLAST VESICULATION but inhibited by GAPC. Cell Rep 2023; 42:113208. [PMID: 37792531 DOI: 10.1016/j.celrep.2023.113208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 06/16/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Clathrin-mediated vesicular formation and trafficking are responsible for molecular cargo transport and signal transduction among organelles. Our previous study shows that CHLOROPLAST VESICULATION (CV)-containing vesicles (CVVs) are generated from chloroplasts for chloroplast degradation under abiotic stress. Here, we show that CV interacts with the clathrin heavy chain (CHC) and induces vesicle budding toward the cytosol from the chloroplast inner envelope membrane. In the defective mutants of CHC2 and the dynamin-encoding DRP1A, CVV budding and releasing from chloroplast are impeded. The mutations of CHC2 inhibit CV-induced chloroplast degradation and hypersensitivity to water stress. Moreover, CV-CHC2 interaction is impaired by the oxidized GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPC). GAPC1 overexpression suppresses CV-mediated chloroplast degradation and hypersensitivity to water stress, while CV silencing alleviates the hypersensitivity of the gapc1gapc2 plant to water stress. Together, our work identifies a pathway of clathrin-assisted CVV budding outward from chloroplast, which is involved in chloroplast degradation and stress response.
Collapse
Affiliation(s)
- Ting Pan
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangxuan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xufan Hu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Pengwei Li
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Lin
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yuying Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Tang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Fang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Honghui Lin
- Ministry of Education, Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Zhihua Wu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
5
|
Zhong G, Chen Y, Liu S, Gao C, Chen R, Wang Z, Wang W, Tang D. EDR1 associates with its homologs to synergistically regulate plant immunity in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111619. [PMID: 36737004 DOI: 10.1016/j.plantsci.2023.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
ENHANCED DISEASE RESISTANCE 1 (EDR1), a Raf-like mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK), is a negative regulator of resistance. There are three homologs, RAF3/4/5, of EDR1 in Arabidopsis. However, the roles of RAF3/4/5 in resistance and their functional link with EDR1 in plant immunity remain unclear. Here, we showed that the raf3/4/5 triple mutant displayed wild-type-like phenotypes to the powdery mildew pathogen Golovinomyces cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. tomato (Pto) DC3000. However, the edr1 raf3/4/5 quadruple mutant exhibited enhanced resistance to G. cichoracearum UCSC1 and Pto DC3000 compared to edr1. Consistently, MPK3/6 kinase activity was more highly activated in edr1 raf3/4/5 than that in edr1. Moreover, the enhanced resistance of edr1 raf3/4/5 required SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2), an isochorismate synthase required for salicylic acid (SA) synthesis. Additionally, unlike EDR1, RAF3/4/5 weakly and indirectly associated with MKK4/5, and EDR1 was directly associated with RAF3/4/5. Taken together, these data indicate that EDR1 associates with RAF3/4/5, and they may function together to synergistically suppress MAPK cascades activation, which reveal the complexity and importance of Raf-like MAPKKKs in plant immunity regulation.
Collapse
Affiliation(s)
- Guitao Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongming Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Simu Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renjie Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanchun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
7
|
Abraham‐Juárez MJ, Busche M, Anderson AA, Lunde C, Winders J, Christensen SA, Hunter CT, Hake S, Brunkard JO. Liguleless narrow and narrow odd dwarf act in overlapping pathways to regulate maize development and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:881-896. [PMID: 36164819 PMCID: PMC9827925 DOI: 10.1111/tpj.15988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Narrow odd dwarf (nod) and Liguleless narrow (Lgn) are pleiotropic maize mutants that both encode plasma membrane proteins, cause similar developmental patterning defects, and constitutively induce stress signaling pathways. To investigate how these mutants coordinate maize development and physiology, we screened for protein interactors of NOD by affinity purification. LGN was identified by this screen as a strong candidate interactor, and we confirmed the NOD-LGN molecular interaction through orthogonal experiments. We further demonstrated that LGN, a receptor-like kinase, can phosphorylate NOD in vitro, hinting that they could act in intersecting signal transduction pathways. To test this hypothesis, we generated Lgn-R;nod mutants in two backgrounds (B73 and A619), and found that these mutations enhance each other, causing more severe developmental defects than either single mutation on its own, with phenotypes including very narrow leaves, increased tillering, and failure of the main shoot. Transcriptomic and metabolomic analyses of the single and double mutants in the two genetic backgrounds revealed widespread induction of pathogen defense genes and a shift in resource allocation away from primary metabolism in favor of specialized metabolism. These effects were similar in each single mutant and heightened in the double mutant, leading us to conclude that NOD and LGN act cumulatively in overlapping signaling pathways to coordinate growth-defense tradeoffs in maize.
Collapse
Affiliation(s)
- María Jazmín Abraham‐Juárez
- Laboratorio Nacional de Genómica para la BiodiversidadUnidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalGuanajuato36821Mexico
| | - Michael Busche
- Laboratory of GeneticsUniversity of WisconsinMadisonWisconsin53706USA
| | - Alyssa A. Anderson
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
- Plant Gene Expression CenterUSDA Agricultural Research ServiceAlbanyCalifornia94710USA
| | - China Lunde
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
| | - Jeremy Winders
- Genomics and Bioinformatics Research Unit, US Department of Agriculture‐Agricultural Research ServiceRaleighNorth CarolinaUSA
| | | | - Charles T. Hunter
- Chemistry Research Unit, USDA Agricultural Research ServiceGainesvilleFlorida32608USA
| | - Sarah Hake
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
- Plant Gene Expression CenterUSDA Agricultural Research ServiceAlbanyCalifornia94710USA
| | - Jacob O. Brunkard
- Laboratory of GeneticsUniversity of WisconsinMadisonWisconsin53706USA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
- Plant Gene Expression CenterUSDA Agricultural Research ServiceAlbanyCalifornia94710USA
| |
Collapse
|
8
|
Tseng YH, Scholz SS, Fliegmann J, Krüger T, Gandhi A, Furch ACU, Kniemeyer O, Brakhage AA, Oelmüller R. CORK1, A LRR-Malectin Receptor Kinase, Is Required for Cellooligomer-Induced Responses in Arabidopsis thaliana. Cells 2022; 11:cells11192960. [PMID: 36230919 PMCID: PMC9563578 DOI: 10.3390/cells11192960] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cell wall integrity (CWI) maintenance is central for plant cells. Mechanical and chemical distortions, pH changes, and breakdown products of cell wall polysaccharides activate plasma membrane-localized receptors and induce appropriate downstream responses. Microbial interactions alter or destroy the structure of the plant cell wall, connecting CWI maintenance to immune responses. Cellulose is the major polysaccharide in the primary and secondary cell wall. Its breakdown generates short-chain cellooligomers that induce Ca2+-dependent CWI responses. We show that these responses require the malectin domain-containing CELLOOLIGOMER-RECEPTOR KINASE 1 (CORK1) in Arabidopsis and are preferentially activated by cellotriose (CT). CORK1 is required for cellooligomer-induced cytoplasmic Ca2+ elevation, reactive oxygen species (ROS) production, mitogen-associated protein kinase (MAPK) activation, cellulose synthase phosphorylation, and the regulation of CWI-related genes, including those involved in biosynthesis of cell wall material, secondary metabolites and tryptophan. Phosphoproteome analyses identified early targets involved in signaling, cellulose synthesis, the endoplasmic reticulum/Golgi secretory pathway, cell wall repair and immune responses. Two conserved phenylalanine residues in the malectin domain are crucial for CORK1 function. We propose that CORK1 is required for CWI and immune responses activated by cellulose breakdown products.
Collapse
Affiliation(s)
- Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Sandra S. Scholz
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Alexandra C. U. Furch
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
9
|
Microscopic and Transcriptomic Comparison of Powdery Mildew Resistance in the Progenies of Brassica carinata × B. napus. Int J Mol Sci 2022; 23:ijms23179961. [PMID: 36077359 PMCID: PMC9456427 DOI: 10.3390/ijms23179961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Powdery mildew is a widespread disease in rapeseed due to a lack of resistant germplasm. We compared the foliar epidermal features and transcriptomic responses between the resistant (R) and susceptible (S) plants among the two parents and progenies of Brassica carinata × B. napus. The amount of cuticular wax and callose deposition on the R plants was much lower than that on the S plants; hence, these chemicals are not all essential to pre-penetration resistance, although the cuticular wax on the R plants had more needle-like crystals. A total of 1049 genes involved in various defense responses were expressed differentially among the R/S plants. The expression levels of two well-known susceptibility genes, MLO6 and MLO12, were much lower in the R plant, indicating an important role in PM resistance. A set of genes related to wax biosynthesis (KCS6, LACS2, CER and MAH1), cell wall modification (PMR5, PMEI9, RWA2, PDCB1 and C/VIF2), chloroplast function (Chlorophyllase-1, OEP161, PSBO1, CP29B and CSP41b), receptor kinase activity (ERECTA, BAK1, BAM2, LYM1, LYM3, RLK902, RLP11, ERL1 and ERL2), IPCS2, GF14 lambda, RPS4 and RPS6 were highly expressed in the R plants. In the S plants, most highly expressed genes were involved in later defense responses, including CERK1, LYK4, LIK1, NIMIN-1, CHITINASE 10, PECTINESTERASE, CYP81F2 and RBOHF and the genes involved in salicylic acid-dependent systemic acquired resistance and hypersensitive responses, indicating the occurrence of severe fungal infection. The results indicate that some uncertain pre-penetration defenses are pivotal for high resistance, while post-penetration defenses are more important for the S plant survival.
Collapse
|
10
|
Zou S, Tang Y, Xu Y, Ji J, Lu Y, Wang H, Li Q, Tang D. TuRLK1, a leucine-rich repeat receptor-like kinase, is indispensable for stripe rust resistance of YrU1 and confers broad resistance to multiple pathogens. BMC PLANT BIOLOGY 2022; 22:280. [PMID: 35676630 PMCID: PMC9175386 DOI: 10.1186/s12870-022-03679-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/03/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND YrU1 is a nucleotide-binding site (NBS) and leucine-rich repeat (LRR) protein (NLR), with additional ankyrin-repeat and WRKY domains and confers effective resistance to stripe rust fungus Puccinia striiformis f. sp. Tritici (Pst). YrU1 was positionally cloned in the progenitor species of the A genome of bread wheat, Tricicum urartu, recently. However, the molecular mechanism and components involved in YrU1-mediated resistance are not clear. RESULTS In this study, we found that the transcript level of TuRLK1, which encodes a novel leucine-rich repeat receptor-like kinase, was up-regulated after inoculation with Pst in the presence of YrU1, through RNA-seq analysis in T. urartu accession PI428309. TuRLK1 contained only a small number of LRR motifs, and was localized in the plasma-membrane. Transient expression of TuRLK1 induced hypersensitive cell death response in N. benthamiana leaves. Silencing of TuRLK1, using barley stripe mosaic virus (BSMV)-induced gene silencing (VIGS) system in PI428309 that contains YrU1, compromised the resistance against stripe rust caused by Pst CY33, indicating that TuRLK1 was required for YrU1-activated plant immunity. Furthermore, overexpression of TuRLK1 could enhance powdery mildew resistance in bread wheat and Arabidopsis thaliana after inoculating with the corresponding pathogens. CONCLUSIONS Our study indicates that TuRLK1 is required for immune response mediated by the unique NLR protein YrU1, and likely plays an important role in disease resistance to other pathogens.
Collapse
Affiliation(s)
- Shenghao Zou
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yansheng Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Xu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiahao Ji
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huanming Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qianqian Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Underwood W. Arabidopsis GOLD36/MVP1/ERMO3 Is Required for Powdery Mildew Penetration Resistance and Proper Targeting of the PEN3 Transporter. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:393-400. [PMID: 35147444 DOI: 10.1094/mpmi-09-21-0240-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Arabidopsis PENETRATION 3 (PEN3) ATP binding cassette (ABC) transporter contributes to penetration resistance against nonadapted powdery mildew fungi and is targeted to papillae deposited at sites of interaction with the fungus. Timely recruitment of PEN3 and other components of penetration resistance to the host-pathogen interface is important for successful defense against this biotrophic pathogen. A forward genetic screen was previously carried out to identify Arabidopsis mutants that mistarget the PEN3 transporter or fail to accumulate PEN3 at sites of attempted powdery mildew penetration. This study focuses on PEN3 mistargeting in the aberrant localization of PEN3 4 (alp4) mutant and identification of the causal gene. In the alp4 mutant, PEN3 accumulates within the endomembrane system in an apparently abnormal endoplasmic reticulum and is not exported into papillae at powdery mildew penetration sites. This targeting defect compromises defenses at the host-pathogen interface, resulting in increased penetration success by a nonadapted powdery mildew. Genetic mapping identified alp4 as an allele of GOLGI DEFECTS 36 (GOLD36), a gene encoding a GDSL-lipase/esterase family protein that is involved in maintaining normal morphology and organization of multiple endomembrane compartments. Genetic complementation confirmed that mutation in GOLD36 is responsible for the PEN3 targeting and powdery mildew penetration resistance defects in alp4. These results reinforce the importance of endomembrane trafficking in resistance to haustorium-forming phytopathogens such as powdery mildew fungi.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- William Underwood
- United States Department of Agriculture-Agricultural Research Service Sunflower & Plant Biology Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| |
Collapse
|
12
|
Shi H, Li Q, Luo M, Yan H, Xie B, Li X, Zhong G, Chen D, Tang D. BRASSINOSTEROID-SIGNALING KINASE1 modulates MAP KINASE15 phosphorylation to confer powdery mildew resistance in Arabidopsis. THE PLANT CELL 2022; 34:1768-1783. [PMID: 35099562 PMCID: PMC9048930 DOI: 10.1093/plcell/koac027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 05/10/2023]
Abstract
Perception of pathogen-associated molecular patterns (PAMPs) by plant cell surface-localized pattern-recognition receptors (PRRs) triggers the first line of plant innate immunity. In Arabidopsis thaliana, the receptor-like cytoplasmic kinase BRASSINOSTEROID-SIGNALING KINASE1 (BSK1) physically associates with PRR FLAGELLIN SENSING2 and plays an important role in defense against multiple pathogens. However, how BSK1 transduces signals to activate downstream immune responses remains elusive. Previously, through whole-genome phosphorylation analysis using mass spectrometry, we showed that phosphorylation of the mitogen-activated protein kinase (MAPK) MPK15 was affected in the bsk1 mutant compared with the wild-type plants. Here, we demonstrated that MPK15 is important for powdery mildew fungal resistance. PAMPs and fungal pathogens significantly induced the phosphorylation of MPK15 Ser-511, a key phosphorylation site critical for the functions of MPK15 in powdery mildew resistance. BSK1 physically associates with MPK15 and is required for basal and pathogen-induced MPK15 Ser-511 phosphorylation, which contributes to BSK1-mediated fungal resistance. Taken together, our data identified MPK15 as a player in plant defense against powdery mildew fungi and showed that BSK1 promotes fungal resistance in part by enhancing MPK15 Ser-511 phosphorylation. These results uncovered a mechanism of BSK1-mediated disease resistance and provided new insight into the role of MAPK phosphorylation in plant immunity.
Collapse
Affiliation(s)
- Hua Shi
- Author for correspondence: (D.T.), (H.S.)
| | - Qiuyi Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyu Luo
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haojie Yan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Xie
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guitao Zhong
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Desheng Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | |
Collapse
|
13
|
Alo F, Rani AR, Baum M, Singh S, Kehel Z, Rani U, Udupa S, Al-Sham’aa K, Alsamman AM, Istanbuli T, Attar B, Hamwieh A, Amri A. Novel Genomic Regions Linked to Ascochyta Blight Resistance in Two Differentially Resistant Cultivars of Chickpea. FRONTIERS IN PLANT SCIENCE 2022; 13:762002. [PMID: 35548283 PMCID: PMC9083910 DOI: 10.3389/fpls.2022.762002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Ascochyta blight (AB), caused by the fungal pathogen Ascochyta rabiei, is a devastating foliar disease of chickpea (Cicer arietinum L.). The genotyping-by-sequencing (GBS)-based approach was deployed for mapping QTLs associated with AB resistance in chickpea in two recombinant inbred line populations derived from two crosses (AB3279 derived from ILC 1929 × ILC 3279 and AB482 derived from ILC 1929 × ILC 482) and tested in six different environments. Twenty-one different genomic regions linked to AB resistance were identified in regions CalG02 and CalG04 in both populations AB3279 and AB482. These regions contain 1,118 SNPs significantly associated with AB resistance (p ≤ 0.001), which explained 11.2-39.3% of the phenotypic variation (PVE). Nine of the AB resistance-associated genomic regions were newly detected in this study, while twelve regions were known from previous AB studies. The proposed physical map narrows down AB resistance to consistent genomic regions identified across different environments. Gene ontology (GO) assigned these QTLs to 319 genes, many of which were associated with stress and disease resistance, and with most important genes belonging to resistance gene families such as leucine-rich repeat (LRR) and transcription factor families. Our results indicate that the flowering-associated gene GIGANTEA is a possible key factor in AB resistance in chickpea. The results have identified AB resistance-associated regions on the physical genetic map of chickpea and allowed for the identification of associated markers that will help in breeding of AB-resistant varieties.
Collapse
Affiliation(s)
- Fida Alo
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Anupalli Roja Rani
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, India
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Zakaria Kehel
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Upasana Rani
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sripada Udupa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Khaled Al-Sham’aa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Alsamman M. Alsamman
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agriculture Genetic Engineering Research Institute, Giza, Egypt
| | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Basem Attar
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Ahmed Amri
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| |
Collapse
|
14
|
Burks DJ, Sengupta S, De R, Mittler R, Azad RK. The Arabidopsis gene co-expression network. PLANT DIRECT 2022; 6:e396. [PMID: 35492683 PMCID: PMC9039629 DOI: 10.1002/pld3.396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Identifying genes that interact to confer a biological function to an organism is one of the main goals of functional genomics. High-throughput technologies for assessment and quantification of genome-wide gene expression patterns have enabled systems-level analyses to infer pathways or networks of genes involved in different functions under many different conditions. Here, we leveraged the publicly available, information-rich RNA-Seq datasets of the model plant Arabidopsis thaliana to construct a gene co-expression network, which was partitioned into clusters or modules that harbor genes correlated by expression. Gene ontology and pathway enrichment analyses were performed to assess functional terms and pathways that were enriched within the different gene modules. By interrogating the co-expression network for genes in different modules that associate with a gene of interest, diverse functional roles of the gene can be deciphered. By mapping genes differentially expressing under a certain condition in Arabidopsis onto the co-expression network, we demonstrate the ability of the network to uncover novel genes that are likely transcriptionally active but prone to be missed by standard statistical approaches due to their falling outside of the confidence zone of detection. To our knowledge, this is the first A. thaliana co-expression network constructed using the entire mRNA-Seq datasets (>20,000) available at the NCBI SRA database. The developed network can serve as a useful resource for the Arabidopsis research community to interrogate specific genes of interest within the network, retrieve the respective interactomes, decipher gene modules that are transcriptionally altered under certain condition or stage, and gain understanding of gene functions.
Collapse
Affiliation(s)
- David J. Burks
- Department of Biological Sciences and BioDiscovery Institute, College of ScienceUniversity of North TexasDentonTexasUSA
| | - Soham Sengupta
- Department of Biological Sciences and BioDiscovery Institute, College of ScienceUniversity of North TexasDentonTexasUSA
| | - Ronika De
- Department of Biological Sciences and BioDiscovery Institute, College of ScienceUniversity of North TexasDentonTexasUSA
| | - Ron Mittler
- The Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural ResourcesChristopher S. Bond Life Sciences Center University of MissouriColumbiaMissouriUSA
- Department of SurgeryUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Rajeev K. Azad
- Department of Biological Sciences and BioDiscovery Institute, College of ScienceUniversity of North TexasDentonTexasUSA
- Department of MathematicsUniversity of North TexasDentonTexasUSA
| |
Collapse
|
15
|
|
16
|
Demirjian C, Razavi N, Desaint H, Lonjon F, Genin S, Roux F, Berthomé R, Vailleau F. Study of natural diversity in response to a key pathogenicity regulator of Ralstonia solanacearum reveals new susceptibility genes in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2022; 23:321-338. [PMID: 34939305 PMCID: PMC8828461 DOI: 10.1111/mpp.13135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 06/12/2023]
Abstract
Ralstonia solanacearum gram-negative phytopathogenic bacterium exerts its virulence through a type III secretion system (T3SS) that translocates type III effectors (T3Es) directly into the host cells. T3E secretion is finely controlled at the posttranslational level by helper proteins, T3SS control proteins, and type III chaperones. The HpaP protein, one of the type III secretion substrate specificity switch (T3S4) proteins, was previously highlighted as a virulence factor on Arabidopsis thaliana Col-0 accession. In this study, we set up a genome-wide association analysis to explore the natural diversity of response to the hpaP mutant of two A. thaliana mapping populations: a worldwide collection and a local population. Quantitative genetic variation revealed different genetic architectures in both mapping populations, with a global delayed response to the hpaP mutant compared to the GMI1000 wild-type strain. We have identified several quantitative trait loci (QTLs) associated with the hpaP mutant inoculation. The genes underlying these QTLs are involved in different and specific biological processes, some of which were demonstrated important for R. solanacearum virulence. We focused our study on four candidate genes, RKL1, IRE3, RACK1B, and PEX3, identified using the worldwide collection, and validated three of them as susceptibility factors. Our findings demonstrate that the study of the natural diversity of plant response to a R. solanacearum mutant in a key regulator of virulence is an original and powerful strategy to identify genes directly or indirectly targeted by the pathogen.
Collapse
Affiliation(s)
| | - Narjes Razavi
- LIPME, Université de ToulouseINRAECNRSCastanet‐TolosanFrance
| | - Henri Desaint
- LIPME, Université de ToulouseINRAECNRSCastanet‐TolosanFrance
- SYNGENTA SeedsSarriansFrance
| | - Fabien Lonjon
- LIPME, Université de ToulouseINRAECNRSCastanet‐TolosanFrance
- Present address:
Department of Cell & Systems BiologyUniversity of TorontoTorontoOntarioCanada
| | - Stéphane Genin
- LIPME, Université de ToulouseINRAECNRSCastanet‐TolosanFrance
| | - Fabrice Roux
- LIPME, Université de ToulouseINRAECNRSCastanet‐TolosanFrance
| | | | | |
Collapse
|
17
|
A NAC Transcription Factor TuNAC69 Contributes to ANK-NLR-WRKY NLR-Mediated Stripe Rust Resistance in the Diploid Wheat Triticum urartu. Int J Mol Sci 2022; 23:ijms23010564. [PMID: 35008990 PMCID: PMC8745140 DOI: 10.3390/ijms23010564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 01/27/2023] Open
Abstract
Stripe rust is one of the most devastating diseases in wheat. Nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs) recognize pathogenic effectors and trigger plant immunity. We previously identified a unique NLR protein YrU1 in the diploid wheat Triticum urartu, which contains an N-terminal ANK domain and a C-terminal WRKY domain and confers disease resistance to stripe rust fungus Puccinia striiformis f. sp. Tritici (Pst). However, how YrU1 functions in disease resistance is not clear. In this study, through the RNA-seq analysis, we found that the expression of a NAC member TuNAC69 was significantly up-regulated after inoculation with Pst in the presence of YrU1. TuNAC69 was mainly localized in the nucleus and showed transcriptional activation in yeast. Knockdown TuNAC69 in diploid wheat Triticum urartu PI428309 that contains YrU1 by virus-induced gene silencing reduced the resistance to stripe rust. In addition, overexpression of TuNAC69 in Arabidopsis enhanced the resistance to powdery mildew Golovinomyces cichoracearum. In summary, our study indicates that TuNAC69 participates in the immune response mediated by NLR protein YrU1, and likely plays an important role in disease resistance to other pathogens.
Collapse
|
18
|
Wang W, Liu N, Gao C, Rui L, Jiang Q, Chen S, Zhang Q, Zhong G, Tang D. The truncated TNL receptor TN2-mediated immune responses require ADR1 function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:672-689. [PMID: 34396631 DOI: 10.1111/tpj.15463] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The loss of function of exocyst subunit EXO70B1 leads to autoimmunity, which is dependent on TIR-NBS2 (TN2), a truncated intracellular nucleotide-binding and leucine-rich repeat receptor (NLR). However, how TN2 triggers plant immunity and whether typical NLRs are required in TN2-activated resistance remain unclear. Through the CRISPR/Cas9 gene editing system and knockout analysis, we found that the spontaneous cell death and enhanced resistance in exo70B1-3 were independent of the full-length NLR SOC3 and its closest homolog SOC3-LIKE 1 (SOC3-L1). Additionally, knocking out SOC3-L1 or TN2 did not suppress the chilling sensitivity conferred by chilling sensitive 1-2 (chs1-2). The ACTIVATED DISEASE RESISTANCE 1 (ADR1) family and the N REQUIREMENT GENE 1 (NRG1) family have evolved as helper NLRs for many typical NLRs. Through CRISPR/Cas9 gene editing methods, we discovered that the autoimmunity of exo70B1-3 fully relied on ADR1s, but not NRG1s, and ADR1s contributed to the upregulation of TN2 transcript levels in exo70B1-3. Furthermore, overexpression of TN2 also led to ADR1-dependent autoimmune responses. Taken together, our genetic analysis highlights that the truncated TNL protein TN2-triggered immune responses require ADR1s as helper NLRs to activate downstream signaling, revealing the importance and complexity of ADR1s in plant immunity regulation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu Rui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiaochu Jiang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuling Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qin Zhang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guitao Zhong
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
19
|
He W, Zhu Y, Leng Y, Yang L, Zhang B, Yang J, Zhang X, Lan H, Tang H, Chen J, Gao S, Tan J, Kang J, Deng L, Li Y, He Y, Rong T, Cao M. Transcriptomic Analysis Reveals Candidate Genes Responding Maize Gray Leaf Spot Caused by Cercospora zeina. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112257. [PMID: 34834621 PMCID: PMC8625984 DOI: 10.3390/plants10112257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 05/27/2023]
Abstract
Gray leaf spot (GLS), caused by the fungal pathogen Cercospora zeina (C. zeina), is one of the most destructive soil-borne diseases in maize (Zea mays L.), and severely reduces maize production in Southwest China. However, the mechanism of resistance to GLS is not clear and few resistant alleles have been identified. Two maize inbred lines, which were shown to be resistant (R6) and susceptible (S8) to GLS, were injected by C. zeina spore suspensions. Transcriptome analysis was carried out with leaf tissue at 0, 6, 24, 144, and 240 h after inoculation. Compared with 0 h of inoculation, a total of 667 and 419 stable common differentially expressed genes (DEGs) were found in the resistant and susceptible lines across the four timepoints, respectively. The DEGs were usually enriched in 'response to stimulus' and 'response to stress' in GO term analysis, and 'plant-pathogen interaction', 'MAPK signaling pathways', and 'plant hormone signal transduction' pathways, which were related to maize's response to GLS, were enriched in KEGG analysis. Weighted-Genes Co-expression Network Analysis (WGCNA) identified two modules, while twenty hub genes identified from these indicated that plant hormone signaling, calcium signaling pathways, and transcription factors played a central role in GLS sensing and response. Combing DEGs and QTL mapping, five genes were identified as the consensus genes for the resistance of GLS. Two genes, were both putative Leucine-rich repeat protein kinase family proteins, specifically expressed in R6. In summary, our results can provide resources for gene mining and exploring the mechanism of resistance to GLS in maize.
Collapse
Affiliation(s)
- Wenzhu He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Yonghui Zhu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Yifeng Leng
- College of Agricultural Sciences, Xichang University, Xichang 615000, China;
| | - Lin Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Biao Zhang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Junpin Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Haitao Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Jie Chen
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Jun Tan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Jiwei Kang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Luchang Deng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Yan Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Yuanyuan He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| |
Collapse
|
20
|
Guo H, Zhang Y, Tong J, Ge P, Wang Q, Zhao Z, Zhu-Salzman K, Hogenhout SA, Ge F, Sun Y. An Aphid-Secreted Salivary Protease Activates Plant Defense in Phloem. Curr Biol 2020; 30:4826-4836.e7. [PMID: 33035482 DOI: 10.1016/j.cub.2020.09.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/25/2020] [Accepted: 09/07/2020] [Indexed: 01/11/2023]
Abstract
Recent studies have reported that aphids facilitate their colonization of host plants by secreting salivary proteins into host tissues during their initial probing and feeding. Some of these salivary proteins elicit plant defenses, but the molecular and biochemical mechanisms that underlie the activation of phloem-localized resistance remain poorly understood. The aphid Myzus persicae, which is a generalized phloem-sucking pest, encompasses a number of lineages that are associated with and adapted to specific host plant species. The current study found that a cysteine protease Cathepsin B3 (CathB3), and the associated gene CathB3, was upregulated in the salivary glands and saliva of aphids from a non-tobacco-adapted (NTA) aphid lineage, when compared to those of a tobacco-adapted lineage. Furthermore, the knockdown of CathB3 improved the performance of NTA lineages on tobacco, and the propeptide domain of CathB3 was found to bind to tobacco cytoplasmic kinase ENHANCED DISEASE RESISTANCE 1-like (EDR1-like), which triggers the accumulation of reactive oxygen species in tobacco phloem, thereby suppressing both phloem feeding and colonization by NTA lineages. These findings reveal a novel function for a cathepsin-type protease in aphid saliva that elicits effective host plant defenses and warranted the theory of host specialization for generalist aphids.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahui Tong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Panpan Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinyang Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihua Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
SUSA2 is an F-box protein required for autoimmunity mediated by paired NLRs SOC3-CHS1 and SOC3-TN2. Nat Commun 2020; 11:5190. [PMID: 33060601 PMCID: PMC7562919 DOI: 10.1038/s41467-020-19033-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Both higher plants and mammals rely on nucleotide-binding leucine-rich repeat (NLR) immune receptors to detect pathogens and initiate immunity. Upon effector recognition, plant NLRs oligomerize for defense activation, the mechanism of which is poorly understood. We previously showed that disruption of the E3 ligase, Senescence-Associated E3 Ubiquitin Ligase 1 (SAUL1) leads to the activation of the NLR SOC3. Here, we report the identification of suppressor of saul1 2 (susa2) and susa3 from the saul1-1 suppressor screen. Pairwise interaction analysis suggests that both SUSA proteins interact with components of an SCFSUSA2 E3 ligase complex as well as CHS1 or TN2, truncated NLRs that pair with SOC3. susa2-2 only suppresses the autoimmunity mediated by either CHS1 or TN2, suggesting its specific involvement in SOC3-mediated immunity. In summary, our study indicates links between plant NLRs and an SCF complex that may enable ubiquitination and degradation of unknown downstream components to activate defense.
Collapse
|
22
|
Zheng H, Zhang Y, Li J, He L, Wang F, Bi Y, Gao J. Comparative transcriptome analysis between a resistant and a susceptible Chinese cabbage in response to Hyaloperonospora brassicae. PLANT SIGNALING & BEHAVIOR 2020; 15:1777373. [PMID: 32538253 PMCID: PMC8570763 DOI: 10.1080/15592324.2020.1777373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 06/01/2023]
Abstract
Downy mildew caused by Hyaloperonosporabrassicae (H. brassicae) leads to up to 90% of the crop yield loss in Chinese cabbage in China. A transcriptome analysis was carried out between a resistant line (13-13, R) and a susceptible line (15-14, S) of Chinese cabbage in response to H. brassicae. The NOISeq method was used to find differentially expressed genes (DEGs) between these two groups and GO and KEGG were carried out to find R genes related to downy mildew response of Chinese cabbage. qRT-PCR was carried out to verify the reliability of RNA-seq expression data. A total of 3,055 DEGs were screened out from 41,020 genes and clustered into 6 groups with distinct expression patterns. A total of 87 candidate DEGs were identified by functional annotation based on GO and KEGG analysis. These candidate genes are involved in plant-pathogen interaction pathway, among which 54 and 33 DEGs were categorized into plant-pathogen interaction proteins and transcription factors, respectively. Proteins encoded by these genes have been reported to play an important role in the pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) processes of disease responses in some model plants, such as Arabidopsis, rice, tobacco, and tomato. However, little is known about the mechanisms of these genes in resistance to downy mildew in Chinese cabbage. Our findings are useful for further characterization of these candidate genes and helpful in breeding resistant strains.
Collapse
Affiliation(s)
- Han Zheng
- College of Life Science, Shandong Normal University, Jinan, China
| | - Yihui Zhang
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Jingjuan Li
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Lilong He
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Fengde Wang
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Yuping Bi
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Jianwei Gao
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| |
Collapse
|
23
|
Wang W, Liu N, Gao C, Cai H, Romeis T, Tang D. The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. THE NEW PHYTOLOGIST 2020; 227:529-544. [PMID: 32119118 DOI: 10.1111/nph.16515] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
The plasma membrane (PM)-localized receptor kinase FLAGELLIN SENSING 2 (FLS2) recognizes bacterial flagellin or its immunogenic epitope flg22, and initiates microbe-associated molecular pattern-triggered immunity, which inhibits infection by bacterial pathogens. The localization, abundance and activity of FLS2 are under dynamic control. Here, we demonstrate that Arabidopsis thaliana EXO70B1, a subunit of the exocyst complex, plays a critical role in FLS2 signaling that is independent of the truncated Toll/interleukin-1 receptor-nucleotide binding sequence protein TIR-NBS2 (TN2). In the exo70B1-3 mutant, the abundance of FLS2 protein at the PM is diminished, consistent with the impaired flg22 response of this mutant. EXO70B1-GFP plants showed increased FLS2 accumulation at the PM and therefore enhanced FLS2 signaling. The EXO70B1-mediated trafficking of FLS2 to the PM is partially independent of the PENETRATION 1 (PEN1)-containing secretory pathway. In addition, EXO70B1 interacts with EXO70B2, a close homolog of EXO70B1, and both proteins associate with FLS2 and contribute to the accumulation of FLS2 at the PM. Taken together, our data suggest that the exocyst complex subunits EXO70B1 and EXO70B2 regulate the trafficking of FLS2 to the PM, which represents a new layer of regulation of FLS2 function in plant immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiren Cai
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
24
|
Guo W, Chen JS, Zhang F, Li ZY, Chen HF, Zhang CJ, Chen LM, Yuan SL, Li R, Cao D, Hao QN, Chen SL, Shan ZH, Yang ZL, Zhang XJ, Qiu DZ, You QB, Dai WJ, Zhou XA, Shen XJ, Jiao YQ. Characterization of Pingliang xiaoheidou (ZDD 11047), a soybean variety with resistance to soybean cyst nematode Heterodera glycines. PLANT MOLECULAR BIOLOGY 2020; 103:253-267. [PMID: 32152894 DOI: 10.1007/s11103-020-00990-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE A novel QTL (qSCN-PL10) for SCN resistance and related candidate genes were identified in the soybean variety Pingliang xiaoheidou, and plant basal immunity seems to contribute to the SCN resistance. Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most devastating soybean pests worldwide. The development of host plant resistance represents an effective strategy to control SCN. However, owing to the lack of diversity of resistance genes in soybean varieties, further investigation is necessary to identify new SCN resistance genes. By analyzing the resistance phenotypes of soybean variety Pingliang xiaoheidou (Pingliang, ZDD 11047), we found that it exhibited the different resistance phenotypes from PI 88788 and Peking varieties. Because Pingliang variety contains the Rhg1-a (low copy) haplotype and lacks the resistant Rhg4 haplotype, novel quantitative trait locus might account for their SCN resistance. After sequencing parental lines (Magellan and Pingliang) and 200 F2:3 progenies, a high-density genetic map was constructed using the specific length amplified fragment sequencing method and qSCN-PL10 was identified as a novel locus for SCN resistance. Candidate genes were predicted by RNA sequencing (RNA-seq) in the qSCN-PL10 locus region. The RNA-seq analysis performed also indicated that plant basal immunity plays an important role in the resistance of Pingliang to SCN. These results lay a foundation for the use of marker-assisted breeding to enhance the resistance to SCN.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.
| | - Jing S Chen
- Daqing Branch of the Heilongjiang Academy of Agricultural Sciences, Daqing, 163316, Heilongjiang, China
| | - Feng Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Ze Y Li
- Daqing Branch of the Heilongjiang Academy of Agricultural Sciences, Daqing, 163316, Heilongjiang, China
| | - Hai F Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Chan J Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Li M Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Song L Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Rong Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Qing N Hao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Shui L Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Zhi H Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Zhong L Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xiao J Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - De Z Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Qing B You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Wen J Dai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xin A Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xin J Shen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.
| | - Yong Q Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
25
|
Collins CA, LaMontagne ED, Anderson JC, Ekanayake G, Clarke AS, Bond LN, Salamango DJ, Cornish PV, Peck SC, Heese A. EPSIN1 Modulates the Plasma Membrane Abundance of FLAGELLIN SENSING2 for Effective Immune Responses. PLANT PHYSIOLOGY 2020; 182:1762-1775. [PMID: 32094305 PMCID: PMC7140936 DOI: 10.1104/pp.19.01172] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/14/2020] [Indexed: 05/25/2023]
Abstract
The plasma membrane (PM) provides a critical interface between plant cells and their environment to control cellular responses. To perceive the bacterial flagellin peptide flg22 for effective defense signaling, the immune receptor FLAGELLIN SENSING2 (FLS2) needs to be at its site of function, the PM, in the correct abundance. However, the intracellular machinery that controls PM accumulation of FLS2 remains largely undefined. The Arabidopsis (Arabidopsis thaliana) clathrin adaptor EPSIN1 (EPS1) is implicated in clathrin-coated vesicle formation at the trans-Golgi network (TGN), likely aiding the transport of cargo proteins from the TGN for proper location; but EPS1's impact on physiological responses remains elusive. Here, we identify EPS1 as a positive regulator of flg22 signaling and pattern-triggered immunity against Pseudomonas syringae pv tomato DC3000. We provide evidence that EPS1 contributes to modulating the PM abundance of defense proteins for effective immune signaling because in eps1, impaired flg22 signaling correlated with reduced PM accumulation of FLS2 and its coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1). The eps1 mutant also exhibited reduced responses to the pathogen/damage-associated molecular patterns elf26 and AtPep1, which are perceived by the coreceptor BAK1 and cognate PM receptors. Furthermore, quantitative proteomics of enriched PM fractions revealed that EPS1 was required for proper PM abundance of a discrete subset of proteins with different cellular functions. In conclusion, our study expands the limited understanding of the physiological roles of EPSIN family members in plants and provides novel insight into the TGN-associated clathrin-coated vesicle trafficking machinery that impacts plant PM-derived defense processes.
Collapse
Affiliation(s)
- Carina A Collins
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Erica D LaMontagne
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Jeffrey C Anderson
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Gayani Ekanayake
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Alexander S Clarke
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Lauren N Bond
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Daniel J Salamango
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Peter V Cornish
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Scott C Peck
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Antje Heese
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| |
Collapse
|
26
|
Luo H, Pandey MK, Zhi Y, Zhang H, Xu S, Guo J, Wu B, Chen H, Ren X, Zhou X, Chen Y, Chen W, Huang L, Liu N, Sudini HK, Varshney RK, Lei Y, Liao B, Jiang H. Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1133-1148. [PMID: 31980836 PMCID: PMC7064456 DOI: 10.1007/s00122-020-03537-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/03/2020] [Indexed: 05/09/2023]
Abstract
Two novel and adjacent genomics and candidate genes for bacterial wilt resistance were identified on chromosome B02 in peanut variety Zhonghua 6 using both traditional QTL mapping and QTL-seq methods. Peanut (Arachis hypogaea) is an important oilseed crop worldwide. Utilization of genetic resistance is the most economic and effective approach to control bacterial wilt, one of the most devastating plant diseases, in peanut production. To accelerate the genetic improvement of bacterial wilt resistance (BWR) in peanut breeding programs, quantitative trait locus (QTL) mapping has been conducted for two resistant varieties. In this context, we deployed linkage mapping as well as sequencing-based mapping approach, QTL-seq, to identify genomic regions and candidate genes for BWR in another highly resistant variety Zhonghua 6. The recombination inbred line population (268 progenies) from the cross Xuhua 13 × Zhonghua 6 was used in BWR evaluation across five environments. QTL mapping using both SSR- and SNP-based genetic maps identified a stable QTL (qBWRB02-1) on chromosome B02 with 37.79-78.86% phenotypic variation explained (PVE) across five environments. The QTL-seq facilitated further dissection of qBWRB02-1 into two adjacent genomic regions, qBWRB02-1-1 (2.81-4.24 Mb) and qBWRB02-1-2 (6.54-8.75 Mb). Mapping of newly developed Kompetitive allele-specific PCR (KASP) markers on the genetic map confirmed their stable expressions across five environments. The effects of qBWRB02-1-1 (49.43-68.86% PVE) were much higher than qBWRB02-1-2 (3.96-6.48% PVE) and other previously reported QTLs. Nineteen putative candidate genes affected by 49 non-synonymous SNPs were identified for qBWRB02-1-1, and ten of them were predicted to code for disease resistance proteins. The major and stable QTL qBWRB02-1-1 and validated KASP markers could be deployed in genomics-assisted breeding (GAB) to develop improved peanut varieties with enhanced BWR.
Collapse
Affiliation(s)
- Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Ye Zhi
- Angel Yeast Co., Ltd, Yichang, 443003, Hubei, China
| | - Huan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Siliang Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Jianbin Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Bei Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Haiwen Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Xiaoping Ren
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Hari K Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| |
Collapse
|
27
|
Liu Z, Wang L, Xue C, Chu Y, Gao W, Zhao Y, Zhao J, Liu M. Genome-wide identification of MAPKKK genes and their responses to phytoplasma infection in Chinese jujube (Ziziphus jujuba Mill.). BMC Genomics 2020; 21:142. [PMID: 32041543 PMCID: PMC7011567 DOI: 10.1186/s12864-020-6548-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) cascades play vital roles in signal transduction in response to a wide range of biotic and abiotic stresses. In a previous study, we identified ten ZjMAPKs and five ZjMAPKKs in the Chinese jujube genome. We found that some members of ZjMAPKs and ZjMAPKKs may play key roles in the plant's response to phytoplasma infection. However, how these ZjMAPKKs are modulated by ZjMAPKKKs during the response process has not been elucidated. Little information is available regarding MAPKKKs in Chinese jujube. RESULTS A total of 56 ZjMAPKKKs were identified in the jujube genome. All of these kinases contain the key S-TKc (serine/threonine protein kinase) domain, which is distributed among all 12 chromosomes. Phylogenetic analyses show that these ZjMAPKKKs can be classified into two subfamilies. Specifically, 41 ZjMAPKKKs belong to the Raf subfamily, and 15 belong to the MEKK subfamily. In addition, the ZjMAPKKKs in each subfamily share the same conserved motifs and gene structures. Only one pair of ZjMAPKKKs (15/16, on chromosome 5) was found to be tandemly duplicated. Using qPCR, the expression profiles of these MAPKKKs were investigated in response to infection with phytoplasma. In the three main infected tissues (witches' broom leaves, phyllody leaves, and apparently normal leaves), ZjMAPKKK26 and - 45 were significantly upregulated, and ZjMAPKKK3, - 43 and - 50 were significantly downregulated. ZjMAPKKK4, - 10, - 25 and - 44 were significantly and highly induced in sterile cultivated tissues infected by phytoplasma, while ZjMAPKKK6, - 7, - 17, - 18, - 30, - 34, - 35, - 37, - 40, - 41, - 43, - 46, - 52 and - 53 were significantly downregulated. CONCLUSIONS For the first time, we present an identification and classification analysis of ZjMAPKKKs. Some ZjMAPKKK genes may play key roles in the response to phytoplasma infection. This study provides an initial understanding of the mechanisms through which ZjMAPKKKs are involved in the response of Chinese jujube to phytoplasma infection.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China.,Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China.,Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuetong Chu
- College of Horticulture, Hebei Agricultural University, Baoding, China.,Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yitong Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China. .,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China.
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China. .,Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
28
|
Rocha JRDASDC, Marçal TDS, Salvador FV, da Silva AC, Carneiro PCS, de Resende MDV, Carneiro JDC, Azevedo ALS, Pereira JF, Machado JC. Unraveling candidate genes underlying biomass digestibility in elephant grass (Cenchrus purpureus). BMC PLANT BIOLOGY 2019; 19:548. [PMID: 31822283 PMCID: PMC6905061 DOI: 10.1186/s12870-019-2180-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/01/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Elephant grass [Cenchrus purpureus (Schumach.) Morrone] is used for bioenergy and animal feed. In order to identify candidate genes that could be exploited for marker-assisted selection in elephant grass, this study aimed to investigate changes in predictive accuracy using genomic relationship information and simple sequence repeats for eight traits (height, green biomass, dry biomass, acid and neutral detergent fiber, lignin content, biomass digestibility, and dry matter concentration) linked to bioenergetics and animal feeding. RESULTS We used single-step, genome-based best linear unbiased prediction and genome association methods to investigate changes in predictive accuracy and find candidate genes using genomic relationship information. Genetic variability (p < 0.05) was detected for most of the traits evaluated. In general, the overall means for the traits varied widely over the cuttings, which was corroborated by a significant genotype by cutting interaction. Knowing the genomic relationships increased the predictive accuracy of the biomass quality traits. We found that one marker (M28_161) was significantly associated with high values of biomass digestibility. The marker had moderate linkage disequilibrium with another marker (M35_202) that, in general, was detected in genotypes with low values of biomass digestibility. In silico analysis revealed that both markers have orthologous regions in other C4 grasses such as Setaria viridis, Panicum hallii, and Panicum virgatum, and these regions are located close to candidate genes involved in the biosynthesis of cell wall molecules (xyloglucan and lignin), which support their association with biomass digestibility. CONCLUSIONS The markers and candidate genes identified here are useful for breeding programs aimed at changing biomass digestibility in elephant grass. These markers can be used in marker-assisted selection to grow elephant grass cultivars for different uses, e.g., bioenergy production, bio-based products, co-products, bioactive compounds, and animal feed.
Collapse
|
29
|
Wang K, Zheng X, Zhang X, Zhao L, Yang Q, Boateng NAS, Ahima J, Liu J, Zhang H. Comparative Transcriptomic Analysis of the Interaction between Penicillium expansum and Apple Fruit ( Malus pumila Mill.) during Early Stages of Infection. Microorganisms 2019; 7:microorganisms7110495. [PMID: 31661784 PMCID: PMC6920851 DOI: 10.3390/microorganisms7110495] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/26/2023] Open
Abstract
Blue mold, caused by Penicillium expansum, is an important postharvest disease of apple, and can result in significant economic losses. The present study investigated the interaction between P. expansum and wounded apple fruit tissues during the early stages of the infection. Spores of P. expansum became activated one hour post-inoculation (hpi), exhibited swelling at 3 hpi, and the germ tubes were found entering into apple tissues at 6 hpi. RNA-seq was performed on samples of P. expansum and apple fruit tissue collected at 1, 3, and 6 hpi. The main differentially expressed genes (DEGs) that were identified in P. expansum were related to interaction, cell wall degradation enzymes, anti-oxidative stress, pH regulation, and effectors. Apple tissues responded to the presence of P. expansum by activating pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) at 1 hpi, then activated effector-triggered immunity (ETI) at 3 hpi. This research provides new information on the interaction between P. expansum and apple fruit tissue at an early stage of the infection process.
Collapse
Affiliation(s)
- Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiangfeng Zheng
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | - Joseph Ahima
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
30
|
Cui F, Wu W, Wang K, Zhang Y, Hu Z, Brosché M, Liu S, Overmyer K. Cell death regulation but not abscisic acid signaling is required for enhanced immunity to Botrytis in Arabidopsis cuticle-permeable mutants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5971-5984. [PMID: 31328223 PMCID: PMC6812726 DOI: 10.1093/jxb/erz345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 05/21/2023]
Abstract
Prevailing evidence indicates that abscisic acid (ABA) negatively influences immunity to the fungal pathogen Botrytis cinerea in most but not all cases. ABA is required for cuticle biosynthesis, and cuticle permeability enhances immunity to Botrytis via unknown mechanisms. This complex web of responses obscures the role of ABA in Botrytis immunity. Here, we addressed the relationships between ABA sensitivity, cuticle permeability, and Botrytis immunity in the Arabidopsis thaliana ABA-hypersensitive mutants protein phosphatase2c quadruple mutant (pp2c-q) and enhanced response to aba1 (era1-2). Neither pp2c-q nor era1-2 exhibited phenotypes predicted by the known roles of ABA; conversely, era1-2 had a permeable cuticle and was Botrytis resistant. We employed RNA-seq analysis in cuticle-permeable mutants of differing ABA sensitivities and identified a core set of constitutively activated genes involved in Botrytis immunity and susceptibility to biotrophs, independent of ABA signaling. Furthermore, botrytis susceptible1 (bos1), a mutant with deregulated cell death and enhanced ABA sensitivity, suppressed the Botrytis immunity of cuticle permeable mutants, and this effect was linearly correlated with the extent of spread of wound-induced cell death in bos1. Overall, our data demonstrate that Botrytis immunity conferred by cuticle permeability can be genetically uncoupled from PP2C-regulated ABA sensitivity, but requires negative regulation of a parallel ABA-dependent cell-death pathway.
Collapse
Affiliation(s)
- Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Correspondence: or
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Kai Wang
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Yuan Zhang
- Library of Donghu Campus, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Correspondence: or
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Ekanayake G, LaMontagne ED, Heese A. Never Walk Alone: Clathrin-Coated Vesicle (CCV) Components in Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:387-409. [PMID: 31386597 DOI: 10.1146/annurev-phyto-080417-045841] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At the host-pathogen interface, the protein composition of the plasma membrane (PM) has important implications for how a plant cell perceives and responds to invading microbial pathogens. A plant's ability to modulate its PM composition is critical for regulating the strength, duration, and integration of immune responses. One mechanism by which plant cells reprogram their cell surface is vesicular trafficking, including secretion and endocytosis. These trafficking processes add or remove cargo proteins (such as pattern-recognition receptors, transporters, and other proteins with immune functions) to or from the PM via small, membrane-bound vesicles. Clathrin-coated vesicles (CCVs) that form at the PM and trans-Golgi network/early endosomes have emerged as the prominent vesicle type in the regulation of plant immune responses. In this review, we discuss the roles of the CCV core, adaptors, and accessory components in plant defense signaling and immunity against various microbial pathogens.
Collapse
Affiliation(s)
- Gayani Ekanayake
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Erica D LaMontagne
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| |
Collapse
|
32
|
Gao J, Chaudhary A, Vaddepalli P, Nagel MK, Isono E, Schneitz K. The Arabidopsis receptor kinase STRUBBELIG undergoes clathrin-dependent endocytosis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3881-3894. [PMID: 31107531 PMCID: PMC6685663 DOI: 10.1093/jxb/erz190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
Signaling mediated by cell surface receptor kinases is central to the coordination of growth patterns during organogenesis. Receptor kinase signaling is in part controlled through endocytosis and subcellular distribution of the respective receptor kinase. For the majority of plant cell surface receptors, the underlying trafficking mechanisms are not characterized. In Arabidopsis, tissue morphogenesis requires the atypical receptor kinase STRUBBELIG (SUB). Here, we studied the endocytic mechanism of SUB. Our data revealed that a functional SUB-enhanced green fluorescent protein (EGFP) fusion is ubiquitinated in vivo. We further showed that plasma membrane-bound SUB:EGFP becomes internalized in a clathrin-dependent fashion. We also found that SUB:EGFP associates with the trans-Golgi network and accumulates in multivesicular bodies and the vacuole. Co-immunoprecipitation experiments revealed that SUB:EGFP and clathrin are present within the same protein complex. Our genetic analysis showed that SUB and CLATHRIN HEAVY CHAIN (CHC) 2 regulate root hair patterning. By contrast, genetic reduction of CHC activity ameliorates the floral defects of sub mutants. Taken together, the data indicate that SUB undergoes clathrin-mediated endocytosis, that this process does not rely on stimulation of SUB signaling by an exogenous agent, and that SUB genetically interacts with clathrin-dependent pathways in a tissue-specific manner.
Collapse
Affiliation(s)
- Jin Gao
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Ajeet Chaudhary
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Prasad Vaddepalli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Present address: Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Marie-Kristin Nagel
- Department of Biology, Chair of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Erika Isono
- Department of Biology, Chair of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Correspondence:
| |
Collapse
|
33
|
Anderson A, St Aubin B, Abraham-Juárez MJ, Leiboff S, Shen Z, Briggs S, Brunkard JO, Hake S. The Second Site Modifier, Sympathy for the ligule, Encodes a Homolog of Arabidopsis ENHANCED DISEASE RESISTANCE4 and Rescues the Liguleless narrow Maize Mutant. THE PLANT CELL 2019; 31:1829-1844. [PMID: 31217219 PMCID: PMC6713312 DOI: 10.1105/tpc.18.00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/14/2019] [Accepted: 06/13/2019] [Indexed: 05/19/2023]
Abstract
Liguleless narrow1 encodes a plasma membrane-localized receptor-like kinase required for normal development of maize (Zea mays) leaves, internodes, and inflorescences. The semidominant Lgn-R mutation lacks kinase activity, and phenotypic severity is dependent on inbred background. We created near isogenic lines and assayed the phenotype in multiple environments. Lgn-R plants that carry the B73 version of Sympathy for the ligule (Sol-B) fail to grow under hot conditions, but those that carry the Mo17 version (Sol-M) survive at hot temperatures and are significantly taller at cool temperatures. To identify Sol, we used recombinant mapping and analyzed the Lgn-R phenotype in additional inbred backgrounds. We identified amino acid sequence variations in GRMZM2G075262 that segregate with severity of the Lgn-R phenotypes. This gene is expressed at high levels in Lgn-R B73, but expression drops to nonmutant levels with one copy of Sol-M An EMS mutation solidified the identity of SOL as a maize homolog of Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE4 (EDR4). SOL, like EDR4, is induced in response to pathogen-associated molecular patterns such as flg22. Integrated transcriptomic and phosphoproteomic analyses suggest that Lgn-R plants constitutively activate an immune signaling cascade that induces temperature-sensitive responses in addition to defects in leaf development. We propose that aspects of the severe Lgn-R developmental phenotype result from constitutive defense induction and that SOL potentially functions in repressing this response in Mo17 but not B73. Identification of LGN and its interaction with SOL provides insight into the integration of developmental control and immune responses.
Collapse
Affiliation(s)
- Alyssa Anderson
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - Brian St Aubin
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - María Jazmín Abraham-Juárez
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - Samuel Leiboff
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - Zhouxin Shen
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Steve Briggs
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Jacob O Brunkard
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - Sarah Hake
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| |
Collapse
|
34
|
Yin X, Chávez León MASC, Osae R, Linus LO, Qi LW, Alolga RN. Xylopia aethiopica Seeds from Two Countries in West Africa Exhibit Differences in Their Proteomes, Mineral Content and Bioactive Phytochemical Composition. Molecules 2019; 24:molecules24101979. [PMID: 31126018 PMCID: PMC6572195 DOI: 10.3390/molecules24101979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
Aside from its multiple medicinal uses, the fruit of Xylopia aethiopica is widely used in Africa as food. Herein, we characterize the protein profiles, mineral content and bioactive phytochemical composition of the seeds of this plant sourced in Ghana and Nigeria. Using label-free proteomics, a total of 677 proteins were identified, with 260 found in the Ghana-sourced samples while 608 proteins were detected in the samples from Nigeria. However, 114 proteins were common between the samples from the two countries, among which 48 were significantly changed. Bioinformatics and functional analyses revealed that the differential levels of the proteins were mainly linked to pathways involved amino acids metabolism and biosynthesis. The significantly changed proteins related mainly to catalytic activity and carbon metabolism. The samples from Nigeria also exhibited superior qualities in terms of their antioxidant effects, and total phenolic and flavonoid content. Finally, only the content of Na varied to a statistically significant level. This study lends support to its culinary use and hints towards the impact of location of cultivation on the quality of the seeds. There is however need for further mechanistic investigations to unravel the underlying reasons for the observed differences.
Collapse
Affiliation(s)
- Xiaojian Yin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China.
| | - María A S C Chávez León
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| | - Richard Osae
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Loveth O Linus
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
35
|
Justamante MS, Ibáñez S, Peidró A, Pérez-Pérez JM. A Genome-Wide Association Study Identifies New Loci Involved in Wound-Induced Lateral Root Formation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:311. [PMID: 30930926 PMCID: PMC6428781 DOI: 10.3389/fpls.2019.00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Root systems can display variable architectures that contribute to nutrient foraging or to increase the tolerance of abiotic stress conditions. Root tip excision promotes the developmental progression of previously specified lateral root (LR) founder cells, which allows to easily measuring the branching capacity of a given root as regards its genotype and/or growth conditions. Here, we describe the natural variation among 120 Arabidopsis thaliana accessions in root system architecture (RSA) after root tip excision. Wound-induced changes in RSA were associated with 19 genomic loci using genome-wide association mapping. Three candidate loci associated with wound-induced LR formation were investigated. Sequence variation in the hypothetical protein encoded by the At4g01090 gene affected wound-induced LR development and its loss-of-function mutants displayed a reduced number of LRs after root tip excision. Changes in a histidine phosphotransfer protein putatively involved in cytokinin signaling were significantly associated with LR number variation after root tip excision. Our results provide a better understanding of some of the genetic components involved in LR capacity variation among accessions.
Collapse
Affiliation(s)
| | - Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Adrián Peidró
- Departamento de Ingeniería de Sistemas y Automatización, Universidad Miguel Hernández de Elche, Elche, Spain
| | | |
Collapse
|
36
|
Zhao Y, Wu G, Shi H, Tang D. RECEPTOR-LIKE KINASE 902 Associates with and Phosphorylates BRASSINOSTEROID-SIGNALING KINASE1 to Regulate Plant Immunity. MOLECULAR PLANT 2019; 12:59-70. [PMID: 30408577 DOI: 10.1016/j.molp.2018.10.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 05/03/2023]
Abstract
Plants employ receptor-like kinases (RLKs) and receptor-like proteins for rapid recognition of invading pathogens, and RLKs then transmit signals to receptor-like cytoplasmic kinases (RLCKs) to activate immune responses. RLKs are under fine regulation mediated by subcellular trafficking, which contributes to proper activation of plant immunity. In this study, we show that Arabidopsis thaliana RECEPTOR-LIKE KINASE 902 (RLK902) plays important roles in resistance to the bacterial pathogen Pseudomonas syringae, but not to the fungal powdery mildew pathogen Golovinomyces cichoracearum. RLK902 localizes at the plasma membrane and associates with ENHANCED DISEASE RESISTANCE 4 (EDR4), a protein involved in clathrin-mediated trafficking pathways. EDR4 and CLATHRIN HEAVY CHAIN 2 (CHC2) regulate the subcellular trafficking and accumulation of RLK902 protein. Furthermore, we found that RLK902 directly associates with the RLCK BRASSINOSTEROID-SIGNALING KINASE1 (BSK1), a key component of plant immunity, but not with other members of the FLAGELLIN SENSING 2 immune complex. RLK902 phosphorylates BSK1, and its Ser-230 is a key phosphorylation site critical for RLK902-mediated defense signaling. Taken together, our data indicate that EDR4 regulates plant immunity by modulating the subcellular trafficking and protein accumulation of RLK902, and that RLK902 transmits immune signals by phosphorylating BSK1.
Collapse
Affiliation(s)
- Yaofei Zhao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; University of Chinese Academy of Sciences, Beijing 100039, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangheng Wu
- Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, Fujian 354300, China
| | - Hua Shi
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Key Laboratory of Crop by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
37
|
Wu C, Sui Y. Efficient and Fast Production of Transgenic Rice Plants by Agrobacterium-Mediated Transformation. Methods Mol Biol 2019; 1864:95-103. [PMID: 30415331 DOI: 10.1007/978-1-4939-8778-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Genetic transformation plays a key role in deciphering regulation of agronomic traits at molecular level in rice, a model monocot cereal crop. Here we describe an efficient and fast protocol for producing transgenic japonica rice plants using the Agrobacterium-mediated transformation method. The protocol simplifies medium compositions and transformation steps and can be easily followed by a lab technician with little tissue culture experience. Using this protocol, we have transformed thousands of gene constructs in the past 10 years and edited hundreds of genes with the CRISPR-Cas9 system recently.
Collapse
Affiliation(s)
- Chuanyin Wu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yi Sui
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Wang W, Liu N, Gao C, Rui L, Tang D. The Pseudomonas Syringae Effector AvrPtoB Associates With and Ubiquitinates Arabidopsis Exocyst Subunit EXO70B1. FRONTIERS IN PLANT SCIENCE 2019; 10:1027. [PMID: 31555308 PMCID: PMC6726739 DOI: 10.3389/fpls.2019.01027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/23/2019] [Indexed: 05/20/2023]
Abstract
Many bacterial pathogens secret effectors into host cells to disable host defenses and thus promote infection. The exocyst complex functions in the transport and secretion of defense molecules, and loss of function of the EXO70B1 subunit leads to autoimmunity by activation of a truncated Toll/interleukin-1 receptor-nucleotide-binding sequence protein (TIR-NBS2; herein referred to as TN2). Here, we show that EXO70B1 is required for pathogen-associated molecular pattern-triggered immune responses in Arabidopsis thaliana. The effector AvrPtoB, an E3 ligase from Pseudomonas syringae pv. tomato (Pto) strain DC3000, associates with EXO70B1. AvrPtoB ubiquitinates EXO70B1 and mediates EXO70B1 degradation via the host's 26S proteasome in a manner requiring E3 ligase activity. AvrPtoB enhances Pto DC3000 virulence by overcoming EXO70B1-mediated resistance. Moreover, overexpression of AvrPtoB in Arabidopsis leads to autoimmunity, which is partially dependent on TN2. Expression of TN2 in tobacco (Nicotiana tabacum and Nicotiana benthamiana) triggers strong and rapid cell death, which is suppressed by co-expression with EXO70B1 but reoccurs when co-expressed with AvrPtoB. Taken together, our data highlight that AvrPtoB targets the Arabidopsis thaliana EXO70 protein family member EXO70B1 to manipulate the defense molecule secretion machinery or immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Rui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Dingzhong Tang,
| |
Collapse
|
39
|
Wu L, Zhang X, Xu B, Li Y, Jia L, Wang R, Ren X, Wang G, Xia Q. Identification and expression analysis of EDR1-like genes in tobacco ( Nicotiana tabacum) in response to Golovinomyces orontii. PeerJ 2018; 6:e5244. [PMID: 30018863 PMCID: PMC6044316 DOI: 10.7717/peerj.5244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023] Open
Abstract
ENHANCED DISEASE RESISTANCE1 (EDR1) encodes a Raf-like mitogen-activated protein kinase, and it acts as a negative regulator of disease resistance and ethylene-induced senescence. Mutations in the EDR1 gene can enhance resistance to powdery mildew both in monocotyledonous and dicotyledonous plants. However, little is known about EDR1-like gene members from a genome-wide perspective in plants. In this study, the tobacco (Nicotiana tabacum)EDR1-like gene family was first systematically analyzed. We identified 19 EDR1-like genes in tobacco, and compared them to those from Arabidopsis, tomato and rice. Phylogenetic analyses divided the EDR1-like gene family into six clades, among them monocot and dicot plants were respectively divided into two sub-clades. NtEDR1-1A and NtEDR1-1B were classified into clade I in which the other members have been reported to negatively regulate plant resistance to powdery mildew. The expression patterns of tobacco EDR1-like genes were analyzed after plants were challenged by Golovinomyces orontii, and showed that several other EDR1-like genes were induced after infection, as well as NtEDR1-1A and NtEDR1-1B. Expression analysis showed that NtEDR1-13 and NtEDR1-16 had exclusively abundant expression patterns in roots and leaves, respectively, and the remaining NtEDR1-like members were actively expressed in most of the tissue/organ samples investigated. Our findings will contribute to further study of the physiological functions of EDR1-like genes in tobacco.
Collapse
Affiliation(s)
- Lei Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiaoying Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bingxin Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yueyue Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Rengang Wang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Xueliang Ren
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
40
|
Yan H, Zhao Y, Shi H, Li J, Wang Y, Tang D. BRASSINOSTEROID-SIGNALING KINASE1 Phosphorylates MAPKKK5 to Regulate Immunity in Arabidopsis. PLANT PHYSIOLOGY 2018; 176:2991-3002. [PMID: 29440595 PMCID: PMC5884618 DOI: 10.1104/pp.17.01757] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/29/2018] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) immune receptor FLAGELLIN SENSING2 (FLS2) rapidly forms a complex to activate pathogen-associated molecular pattern-triggered immunity (PTI) upon perception of the bacterial protein flagellin. The receptor-like cytoplasmic kinase BRASSINOSTEROID-SIGNALINGKINASE1 (BSK1) interacts with FLS2 and is critical for the activation of PTI. However, it is unknown how BSK1 transduces signals to activate downstream immune responses. We identified MEK Kinase5 (MAPKKK5) as a potential substrate of BSK1 by whole-genome phosphorylation analysis. In addition, we demonstrated that BSK1 interacts with and phosphorylates MAPKKK5. In the bsk1-1 mutant, the Ser-289 residue of MAPKKK5 was not phosphorylated as it was in the wild type. Similar to the bsk1 mutant, the mapkkk5 mutant displayed enhanced susceptibility to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae pv tomato DC3000, and to the fungal powdery mildew pathogen Golovinomyces cichoracearum Phosphorylation of the Ser-289 residue is not involved in MAPKKK5-triggered cell death but is critical for MAPKKK5-mediated resistance to both bacterial and fungal pathogens. Furthermore, MAPKKK5 interacts with multiple MAPK kinases, including MKK1, MKK2, MKK4, MKK5, and MKK6. Overall, these results indicate that BSK1 regulates plant immunity by phosphorylating MAPKKK5 and suggest a direct regulatory mode of signaling from the immune complex to the MAPK cascade.
Collapse
Affiliation(s)
- Haojie Yan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaofei Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Shi
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Crop by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
41
|
LaMontagne ED, Heese A. Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:114-121. [PMID: 28915433 DOI: 10.1016/j.pbi.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/01/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses.
Collapse
Affiliation(s)
- Erica D LaMontagne
- University of Missouri, Div. of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA
| | - Antje Heese
- University of Missouri, Div. of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA.
| |
Collapse
|
42
|
Park CJ, Wei T, Sharma R, Ronald PC. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae. RICE (NEW YORK, N.Y.) 2017; 10:27. [PMID: 28577284 PMCID: PMC5457384 DOI: 10.1186/s12284-017-0166-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/24/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). RESULTS Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differential expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in 'cell death' and 'vesicle-mediated transport'. CONCLUSION These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling 'vesicle-mediated transport' in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA
- Department of Bioresources Engineering and the Plant Engineering Research Institute, Sejong University, Seoul, 05006, Republic of Korea
| | - Tong Wei
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Rita Sharma
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA.
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
43
|
Gu Y, Zavaliev R, Dong X. Membrane Trafficking in Plant Immunity. MOLECULAR PLANT 2017; 10:1026-1034. [PMID: 28698057 PMCID: PMC5673114 DOI: 10.1016/j.molp.2017.07.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 05/20/2023]
Abstract
Plants employ sophisticated mechanisms to interact with pathogenic as well as beneficial microbes. Of those, membrane trafficking is key in establishing a rapid and precise response. Upon interaction with pathogenic microbes, surface-localized immune receptors undergo endocytosis for signal transduction and activity regulation while cell wall components, antimicrobial compounds, and defense proteins are delivered to pathogen invasion sites through polarized secretion. To sustain mutualistic associations, host cells also reprogram the membrane trafficking system to accommodate invasive structures of symbiotic microbes. Here, we provide an analysis of recent advances in understanding the roles of secretory and endocytic membrane trafficking pathways in plant immune activation. We also discuss strategies deployed by adapted microbes to manipulate these pathways to subvert or inhibit plant defense.
Collapse
Affiliation(s)
- Yangnan Gu
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
44
|
Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:714-724. [PMID: 28502081 DOI: 10.1111/tpj.13599] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/23/2017] [Accepted: 05/03/2017] [Indexed: 05/18/2023]
Abstract
Wheat (Triticum aestivum L.) incurs significant yield losses from powdery mildew, a major fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). enhanced disease resistance1 (EDR1) plays a negative role in the defense response against powdery mildew in Arabidopsis thaliana; however, the edr1 mutant does not show constitutively activated defense responses. This makes EDR1 an ideal target for approaches using new genome-editing tools to improve resistance to powdery mildew. We cloned TaEDR1 from hexaploid wheat and found high similarity among the three homoeologs of EDR1. Knock-down of TaEDR1 by virus-induced gene silencing or RNA interference enhanced resistance to powdery mildew, indicating that TaEDR1 negatively regulates powdery mildew resistance in wheat. We used CRISPR/Cas9 technology to generate Taedr1 wheat plants by simultaneous modification of the three homoeologs of wheat EDR1. No off-target mutations were detected in the Taedr1 mutant plants. The Taedr1 plants were resistant to powdery mildew and did not show mildew-induced cell death. Our study represents the successful generation of a potentially valuable trait using genome-editing technology in wheat and provides germplasm for disease resistance breeding.
Collapse
Affiliation(s)
- Yunwei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Bai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangheng Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, Fujian, China
| | - Shenghao Zou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongfang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
45
|
Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 2017; 356:1172-1175. [DOI: 10.1126/science.aam9970] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
|
46
|
Arabidopsis glycosylphosphatidylinositol-anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity. Proc Natl Acad Sci U S A 2017; 114:5749-5754. [PMID: 28507137 DOI: 10.1073/pnas.1614468114] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Plants detect and respond to pathogen invasion with membrane-localized pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs) and activate downstream immune responses. Here we report that Arabidopsis thaliana LORELEI-LIKE GPI-ANCHORED PROTEIN 1 (LLG1), a coreceptor of the receptor-like kinase FERONIA, regulates PRR signaling. In a forward genetic screen for suppressors of enhanced disease resistance 1 (edr1), we identified the point mutation llg1-3, which suppresses edr1 disease resistance but does not affect plant growth and development. The llg1 mutants show enhanced susceptibility to various virulent pathogens, indicating that LLG1 has an important role in plant immunity. LLG1 constitutively associates with the PAMP receptor FLAGELLIN SENSING 2 (FLS2) and the elongation factor-Tu receptor, and forms a complex with BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 in a ligand-dependent manner, indicating that LLG1 functions as a key component of PAMP-recognition immune complexes. Moreover, LLG1 contributes to accumulation and ligand-induced degradation of FLS2, and is required for downstream innate immunity responses, including ligand-induced phosphorylation of BOTRYTIS-INDUCED KINASE 1 and production of reactive oxygen species. Taken together, our findings reveal that LLG1 associates with PAMP receptors and modulates their function to regulate disease responses. As LLG1 functions as a coreceptor of FERONIA and plays central roles in plant growth and development, our findings indicate that LLG1 participates in separate pathways, and may suggest a potential connection between development and innate immunity in plants.
Collapse
|
47
|
Liu N, Hake K, Wang W, Zhao T, Romeis T, Tang D. CALCIUM-DEPENDENT PROTEIN KINASE5 Associates with the Truncated NLR Protein TIR-NBS2 to Contribute to exo70B1-Mediated Immunity. THE PLANT CELL 2017; 29:746-759. [PMID: 28351987 PMCID: PMC5435426 DOI: 10.1105/tpc.16.00822] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/03/2017] [Accepted: 03/24/2017] [Indexed: 05/19/2023]
Abstract
Calcium-dependent protein kinases (CPKs) function as calcium sensors and play important roles in plant immunity. Loss of function of the exocyst complex subunit EXO70B1 leads to autoimmunity caused by activation of TN2, a truncated Toll/interleukin-1 receptor-nucleotide binding sequence protein. Here we show, based on a screen for suppressors of exo70B1, that exo70B1-activated autoimmune responses require CPK5 However, the CPK5 homologs CPK4, CPK6, and CPK11, which were previously reported to function redundantly with CPK5 in effector-triggered immunity, did not contribute to exo70B1-associated phenotypes, indicating that CPK5 plays a unique role in plant immunity. Overexpressing CPK5 results in TN2-dependent autoimmunity and enhanced disease resistance, reminiscent of the exo70B1 phenotypes. Ectopic expression of CPK5 in the exo70B1 mutant led to constitutive CPK5 protein kinase activity, which was not detectable in tn2 mutants. Furthermore, TN2 interacts with the CPK5 N-terminal variable and kinase domains, stabilizing CPK5 kinase activity in vitro. This work uncovers a direct functional link between an atypical immune receptor and a crucial component of early immune signaling: increased immunity in exo70B1 depends on TN2 and CPK5 and, in a positive feedback loop, TN2 keeps CPK5 enzymatically active beyond the initiating stimulus.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Katharina Hake
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Wei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Dingzhong Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
48
|
Wang X, Guo R, Tu M, Wang D, Guo C, Wan R, Li Z, Wang X. Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2017; 8:97. [PMID: 28197166 PMCID: PMC5281567 DOI: 10.3389/fpls.2017.00097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/17/2017] [Indexed: 05/10/2023]
Abstract
WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52, from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea, compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea. In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens.
Collapse
Affiliation(s)
- Xianhang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Rongrong Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Mingxing Tu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Dejun Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Ran Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
- *Correspondence: Xiping Wang,
| |
Collapse
|
49
|
Mbengue M, Bourdais G, Gervasi F, Beck M, Zhou J, Spallek T, Bartels S, Boller T, Ueda T, Kuhn H, Robatzek S. Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases. Proc Natl Acad Sci U S A 2016; 113:11034-9. [PMID: 27651493 PMCID: PMC5047200 DOI: 10.1073/pnas.1606004113] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensing of potential pathogenic bacteria is of critical importance for immunity. In plants, this involves plasma membrane-resident pattern recognition receptors, one of which is the FLAGELLIN SENSING 2 (FLS2) receptor kinase. Ligand-activated FLS2 receptors are internalized into endosomes. However, the extent to which these spatiotemporal dynamics are generally present among pattern recognition receptors (PRRs) and their regulation remain elusive. Using live-cell imaging, we show that at least three other receptor kinases associated with plant immunity, PEP RECEPTOR 1/2 (PEPR1/2) and EF-TU RECEPTOR (EFR), internalize in a ligand-specific manner. In all cases, endocytosis requires the coreceptor BRI1-ASSOCIATED KINASE 1 (BAK1), and thus depends on receptor activation status. We also show the internalization of liganded FLS2, suggesting the transport of signaling competent receptors. Trafficking of activated PRRs requires clathrin and converges onto the same endosomal vesicles that are also shared with the hormone receptor BRASSINOSTERIOD INSENSITIVE 1 (BRI1). Importantly, clathrin-dependent endocytosis participates in plant defense against bacterial infection involving FLS2-mediated stomatal closure and callose deposition, but is uncoupled from activation of the flagellin-induced oxidative burst and MAP kinase signaling. In conclusion, immunity mediated by pattern recognition receptors depends on clathrin, a critical component for the endocytosis of signaling competent receptors into a common endosomal pathway.
Collapse
Affiliation(s)
- Malick Mbengue
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | | | - Fabio Gervasi
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom; Fruit Tree Research Center, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Martina Beck
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Ji Zhou
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Thomas Spallek
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Sebastian Bartels
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, Botany, University of Basel, CH-4056 Basel, Switzerland
| | - Thomas Boller
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, Botany, University of Basel, CH-4056 Basel, Switzerland
| | - Takashi Ueda
- National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Hannah Kuhn
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom; Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
50
|
Wang WM, Liu PQ, Xu YJ, Xiao S. Protein trafficking during plant innate immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:284-98. [PMID: 26345282 DOI: 10.1111/jipb.12426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/06/2015] [Indexed: 05/20/2023]
Abstract
Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell's protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major components of the trafficking machineries engaged.
Collapse
Affiliation(s)
- Wen-Ming Wang
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng-Qiang Liu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-Ju Xu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland, Rockville, MD, 20850, USA
| |
Collapse
|