1
|
Zulfiqar S, Gu R, Liu Y, Zhang Y. From genes to traits: maximizing phosphorus utilization efficiency in crop plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1527547. [PMID: 40265110 PMCID: PMC12011862 DOI: 10.3389/fpls.2025.1527547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Phosphorus (P) is a critical macronutrient for plant growth, but its limited availability requires efficient utilization strategies. The excessive use of P fertilizers leads to low phosphorus utilization efficiency (PUE), causing severe environmental impacts and speeding up the exhaustion of P mineral reserves. Plants respond to inorganic phosphate (Pi) deficiency through complex signaling pathways that trigger changes in gene expression, root architecture, and metabolic pathways to enhance P acquisition and utilization efficiency. By exploring the interplay between genetic regulators and microorganisms, cultivars with superior PUE traits can be developed, which will ensure agricultural resilience and productivity in the face of depleting global P reserves. We highlight the synergistic interaction between genetic regulators and microorganisms to boost PUE as well as recent advancements in unraveling molecular mechanisms governing P homeostasis in plants, emphasizing the urgency to improve plant traits for improved P utilization.
Collapse
Affiliation(s)
- Sumer Zulfiqar
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Ran Gu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yan Liu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yaowei Zhang
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
2
|
Guo HL, Tian MZ, Ri X, Chen YF. Phosphorus acquisition, translocation, and redistribution in maize. J Genet Genomics 2025; 52:287-296. [PMID: 39389460 DOI: 10.1016/j.jgg.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Phosphorus (P) is an essential nutrient for crop growth, making it important for maintaining food security as the global population continues to increase. Plants acquire P primarily via the uptake of inorganic phosphate (Pi) in soil through their roots. Pi, which is usually sequestered in soils, is not easily absorbed by plants and represses plant growth. Plants have developed a series of mechanisms to cope with P deficiency. Moreover, P fertilizer applications are critical for maximizing crop yield. Maize is a major cereal crop cultivated worldwide. Increasing its P-use efficiency is important for optimizing maize production. Over the past two decades, considerable progresses have been achieved in studies aimed at adapting maize varieties to changes in environmental P supply. Here, we present an overview of the morphological, physiological, and molecular mechanisms involved in P acquisition, translocation, and redistribution in maize and combine the advances in Arabidopsis and rice, to better elucidate the progress of P nutrition. Additionally, we summarize the correlation between P and abiotic stress responses. Clarifying the mechanisms relevant to improving P absorption and use in maize can guide future research on sustainable agriculture.
Collapse
Affiliation(s)
- Hui-Ling Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng-Zhi Tian
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xian Ri
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Wu T, Han B, Wang Y, Zhang B, Wang C, Wang S, Cai H, Liu Z, Hammond JP, Kant S, Ding G, Xu F, Shi L. The BnamiR827-BnaA09.NLA1-BnaPHT1 module regulates phosphate homeostasis, pollen viability, and seed yield in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1333-1350. [PMID: 39722233 DOI: 10.1093/jxb/erae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
Phosphorus (P) is an essential macronutrient for the growth and yield of crops. However, there is limited understanding of the regulatory mechanisms of phosphate (Pi) homeostasis, and its impact on growth, development, and yield-related traits in Brassica napus. Here, we identified four NITROGEN LIMITATION ADAPTATION1 (BnaNLA1) genes in B. napus; their expression was predominant in roots and suppressed by Pi starvation-induced BnamiR827. All the BnaNLA1 proteins have similar sequences, subcellular localizations, and abilities to rescue the growth defects of the atnla1 mutant. One of the genes, BnaA09.NLA1, is expressed abundantly in roots, and also in old leaves, anthers, and pollen. Knocking out BnaNLA1 genes or overexpressing BnamiR827 resulted in increased concentrations of Pi in leaves and stamens and reduced pollen viability, thereby negatively impacting seed yield. Bimolecular fluorescence complementation (BiFC) and split-ubiquitin yeast two-hybrid (Y2H) analyses demonstrated that BnaA09.NLA1 interacted with seven Pi transporters highly expressed in roots and/or anthers (i.e. BnaPT8/10/11/27/35/37/42) to regulate Pi uptake and Pi allocation in anthers. Taken together, this study demonstrates that the BnamiR827-BnaA09.NLA1-BnaPHT1 module is involved in the regulation of Pi uptake and Pi allocation in floral organs, which is vital for the growth, pollen viability, and seed yield of B. napus.
Collapse
Affiliation(s)
- Tao Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Bei Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yajie Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingbing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Wang
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Cai
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - John P Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, UK
| | - Surya Kant
- School of Agriculture, Biomedicine & Environment, La Trobe University, AgriBio, 5 Ring Rd, Bundoora, Vic 3083, Australia
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Guo Z, Zhang C, Zhao H, Liu Y, Chen X, Zhao H, Chen L, Ruan W, Chen Y, Yuan L, Yi K, Xu L, Zhang J. Vacuolar phosphate efflux transporter ZmVPEs mediate phosphate homeostasis and remobilization in maize leaves. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:311-326. [PMID: 39620397 DOI: 10.1111/jipb.13811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/06/2024] [Indexed: 02/13/2025]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. Vacuoles play a crucial role in inorganic phosphate (Pi) storage and remobilization in plants. However, the physiological function of vacuolar phosphate efflux transporters in plant Pi remobilization remains obscure. Here, we identified three ZmVPE genes (ZmVPE1, ZmVPE2a, ZmVPE2b) by combining them with transcriptome and quantitative real-time polymerase chain reaction (PCR) analyses, showing a relatively higher expression in older leaves than in younger leaves in maize. Moreover, the expression of the ZmVPEs was triggered by Pi deficiency and abscisic acid. ZmVPEs were localized to the vacuolar membrane and responsible for vacuolar Pi efflux. Compared with the wild-type, Pi remobilization from older to younger leaves was enhanced in ZmVPE-overexpression lines. zmvpe2a mutants displayed an increase in the total P and Pi concentrations in older leaves, but a decrease in younger leaves. In rice, Pi remobilization was impaired in the osvpe1osvpe2 double mutant and enhanced in OsVPE-overexpression plants, suggesting conserved functions of VPEs in modulating Pi homeostasis and remobilization in crop plants. Taken together, our findings revealed a novel mechanism underlying Pi remobilization from older to younger leaves mediated by plant vacuolar Pi efflux transporters, facilitating the development of Pi-efficient crop plants.
Collapse
Affiliation(s)
- Zhenhui Guo
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Chaonan Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Hongyu Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiyao Chen
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Hanshu Zhao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenyuan Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yifang Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Ge S, Xiao X, Zhang K, Yang C, Dong J, Chen K, Lv Q, Satheesh V, Lei M. A plastidial lipoyl synthase LIP1p plays a crucial role in phosphate homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2385-2397. [PMID: 39495814 DOI: 10.1111/tpj.17117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024]
Abstract
Phosphate (Pi) homeostasis is important for plant growth and adaptation to the dynamic environment, which requires the precise regulation of phosphate transporter (PHT) trafficking from the endoplasmic reticulum to the plasma membrane. LIPOYL SYNTHASE 1p (LIP1p) is known as a key enzyme in plastids to catalyze lipoylation of pyruvate dehydrogenase complex for de novo fatty acid synthesis. It is unknown whether this process is involved in regulating Pi homeostasis. Here, we demonstrate a new role of LIP1p in controlling Pi homeostasis by regulating PHT1 trafficking. We recovered a weak mutant allele of LIP1p in Arabidopsis that accumulates much less Pi and has enhanced expression of phosphate starvation-induced genes. LIP1p mutation alters the lipid profile and compromises vesicle trafficking of PHT1 to the plasma membrane to impair Pi uptake. Beside phosphorus, the homeostasis of a series of mineral nutrients was also perturbed in lip1p mutant. Our findings provide powerful genetic evidence to support the linkage between lipoylation and ion homeostasis in plants.
Collapse
Affiliation(s)
- Shenghong Ge
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinlong Xiao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Ke Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Changhong Yang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinsong Dong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Keying Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuyu Lv
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Viswanathan Satheesh
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, Iowa, 50011, USA
| | - Mingguang Lei
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
6
|
Zhang Z, Mo X, Zhao H, Lu X, Fan S, Huang X, Mai H, Liao H, Zhang Y, Liang C, Tian J. Crystal structure and function of a phosphate starvation responsive protein phosphatase, GmHAD1-2 regulating soybean root development and flavonoid metabolism. THE NEW PHYTOLOGIST 2024; 244:2396-2412. [PMID: 39370627 DOI: 10.1111/nph.20174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Phosphate (Pi) availability is well known to regulate plant root growth. However, it remains largely unknown how flavonoid synthesis participates in affecting plant root growth in response to Pi starvation. In the study, the crystal structure of a plant protein phosphatase, GmHAD1-2, was dissected using X-ray crystallography for the first time. It was revealed that GmHAD1-2 contained a modified Rossmannoid class of α/β folds with three layered α/β sandwich. Transcripts of GmHAD1-2 were increased by Pi starvation in soybean roots, especially in lateral root tips. GmHAD1-2 suppression or overexpression significantly influenced soybean lateral root length and number, as well as phosphorus (P) content. Furthermore, GmHAD1-2 was found to interact with a chalcone reductase, GmCHR1. Suppression of GmHAD1-2 significantly changed the flavonoid biosynthesis pathway in soybean roots. Taken together, the results highlight that GmHAD1-2 can regulate soybean root growth by influencing flavonoid metabolism.
Collapse
Affiliation(s)
- Zeyu Zhang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohui Mo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hongbo Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shilong Fan
- School of Life Sciences, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Xiaojia Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Huafu Mai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Liao
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Yinghe Zhang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
7
|
Liu M, Zhao M, Yang G, Sun M, Yang A, Sun C, Zhao H, Ao X. Root morphology, nitrogen metabolism and amino acid metabolism in soybean under low phosphorus stress. Sci Rep 2024; 14:28583. [PMID: 39562777 PMCID: PMC11577115 DOI: 10.1038/s41598-024-79876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
Phosphorus deficiency is a major influence on growth and development of soybean. Therefore, improving phosphorus utilization efficiency in soybean is a research priority for the soybean community. In this experiment, Liaodou 13 (high phosphorus utilization: HPE) and Tiefeng 3 (low phosphorus utilization: LPE) were used as test varieties. We investigated changes in root morphology, amino acid content, and content of key substances of the nitrogen metabolic pathway with normal phosphorus (0.5 mM) and low phosphorus (0.005 mM) treatments. The results showed that the root length, root surface area and number of lateral roots of HPE roots were higher than those of LPE roots under normal and low phosphorus conditions. The contents of different types of amino acids showed different trends in two varieties. The HPE showed small change in the content of total hydrolyzed amino acids under the low phosphorus condition when compared to the normal phosphorus treatment by a 6.67% decrease, on the contrary LPE showed a drastic decrease by 20.36%. However, HPE exhibited similar decreasing trends in the contents of hydrolyzed and free aspartic acid with the low phosphorus treatment. Moreover, the contents of free histidine and valine in LPE were significantly increased by 657.84% and 149.29% respectively, in contrast to significant decreases in HPE. In aspects of major nutrient elements, the contents of phosphorus, total nitrogen and ammonia nitrogen in both HPE and LPE varieties decreased to dramatic levels. However, the nitrate nitrogen content significantly increased 78.51% for HPE and 65.12% for LPE. Compare to the normal condition, the GOGAT activity in HPE decreased by 5.18% but increased by 33.10% in LPE. Compare to the normal condition, the GS activity in HPE increased by 7.26% but decreased by 21.72% in LPE under phosphorus deficiency. In summary, the phosphorus-efficient soybean variety HPE exhibited superior tolerance to low phosphorus deficiency through advantageous root morphology, phosphorus uptake and transfer capability, and balanced amino acid metabolism and nitrogen metabolism pathways.
Collapse
Affiliation(s)
- Meiling Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Mingzhe Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Guang Yang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Mingze Sun
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Ahui Yang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Chang Sun
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Hongyu Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xue Ao
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
8
|
Rui L, Kang P, Shao J, Lu M, Cui B, Zhao Y, Wang W, Cai H, Tang D, Loake GJ, Wang M, Shi H. The chloroplast-localized casein kinase II α subunit, CPCK2, negatively regulates plant innate immunity through promoting S-nitrosylation of SABP3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:552-568. [PMID: 39189381 DOI: 10.1111/tpj.17000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
The casein kinase II (CK2) complex consists of catalytic (α) and regulatory (β) subunits and is highly conserved throughout eukaryotes. Plant CK2 plays critical roles in multiple physiological processes; however, its function in plant immunity remains obscure. In this study, we demonstrated that the unique chloroplast-localized CK2 α subunit (CPCK2) is a negative regulator of Arabidopsis thaliana innate immunity. cpck2 mutants displayed enhanced resistance against the fungal pathogen powdery mildew, Golovinomyces cichoracearum and the virulent bacterial pathogen, Pseudomonas syringae pv. tomato (Pto) DC3000. Moreover, the cpck2-1 mutant accumulated higher salicylic acid (SA) levels and mutations that disabled SA biosynthesis or signaling inhibited cpck2-1-mediated disease resistance. CPCK2 interacted with the chloroplast-localized carbonic anhydrase (CA), SA-binding protein 3 (SABP3), which was required for cpck2-mediated immunity. Significantly, CPCK2 phosphorylated SABP3, which promoted S-nitrosylation of this enzyme. It has previously been established that S-nitrosylation of SABP3 reduces both its SA binding function and its CA activity, which compromises the immune-related function of SABP3. Taken together, our results establish CPCK2 as a negative regulator of SA accumulation and associated immunity. Importantly, our findings unveil a mechanism by which CPCK2 negatively regulates plant immunity by promoting S-nitrosylation of SABP3 through phosphorylation, which provides the first example in plants of S-nitrosylation being promoted by cognate phosphorylation.
Collapse
Affiliation(s)
- Lu Rui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Ping Kang
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Shao
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Minfeng Lu
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Beimi Cui
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Yaofei Zhao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Huiren Cai
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Mo Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Hua Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
9
|
Ding X, Wang S, Cui X, Zhong H, Zou H, Zhao P, Guo Z, Chen H, Li C, Zhu L, Li J, Fu Y. LKS4-mediated SYP121 phosphorylation participates in light-induced stomatal opening in Arabidopsis. Curr Biol 2024; 34:3102-3115.e6. [PMID: 38944035 DOI: 10.1016/j.cub.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/29/2024] [Accepted: 06/01/2024] [Indexed: 07/01/2024]
Abstract
By modulating stomatal opening and closure, plants control gas exchange, water loss, and photosynthesis in response to various environmental signals. During light-induced stomatal opening, the transport of ions and solutes across the plasma membrane (PM) of the surrounding guard cells results in an increase in turgor pressure, leading to cell swelling. Simultaneously, vesicles for exocytosis are delivered via membrane trafficking to compensate for the enlarged cell surface area and maintain an appropriate ion-channel density in the PM. In eukaryotic cells, soluble N-ethylmaleimide-sensitive factor adaptor protein receptors (SNAREs) mediate membrane fusion between vesicles and target compartments by pairing the cognate glutamine (Q)- and arginine (R)-SNAREs to form a core SNARE complex. Syntaxin of plants 121 (SYP121) is a known Q-SNARE involved in stomatal movement, which not only facilitates the recycling of K+ channels to the PM but also binds to the channels to regulate their activity. In this study, we found that the expression of a receptor-like cytoplasmic kinase, low-K+ sensitive 4/schengen 1 (LKS4/SGN1), was induced by light; it directly interacted with SYP121 and phosphorylated T270 within the SNARE motif. Further investigation revealed that LKS4-dependent phosphorylation of SYP121 facilitated the interaction between SYP121 and R-SNARE vesicle-associated membrane protein 722 (VAMP722), promoting the assembly of the SNARE complex. Our findings demonstrate that the phosphorylation of SNARE proteins is an important strategy adopted by plants to regulate the SNARE complex assembly as well as membrane fusion. Additionally, we discovered the function of LKS4/SGN1 in light-induced stomatal opening via the phosphorylation of SYP121.
Collapse
Affiliation(s)
- Xuening Ding
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuwei Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiankui Cui
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongyu Zou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Pan Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zonglin Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haoyang Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Changjiang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Li D, Li T, Yang X, Wang H, Chu J, Dong H, Lu P, Tao J, Cao P, Jin J, Xuan YH. Carbon nanosol promotes plant growth and broad-spectrum resistance. ENVIRONMENTAL RESEARCH 2024; 251:118635. [PMID: 38462083 DOI: 10.1016/j.envres.2024.118635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Carbon nanosol (CNS) is a carbon-based nanomaterial capable of promoting plant growth while the underlying mechanism involved in this process remains unknown. This study demonstrates that CNS promotes rice seedling growth under restricted concentrations. Macroelement transporter mutants were investigated to further investigate the CNS-mediated promotion of rice seedling growth. The genetic and physiological findings revealed that nitrate transporter 1.1B (NRT1.1B) and ammonium transporter 1 (AMT1) mutants inhibited the CNS-induced growth development of rice seedlings, whereas potassium transporter (AKT1) and phosphate transporter 8 (PT8) did not exhibit any inhibitory effects. Further investigations demonstrated the inhibition of CNS-mediated growth promotion via glutamine synthetase 1;1 (gs1;1) mutants. Additionally, the administration of CNS resulted in enhanced accumulation of chlorophyll in plants, and the promotion of CNS-induced growth was inhibited by yellow-green leaf 8 (YGL8) mutants and the chlorophyll biosynthetic gene divinyl reductase (DVR) mutants. According to these findings, the CNS promotes plant growth by stimulating chlorophyll biosynthesis. Furthermore, the presence of CNS enhanced the ability of rice to withstand blast, sheath blight (ShB), and bacterial blight. The nrt1.1b, amt1, dvr, and ygl8 mutants did not exhibit a broad spectrum effect. The positive regulation of broad-spectrum resistance in rice by GS1;1 suggests the requirement of N assimilation for CNS-mediated broad-spectrum resistance. In addition, an in vitro assay demonstrated that CNS inhibits the growth of pathogens responsible for blast, ShB, and bacterial blight, namely Magnaporthe oryzae, Rhizoctonia solani AG1-IA, and Xanthomonas oryzae pv. Oryzae, respectively. CNS application may also induce broad-spectrum resistance against bacterial and fungal pathogens, indicating that in addition to its antifungal and antibacterial properties, CNS application may also stimulate N assimilation. Collectively, the results indicate that CNS may be a potential nano-therapeutic agent for improved plant growth promotion while also providing broad-spectrum resistance.
Collapse
Affiliation(s)
- Dandan Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071 China; College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Tianmiao Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071 China; College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xujie Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Hujun Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jin Chu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| | - Hai Dong
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| | - Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China; Beijing Life Science Academy, Beijing 102200, China.
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China; Beijing Life Science Academy, Beijing 102200, China.
| | - Yuan Hu Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071 China.
| |
Collapse
|
11
|
Bhat MA, Mishra AK, Shah SN, Bhat MA, Jan S, Rahman S, Baek KH, Jan AT. Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants. Curr Issues Mol Biol 2024; 46:5194-5222. [PMID: 38920984 PMCID: PMC11201952 DOI: 10.3390/cimb46060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Plants being sessile are exposed to different environmental challenges and consequent stresses associated with them. With the prerequisite of minerals for growth and development, they coordinate their mobilization from the soil through their roots. Phosphorus (P) and iron (Fe) are macro- and micronutrient; P serves as an important component of biological macromolecules, besides driving major cellular processes, including photosynthesis and respiration, and Fe performs the function as a cofactor for enzymes of vital metabolic pathways. These minerals help in maintaining plant vigor via alterations in the pH, nutrient content, release of exudates at the root surface, changing dynamics of root microbial population, and modulation of the activity of redox enzymes. Despite this, their low solubility and relative immobilization in soil make them inaccessible for utilization by plants. Moreover, plants have evolved distinct mechanisms to cope with these stresses and coregulate the levels of minerals (Fe, P, etc.) toward the maintenance of homeostasis. The present study aims at examining the uptake mechanisms of Fe and P, and their translocation, storage, and role in executing different cellular processes in plants. It also summarizes the toxicological aspects of these minerals in terms of their effects on germination, nutrient uptake, plant-water relationship, and overall yield. Considered as an important and indispensable component of sustainable agriculture, a separate section covers the current knowledge on the cross-talk between Fe and P and integrates complete and balanced information of their effect on plant hormone levels.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| |
Collapse
|
12
|
Zhao B, Jia X, Yu N, Murray JD, Yi K, Wang E. Microbe-dependent and independent nitrogen and phosphate acquisition and regulation in plants. THE NEW PHYTOLOGIST 2024; 242:1507-1522. [PMID: 37715479 DOI: 10.1111/nph.19263] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Nitrogen (N) and phosphorus (P) are the most important macronutrients required for plant growth and development. To cope with the limited and uneven distribution of N and P in complicated soil environments, plants have evolved intricate molecular strategies to improve nutrient acquisition that involve adaptive root development, production of root exudates, and the assistance of microbes. Recently, great advances have been made in understanding the regulation of N and P uptake and utilization and how plants balance the direct uptake of nutrients from the soil with the nutrient acquisition from beneficial microbes such as arbuscular mycorrhiza. Here, we summarize the major advances in these areas and highlight plant responses to changes in nutrient availability in the external environment through local and systemic signals.
Collapse
Affiliation(s)
- Boyu Zhao
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- New Cornerstone Science Laboratory, Shenzhen, 518054, China
| |
Collapse
|
13
|
Yan M, Xie M, Chen W, Si WJ, Lin HH, Yang J. Transcriptome analysis with different leaf blades identifies the phloem-specific phosphate transporter OsPHO1;3 required for phosphate homeostasis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:905-919. [PMID: 38251949 DOI: 10.1111/tpj.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Phosphate (Pi) is essential for plant growth and development. One strategy to improve Pi use efficiency is to enhance Pi remobilization among leaves. Using transcriptome analysis with first (top) and fourth (down) leaf blades from rice (Oryza sativa) in Pi-sufficient and deficient conditions, we identified 1384 genes differentially expressed among these leaf blades. These genes were involved in physiological processes, metabolism, transport, and photosynthesis. Moreover, we identified the Pi efflux transporter gene, OsPHO1;3, responding to Pi-supplied conditions among these leaf blades. OsPHO1;3 is highly expressed in companion cells of phloem, but not xylem, in leaf blades and induced by Pi starvation. Mutation of OsPHO1;3 led to Pi accumulation in second to fourth leaves under Pi-sufficient conditions, but enhanced Pi levels in first leaves under Pi-deficient conditions. These Pi accumulations in leaves of Ospho1;3 mutants resulted from induction of OsPHT1;2 and OsPHT1;8 in root and reduction of Pi remobilization in leaf blades, revealed by the decreased Pi in phloem of leaves. Importantly, lack of OsPHO1;3 caused growth defects under a range of Pi-supplied conditions. These results demonstrate that Pi remobilization is essential for Pi homeostasis and plant growth irrespective of Pi-supplied conditions, and OsPHO1;3 plays an essential role in Pi remobilization for normal plant growth.
Collapse
Affiliation(s)
- Meng Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mengyang Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wen-Jing Si
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
14
|
Yang SY, Lin WY, Hsiao YM, Chiou TJ. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus. THE PLANT CELL 2024; 36:1504-1523. [PMID: 38163641 PMCID: PMC11062440 DOI: 10.1093/plcell/koad326] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.
Collapse
Affiliation(s)
- Shu-Yi Yang
- Institute of Plant Biology, National Taiwan University, Taipei 106319, Taiwan
| | - Wei-Yi Lin
- Department of Agronomy, National Taiwan University, Taipei 106319, Taiwan
| | - Yi-Min Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
15
|
Mihiret YE, Schaaf G, Kamleitner M. Protein pyrophosphorylation by inositol phosphates: a novel post-translational modification in plants? FRONTIERS IN PLANT SCIENCE 2024; 15:1347922. [PMID: 38455731 PMCID: PMC10917965 DOI: 10.3389/fpls.2024.1347922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Inositol pyrophosphates (PP-InsPs) are energy-rich molecules harboring one or more diphosphate moieties. PP-InsPs are found in all eukaryotes evaluated and their functional versatility is reflected in the various cellular events in which they take part. These include, among others, insulin signaling and intracellular trafficking in mammals, as well as innate immunity and hormone and phosphate signaling in plants. The molecular mechanisms by which PP-InsPs exert such functions are proposed to rely on the allosteric regulation via direct binding to proteins, by competing with other ligands, or by protein pyrophosphorylation. The latter is the focus of this review, where we outline a historical perspective surrounding the first findings, almost 20 years ago, that certain proteins can be phosphorylated by PP-InsPs in vitro. Strikingly, in vitro phosphorylation occurs by an apparent enzyme-independent but Mg2+-dependent transfer of the β-phosphoryl group of an inositol pyrophosphate to an already phosphorylated serine residue at Glu/Asp-rich protein regions. Ribosome biogenesis, vesicle trafficking and transcription are among the cellular events suggested to be modulated by protein pyrophosphorylation in yeast and mammals. Here we discuss the latest efforts in identifying targets of protein pyrophosphorylation, pointing out the methodological challenges that have hindered the full understanding of this unique post-translational modification, and focusing on the latest advances in mass spectrometry that finally provided convincing evidence that PP-InsP-mediated pyrophosphorylation also occurs in vivo. We also speculate about the relevance of this post-translational modification in plants in a discussion centered around the protein kinase CK2, whose activity is critical for pyrophosphorylation of animal and yeast proteins. This enzyme is widely present in plant species and several of its functions overlap with those of PP-InsPs. Until now, there is virtually no data on pyrophosphorylation of plant proteins, which is an exciting field that remains to be explored.
Collapse
Affiliation(s)
| | | | - Marília Kamleitner
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
16
|
Song RF, Hu XY, Liu WC, Yuan HM. ABA functions in low phosphate-induced anthocyanin accumulation through the transcription factor ABI5 in Arabidopsis. PLANT CELL REPORTS 2024; 43:55. [PMID: 38315238 DOI: 10.1007/s00299-024-03146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE ABI5 functions in ABA-mediated anthocyanin accumulation in plant response to low phosphate. Low phosphate (LP)-induced anthocyanin biosynthesis and accumulation play an important role in plant adaptive response to phosphate starvation conditions. However, whether and how the stress phytohormone abscisic acid (ABA) participates in LP-induced anthocyanin accumulation remain elusive. Here, we report that ABA is required for LP-induced anthocyanin accumulation in Arabidopsis thaliana. Disrupting ABA DEFICIENT2 (ABA2), a key ABA-biosynthetic gene, or BETA-GLUCOSIDASE1 (BG1), a major gene implicated in converting conjugated ABA to active ABA, significantly impairs LP-induced anthocyanin accumulation, as LP-induced expression of the anthocyanin-biosynthetic genes Chalcone Synthase (CHS) is dampened in the aba2 and bg1 mutant. In addition, LP-induced anthocyanin accumulation is defective in the mutants of ABA signaling pathway, including ABA receptors, ABA Insensitive2, and the transcription factors ABA Insensitive5 (ABI5), suggesting a role of ABI5 in ABA-mediated upregulation of anthocyanin-biosynthetic genes in plant response to LP. Indeed, LP-induced expression of CHS is repressed in the abi5-7 mutant but further promoted in the ABI5-overexpressing plants compared to the wild-type. Moreover, ABI5 can bind to and transcriptionally activate CHS, and the defectiveness of LP-induced anthocyanin accumulation in abi5-7 can be restored by overexpressing CHS. Collectively, our findings illustrates that ABI5 functions in ABA-mediated LP-induced anthocyanin accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Ru-Feng Song
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xiao-Yu Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Sanya Institute, Henan University, Sanya, 572025, China.
| | - Hong-Mei Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China.
| |
Collapse
|
17
|
Sun Y, Zhang F, Wei J, Song K, Sun L, Yang Y, Qin Q, Yang S, Li Z, Xu G, Sun S, Xue Y. Phosphate Transporter OsPT4, Ubiquitinated by E3 Ligase OsAIRP2, Plays a Crucial Role in Phosphorus and Nitrogen Translocation and Consumption in Germinating Seed. RICE (NEW YORK, N.Y.) 2023; 16:54. [PMID: 38052756 PMCID: PMC10697913 DOI: 10.1186/s12284-023-00666-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
Phosphorus (P) and nitrogen (N) are essential macronutrients necessary for plant growth and development. OsPT4 is a high-affinity phosphate (Pi) transporter that has a positive impact on nutrient uptake and seed development. In this study, the expression patterns of different Pi transporter genes in germinating seeds were determined, and the relative expression of OsPT4 was induced in Pi-deficient seeds and gradually increased with the passage of germination time. The analysis of P, N, Pi, and amino acid concentrations in germinating seeds of OsPT4 mutants showed that the OsPT4 mutation caused P and N retention and a continuous reduction in multiple amino acid concentrations in germinating seeds. Transcriptome analysis and qRT-PCR results also indicated that the OsPT4 mutation inhibits the expression of genes related to P and N transportation and amino acid synthesis in germinating seeds. In addition, the paraffin section and TUNEL assay of OsPT4 mutant germinating seeds suggests that OsPT4 mutation causes programmed cell death (PCD) delayed in the aleurone layer and inhibition of leaf outgrowth. Moreover, we also found that OsPT4 was ubiquitinated by OsAIRP2, which is a C3HC4-type RING E3 Ub ligase. Our studies illustrate that OsPT4 plays a crucial role in P and N collaborative translocation and consumption in germinating seeds. It also provides a theoretical basis for the molecules and physiological mechanisms of P and N cross-talk under suppressed Pi uptake conditions.
Collapse
Affiliation(s)
- Yafei Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Fang Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Ke Song
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Lijuan Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yang Yang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Qin Qin
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shiyan Yang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhouwen Li
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yong Xue
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
18
|
Duan H, Li J, Sun L, Xiong X, Xu S, Sun Y, Ju X, Xue Z, Gao J, Wang Y, Xie H, Ding D, Zhang X, Tang J. Identification of novel loci associated with starch content in maize kernels by a genome-wide association study using an enlarged SNP panel. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:91. [PMID: 38099287 PMCID: PMC10716104 DOI: 10.1007/s11032-023-01437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023]
Abstract
Starch is a major component of cereals, comprising over 70% of dry weight. It serves as a primary carbon source for humans and animals. In addition, starch is an indispensable industrial raw material. While maize (Zea mays) is a key crop and the primary source of starch, the genetic basis for starch content in maize kernels remains poorly understood. In this study, using an enlarged panel, we conducted a genome-wide association study (GWAS) based on best linear unbiased prediction (BLUP) value for starch content of 261 inbred lines across three environments. Compared with previous study, we identified 14 additional significant quantitative trait loci (QTL), encompassed a total of 42 genes, and indicated that increased marker density contributes to improved statistical power. By integrating gene expression profiling, Gene Ontology (GO) enrichment and haplotype analysis, several potential target genes that may play a role in regulating starch content in maize kernels have been identified. Notably, we found that ZmAPC4, associated with the significant SNP chr4.S_175584318, which encodes a WD40 repeat-like superfamily protein and is highly expressed in maize endosperm, might be a crucial regulator of maize kernel starch synthesis. Out of the 261 inbred lines analyzed, they were categorized into four haplotypes. Remarkably, it was observed that the inbred lines harboring hap4 demonstrated the highest starch content compared to the other haplotypes. Additionally, as a significant achievement, we have developed molecular markers that effectively differentiate maize inbred lines based on their starch content. Overall, our study provides valuable insights into the genetic basis of starch content and the molecular markers can be useful in breeding programs aimed at developing maize varieties with high starch content, thereby improving breeding efficiency. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01437-6.
Collapse
Affiliation(s)
- Haiyang Duan
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jianxin Li
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Sun
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuehang Xiong
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuhao Xu
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Sun
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaolong Ju
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhengjie Xue
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jionghao Gao
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Wang
- Zhucheng Mingjue Tender Company Limited, Weifang, China
| | - Huiling Xie
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Agronomy, Henan Agricultural University, Agricultural Road No. 63, Zhengzhou, 450002 China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
19
|
Jin X, Li X, Xie Z, Sun Y, Jin L, Hu T, Huang J. Nuclear factor OsNF-YC5 modulates rice seed germination by regulating synergistic hormone signaling. PLANT PHYSIOLOGY 2023; 193:2825-2847. [PMID: 37706533 DOI: 10.1093/plphys/kiad499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023]
Abstract
Regulation of seed dormancy/germination is of great importance for seedling establishment and crop production. Nuclear factor-Y (NF-Y) transcription factors regulate plant growth and development, as well as stress responses; however, their roles in seed germination remain largely unknown. In this study, we reported that NF-Y gene OsNF-YC5 knockout increased, while its overexpression reduced, the seed germination in rice (Oryza sativa L.). ABA-induced seed germination inhibition assays showed that the osnf-yc5 mutant was less sensitive but OsNF-YC5-overexpressing lines were more sensitive to exogenous ABA than the wild type. Meanwhile, MeJA treatment substantially enhanced the ABA sensitivity of OsNF-YC5-overexpressing lines during seed germination. Mechanistic investigations revealed that the interaction of OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (SAPK9) with OsNF-YC5 enhanced the stability of OsNF-YC5 by protein phosphorylation, while the interaction between JASMONATE ZIM-domain protein 9 (OsJAZ9) and OsNF-YC5 repressed OsNF-YC5 transcriptional activity and promoted its degradation. Furthermore, OsNF-YC5 transcriptionally activated ABA catabolic gene OsABA8ox3, reducing ABA levels in germinating seeds. However, the transcriptional regulation of OsABA8ox3 by OsNF-YC5 was repressed by addition of OsJAZ9. Notably, OsNF-YC5 improved seed germination under salinity conditions. Further investigation showed that OsNF-YC5 activated the high-affinity K+ transporter gene (OsHAK21) expression, and addition of SAPK9 could increase the transcriptional regulation of OsHAK21 by OsNF-YC5, thus substantially reducing the ROS levels to enhance seed germination under salt stress. Our findings establish that OsNF-YC5 integrates ABA and JA signaling during rice seed germination, shedding light on the molecular networks of ABA-JA synergistic interaction.
Collapse
Affiliation(s)
- Xinkai Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
20
|
Olukayode T, Chen J, Zhao Y, Quan C, Kochian LV, Ham BK. Phloem-Mobile MYB44 Negatively Regulates Expression of PHOSPHATE TRANSPORTER 1 in Arabidopsis Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:3617. [PMID: 37896080 PMCID: PMC10610484 DOI: 10.3390/plants12203617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Phosphorus (P) is an essential plant macronutrient; however, its availability is often limited in soils. Plants have evolved complex mechanisms for efficient phosphate (Pi) absorption, which are responsive to changes in external and internal Pi concentration, and orchestrated through local and systemic responses. To explore these systemic Pi responses, here we identified AtMYB44 as a phloem-mobile mRNA, an Arabidopsis homolog of Cucumis sativus MYB44, that is responsive to the Pi-starvation stress. qRT-PCR assays revealed that AtMYB44 was up-regulated and expressed in both shoot and root in response to Pi-starvation stress. The atmyb44 mutant displayed higher shoot and root biomass compared to wild-type plants, under Pi-starvation conditions. Interestingly, the expression of PHOSPHATE TRANSPORTER1;2 (PHT1;2) and PHT1;4 was enhanced in atmyb44 in response to a Pi-starvation treatment. A split-root assay showed that AtMYB44 expression was systemically regulated under Pi-starvation conditions, and in atmyb44, systemic controls on PHT1;2 and PHT1;4 expression were moderately disrupted. Heterografting assays confirmed graft transmission of AtMYB44 transcripts, and PHT1;2 and PHT1;4 expression was decreased in heterografted atmyb44 rootstocks. Taken together, our findings support the hypothesis that mobile AtMYB44 mRNA serves as a long-distance Pi response signal, which negatively regulates Pi transport and utilization in Arabidopsis.
Collapse
Affiliation(s)
- Toluwase Olukayode
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Jieyu Chen
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
| | - Yang Zhao
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
| | - Chuanhezi Quan
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Leon V. Kochian
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Byung-Kook Ham
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
21
|
Bhatnagar A, Burman N, Sharma E, Tyagi A, Khurana P, Khurana JP. Two splice forms of OsbZIP1, a homolog of AtHY5, function to regulate skotomorphogenesis and photomorphogenesis in rice. PLANT PHYSIOLOGY 2023; 193:426-447. [PMID: 37300540 DOI: 10.1093/plphys/kiad334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/12/2023]
Abstract
Plants possess well-developed light sensing mechanisms and signal transduction systems for regulating photomorphogenesis. ELONGATED HYPOCOTYL5 (HY5), a basic leucine zipper (bZIP) transcription factor, has been extensively characterized in dicots. In this study, we show that OsbZIP1 is a functional homolog of Arabidopsis (Arabidopsis thaliana) HY5 (AtHY5) and is important for light-mediated regulation of seedling and mature plant development in rice (Oryza sativa). Ectopic expression of OsbZIP1 in rice reduced plant height and leaf length without affecting plant fertility, which contrasts with OsbZIP48, a previously characterized HY5 homolog. OsbZIP1 is alternatively spliced, and the OsbZIP1.2 isoform lacking the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-binding domain regulated seedling development in the dark. Rice seedlings overexpressing OsbZIP1 were shorter than the vector control under white and monochromatic light conditions, whereas RNAi knockdown seedlings displayed the opposite phenotype. While OsbZIP1.1 was light-regulated, OsbZIP1.2 showed a similar expression profile in both light and dark conditions. Due to its interaction with OsCOP1, OsbZIP1.1 undergoes 26S proteasome-mediated degradation under dark conditions. Also, OsbZIP1.1 interacted with and was phosphorylated by CASEIN KINASE2 (OsCK2α3). In contrast, OsbZIP1.2 did not show any interaction with OsCOP1 or OsCK2α3. We propose that OsbZIP1.1 likely regulates seedling development in the light, while OsbZIP1.2 is the dominant player under dark conditions. The data presented in this study reveal that AtHY5 homologs in rice have undergone neofunctionalization, and alternative splicing of OsbZIP1 has increased the repertoire of its functions.
Collapse
Affiliation(s)
- Akanksha Bhatnagar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Naini Burman
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Akhilesh Tyagi
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
22
|
Cuyas L, David P, de Craieye D, Ng S, Arkoun M, Plassard C, Faharidine M, Hourcade D, Degan F, Pluchon S, Nussaume L. Identification and interest of molecular markers to monitor plant Pi status. BMC PLANT BIOLOGY 2023; 23:401. [PMID: 37612632 PMCID: PMC10463364 DOI: 10.1186/s12870-023-04411-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Inorganic phosphate (Pi) is the sole source of phosphorus for plants. It is a limiting factor for plant yield in most soils worldwide. Due to economic and environmental constraints, the use of Pi fertilizer is and will be more and more limited. Unfortunately, evaluation of Pi bioavailability or Pi starvation traits remains a tedious task, which often does not inform us about the real Pi plant status. RESULTS Here, we identified by transcriptomic studies carried out in the plant model Arabidopsis thaliana, early roots- or leaves-conserved molecular markers for Pi starvation, exhibiting fast response to modifications of phosphate nutritional status. We identified their homologues in three crops (wheat, rapeseed, and maize) and demonstrated that they offer a reliable opportunity to monitor the actual plant internal Pi status. They turn out to be very sensitive in the concentration range of 0-50 µM which is the most common case in the vast majority of soils and situations where Pi hardly accumulates in plants. Besides in vitro conditions, they could also be validated for plants growing in the greenhouse or in open field conditions. CONCLUSION These markers provide valuable physiological tools for plant physiologists and breeders to assess phosphate bio-availability impact on plant growth in their studies. This also offers the opportunity to cope with the rising economical (shortage) and societal problems (pollution) resulting from the management of this critical natural resource.
Collapse
Affiliation(s)
- Laura Cuyas
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Pascale David
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
| | - Damien de Craieye
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
| | - Sophia Ng
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
- Centre for AgriBioscience, La Trobe University, 5 Ring Road Bundoora, Victoria, 3086, Australia
| | - Mustapha Arkoun
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Claude Plassard
- INRAE, CIRAD, IRD, Univ Montpellier, Eco&Sols, Institut Agro, 34060, Montpellier, France
| | | | - Delphine Hourcade
- Arvalis, Institut du Végétal, Station Expérimentale, Boigneville, France
| | - Francesca Degan
- Arvalis, Institut du Végétal, Station Expérimentale, Boigneville, France
| | - Sylvain Pluchon
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France.
| |
Collapse
|
23
|
Pahuja S, Bheri M, Bisht D, Pandey GK. Calcium signalling components underlying NPK homeostasis: potential avenues for exploration. Biochem J 2023; 480:1015-1034. [PMID: 37418287 DOI: 10.1042/bcj20230156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Plants require the major macronutrients, nitrogen (N), phosphorus (P) and potassium (K) for normal growth and development. Their deficiency in soil directly affects vital cellular processes, particularly root growth and architecture. Their perception, uptake and assimilation are regulated by complex signalling pathways. To overcome nutrient deficiencies, plants have developed certain response mechanisms that determine developmental and physiological adaptations. The signal transduction pathways underlying these responses involve a complex interplay of components such as nutrient transporters, transcription factors and others. In addition to their involvement in cross-talk with intracellular calcium signalling pathways, these components are also engaged in NPK sensing and homeostasis. The NPK sensing and homeostatic mechanisms hold the key to identify and understand the crucial players in nutrient regulatory networks in plants under both abiotic and biotic stresses. In this review, we discuss calcium signalling components/pathways underlying plant responses to NPK sensing, with a focus on the sensors, transporters and transcription factors involved in their respective signalling and homeostasis.
Collapse
Affiliation(s)
- Sonam Pahuja
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Diksha Bisht
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
24
|
Li X, Zhu P, Chen YJ, Huang L, Wang D, Newton DT, Hsu CC, Lin G, Tao WA, Staiger CJ, Zhang C. The EXO70 inhibitor Endosidin2 alters plasma membrane protein composition in Arabidopsis roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1171957. [PMID: 37324680 PMCID: PMC10264680 DOI: 10.3389/fpls.2023.1171957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
To sustain normal growth and allow rapid responses to environmental cues, plants alter the plasma membrane protein composition under different conditions presumably by regulation of delivery, stability, and internalization. Exocytosis is a conserved cellular process that delivers proteins and lipids to the plasma membrane or extracellular space in eukaryotes. The octameric exocyst complex contributes to exocytosis by tethering secretory vesicles to the correct site for membrane fusion; however, whether the exocyst complex acts universally for all secretory vesicle cargo or just for specialized subsets used during polarized growth and trafficking is currently unknown. In addition to its role in exocytosis, the exocyst complex is also known to participate in membrane recycling and autophagy. Using a previously identified small molecule inhibitor of the plant exocyst complex subunit EXO70A1, Endosidin2 (ES2), combined with a plasma membrane enrichment method and quantitative proteomic analysis, we examined the composition of plasma membrane proteins in the root of Arabidopsis seedlings, after inhibition of the ES2-targetted exocyst complex, and verified our findings by live imaging of GFP-tagged plasma membrane proteins in root epidermal cells. The abundance of 145 plasma membrane proteins was significantly reduced following short-term ES2 treatments and these likely represent candidate cargo proteins of exocyst-mediated trafficking. Gene Ontology analysis showed that these proteins play diverse functions in cell growth, cell wall biosynthesis, hormone signaling, stress response, membrane transport, and nutrient uptake. Additionally, we quantified the effect of ES2 on the spatial distribution of EXO70A1 with live-cell imaging. Our results indicate that the plant exocyst complex mediates constitutive dynamic transport of subsets of plasma membrane proteins during normal root growth.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Yen-Ju Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Diwen Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - David T. Newton
- Department of Statistics, Purdue University, West Lafayette, IN, United States
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Guang Lin
- Department of Mathematics, Purdue University, West Lafayette, IN, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Christopher J. Staiger
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
25
|
Jin X, Zhang Y, Li X, Huang J. OsNF-YA3 regulates plant growth and osmotic stress tolerance by interacting with SLR1 and SAPK9 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:914-933. [PMID: 36906910 DOI: 10.1111/tpj.16183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 05/27/2023]
Abstract
The antagonism between gibberellin (GA) and abscisic acid (ABA) signaling pathways is vital to balance plant growth and stress response. Nevertheless, the mechanism by which plants determine the balance remains to be elucidated. Here, we report that rice NUCLEAR FACTOR-Y A3 (OsNF-YA3) modulates GA- and ABA-mediated balance between plant growth and osmotic stress tolerance. OsNF-YA3 loss-of-function mutants exhibit stunted growth, compromised GA biosynthetic gene expression, and decreased GA levels, while its overexpression lines have promoted growth and enhanced GA content. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis and transient transcriptional regulation assays demonstrate that OsNF-YA3 activates GA biosynthetic gene OsGA20ox1 expression. Furthermore, the DELLA protein SLENDER RICE1 (SLR1) physically interacts with OsNF-YA3 and thus inhibits its transcriptional activity. On the other side, OsNF-YA3 negatively regulates plant osmotic stress tolerance by repressing ABA response. OsNF-YA3 reduces ABA levels by transcriptionally regulating ABA catabolic genes OsABA8ox1 and OsABA8ox3 by binding to their promoters. Furthermore, OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (SAPK9), the positive component in ABA signaling, interacts with OsNF-YA3 and mediates OsNF-YA3 phosphorylation, resulting in its degradation in plants. Collectively, our findings establish OsNF-YA3 as an important transcription factor that positively modulates GA-regulated plant growth and negatively controls ABA-mediated water-deficit and salt tolerance. These findings shed light on the molecular mechanism underlying the balance between the growth and stress response of the plant.
Collapse
Affiliation(s)
- Xinkai Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yifan Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
26
|
De Rosa A, McGaughey S, Magrath I, Byrt C. Molecular membrane separation: plants inspire new technologies. THE NEW PHYTOLOGIST 2023; 238:33-54. [PMID: 36683439 DOI: 10.1111/nph.18762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plants draw up their surrounding soil solution to gain water and nutrients required for growth, development and reproduction. Obtaining adequate water and nutrients involves taking up both desired and undesired elements from the soil solution and separating resources from waste. Desirable and undesirable elements in the soil solution can share similar chemical properties, such as size and charge. Plants use membrane separation mechanisms to distinguish between different molecules that have similar chemical properties. Membrane separation enables distribution or retention of resources and efflux or compartmentation of waste. Plants use specialised membrane separation mechanisms to adapt to challenging soil solution compositions and distinguish between resources and waste. Coordination and regulation of these mechanisms between different tissues, cell types and subcellular membranes supports plant nutrition, environmental stress tolerance and energy management. This review considers membrane separation mechanisms in plants that contribute to specialised separation processes and highlights mechanisms of interest for engineering plants with enhanced performance in challenging conditions and for inspiring the development of novel industrial membrane separation technologies. Knowledge gained from studying plant membrane separation mechanisms can be applied to developing precision separation technologies. Separation technologies are needed for harvesting resources from industrial wastes and transitioning to a circular green economy.
Collapse
Affiliation(s)
- Annamaria De Rosa
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Samantha McGaughey
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Isobel Magrath
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Caitlin Byrt
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| |
Collapse
|
27
|
Lu H, Wang F, Wang Y, Lin R, Wang Z, Mao C. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1104-1119. [PMID: 36208118 DOI: 10.1111/pce.14457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is a macronutrient required for plant growth and reproduction. Orthophosphate (Pi), the preferred P form for plant uptake, is easily fixed in the soil, making it unavailable to plants. Limited phosphate rock resources, low phosphate fertilizer use efficiency and high demands for green agriculture production make it important to clarify the molecular mechanisms underlying plant responses to P deficiency and to improve plant phosphate efficiency in crops. Over the past 20 years, tremendous progress has been made in understanding the regulatory mechanisms of the plant P starvation response. Here, we systematically review current research on the mechanisms of Pi acquisition, transport and distribution from the rhizosphere to the shoot; Pi redistribution and reuse during reproductive growth; and the molecular mechanisms of arbuscular mycorrhizal symbiosis in rice (Oryza sativa L.) under Pi deficiency. Furthermore, we discuss several strategies for boosting P utilization efficiency and yield in rice.
Collapse
Affiliation(s)
- Hong Lu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rongbin Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuanzao Mao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Guo R, Zhang Q, Ying Y, Liao W, Liu Y, Whelan J, Chuanzao M, Shou H. Functional characterization of the three Oryza sativa SPX-MFS proteins in maintaining phosphate homoeostasis. PLANT, CELL & ENVIRONMENT 2023; 46:1264-1277. [PMID: 35909262 DOI: 10.1111/pce.14414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Plant vacuoles serve as the primary intracellular compartments for phosphorus (P) storage. The Oryza sativa genome contains three genes that encode SPX ( SYG1/ PHO81/ XPR1)-MFS ( Major Facility Superfamily) proteins (OsSPX-MFS1-3). The physiological roles of the three transporters under varying P conditions in laboratory and field are not known. To address this knowledge gap, we generated single, double and triple mutants for three OsSPX-MFS genes. All the mutants except Osspx-mfs2 display lower vacuolar Pi concentrations and OsSPX-MFSs overexpression plant display higher Pi accumulation, demonstrating that all OsSPX-MFSs are vacuolar Pi influx transporters. OsSPX-MFS3 plays the dominant role based on the phenotypes of single mutants in terms of growth, vacuolar and tissue Pi concentrations. OsSPX-MFS2 is the weakest and only functions as vacuole Pi sequestration in an Osspx-mfs1/3 background. The vacuolar Pi sequestration capacity was severely impaired in Osspx-mfs1/3 and Osspx-mfs1/2/3, which resulted in increased Pi allocation to aerial organs. High P in the panicle impaired panicle and fertility in Osspx-mfs1/3 and Osspx-mfs1/2/3. Osspx-mfs2 resulted in a more stable yield compared to the wild type under low P in field grown plants. The results suggest that alteration of vacuolar Pi sequestration may be a novel effective strategy to improve rice tolerance to low phosphorus in cropping systems.
Collapse
Affiliation(s)
- Runze Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Qi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenying Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Animal, Plant and Soil Science, School of Life Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Melbourne, Victoria, Australia
| | - Mao Chuanzao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, China
| |
Collapse
|
29
|
Wang S, Xu T, Chen M, Geng L, Huang Z, Dai X, Qu H, Zhang J, Li H, Gu M, Xu G. The transcription factor OsWRKY10 inhibits phosphate uptake via suppressing OsPHT1;2 expression under phosphate-replete conditions in rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1074-1089. [PMID: 36402551 PMCID: PMC9899414 DOI: 10.1093/jxb/erac456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/16/2022] [Indexed: 05/28/2023]
Abstract
Plants have evolved delicate systems for stimulating or inhibiting inorganic phosphate (Pi) uptake in response to the fluctuating Pi availability in soil. However, the negative regulators inhibiting Pi uptake at the transcriptional level are largely unexplored. Here, we functionally characterized a transcription factor in rice (Oryza sativa), OsWRKY10. OsWRKY10 encodes a nucleus-localized protein and showed preferential tissue localization. Knockout of OsWRKY10 led to increased Pi uptake and accumulation under Pi-replete conditions. In accordance with this phenotype, OsWRKY10 was transcriptionally induced by Pi, and a subset of PHOSPHATE TRANSPORTER 1 (PHT1) genes were up-regulated upon its mutation, suggesting that OsWRKY10 is a transcriptional repressor of Pi uptake. Moreover, rice plants expressing the OsWRKY10-VP16 fusion protein (a dominant transcriptional activator) accumulated even more Pi than oswrky10. Several lines of biochemical evidence demonstrated that OsWRKY10 directly suppressed OsPHT1;2 expression. Genetic analysis showed that OsPHT1;2 was responsible for the increased Pi accumulation in oswrky10. Furthermore, during Pi starvation, OsWRKY10 protein was degraded through the 26S proteasome. Altogether, the OsWRKY10-OsPHT1;2 module represents a crucial loop in the Pi signaling network in rice, inhibiting Pi uptake when there is ample Pi in the environment.
Collapse
Affiliation(s)
- Shichao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Geng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoyang Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huanhuan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
30
|
Zhu Z, Qu K, Li D, Zhang L, Wang C, Cong L, Bai C, Lu X. SbPHO2, a conserved Pi starvation signalling gene, is involved in the regulation of the uptake of multiple nutrients in sorghum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111556. [PMID: 36481362 DOI: 10.1016/j.plantsci.2022.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Sorghum is one of the five most productive crops worldwide, but its yield is seriously limited by phosphate (Pi) availability. Although inorganic Pi signalling is well studied in Arabidopsis and rice, it remains largely unknown in sorghum. The sorghum sbpho2 mutant was identified, showing leaf necrosis and short roots. Map-based cloning identified SbPHO2 as Sobic.009G228100, an E2 conjugase gene that is a putative orthologue of the PHO2 genes in rice and Arabidopsis, which play important roles in Pi signalling. Pi starvation experiments and transformation of SbPHO2 into the rice ospho2 mutant further revealed that SbPHO2 is likely involved in Pi accumulation and root architecture alteration in sorghum. qRTPCR results showed that SbPHO2 was expressed in almost the entire plant, especially in the leaves. Furthermore, some typical Pi starvation-induced genes were induced in sbpho2 even under Pi-sufficient conditions, including Pi transporters, SPXs, phosphatases and lipid composition alteration-related genes. In addition to P accumulation in the shoots of sbpho2, concentrations of N, K, and other metal elements were also altered significantly in the sbpho2 plants. Nitrate uptake was also suppressed in the sbpho2 mutant. Consistent with this finding, the expression of several nitrate-, potassium- and other metal element-related genes was also altered in sbpho2. Furthermore, the results indicated that N-dependent control of the P starvation response is regulated via SbPHO2 in sorghum. Our results suggest that SbPHO2 participates in the regulation of the absorption of multiple nutrients, although PHO2 is a crucial and conserved component of Pi starvation signalling.
Collapse
Affiliation(s)
- Zhenxing Zhu
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Kuangzheng Qu
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Dan Li
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Lixia Zhang
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Chunyu Wang
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Ling Cong
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Chunming Bai
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Xiaochun Lu
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China.
| |
Collapse
|
31
|
Zhu J, Wang WS, Yan DW, Hong LW, Li TT, Gao X, Yang YH, Ren F, Lu YT, Yuan TT. CK2 promotes jasmonic acid signaling response by phosphorylating MYC2 in Arabidopsis. Nucleic Acids Res 2022; 51:619-630. [PMID: 36546827 PMCID: PMC9881174 DOI: 10.1093/nar/gkac1213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Jasmonic acid (JA) signaling plays a pivotal role in plant development and defense. MYC2 is a master transcription factor in JA signaling, and was found to be phosphorylated and negatively regulated by MAP kinase and receptor-like kinase. However, the kinases that positively regulate MYC2 through phosphorylation and promote MYC2-mediated activation of JA response have not been identified. Here, we identified CK2 as a kinase that phosphorylates MYC2 and thus regulates the JA signaling. CK2 holoenzyme can interact with MYC2 using its regulatory subunits and phosphorylate MYC2 at multiple sites with its catalytic subunits. Inhibition of CK2 activity in a dominant-negative plant line, CK2mut, repressed JA response. On the other hand, increasing CK2 activity by overexpression of CKB4, a regulatory subunit gene of CK2, enhanced JA response in a MYC2-dependent manner. Substitution of the Ser and Thr residues at phosphorylation sites of MYC2 by CK2 with Ala impaired MYC2 function in activating JA response. Further investigations evidenced that CK2 facilitated the JA-induced increase of MYC2 binding to the promoters of JA-responsive genes in vivo. Our study demonstrated that CK2 plays a positive role in JA signaling, and reveals a previously undiscovered mechanism that regulates MYC2 function.
Collapse
Affiliation(s)
| | | | - Da-Wei Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Li-Wei Hong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yun-Huang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ying-Tang Lu
- Correspondence may also be addressed to Ying-Tang Lu. Tel: +86 27 68752619; Fax: +86 27 68753551;
| | - Ting-Ting Yuan
- To whom correspondence should be addressed. Tel: +86 27 68752619; Fax: +86 27 68753551;
| |
Collapse
|
32
|
Hao DL, Zhou JY, Huang YN, Wang HR, Li XH, Guo HL, Liu JX. Roles of plastid-located phosphate transporters in carotenoid accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1059536. [PMID: 36589064 PMCID: PMC9798012 DOI: 10.3389/fpls.2022.1059536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Enhanced carotenoid accumulation in plants is crucial for the nutritional and health demands of the human body since these beneficial substances are acquired through dietary intake. Plastids are the major organelles to accumulate carotenoids in plants and it is reported that manipulation of a single plastid phosphate transporter gene enhances carotenoid accumulation. Amongst all phosphate transport proteins including phosphate transporters (PHTs), plastidial phosphate translocators (pPTs), PHOSPHATE1 (PHO1), vacuolar phosphate efflux transporter (VPE), and Sulfate transporter [SULTR]-like phosphorus distribution transporter (SPDT) in plants, plastidic PHTs (PHT2 & PHT4) are found as the only clade that is plastid located, and manipulation of which affects carotenoid accumulation. Manipulation of a single chromoplast PHT (PHT4;2) enhances carotenoid accumulation, whereas manipulation of a single chloroplast PHT has no impact on carotenoid accumulation. The underlying mechanism is mainly attributed to their different effects on plastid orthophosphate (Pi) concentration. PHT4;2 is the only chromoplast Pi efflux transporter, and manipulating this single chromoplast PHT significantly regulates chromoplast Pi concentration. This variation subsequently modulates the carotenoid accumulation by affecting the supply of glyceraldehyde 3-phosphate, a substrate for carotenoid biosynthesis, by modulating the transcript abundances of carotenoid biosynthesis limited enzyme genes, and by regulating chromoplast biogenesis (facilitating carotenoid storage). However, at least five orthophosphate influx PHTs are identified in the chloroplast, and manipulating one of the five does not substantially modulate the chloroplast Pi concentration in a long term due to their functional redundancy. This stable chloroplast Pi concentration upon one chloroplast PHT absence, therefore, is unable to modulate Pi-involved carotenoid accumulation processes and finally does affect carotenoid accumulation in photosynthetic tissues. Despite these advances, several cases including the precise location of plastid PHTs, the phosphate transport direction mediated by these plastid PHTs, the plastid PHTs participating in carotenoid accumulation signal pathway, the potential roles of these plastid PHTs in leaf carotenoid accumulation, and the roles of these plastid PHTs in other secondary metabolites are waiting for further research. The clarification of the above-mentioned cases is beneficial for breeding high-carotenoid accumulation plants (either in photosynthetic or non-photosynthetic edible parts of plants) through the gene engineering of these transporters.
Collapse
Affiliation(s)
- Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jin-Yan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong, China
| | - Ya-Nan Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hao-Ran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xiao-Hui Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hai-Lin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jian-Xiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
33
|
Gao YQ, Chao DY. Localization and circulation: vesicle trafficking in regulating plant nutrient homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1350-1363. [PMID: 36321185 DOI: 10.1111/tpj.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nutrient homeostasis is essential for plant growth and reproduction. Plants, therefore, have evolved tightly regulated mechanisms for the uptake, translocation, distribution, and storage of mineral nutrients. Considering that inorganic nutrient transport relies on membrane-based transporters and channels, vesicle trafficking, one of the fundamental cell biological processes, has become a hotspot of plant nutrition studies. In this review, we summarize recent advances in the study of how vesicle trafficking regulates nutrient homeostasis to contribute to the adaptation of plants to heterogeneous environments. We also discuss new perspectives on future studies, which may inspire researchers to investigate new approaches to improve the human diet and health by changing the nutrient quality of crops.
Collapse
Affiliation(s)
- Yi-Qun Gao
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
34
|
Navarro C, Navarro MA, Leyva A. Arsenic perception and signaling: The yet unexplored world. FRONTIERS IN PLANT SCIENCE 2022; 13:993484. [PMID: 36119603 PMCID: PMC9479143 DOI: 10.3389/fpls.2022.993484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is one of the most potent carcinogens in the biosphere, jeopardizing the health of millions of people due to its entrance into the human food chain through arsenic-contaminated waters and staple crops, particularly rice. Although the mechanisms of arsenic sensing are widely known in yeast and bacteria, scientific evidence concerning arsenic sensors or components of early arsenic signaling in plants is still in its infancy. However, in recent years, we have gained understanding of the mechanisms involved in arsenic uptake and detoxification in different plant species and started to get insights into arsenic perception and signaling, which allows us to glimpse the possibility to design effective strategies to prevent arsenic accumulation in edible crops or to increase plant arsenic extraction for phytoremediation purposes. In this context, it has been recently described a mechanism according to which arsenite, the reduced form of arsenic, regulates the arsenate/phosphate transporter, consistent with the idea that arsenite functions as a selective signal that coordinates arsenate uptake with detoxification mechanisms. Additionally, several transcriptional and post-translational regulators, miRNAs and phytohormones involved in arsenic signaling and tolerance have been identified. On the other hand, studies concerning the developmental programs triggered to adapt root architecture in order to cope with arsenic toxicity are just starting to be disclosed. In this review, we compile and analyze the latest advances toward understanding how plants perceive arsenic and coordinate its acquisition with detoxification mechanisms and root developmental programs.
Collapse
|
35
|
Wang R, Chen Y, Kaur G, Wu X, Nguyen HT, Shen R, Pandey AK, Lan P. Differentially reset transcriptomes and genome bias response orchestrate wheat response to phosphate deficiency. PHYSIOLOGIA PLANTARUM 2022; 174:e13767. [PMID: 36281840 DOI: 10.1111/ppl.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is an essential macronutrient for all organisms. Phosphate (Pi) deficiency reduces grain yield and quality in wheat. Understanding how wheat responds to Pi deficiency at the global transcriptional level remains limited. We revisited the available RNA-seq transcriptome from Pi-starved wheat roots and shoots subjected to Pi starvation. Genome-wide transcriptome resetting was observed under Pi starvation, with a total of 917 and 2338 genes being differentially expressed in roots and shoots, respectively. Chromosomal distribution analysis of the gene triplets and differentially expressed genes (DEGs) revealed that the D genome displayed genome induction bias and, specifically, the chromosome 2D might be a key contributor to Pi-limiting triggered gene expression response. Alterations in multiple metabolic pathways pertaining to secondary metabolites, transcription factors and Pi uptake-related genes were evidenced. This study provides genomic insight and the dynamic landscape of the transcriptional changes contributing to the hexaploid wheat during Pi starvation. The outcomes of this study and the follow-up experiments have the potential to assist the development of Pi-efficient wheat cultivars.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinglong Chen
- UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Gazaldeep Kaur
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Xiaoba Wu
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Henry T Nguyen
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Wang G, Gao G, Yang X, Yang X, Ma P. Casein kinase CK2 structure and activities in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153767. [PMID: 35841742 DOI: 10.1016/j.jplph.2022.153767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Casein kinase CK2 is a highly conserved serine/threonine protein kinase and exists in all eukaryotes. It has been demonstrated to be widely involved in the biological processes of plants. The CK2 holoenzyme is a heterotetramer consisting of two catalytic subunits (α and/or α') and two regulatory subunits (β). CK2 in plants is generally encoded by multiple genes, with monomeric and oligomeric forms present in the tissue. Various subunit genes of CK2 have been cloned and characterized from Arabidopsis thaliana, tobacco, maize, wheat, tomato, and other plants. This paper reviews the structural features of CK2, provides a clear classification of its physiological functions and mechanisms of action, and elaborates on the regulation of CK2 activity to provide a knowledge base for subsequent studies of CK2 in plants.
Collapse
Affiliation(s)
- Guanfeng Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Geling Gao
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiangna Yang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiangdong Yang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
37
|
Chien PS, Chao YT, Chou CH, Hsu YY, Chiang SF, Tung CW, Chiou TJ. Phosphate transporter PHT1;1 is a key determinant of phosphorus acquisition in Arabidopsis natural accessions. PLANT PHYSIOLOGY 2022; 190:682-697. [PMID: 35639954 PMCID: PMC9434223 DOI: 10.1093/plphys/kiac250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 05/11/2023]
Abstract
Phosphorus (P) is a mineral nutrient essential for plant growth and development, but most P in the soil is unavailable for plants. To understand the genetic basis of P acquisition regulation, we performed genome-wide association studies (GWASs) on a diversity panel of Arabidopsis (Arabidopsis thaliana). Two primary determinants of P acquisition were considered, namely, phosphate (Pi)-uptake activity and PHOSPHATE TRANSPORTER 1 (PHT1) protein abundance. Association mapping revealed a shared significant peak on chromosome 5 (Chr5) where the PHT1;1/2/3 genes reside, suggesting a connection between the regulation of Pi-uptake activity and PHT1 protein abundance. Genes encoding transcription factors, kinases, and a metalloprotease associated with both traits were also identified. Conditional GWAS followed by statistical analysis of genotype-dependent PHT1;1 expression and transcriptional activity assays revealed an epistatic interaction between PHT1;1 and MYB DOMAIN PROTEIN 52 (MYB52) on Chr1. Further, analyses of F1 hybrids generated by crossing two subgroups of natural accessions carrying specific PHT1;1- and MYB52-associated single nucleotide polymorphisms (SNPs) revealed strong effects of these variants on PHT1;1 expression and Pi uptake activity. Notably, the soil P contents in Arabidopsis habitats coincided with PHT1;1 haplotype, emphasizing how fine-tuned P acquisition activity through natural variants allows environmental adaptation. This study sheds light on the complex regulation of P acquisition and offers a framework to systematically assess the effectiveness of GWAS approaches in the study of quantitative traits.
Collapse
Affiliation(s)
| | | | - Chia-Hui Chou
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yu-Ying Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Fen Chiang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
38
|
Niu Y, Huang X, He Z, Zhang Q, Meng H, Shi H, Feng B, Zhou Y, Zhang J, Lu G, Wang Z, Zhang W, Tang D, Wang M. Phosphorylation of OsTGA5 by casein kinase II compromises its suppression of defense-related gene transcription in rice. THE PLANT CELL 2022; 34:3425-3442. [PMID: 35642941 PMCID: PMC9421590 DOI: 10.1093/plcell/koac164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Plants manage the high cost of immunity activation by suppressing the expression of defense genes during normal growth and rapidly switching them on upon pathogen invasion. TGAs are key transcription factors controlling the expression of defense genes. However, how TGAs function, especially in monocot plants like rice with continuously high levels of endogenous salicylic acid (SA) remains elusive. In this study, we characterized the role of OsTGA5 as a negative regulator of rice resistance against blast fungus by transcriptionally repressing the expression of various defense-related genes. Moreover, OsTGA5 repressed PTI responses and the accumulation of endogenous SA. Importantly, we showed that the nucleus-localized casein kinase II (CK2) complex interacts with and phosphorylates OsTGA5 on Ser-32, which reduces the affinity of OsTGA5 for the JIOsPR10 promoter, thereby alleviating the repression of JIOsPR10 transcription and increasing rice resistance. Furthermore, the in vivo phosphorylation of OsTGA5 Ser-32 was enhanced by blast fungus infection. The CK2 α subunit, depending on its kinase activity, positively regulated rice defense against blast fungus. Taken together, our results provide a mechanism for the role of OsTGA5 in negatively regulating the transcription of defense-related genes in rice and the repressive switch imposed by nuclear CK2-mediated phosphorylation during blast fungus invasion.
Collapse
Affiliation(s)
- Yuqing Niu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant–Microbe Interaction, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoguang Huang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant–Microbe Interaction, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zexue He
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingqing Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant–Microbe Interaction, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Han Meng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant–Microbe Interaction, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua Shi
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant–Microbe Interaction, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baomin Feng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant–Microbe Interaction, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
| | - Guodong Lu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Dingzhong Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant–Microbe Interaction, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mo Wang
- Author for correspondence: (Y.Z.), (M.W.)
| |
Collapse
|
39
|
Guo Z, Cao H, Zhao J, Bai S, Peng W, Li J, Sun L, Chen L, Lin Z, Shi C, Yang Q, Yang Y, Wang X, Tian J, Chen Z, Liao H. A natural uORF variant confers phosphorus acquisition diversity in soybean. Nat Commun 2022; 13:3796. [PMID: 35778398 PMCID: PMC9249851 DOI: 10.1038/s41467-022-31555-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/22/2022] [Indexed: 01/04/2023] Open
Abstract
Phosphorus (P) is an essential element for all organisms. Because P fertilizers are a non-renewable resource and high fixation in soils, sustainable agriculture requires researchers to improve crop P acquisition efficiency. Here, we report a strong association signal at a locus of CPU1 (component of phosphorus uptake 1), from a genome-wide association study of P acquisition efficiency in a soybean core collection grown in the field. A SEC12-like gene, GmPHF1, is identified as the causal gene for CPU1. GmPHF1 facilitates the ER (endoplasmic reticulum) exit of the phosphate transporter, GmPT4, to the plasma membrane of root epidermal cells. A common SNP in an upstream open reading frame (uORF) of GmPHF1, which alters the abundance of GmPHF1 in a tissue-specific manner, contributes to P acquisition diversity in soybean. A natural genetic variation conditions diversity in soybean P acquisition, which can be used to develop P-efficient soybean genotypes.
Collapse
Affiliation(s)
- Zilong Guo
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongrui Cao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhao
- Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Shuang Bai
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenting Peng
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lili Sun
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liyu Chen
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhihao Lin
- Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Chen Shi
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Yang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongqing Yang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiurong Wang
- Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Jiang Tian
- Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Zhichang Chen
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
40
|
Zhang Y, Wang LF, Han SY, Ren F, Liu WC. Sorting Nexin1 negatively modulates phosphate uptake by facilitating Phosphate Transporter1;1 degradation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:72-84. [PMID: 35436372 DOI: 10.1111/tpj.15778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
High-affinity phosphate (Pi) transporters (PHTs) PHT1;1 and PHT1;4 are necessary for plant root Pi uptake especially under Pi-deficient conditions, but how their protein stability is modulated remains elusive. Here, we identified a Ttransfer DNA insertion mutant of Sorting Nexin1 (SNX1), which had more Pi content and less anthocyanin accumulation than the wild type under deficient Pi. By contrast, the snx1-2 mutant displayed higher sensitivity to exogenous arsenate in terms of seed germination and root elongation, revealing higher Pi uptake rates. Further study showed that SNX1 could co-localize and interact with PHT1;1 and PHT1;4 in vesicles and at the plasma membrane. Genetic analysis showed that increased Pi content in the snx1-2 mutant under low Pi conditions could be extensively compromised by mutating PHT1;1 in the double mutant snx1-2 pht1;1, revealing that SNX1 is epistatic to PHT1;1. In addition, SNX1 negatively controls PHT1;1 protein stability; therefore, PHT1;1 protein abundance in the plasma membrane was increased in the snx1-2 mutant compared with the wild type under either sufficient or deficient Pi. Together, our study (i) identifies SNX1 as a key modulator of the plant response to low Pi and (ii) unravels its role in the modulation of PHT1;1 protein stability, PHT1;1 accumulation at the plasma membrane, and root Pi uptake.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lin-Feng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shu-Yue Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
41
|
Zhang Y, Li TT, Wang LF, Guo JX, Lu KK, Song RF, Zuo JX, Chen HH, Liu WC. Abscisic acid facilitates phosphate acquisition through the transcription factor ABA INSENSITIVE5 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:269-281. [PMID: 35506310 DOI: 10.1111/tpj.15791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Low phosphate (LP) in soil is a common nutrient stress that severely restricts agricultural production, but the role, if any, of the major stress phytohormone abscisic acid (ABA) in plant phosphate (Pi) starvation responses remains elusive. Here, we report that LP-induced ABA accumulation promotes Pi uptake in an ABA INSENSITIVE5 (ABI5)-dependent manner in Arabidopsis thaliana. LP significantly activated plant ABA biosynthesis, metabolism, and stress responses, suggesting a role of ABA in the plant response to Pi availability. LP-induced ABA accumulation and expression of two major high-affinity phosphate transporter genes PHOSPHATE TRANSPORTER1;1/1;4 (PHT1;1/1;4) were severely impaired in a mutant lacking BETA-GLUCOSIDASE1 (BG1), which converts conjugated ABA to active ABA, and the mutant had shorter roots and less Pi content than wild-type plants under LP conditions. Moreover, a mutant of ABI5, which encodes a central transcription factor in ABA signaling, also exhibited suppressed root elongation and had reduced Pi content under LP conditions. ABI5 facilitated Pi acquisition by activating the expression of PHT1;1 by directly binding to its promoter, while overexpression of PHT1;1 completely rescued its Pi content under LP conditions. Together, our findings illustrate a molecular mechanism by which ABA positively modulates phosphate acquisition through ABI5 in the Arabidopsis response to phosphate deficiency.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ting-Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lin-Feng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jia-Xing Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Kai-Kai Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jia-Xin Zuo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hui-Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
42
|
Ahmed S, Chen J. Transcription factor OsNAC016: a convergent point of brassinosteroid and abscisic acid signaling in rice. PLANT PHYSIOLOGY 2022; 189:1177-1179. [PMID: 35460247 PMCID: PMC9237714 DOI: 10.1093/plphys/kiac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | | |
Collapse
|
43
|
Wu Q, Liu Y, Xie Z, Yu B, Sun Y, Huang J. OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. PLANT PHYSIOLOGY 2022; 189:1296-1313. [PMID: 35333328 PMCID: PMC9237679 DOI: 10.1093/plphys/kiac146] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
Ideal plant architecture and drought tolerance are important determinants of yield potential in rice (Oryza sativa). Here, we found that OsNAC016, a rice NAC (NAM, ATAF, and CUC) transcription factor, functions as a regulator in the crosslink between brassinosteroid (BR)-mediated plant architecture and abscisic acid (ABA)-regulated drought responses. The loss-of-function mutant osnac016 exhibited erect leaves and shortened internodes, but OsNAC016-overexpressing plants had opposite phenotypes. Further investigation revealed that OsNAC016 regulated the expression of the BR biosynthesis gene D2 by binding to its promoter. Moreover, OsNAC016 interacted with and was phosphorylated by GSK3/SHAGGY-LIKE KINASE2 (GSK2), a negative regulator in the BR pathway. Meanwhile, the mutant osnac016 had improved drought stress tolerance, supported by a decreased water loss rate and enhanced stomatal closure in response to exogenous ABA, but OsNAC016-overexpressing plants showed attenuated drought tolerance and reduced ABA sensitivity. Further, OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE8 (SAPK8) phosphorylated OsNAC016 and reduced its stability. The ubiquitin/26S proteasome system is an important degradation pathway of OsNAC016 via the interaction with PLANT U-BOX PROTEIN43 (OsPUB43) that mediates the ubiquitination of OsNAC016. Notably, RNA-sequencing analysis revealed global roles of OsNAC016 in promoting BR-mediated gene expression and repressing ABA-dependent drought-responsive gene expression, which was confirmed by chromatin immunoprecipitation quantitative PCR analysis. Our findings establish that OsNAC016 is positively involved in BR-regulated rice architecture, negatively modulates ABA-mediated drought tolerance, and is regulated by GSK2, SAPK8, and OsPUB43 through posttranslational modification. Our data provide insights into how plants balance growth and survival by coordinately regulating the growth-promoting signaling pathway and response under abiotic stresses.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yingfan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | | |
Collapse
|
44
|
Abstract
As sessile organisms, plants have developed sophisticated mechanism to sense and utilize nutrients from the environment, and modulate their growth and development according to the nutrient availability. Research in the past two decades revealed that nutrient assimilation is not occurring spontaneously, but nutrient signaling networks are complexly regulated and integrate sensing and signaling, gene expression, and metabolism to ensure homeostasis and coordination with plant energy conversion and other processes. Here, we review the importance of the macronutrient sulfur (S) and compare the knowledge of S signaling with other important macronutrients, such as nitrogen (N) and phosphorus (P). We focus on key advances in understanding sulfur sensing and signaling, uptake and assimilation, and we provide new analysis of published literature, to identify core genes regulated by the key transcriptional factor in S starvation response, SLIM1/EIL3, and compare the impact on other nutrient deficiency and stresses on S-related genes.
Collapse
Affiliation(s)
- Daniela Ristova
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Stanislav Kopriva
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
45
|
Nadeem M, Wu J, Ghaffari H, Kedir AJ, Saleem S, Mollier A, Singh J, Cheema M. Understanding the Adaptive Mechanisms of Plants to Enhance Phosphorus Use Efficiency on Podzolic Soils in Boreal Agroecosystems. FRONTIERS IN PLANT SCIENCE 2022; 13:804058. [PMID: 35371179 PMCID: PMC8965363 DOI: 10.3389/fpls.2022.804058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Being a macronutrient, phosphorus (P) is the backbone to complete the growth cycle of plants. However, because of low mobility and high fixation, P becomes the least available nutrient in podzolic soils; hence, enhancing phosphorus use efficiency (PUE) can play an important role in different cropping systems/crop production practices to meet ever-increasing demands in food, fiber, and fuel. Additionally, the rapidly decreasing mineral phosphate rocks/stocks forced to explore alternative resources and methods to enhance PUE either through improved seed P reserves and their remobilization, P acquisition efficiency (PAE), or plant's internal P utilization efficiency (IPUE) or both for sustainable P management strategies. The objective of this review article is to explore and document important domains to enhance PUE in crop plants grown on Podzol in a boreal agroecosystem. We have discussed P availabilities in podzolic soils, root architecture and morphology, root exudates, phosphate transporters and their role in P uptake, different contributors to enhance PAE and IPUE, and strategies to improve plant PUE in crops grown on podzolic soils deficient in P and acidic in nature.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Jiaxu Wu
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | | | - Amana Jemal Kedir
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Environmental Science Program, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Shamila Saleem
- Department of Agriculture Extension, Government of Punjab, Khanewal, Pakistan
| | - Alain Mollier
- INRAE, UMR 1391 ISPA, Bordeaux Science Agro, Villenave d'Ornon, France
| | - Jaswinder Singh
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| |
Collapse
|
46
|
The Ubiquitin E3 Ligase PRU2 Modulates Phosphate Uptake in Arabidopsis. Int J Mol Sci 2022; 23:ijms23042273. [PMID: 35216388 PMCID: PMC8874776 DOI: 10.3390/ijms23042273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Phosphorus is an essential macronutrient for plants. The phosphate (Pi) concentration in soil solutions is typically low, and plants always suffer from low-Pi stress. During Pi starvation, a number of adaptive mechanisms in plants have evolved to increase Pi uptake, whereas the mechanisms are not very clear. Here, we report that an ubiquitin E3 ligase, PRU2, modulates Pi acquisition in Arabidopsis response to the low-Pi stress. The mutant pru2 showed arsenate-resistant phenotypes and reduced Pi content and Pi uptake rate. The complementation with PRU2 restored these to wild-type plants. PRU2 functioned as an ubiquitin E3 ligase, and the protein accumulation of PRU2 was elevated during Pi starvation. PRU2 interacted with a kinase CK2α1 and a ribosomal protein RPL10 and degraded CK2α1 and RPL10 under low-Pi stress. The in vitro phosphorylation assay showed that CK2α1 phosphorylated PHT1;1 at Ser-514, and prior reports demonstrated that the phosphorylation of PHT1;1 Ser-514 resulted in PHT1;1 retention in the endoplasmic reticulum. Then, the degradation of CK2α1 by PRU2 under low-Pi stress facilitated PHT1;1 to move to the plasma membrane to increase Arabidopsis Pi uptake. Taken together, this study demonstrated that the ubiquitin E3 ligase—PRU2—was an important positive regulator in modulating Pi acquisition in Arabidopsis response to low-Pi stress.
Collapse
|
47
|
Zhou M, Zhu S, Mo X, Guo Q, Li Y, Tian J, Liang C. Proteomic Analysis Dissects Molecular Mechanisms Underlying Plant Responses to Phosphorus Deficiency. Cells 2022; 11:cells11040651. [PMID: 35203302 PMCID: PMC8870294 DOI: 10.3390/cells11040651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 01/25/2023] Open
Abstract
Phosphorus (P) is an essential nutrient for plant growth. In recent decades, the application of phosphate (Pi) fertilizers has contributed to significant increases in crop yields all over the world. However, low efficiency of P utilization in crops leads to intensive application of Pi fertilizers, which consequently stimulates environmental pollution and exhaustion of P mineral resources. Therefore, in order to strengthen the sustainable development of agriculture, understandings of molecular mechanisms underlying P efficiency in plants are required to develop cultivars with high P utilization efficiency. Recently, a plant Pi-signaling network was established through forward and reverse genetic analysis, with the aid of the application of genomics, transcriptomics, proteomics, metabolomics, and ionomics. Among these, proteomics provides a powerful tool to investigate mechanisms underlying plant responses to Pi availability at the protein level. In this review, we summarize the recent progress of proteomic analysis in the identification of differential proteins that play roles in Pi acquisition, translocation, assimilation, and reutilization in plants. These findings could provide insights into molecular mechanisms underlying Pi acquisition and utilization efficiency, and offer new strategies in genetically engineering cultivars with high P utilization efficiency.
Collapse
Affiliation(s)
- Ming Zhou
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Shengnan Zhu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China;
| | - Xiaohui Mo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Qi Guo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Yaxue Li
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
- Correspondence: (J.T.); (C.L.); Tel.: +86-2085283380 (J.T.); +86-2085280156 (C.L.)
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
- Correspondence: (J.T.); (C.L.); Tel.: +86-2085283380 (J.T.); +86-2085280156 (C.L.)
| |
Collapse
|
48
|
Gojon A, Nussaume L, Luu DT, Murchie EH, Baekelandt A, Rodrigues Saltenis VL, Cohan J, Desnos T, Inzé D, Ferguson JN, Guiderdonni E, Krapp A, Klein Lankhorst R, Maurel C, Rouached H, Parry MAJ, Pribil M, Scharff LB, Nacry P. Approaches and determinants to sustainably improve crop production. Food Energy Secur 2022. [DOI: 10.1002/fes3.369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Alain Gojon
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Laurent Nussaume
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Doan T. Luu
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Erik H. Murchie
- School of Biosciences University of Nottingham Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | | | | | - Thierry Desnos
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - John N. Ferguson
- School of Biosciences University of Nottingham Loughborough UK
- Department of Plant Sciences University of Cambridge Cambridge UK
| | | | - Anne Krapp
- Institut Jean‐Pierre Bourgin INRAE AgroParisTech Université Paris‐Saclay Versailles France
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Hatem Rouached
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
- Department of Plant, Soil, and Microbial Sciences Michigan State University East Lansing Michigan USA
| | | | - Mathias Pribil
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Lars B. Scharff
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Philippe Nacry
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| |
Collapse
|
49
|
Identification of Phosphorus Stress Related Proteins in the Seedlings of Dongxiang Wild Rice ( Oryza Rufipogon Griff.) Using Label-Free Quantitative Proteomic Analysis. Genes (Basel) 2022; 13:genes13010108. [PMID: 35052448 PMCID: PMC8774503 DOI: 10.3390/genes13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Phosphorus (P) deficiency tolerance in rice is a complex character controlled by polygenes. Through proteomics analysis, we could find more low P tolerance related proteins in unique P-deficiency tolerance germplasm Dongxiang wild rice (Oryza Rufipogon, DXWR), which will provide the basis for the research of its regulation mechanism. In this study, a proteomic approach as well as joint analysis with transcriptome data were conducted to identify potential unique low P response genes in DXWR during seedlings. The results showed that 3589 significant differential accumulation proteins were identified between the low P and the normal P treated root samples of DXWR. The degree of change was more than 1.5 times, including 60 up-regulated and 15 downregulated proteins, 24 of which also detected expression changes of more than 1.5-fold in the transcriptome data. Through quantitative trait locus (QTLs) matching analysis, seven genes corresponding to the significantly different expression proteins identified in this study were found to be uncharacterized and distributed in the QTLs interval related to low P tolerance, two of which (LOC_Os12g09620 and LOC_Os03g40670) were detected at both transcriptome and proteome levels. Based on the comprehensive analysis, it was found that DXWR could increase the expression of purple acid phosphatases (PAPs), membrane location of P transporters (PTs), rhizosphere area, and alternative splicing, and it could decrease reactive oxygen species (ROS) activity to deal with low P stress. This study would provide some useful insights in cloning the P-deficiency tolerance genes from wild rice, as well as elucidating the molecular mechanism of low P resistance in DXWR.
Collapse
|
50
|
Paz-Ares J, Puga MI, Rojas-Triana M, Martinez-Hevia I, Diaz S, Poza-Carrión C, Miñambres M, Leyva A. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. MOLECULAR PLANT 2022; 15:104-124. [PMID: 34954444 DOI: 10.1016/j.molp.2021.12.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 05/25/2023]
Abstract
Phosphorus (P) is an essential nutrient for plant growth and reproduction. Plants preferentially absorb P as orthophosphate (Pi), an ion that displays low solubility and that is readily fixed in the soil, making P limitation a condition common to many soils and Pi fertilization an inefficient practice. To cope with Pi limitation, plants have evolved a series of developmental and physiological responses, collectively known as the Pi starvation rescue system (PSR), aimed to improve Pi acquisition and use efficiency (PUE) and protect from Pi-starvation-induced stress. Intensive research has been carried out during the last 20 years to unravel the mechanisms underlying the control of the PSR in plants. Here we review the results of this research effort that have led to the identification and characterization of several core Pi starvation signaling components, including sensors, transcription factors, microRNAs (miRNAs) and miRNA inhibitors, kinases, phosphatases, and components of the proteostasis machinery. We also refer to recent results revealing the existence of intricate signaling interplays between Pi and other nutrients and antagonists, N, Fe, Zn, and As, that have changed the initial single-nutrient-centric view to a more integrated view of nutrient homeostasis. Finally, we discuss advances toward improving PUE and future research priorities.
Collapse
Affiliation(s)
- Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain.
| | - Maria Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Monica Rojas-Triana
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Iris Martinez-Hevia
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Sergio Diaz
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Cesar Poza-Carrión
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Miguel Miñambres
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|