1
|
Yang Y, He M, Zhang K, Zhai Z, Cheng J, Tian Y, Cao X, Liu L. Genome-Wide Analysis of NAC Transcription Factor Gene Family in Morus atropurpurea. PLANTS (BASEL, SWITZERLAND) 2025; 14:1179. [PMID: 40284067 PMCID: PMC12030528 DOI: 10.3390/plants14081179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
The NAC (NAM/ATAF1/2/CUC2) transcription factors are pivotal regulators in plant development and stress responses. Despite the extensive studies on the NAC gene family across various plant species, the characterization of this gene family in mulberry (Morus atropurpurea) remains unexplored. Here, we conducted a genome-wide identification and characterization of the NAC gene family in M. atropurpurea. A total of 79 MaNAC genes were identified and classified into 20 subgroups, displaying an uneven distribution across the 14 chromosomes. The structural analysis found that most MaNAC genes possess at least three exons and contain the conserved NAC domain and characteristic motifs at the N-terminus. Eleven collinear gene pairs were identified in M. atropurpurea genome. Interspecies collinearity analysis demonstrated a closer evolutionary relationship between M. atropurpurea and Populus trichocarpa, supported by the identification of 116 collinear gene pairs. Expression profiling revealed dynamic changes in the transcript levels of most MaNAC genes during mulberry fruit maturation. Notably, the eight MaNAC members from the OsNAC7 subfamily exhibited tissue-specific expression patterns. A significant proportion of MaNAC genes displayed varying degrees of responsiveness to drought stress and sclerotium disease. MaNAC12, MaNAC32, MaNAC44 and MaNAC67 emerged as the most highly responsive candidates. Overexpression of MaNAC69 enhanced drought tolerance in Arabidopsis. These findings provide a robust foundation for future functional studies and mechanistic investigations into the roles of the NAC gene family in M. atropurpurea, offering insights into their contributions to development and stress adaptation.
Collapse
Affiliation(s)
- Yujie Yang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (M.H.); (K.Z.); (Z.Z.); (J.C.); (Y.T.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Meiyu He
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (M.H.); (K.Z.); (Z.Z.); (J.C.); (Y.T.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Kaixin Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (M.H.); (K.Z.); (Z.Z.); (J.C.); (Y.T.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zeyang Zhai
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (M.H.); (K.Z.); (Z.Z.); (J.C.); (Y.T.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jialing Cheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (M.H.); (K.Z.); (Z.Z.); (J.C.); (Y.T.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yue Tian
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (M.H.); (K.Z.); (Z.Z.); (J.C.); (Y.T.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xu Cao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (M.H.); (K.Z.); (Z.Z.); (J.C.); (Y.T.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Li Liu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (M.H.); (K.Z.); (Z.Z.); (J.C.); (Y.T.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
2
|
Wang C, Song S, Fu J, Wang K, Chen X, Bo B, Chen Z, Zhang L, Zhang L, Wang X, Tang N, Tian X, Chen L, Luan S, Yang Y, Mao D. The transcription factor OsNAC25 regulates potassium homeostasis in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:930-945. [PMID: 39693105 PMCID: PMC11869173 DOI: 10.1111/pbi.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/12/2024] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Over-application of potassium (K) fertilizer in fields has a negative impact on the environment. Developing rice varieties with high KUE will reduce fertilizer for sustainable agriculture. However, the genetic basis of KUE in a more diverse and inclusive population remains largely unexplored. Here, we show that the transcription factor OsNAC25 enhances K+ uptake and confers high KUE under low K+ supply. Disruption of OsNAC25 by CRISPR/Cas9-mediated mutagenesis led to a considerable loss of K+ uptake capacity in rice roots, coupled with reduced K+ accumulation in rice and severe plant growth defects under low- K+ conditions. However, the overexpression of OsNAC25 enhanced K+ accumulation by regulating proper K+ uptake capacity in rice roots. Further analysis displayed that OsNAC25 can bind to the promoter of OsSLAH3 to repress its transcription in response to low- K+ stress. Nucleotide diversity analyses suggested that OsNAC25 may be selected during japonica populations' adaptation of low K+ tolerance. Natural variation of OsNAC25 might cause differential expression in different haplotype varieties, thus conferring low K+ tolerance in the Hap 1 and Hap 4 -carrying varieties, and the japonica allele OsNAC25 could enhance low K+ tolerance in indica variety, conferring great potential to improve indica low K+ tolerance and grain development. Taken together, we have identified a new NAC regulator involved in rice low K+ tolerance and grain development, and provide a potential target gene for improving low K+ tolerance and grain development in rice.
Collapse
Affiliation(s)
- Chen Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Shaowen Song
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Jun Fu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangshaChina
| | - Kai Wang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangshaChina
| | - Xuan Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Bin Bo
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaHunanChina
| | - Zhe Chen
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaHunanChina
| | - Linan Zhang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Lin Zhang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Xiaohui Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Niwen Tang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Xiangrong Tian
- College of Biology and Environmental SciencesJishou UniversityJishouChina
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Sheng Luan
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Yuanzhu Yang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangshaChina
| | - Dandan Mao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| |
Collapse
|
3
|
Xiong H, He H, Chang Y, Miao B, Liu Z, Wang Q, Dong F, Xiong L. Multiple roles of NAC transcription factors in plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:510-538. [PMID: 39950532 DOI: 10.1111/jipb.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 03/29/2025]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are a family of plant-specific TFs that play crucial roles in various aspects of plant development and stress responses. Here, we provide an in-depth review of the structural characteristics, regulatory mechanisms, and functional roles of NACs in different plant species. One of the key features of NACs is their ability to regulate gene expression through a variety of mechanisms, including binding to DNA sequences in the promoter regions of target genes, interacting with other TFs, and modulating chromatin structure. We discuss these mechanisms in detail, providing insights into the complex regulatory networks that govern the activity of NACs. We explore the diverse functions of these TFs in plant growth and development processes, including embryogenesis, seed development, root and shoot development, floral development and fruit ripening, secondary cell wall formation, and senescence. We also discuss the diverse regulatory roles of NACs in response to various stresses, including drought, flooding, heat, cold, salinity, nutrient deficit, and diseases. Lastly, we emphasize the crosstalk role of NACs between developmental processes and stress responses. This integrated perspective highlights how NACs orchestrate plant growth and resilience. Overall, this review provides a comprehensive overview of the pivotal roles of NACs in plant development and stress responses, emphasizing their potential for engineering stress-resistant crops and enhancing agricultural productivity.
Collapse
Affiliation(s)
- Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haidong He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Binbin Miao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianqian Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Cheng S, Qi Y, Lu D, Wang Y, Xu X, Zhu D, Ma D, Wang S, Chen C. Comparative transcriptome analysis reveals potential regulatory genes involved in the development and strength formation of maize stalks. BMC PLANT BIOLOGY 2025; 25:272. [PMID: 40021951 PMCID: PMC11871777 DOI: 10.1186/s12870-025-06276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Stalk strength is a critical trait in maize that influences plant architecture, lodging resistance and grain yield. The developmental stage of maize, spanning from the vegetative stage to the reproductive stage, is critical for determining stalk strength. However, the dynamics of the genetic control of this trait remains unclear. RESULTS Here, we report a temporal resolution study of the maize stalk transcriptome in one tropical line and one non-stiff-stalk line using 53 transcriptomes collected covering V7 (seventh leaf stage) through silking stage. The time-course transcriptomes were categorized into four phases corresponding to stalk early development, stalk early elongation, stalk late elongation, and stalk maturation. Fuzzy c-means clustering and Gene Ontology (GO) analyses elucidated the chronological sequence of events that occur at four phases of stalk development. Gene Ontology analysis suggests that active cell division occurs in the stalk during Phase I. During Phase II, processes such as cell wall extension, lignin deposition, and vascular cell development are active. In Phase III, lignin metabolic process, secondary cell wall biogenesis, xylan biosynthesis process, cell wall biogenesis, and polysaccharide biosynthetic process contribute to cell wall strengthening. Defense responses, abiotic stresses, and transport of necessary nutrients or substances are active engaged during Phase IV. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the two maize lines presented significant gene expression differences in the phenylpropanoid biosynthesis pathway and the flavonoid biosynthesis pathway. Certain differentially expressed genes (DEGs) encoding transcription factors, especially those in the NAC and MYB families, may be involved in stalk development. In addition, six potential regulatory genes associated with stalk strength were identified through weighted gene co-expression network analysis (WGCNA). CONCLUSION The data set provides a high temporal-resolution atlas of gene expression during maize stalk development. These phase-specific genes, differentially expressed genes, and potential regulatory genes reported in this study provide important resources for further studies to elucidate the genetic control of stalk development and stalk strength formation in maize.
Collapse
Affiliation(s)
- Senan Cheng
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Youhui Qi
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Dusheng Lu
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Yancui Wang
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Xitong Xu
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Deyun Zhu
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Dijie Ma
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuyun Wang
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Cuixia Chen
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
5
|
Yang K, Zhang H, Sun L, Zhang Y, Gao Z, Song X. Identification and characterization of the auxin-response factor family in moso bamboo reveals that PeARF41 negatively regulates second cell wall formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109395. [PMID: 39662390 DOI: 10.1016/j.plaphy.2024.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Auxin response factors (ARFs) are key transcriptional factors mediating the transcriptional of auxin-related genes that play crucial roles in a range of plant metabolic activities. The characteristics of 47 PeARFs, identified in moso bamboo and divided into three classes, were evaluated. Structural feature analysis showed that intron numbers ranged from 3 to 14, while Motif 1, 2, 7 and 10 were highly conserved, altogether forming DNA-binding and ARF domains. Analysis of RNA-seq from different tissues revealed that PeARFs showed tissue-specificity. Additionally, abundant hormone-response and stress-related elements were enriched in promoters of PeARFs, supporting the hypothesis that the expression of PeARFs was significantly activated or inhibited by ABA and cold treatments. Further, PeARF41 overexpression inhibited SCW formation by reducing hemicellulose, cellulose and lignin contents. Moreover, a co-expression network, containing 28 genes with PeARF41 at its core was predicted, and the results of yeast one hybridization (Y1H), electrophoretic mobility shift assay (EMSA) and dual-luciferase (Dul-LUC) assays showed that PeARF41 bound the PeSME1 promoter to inhibit its expression. We conclude that a 'PeARF41-PeSME1' regulatory cascade mediates SCW formation. Our findings provided a solid theoretical foundation for further research on the role of PeARFs.
Collapse
Affiliation(s)
- Kebin Yang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huiling Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Letong Sun
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yue Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhimin Gao
- International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xinzhang Song
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Zhao Y, Wang X, Gao J, Rehman Rashid MA, Wu H, Hu Q, Sun X, Li J, Zhang H, Xu P, Qian Q, Chen C, Li Z, Zhang Z. The MYB61-STRONG2 module regulates culm diameter and lodging resistance in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:243-257. [PMID: 39760479 DOI: 10.1111/jipb.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
Lodging reduces grain yield and quality in cereal crops. Lodging resistance is affected by the strength of the culm, which is influenced by the culm diameter, culm wall thickness, and cell wall composition. To explore the genetic architecture of culm diameter in rice (Oryza sativa), we conducted a genome-wide association study (GWAS). We identified STRONG CULM 2 (STRONG2), which encodes the mannan synthase CSLA5, and showed that plants that overexpressed this gene had increased culm diameter and improved lodging resistance. STRONG2 appears to increase the levels of cell wall components, such as mannose and cellulose, thereby enhancing sclerenchyma development in stems. SNP14931253 in the STRONG2 promoter contributes to variation in STRONG2 expression in natural germplasms and the transcription factor MYB61 directly activates STRONG2 expression. Furthermore, STRONG2 overexpressing plants produced significantly more grains per panicle and heavier grains than the wild-type plants. These results demonstrate that the MYB61-STRONG2 module positively regulates culm diameter and lodging resistance, information that could guide breeding efforts for improved yield in rice.
Collapse
Affiliation(s)
- Yong Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Hainan Seed Industry Laboratory, Sanya, 572024, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xianpeng Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jie Gao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Muhammad Abdul Rehman Rashid
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hui Wu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qianfeng Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xingming Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
| | - Qian Qian
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Chao Chen
- State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, Life Science and Technology Center, China National Seed Group Co., Ltd, Wuhan, 430073, China
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572024, China
| | - Zhanying Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
7
|
Wu Y, Huang W, Liu J, Zhou J, Tian Q, Xia X, Mou H, Yang X. Construction of a High-Density Genetic Linkage Map and QTL Mapping for Stem Rot Resistance in Passion Fruit ( Passiflora edulis Sims). Genes (Basel) 2025; 16:96. [PMID: 39858643 PMCID: PMC11765416 DOI: 10.3390/genes16010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The passion fruit (Passiflora edulis Sims) is a diploid plant (2n = 2x = 18) and is a perennial scrambling vine in Southern China. However, the occurrence and spread of stem rot in passion fruit severely impact its yield and quality. METHODS In this study, we re-sequenced a BC1F1 population consisting of 158 individuals using whole-genome resequencing. We constructed a high-density genetic linkage map and identified the quantitative trait locus (QTL), and analyzed candidate genes associated with stem rot resistance in passion fruit. RESULTS Based on the passion fruit reference genome (MER), a high-density genetic linkage map was constructed with 1,180,406 single nucleotide polymorphisms (SNPs). The map contains nine linkage groups, covering a total genetic distance of 1559.03 cM, with an average genetic distance of 311.81 cM. The average genetic distance between 4206 bins was 0.404 cM, and the average gap length was 10.565 cM. The collinearity correlation coefficient between the genetic map and the passion fruit genome was 0.9994. Fusarium solani was used to infect the BC1F1 population, and the resistance to stem rot showed a continuous distribution. A QTL, qPSR5, was mapped to the 113,377,860 bp-114,811,870 bp genomic region on chromosome 5. We performed RNA sequencing (RNA-seq) and real-time quantitative polymerase chain reaction (RT-qPCR) to analyze the expression levels of predicted genes in the candidate region and identified ZX.05G0020740 and ZX.05G0020810 as ideal candidate genes for stem rot resistance in passion fruit. CONCLUSIONS The findings in this study not only lay the foundation for cloning the qPSR5 responsible for stem rot resistance but also provide genetic resources for the genetic improvement of passion fruit.
Collapse
Affiliation(s)
- Yanyan Wu
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.W.); (W.H.); (J.Z.); (Q.T.); (H.M.)
| | - Weihua Huang
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.W.); (W.H.); (J.Z.); (Q.T.); (H.M.)
| | - Jieyun Liu
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.W.); (W.H.); (J.Z.); (Q.T.); (H.M.)
| | - Junniu Zhou
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.W.); (W.H.); (J.Z.); (Q.T.); (H.M.)
| | - Qinglan Tian
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.W.); (W.H.); (J.Z.); (Q.T.); (H.M.)
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Haifei Mou
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.W.); (W.H.); (J.Z.); (Q.T.); (H.M.)
| | - Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| |
Collapse
|
8
|
Wu W, Bao ZY, Xiong CX, Shi LY, Chen W, Yin XR, Yang ZF. The Softening of Persimmon Fruit Was Inhibited by Gibberellin via DkDELLA1/2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1159-1166. [PMID: 39718899 DOI: 10.1021/acs.jafc.4c09045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Texture is an important quality index reflecting a series of sensory evaluations of fruit, and softening is the main texture change of most postharvest fruit. Persimmon fruit (Diospyros kaki) shows a pattern of decreasing firmness after harvest, leading to a short duration of sale and excessive waste. We found that the treatment with gibberellin (GA) could effectively inhibit the postharvest softening of persimmon fruit, but the underlying mechanism is unclear. In the GA signal transduction pathway, DELLA protein is the key component and is involved in many growth and development processes regulated by GA, while whether DELLA is involved in GA-regulated fruit ripening is not yet known. In this research, two DELLA genes DkDELLA1/2 were found to enhance the transactivation effect of DkNAC9 on the DkEGase1 promoter, thus participating in persimmon fruit softening regulated by GA. The results may provide new findings for the regulatory network of GA and the DELLA protein family.
Collapse
Affiliation(s)
- Wei Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Zhe-Yang Bao
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo 36310, Spain
| | - Ceng-Xi Xiong
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Li-Yu Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Wei Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Xue-Ren Yin
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhen-Feng Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| |
Collapse
|
9
|
Meng G, Yong M, Zhang Z, Zhang Y, Wang Y, Xiong A, Su X. Exogenous gibberellin suppressed taproot secondary thickening by inhibiting the formation and maintenance of vascular cambium in radish ( Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1395999. [PMID: 39328795 PMCID: PMC11424454 DOI: 10.3389/fpls.2024.1395999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Introduction The thickening of radish taproots is primarily determined by secondary growth driven by the vascular cambium and is a highly intricate process regulated by plant hormones, transcription factors, and many metabolic pathways. Gibberellin (GA), a plant hormone associated with cell elongation, is essential in secondary growth. However, the mechanism through which exogenous GA3 regulates secondary taproot growth in radishes remains unclear. Methods Integrated morphological, anatomical, hormonal, and transcriptomic analyses of taproots in radishes treated with GA3 and its biosynthesis inhibitor paclobutrazol (PBZ) were performed to explore their effects on taproot secondary growth and key regulatory pathways. Results GA3 significantly hindered taproot thickening by inhibiting the formation and maintenance of the vascular cambium, and PBZ promoted root development by increasing root length rather than root diameter. Transcriptome analysis revealed 2,014, 948, and 1,831 differentially expressed genes identified from the control vs. GA3, control vs. PBZ, and GA3 vs. PBZ comparisons, respectively. Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis revealed that differentially expressed genes were primarily involved in the biosyntheses of secondary metabolites and metabolic pathways. GA3 significantly increased the levels of endogenous indole-acetic acid and the expression of auxin synthesis and signal transduction genes. Discussion Exogenous GA3 significantly inhibited the expression of genes involved in the maintenance and differentiation of vascular cambium, including WOX14, ER/ERL1, and XCP2. Exogenous GA3 affects root thickening in radishes primarily by regulating hormone signal transduction pathways, vascular cambium activity, and substance and energy metabolisms. Our findings provide insights into the mechanisms underlying taproot thickening in radishes and provide a valuable gene database for future studies.
Collapse
Affiliation(s)
- Ge Meng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mingli Yong
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ziyue Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuqing Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yahui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaojun Su
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Jiangsu University, Zhenjiang, China
- College of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Qu J, Liu G, Zheng H, Wang X, Zhang H, Gou X, Xu S, Xue J. Deciphering the Genetic Basis of Kernel Composition in a Maize Association Panel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20182-20193. [PMID: 39196892 DOI: 10.1021/acs.jafc.4c04683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The primary objective in contemporary maize breeding is to pursue high quality alongside high yield. Deciphering the genetic basis of natural variation in starch, protein, oil, and fiber contents is essential for manipulating kernel composition, thereby enhancing the kernel quality and meeting growing demands. Here, we identified 12 to 88 statistically significant loci associated with kernel composition traits through a genome-wide association study (GWAS) using a panel of 212 diverse inbred lines. A regional association study pinpointed numerous causal candidate genes at these loci. Coexpression and protein-protein interaction network analyses of candidate genes revealed several causal genes directly or indirectly involved in the metabolic processes related to kernel composition traits. Subsequent mutant experiment revealed that nonsense mutations in ZmTIFY12 affect starch, protein, and fiber content, whereas nonsense mutations in ZmTT12 affect starch, protein, and oil content. These findings provide valuable guidance for improving kernel quality in maize breeding efforts.
Collapse
Affiliation(s)
- Jianzhou Qu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- The Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi 712100, China
- Maize Engineering & Technology Research Centre, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gengyu Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Hongyun Zheng
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiaoyue Wang
- The Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi 712100, China
- Maize Engineering & Technology Research Centre, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Zhang
- The Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi 712100, China
- Maize Engineering & Technology Research Centre, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaonan Gou
- The Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi 712100, China
- Maize Engineering & Technology Research Centre, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shutu Xu
- The Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi 712100, China
- Maize Engineering & Technology Research Centre, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiquan Xue
- The Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi 712100, China
- Maize Engineering & Technology Research Centre, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Li Q, Fu C, Yang B, Yu H, He H, Xu Q, Miao W, Liu R, Chen W, Zhang Z, Zou X, Hu B, Ou L. Stem lodging Resistance-1 controls stem strength by positively regulating the biosynthesis of cell wall components in Capsicum annuum L. HORTICULTURE RESEARCH 2024; 11:uhae169. [PMID: 39135730 PMCID: PMC11317896 DOI: 10.1093/hr/uhae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
Lodging presents a significant challenge in cultivating high-yield crops with extensive above-ground biomass, yet the molecular mechanisms underlying this phenomenon in the Solanaceae family remain largely unexplored. In this study, we identified a gene, CaSLR1 (Capsicum annuum Stem Lodging Resistance 1), which encodes a MYELOBLASTOSIS (MYB) family transcription factor, from a lodging-affected C. annuum EMS mutant. The suppression of CaSLR1 expression in pepper led to notable stem lodging, reduced thickness of the secondary cell wall, and decreased stem strength. A similar phenotype was observed in tomato with the knockdown of SlMYB61, the orthologous gene to CaSLR1. Further investigations demonstrated that CaNAC6, a gene involved in secondary cell wall (SCW) formation, is co-expressed with CaSLR1 and acts as a positive regulator of its expression, as confirmed through yeast one-hybrid, dual-luciferase reporter assays, and electrophoretic mobility shift assays. These findings elucidate the CaNAC6-CaSLR1 module that contributes to lodging resistance, emphasizing the critical role of CaSLR1 in the lodging resistance regulatory network.
Collapse
Affiliation(s)
- Qing Li
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Canfang Fu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Bozhi Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Huiyang Yu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Huan He
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Qing Xu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Wu Miao
- Hunan Xiangyan Seed Industry Co., Ltd, Changsha, 410100, China
| | - Rongyun Liu
- Hunan Xiangyan Seed Industry Co., Ltd, Changsha, 410100, China
| | - Wenchao Chen
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Zhuqing Zhang
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Xuexiao Zou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Bowen Hu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| |
Collapse
|
12
|
Qu W, Huang W, Chen C, Chen J, Zhao L, Jiang Y, Du X, Liu R, Chen Y, Hou K, Xu D, Wu W. AdNAC20 Regulates Lignin and Coumarin Biosynthesis in the Roots of Angelica dahurica var. Formosana. Int J Mol Sci 2024; 25:7998. [PMID: 39063240 PMCID: PMC11276817 DOI: 10.3390/ijms25147998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Angelica dahurica var. formosana (ADF), which belongs to the Umbelliferae family, is one of the original plants of herbal raw material Angelicae Dahuricae Radix. ADF roots represent an enormous biomass resource convertible for disease treatment and bioproducts. But, early bolting of ADF resulted in lignification and a decrease in the coumarin content in the root, and roots lignification restricts its coumarin for commercial utility. Although there have been attempts to regulate the synthesis ratio of lignin and coumarin through biotechnology to increase the coumarin content in ADF and further enhance its commercial value, optimizing the biosynthesis of lignin and coumarin remains challenging. Based on gene expression analysis and phylogenetic tree profiling, AdNAC20 as the target for genetic engineering of lignin and coumarin biosynthesis in ADF was selected in this study. Early-bolting ADF had significantly greater degrees of root lignification and lower coumarin contents than that of the normal plants. In this study, overexpression of AdNAC20 gene plants were created using transgenic technology, while independent homozygous transgenic lines with precise site mutation of AdNAC20 were created using CRISPR/Cas9 technology. The overexpressing transgenic ADF plants showed a 9.28% decrease in total coumarin content and a significant 12.28% increase in lignin content, while knockout mutant plants showed a 16.3% increase in total coumarin content and a 33.48% decrease in lignin content. Furthermore, 29,671 differentially expressed genes (DEGs) were obtained by comparative transcriptomics of OE-NAC20, KO-NAC20, and WT of ADF. A schematic diagram of the gene network interacting with AdNAC20 during the early-bolting process of ADF was constructed by DEG analysis. AdNAC20 was predicted to directly regulate the transcription of several genes with SNBE-like motifs in their promoter, such as MYB46, C3H, and CCoAOMT. In this study, AdNAC20 was shown to play a dual pathway function that positively enhanced lignin formation but negatively controlled coumarin formation. And the heterologous expression of the AdNAC20 gene at Arabidopsis thaliana proved that the AdNAC20 gene also plays an important role in the process of bolting and flowering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.Q.); (W.H.); (C.C.); (J.C.); (L.Z.); (Y.J.); (X.D.); (R.L.); (Y.C.); (K.H.); (D.X.)
| |
Collapse
|
13
|
Bao R, Zeng C, Li K, Li M, Li Y, Zhou X, Wang H, Wang Y, Huang D, Wang W, Chen X. MeGT2.6 increases cellulose synthesis and active gibberellin content to promote cell enlargement in cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1014-1029. [PMID: 38805573 DOI: 10.1111/tpj.16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Cassava, a pivotal tropical crop, exhibits rapid growth and possesses a substantial biomass. Its stem is rich in cellulose and serves as a crucial carbohydrate storage organ. The height and strength of stems restrict the mechanised operation and propagation of cassava. In this study, the triple helix transcription factor MeGT2.6 was identified through yeast one-hybrid assay using MeCesA1pro as bait, which is critical for cellulose synthesis. Over-expression and loss-of-function lines were generated, and results revealed that MeGT2.6 could promote a significant increase in the plant height, stem diameter, cell size and thickness of SCW of cassava plant. Specifically, MeGT2.6 upregulated the transcription activity of MeGA20ox1 and downregulated the expression level of MeGA2ox1, thereby enhancing the content of active GA3, resulting in a large cell size, high plant height and long stem diameter in cassava. Moreover, MeGT2.6 upregulated the transcription activity of MeCesA1, which promoted the synthesis of cellulose and hemicellulose and produced a thick secondary cell wall. Finally, MeGT2.6 could help supply additional substrates for the synthesis of cellulose and hemicellulose by upregulating the invertase genes (MeNINV1/6). Thus, MeGT2.6 was found to be a multiple regulator; it was involved in GA metabolism and sucrose decomposition and the synthesis of cellulose and hemicellulose.
Collapse
Affiliation(s)
- Ruxue Bao
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Changying Zeng
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Ke Li
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Mengtao Li
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Yajun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
| | - Xincheng Zhou
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, Hainan, China
| | - Haiyan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
| | - Yajie Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, Hainan, China
| | - Dongyi Huang
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Wenquan Wang
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Xin Chen
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, Hainan, China
| |
Collapse
|
14
|
Jia S, Wang C, Sun W, Yan X, Wang W, Xu B, Guo G, Bi C. OsWRKY12 negatively regulates the drought-stress tolerance and secondary cell wall biosynthesis by targeting different downstream transcription factor genes in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108794. [PMID: 38850730 DOI: 10.1016/j.plaphy.2024.108794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
With the increasing occurrence of global warming, drought is becoming a major constraint for plant growth and crop yield. Plant cell walls experience continuous changes during the growth, development, and in responding to stressful conditions. The plant WRKYs play pivotal roles in regulating the secondary cell wall (SCW) biosynthesis and helping plant defend against abiotic stresses. qRT-PCR evidence showed that OsWRKY12 was affected by drought and ABA treatments. Over-expression of OsWRKY12 decreased the drought tolerance of the rice transgenics at the germination stage and the seedling stage. The transcription levels of drought-stress-associated genes as well as those genes participating in the ABA biosynthesis and signaling were significantly different compared to the wild type (WT). Our results also showed that less lignin and cellulose were deposited in the OsWRKY12-overexpressors, and heterogenous expression of OsWRKY12 in atwrky12 could lower the increased lignin and cellulose contents, as well as the improved PEG-stress tolerance, to a similar level as the WT. qRT-PCR results indicated that the transcription levels of all the genes related to lignin and cellulose biosynthesis were significantly decreased in the rice transgenics than the WT. Further evidence from yeast one-hybrid assay and the dual-luciferase reporter system suggested that OsWRKY12 could bind to promoters of OsABI5 (the critical component of the ABA signaling pathway) and OsSWN3/OsSWN7 (the key positive regulators in the rice SCW thickening), and hence repressing their expression. In conclusion, OsWRKY12 mediates the crosstalk between SCW biosynthesis and plant stress tolerance by binding to the promoters of different downstream genes.
Collapse
Affiliation(s)
- Shuzhen Jia
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Chunyue Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Wanying Sun
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xiaofei Yan
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Weiting Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Bing Xu
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guangyan Guo
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Caili Bi
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
15
|
Li Q, Fu C, Hu B, Yang B, Yu H, He H, Xu Q, Chen X, Dai X, Fang R, Xiong X, Zhou K, Yang S, Zou X, Liu Z, Ou L. Lysine 2-hydroxyisobutyrylation proteomics analyses reveal the regulatory mechanism of CaMYB61-CaAFR1 module in regulating stem development in Capsicum annuum L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1039-1058. [PMID: 38804740 DOI: 10.1111/tpj.16815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Plant stems constitute the most abundant renewable resource on earth. The function of lysine (K)-2-hydroxyisobutyrylation (Khib), a novel post-translational modification (PTM), has not yet been elucidated in plant stem development. Here, by assessing typical pepper genotypes with straight stem (SS) and prostrate stem (PS), we report the first large-scale proteomics analysis for protein Khib to date. Khib-modifications influenced central metabolic processes involved in stem development, such as glycolysis/gluconeogenesis and protein translation. The high Khib level regulated gene expression and protein accumulation associated with cell wall formation in the pepper stem. Specially, we found that CaMYB61 knockdown lines that exhibited prostrate stem phenotypes had high Khib levels. Most histone deacetylases (HDACs, e.g., switch-independent 3 associated polypeptide function related 1, AFR1) potentially function as the "erasing enzymes" involved in reversing Khib level. CaMYB61 positively regulated CaAFR1 expression to erase Khib and promote cellulose and hemicellulose accumulation in the stem. Therefore, we propose a bidirectional regulation hypothesis of "Khib modifications" and "Khib erasing" in stem development, and reveal a novel epigenetic regulatory network in which the CaMYB61-CaAFR1 molecular module participating in the regulation of Khib levels and biosynthesis of cellulose and hemicellulose for the first time.
Collapse
Affiliation(s)
- Qing Li
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Canfang Fu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Bowen Hu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Bozhi Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Huiyang Yu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Huan He
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Qing Xu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Xuejun Chen
- Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiongze Dai
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Rong Fang
- Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xingyao Xiong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Kunhua Zhou
- Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Sha Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Xuexiao Zou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Zhoubin Liu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| |
Collapse
|
16
|
Yang H, Huang J, Ye Y, Xu Y, Xiao Y, Chen Z, Li X, Ma Y, Lu T, Rao Y. Research Progress on Mechanical Strength of Rice Stalks. PLANTS (BASEL, SWITZERLAND) 2024; 13:1726. [PMID: 38999566 PMCID: PMC11243543 DOI: 10.3390/plants13131726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
As one of the most important food crops in the world, rice yield is directly related to national food security. Lodging is one of the most important factors restricting rice production, and the cultivation of rice varieties with lodging resistance is of great significance in rice breeding. The lodging resistance of rice is directly related to the mechanical strength of the stalks. In this paper, we reviewed the cell wall structure, its components, and its genetic regulatory mechanism, which improved the regulatory network of rice stalk mechanical strength. Meanwhile, we analyzed the new progress in genetic breeding and put forward some scientific problems that need to be solved in this field in order to provide theoretical support for the improvement and application of rice breeding.
Collapse
Affiliation(s)
- Huimin Yang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahui Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuhan Ye
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuqing Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yao Xiao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ziying Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinyu Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Ma
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Tao Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
17
|
Fuertes-Aguilar J, Matilla AJ. Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family. Int J Mol Sci 2024; 25:5369. [PMID: 38791407 PMCID: PMC11121595 DOI: 10.3390/ijms25105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by binding to specific sequences on DNA through their DNA-binding domain (DBD), a universal process. This update conveys information about the diverse roles of TFs, focusing on the NACs (NAM-ATAF-CUC), in regulating target-gene expression and influencing various aspects of plant biology. NAC TFs appeared before the emergence of land plants. The NAC family constitutes a diverse group of plant-specific TFs found in mosses, conifers, monocots, and eudicots. This update discusses the evolutionary origins of plant NAC genes/proteins from green algae to their crucial roles in plant development and stress response across various plant species. From mosses and lycophytes to various angiosperms, the number of NAC proteins increases significantly, suggesting a gradual evolution from basal streptophytic green algae. NAC TFs play a critical role in enhancing abiotic stress tolerance, with their function conserved in angiosperms. Furthermore, the modular organization of NACs, their dimeric function, and their localization within cellular compartments contribute to their functional versatility and complexity. While most NAC TFs are nuclear-localized and active, a subset is found in other cellular compartments, indicating inactive forms until specific cues trigger their translocation to the nucleus. Additionally, it highlights their involvement in endoplasmic reticulum (ER) stress-induced programmed cell death (PCD) by activating the vacuolar processing enzyme (VPE) gene. Moreover, this update provides a comprehensive overview of the diverse roles of NAC TFs in plants, including their participation in ER stress responses, leaf senescence (LS), and growth and development. Notably, NACs exhibit correlations with various phytohormones (i.e., ABA, GAs, CK, IAA, JA, and SA), and several NAC genes are inducible by them, influencing a broad spectrum of biological processes. The study of the spatiotemporal expression patterns provides insights into when and where specific NAC genes are active, shedding light on their metabolic contributions. Likewise, this review emphasizes the significance of NAC TFs in transcriptional modules, seed reserve accumulation, and regulation of seed dormancy and germination. Overall, it effectively communicates the intricate and essential functions of NAC TFs in plant biology. Finally, from an evolutionary standpoint, a phylogenetic analysis suggests that it is highly probable that the WRKY family is evolutionarily older than the NAC family.
Collapse
Affiliation(s)
| | - Angel J. Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971 Santiago de Compostela, Spain
| |
Collapse
|
18
|
Mei E, He M, Xu M, Tang J, Liu J, Liu Y, Hong Z, Li X, Wang Z, Guan Q, Tian X, Bu Q. OsWRKY78 regulates panicle exsertion via gibberellin signaling pathway in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:771-786. [PMID: 38470298 DOI: 10.1111/jipb.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
Panicle exsertion is one of the crucial agronomic traits in rice (Oryza sativa). Shortening of panicle exsertion often leads to panicle enclosure and severely reduces seed production. Gibberellin (GA) plays important roles in regulating panicle exsertion. However, the underlying mechanism and the relative regulatory network remain elusive. Here, we characterized the oswrky78 mutant showing severe panicle enclosure, and found that the defect of oswrky78 is caused by decreased bioactive GA contents. Biochemical analysis demonstrates that OsWRKY78 can directly activate GA biosynthesis and indirectly suppress GA metabolism. Moreover, we found OsWRKY78 can interact with and be phosphorylated by mitogen-activated protein kinase (MAPK) kinase OsMAPK6, and this phosphorylation can enhance OsWRKY78 stability and is necessary for its biological function. Taken together, these results not only reveal the critical function of OsWRKY78, but also reveal its mechanism via mediating crosstalk between MAPK and the GA signaling pathway in regulating panicle exsertion.
Collapse
Affiliation(s)
- Enyang Mei
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang He
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Tang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Jiali Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yingxiang Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Hong
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiufeng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhenyu Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Qingjie Guan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xiaojie Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Qingyun Bu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| |
Collapse
|
19
|
Lu J, Jiang Z, Chen J, Xie M, Huang W, Li J, Zhuang C, Liu Z, Zheng S. SET DOMAIN GROUP 711-mediated H3K27me3 methylation of cytokinin metabolism genes regulates organ size in rice. PLANT PHYSIOLOGY 2024; 194:2069-2085. [PMID: 37874747 DOI: 10.1093/plphys/kiad568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
Organ size shapes plant architecture during rice (Oryza sativa) growth and development, affecting key factors influencing yield, such as plant height, leaf size, and seed size. Here, we report that the rice Enhancer of Zeste [E(z)] homolog SET DOMAIN GROUP 711 (OsSDG711) regulates organ size in rice. Knockout of OsSDG711 produced shorter plants with smaller leaves, thinner stems, and smaller grains. We demonstrate that OsSDG711 affects organ size by reducing cell length and width and increasing cell number in leaves, stems, and grains. The result of chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) using an antitrimethylation of histone H3 lysine 27 (H3K27me3) antibody showed that the levels of H3K27me3 associated with cytokinin oxidase/dehydrogenase genes (OsCKXs) were lower in the OsSDG711 knockout line Ossdg711. ChIP-qPCR assays indicated that OsSDG711 regulates the expression of OsCKX genes through H3K27me3 histone modification. Importantly, we show that OsSDG711 directly binds to the promoters of these OsCKX genes. Furthermore, we measured significantly lower cytokinin contents in Ossdg711 plants than in wild-type plants. Overall, our results reveal an epigenetic mechanism based on OsSDG711-mediated modulation of H3K27me3 levels to regulate the expression of genes involved in the cytokinin metabolism pathway and control organ development in rice. OsSDG711 may be an untapped epigenetic resource for ideal plant type improvement.
Collapse
Affiliation(s)
- Jingqin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zuojie Jiang
- Pain and Related Disease Research Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Junyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minyan Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenda Huang
- China Water Resources Pearl River Planning, Surveying & Designing Co. Ltd., Guangzhou 510610, China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
20
|
Xie Z, Jin L, Sun Y, Zhan C, Tang S, Qin T, Liu N, Huang J. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice. PLANT COMMUNICATIONS 2024; 5:100782. [PMID: 38148603 PMCID: PMC10943586 DOI: 10.1016/j.xplc.2023.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The crosstalk between gibberellin (GA) and abscisic acid (ABA) signaling is crucial for balancing plant growth and adaption to environmental stress. Nevertheless, the molecular mechanism of their mutual antagonism still remains to be fully clarified. In this study, we found that knockout of the rice NAC (NAM, ATAF1/2, CUC2) transcription factor gene OsNAC120 inhibits plant growth but enhances drought tolerance, whereas OsNAC120 overexpression produces the opposite results. Exogenous GA can rescue the semi-dwarf phenotype of osnac120 mutants, and further study showed that OsNAC120 promotes GA biosynthesis by transcriptionally activating the GA biosynthetic genes OsGA20ox1 and OsGA20ox3. The DELLA protein SLENDER RICE1 (SLR1) interacts with OsNAC120 and impedes its transactivation ability, and GA treatment can remove the inhibition of transactivation activity caused by SLR1. On the other hand, OsNAC120 negatively regulates rice drought tolerance by repressing ABA-induced stomatal closure. Mechanistic investigation revealed that OsNAC120 inhibits ABA biosynthesis via transcriptional repression of the ABA biosynthetic genes OsNCED3 and OsNCED4. Rice OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (OsSAPK9) physically interacts with OsNAC120 and mediates its phosphorylation, which results in OsNAC120 degradation. ABA treatment accelerates OsNAC120 degradation and reduces its transactivation activity. Together, our findings provide evidence that OsNAC120 plays critical roles in balancing GA-mediated growth and ABA-induced drought tolerance in rice. This research will help us to understand the mechanisms underlying the trade-off between plant growth and stress tolerance and to engineer stress-resistant, high-yielding crops.
Collapse
Affiliation(s)
- Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Siqi Tang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Tian Qin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Nian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
21
|
Yao Q, Feng Y, Wang J, Zhang Y, Yi F, Li Z, Zhang M. Integrated Metabolome and Transcriptome Analysis of Gibberellins Mediated the Circadian Rhythm of Leaf Elongation by Regulating Lignin Synthesis in Maize. Int J Mol Sci 2024; 25:2705. [PMID: 38473951 DOI: 10.3390/ijms25052705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Plant growth exhibits rhythmic characteristics, and gibberellins (GAs) are involved in regulating cell growth, but it is still unclear how GAs crosstalk with circadian rhythm to regulate cell elongation. The study analyzed growth characteristics of wild-type (WT), zmga3ox and zmga3ox with GA3 seedlings. We integrated metabolomes and transcriptomes to study the interaction between GAs and circadian rhythm in mediating leaf elongation. The rates of leaf growth were higher in WT than zmga3ox, and zmga3ox cell length was shorter when proliferated in darkness than light, and GA3 restored zmga3ox leaf growth. The differentially expressed genes (DEGs) between WT and zmga3ox were mainly enriched in hormone signaling and cell wall synthesis, while DEGs in zmga3ox were restored to WT by GA3. Moreover, the number of circadian DEGs that reached the peak expression in darkness was more than light, and the upregulated circadian DEGs were mainly enriched in cell wall synthesis. The differentially accumulated metabolites (DAMs) were mainly attributed to flavonoids and phenolic acid. Twenty-two DAMs showed rhythmic accumulation, especially enriched in lignin synthesis. The circadian DEGs ZmMYBr41/87 and ZmHB34/70 were identified as regulators of ZmHCT8 and ZmBM1, which were enzymes in lignin synthesis. Furthermore, GAs regulated ZmMYBr41/87 and ZmHB34/70 to modulate lignin biosynthesis for mediating leaf rhythmic growth.
Collapse
Affiliation(s)
- Qingqing Yao
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Ying Feng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jiajie Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yushi Zhang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Fei Yi
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
22
|
Bai Q, Shi L, Li K, Xu F, Zhang W. The Construction of lncRNA/circRNA-miRNA-mRNA Networks Reveals Functional Genes Related to Growth Traits in Schima superba. Int J Mol Sci 2024; 25:2171. [PMID: 38396847 PMCID: PMC10888550 DOI: 10.3390/ijms25042171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Schima superba is a precious timber and fire-resistant tree species widely distributed in southern China. Currently, there is little knowledge related to its growth traits, especially with respect to molecular breeding. The lack of relevant information has delayed the development of modern breeding. The purpose is to identify probable functional genes involved in S. superba growth through whole transcriptome sequencing. In this study, a total of 32,711 mRNAs, 525 miRNAs, 54,312 lncRNAs, and 1522 circRNAs were identified from 10 S. superba individuals containing different volumes of wood. Four possible regulators, comprising three lncRNAs, one circRNA, and eleven key miRNAs, were identified from the regulatory networks of lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA to supply information on ncRNAs. Several candidate genes involved in phenylpropane and cellulose biosynthesis pathways, including Ss4CL2, SsCSL1, and SsCSL2, and transcription factors, including SsDELLA2 (SsSLR), SsDELLA3 (SsSLN), SsDELLA5 (SsGAI-like2), and SsNAM1, were identified to reveal the molecular regulatory mechanisms regulating the growth traits of S. superba. The results not merely provide candidate functional genes related to S. superba growth trait and will be useful to carry out molecular breeding, but the strategy and method also provide scientists with an effective approach to revealing mechanisms behind important economic traits in other species.
Collapse
Affiliation(s)
- Qingsong Bai
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | | | | | | | | |
Collapse
|
23
|
Wu L, Wang K, Chen M, Su W, Liu Z, Guo X, Ma M, Qian S, Deng Y, Wang H, Mao C, Zhang Z, Xu X. ALLENE OXIDE SYNTHASE ( AOS) induces petal senescence through a novel JA-associated regulatory pathway in Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:199-212. [PMID: 38623171 PMCID: PMC11016053 DOI: 10.1007/s12298-024-01425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
Flowers are crucial for the reproduction of flowering plants and their senescence has drastic effects on plant-animal interactions as well as pollination. Petal senescence is the final phase of flower development which is regulated by hormones and genes. Among these, jasmonic acid (JA) has emerged as a major contributor to petal senescence, but its molecular mechanisms remain elusive. Here, the role of JA in petal senescence in Arabidopsis was investigated. We showed that petal senescence in aos mutant was significantly delayed, which also affected petal cell size and proliferation. Similar significant delays in petal senescence were observed in dad1 and coi1 mutants. However, MYB21/24 and MYC2/3/4, known downstream regulators of JA in flower development, played no role in petal senescence. This indicated that JA regulates petal senescence by modulating other unknown transcription factors. Transcriptomic analysis revealed that AOS altered the expression of 3681 genes associated, and identified groups of differentially expressed transcription factors, highlighting the potential involvement of AP-2, WRKY and NAC. Furthermore, bHLH13, bHLH17 and URH2 were identified as potential new regulators of JA-mediated petal senescence. In conclusion, our findings suggest a novel genetic pathway through which JA regulates petal senescence in Arabidopsis. This pathway operates independently of stamen development and leaf senescence, suggesting the evolution of specialized mechanisms for petal senescence. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01425-w.
Collapse
Affiliation(s)
- Liuqing Wu
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Kaiqi Wang
- College of Biological and Environmental Engineering, Jingdezhen University, Jiangxi, 333000 China
| | - Mengyi Chen
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenxin Su
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zheng Liu
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoying Guo
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Mengqian Ma
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuangjie Qian
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuqi Deng
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Haihan Wang
- School of Biological Science, University of California Irvine, Irvine, USA
| | - Chanjuan Mao
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang China
| | - Xiaofeng Xu
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
24
|
Jin X, Chai Q, Liu C, Niu X, Li W, Shang X, Gu A, Zhang D, Guo W. Cotton GhNAC4 promotes drought tolerance by regulating secondary cell wall biosynthesis and ribosomal protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1052-1068. [PMID: 37934782 DOI: 10.1111/tpj.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Drought has a severe impact on the quality and yield of cotton. Deciphering the key genes related to drought tolerance is important for understanding the regulation mechanism of drought stress and breeding drought-tolerant cotton cultivars. Several studies have demonstrated that NAC transcription factors are crucial in the regulation of drought stress, however, the related functional mechanisms are still largely unexplored. Here, we identified that NAC transcription factor GhNAC4 positively regulated drought stress tolerance in cotton. The expression of GhNAC4 was significantly induced by abiotic stress and plant hormones. Silencing of GhNAC4 distinctly impaired the resistance to drought stress and overexpressing GhNAC4 in cotton significantly enhanced the stress tolerance. RNA-seq analysis revealed that overexpression of GhNAC4 enriched the expression of genes associated with the biosynthesis of secondary cell walls and ribosomal proteins. We confirmed that GhNAC4 positively activated the expressions of GhNST1, a master regulator reported previously in secondary cell wall formation, and two ribosomal protein-encoding genes GhRPL12 and GhRPL18p, by directly binding to their promoter regions. Overexpression of GhNAC4 promoted the expression of downstream genes associated with the secondary wall biosynthesis, resulting in enhancing secondary wall deposition in the roots, and silencing of GhRPL12 and GhRPL18p significantly impaired the resistance to drought stress. Taken together, our study reveals a novel pathway mediated by GhNAC4 that promotes secondary cell wall biosynthesis to strengthen secondary wall development and regulates the expression of ribosomal protein-encoding genes to maintain translation stability, which ultimately enhances drought tolerance in cotton.
Collapse
Affiliation(s)
- Xuanxiang Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qichao Chai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Niu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aixing Gu
- Engineering Research Center of Ministry of Education for Cotton, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
25
|
McCahill IW, Khahani B, Probert CF, Flockhart EL, Abushal LT, Gregory GA, Zhang Y, Baumgart LA, O’Malley RC, Hazen SP. Shoring up the base: the development and regulation of cortical sclerenchyma in grass nodal roots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577257. [PMID: 38352548 PMCID: PMC10862697 DOI: 10.1101/2024.01.25.577257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Plants depend on the combined action of a shoot-root-soil system to maintain their anchorage to the soil. Mechanical failure of any component of this system results in lodging, a permanent and irreversible inability to maintain vertical orientation. Models of anchorage in grass crops identify the compressive strength of roots near the soil surface as key determinant of resistance to lodging. Indeed, studies of disparate grasses report a ring of thickened, sclerenchyma cells surrounding the root cortex, present only at the base of nodal roots. Here, in the investigation of the development and regulation of this agronomically important trait, we show that development of these cells is uncoupled from the maturation of other secondary cell wall-fortified cells, and that cortical sclerenchyma wall thickening is stimulated by mechanical forces transduced from the shoot to the root. We also show that exogenous application of gibberellic acid stimulates thickening of lignified cell types in the root, including cortical sclerenchyma, but is not sufficient to establish sclerenchyma identity in cortex cells. Leveraging the ability to manipulate cortex development via mechanical stimulus, we show that cortical sclerenchyma development alters root mechanical properties and improves resistance to lodging. We describe transcriptome changes associated with cortical sclerenchyma development under both ambient and mechanically stimulated conditions and identify SECONDARY WALL NAC7 as a putative regulator of mechanically responsive cortex cell wall development at the root base.
Collapse
Affiliation(s)
- Ian W. McCahill
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Bahman Khahani
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | - Logayn T. Abushal
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Greg A. Gregory
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Yu Zhang
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Leo A. Baumgart
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan C. O’Malley
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Samuel P. Hazen
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
26
|
Li W, Lin YCJ, Chen YL, Zhou C, Li S, De Ridder N, Oliveira DM, Zhang L, Zhang B, Wang JP, Xu C, Fu X, Luo K, Wu AM, Demura T, Lu MZ, Zhou Y, Li L, Umezawa T, Boerjan W, Chiang VL. Woody plant cell walls: Fundamentals and utilization. MOLECULAR PLANT 2024; 17:112-140. [PMID: 38102833 DOI: 10.1016/j.molp.2023.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Toshiaki Umezawa
- Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
27
|
Xia X, Liu L, Cai K, Song X, Yue W, Wang J. A splicing site change between exon 5 and 6 of the nuclear-encoded chloroplast-localized HvYGL8 gene results in reduced chlorophyll content and plant height in barley. FRONTIERS IN PLANT SCIENCE 2023; 14:1327246. [PMID: 38192692 PMCID: PMC10773589 DOI: 10.3389/fpls.2023.1327246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
The chloroplast is an important cellular organelle and metabolic hub, which is not only responsible for plant photosynthesis but is also involved in the de novo biosynthesis of pigments, fatty acids, and hormone metabolisms. Several genes that are responsible for rice leaf color variations have been reported to be directly or indirectly involved in chlorophyll biosynthesis and chloroplast development, whereas a few genes have been functionally confirmed to be responsible for leaf color changes in barley at the molecular level. In this study, we obtained a yellow leaf and dwarf ygl8 mutant from the progeny of Morex (a variety of barley) seeds treated with EMS. We performed bulked-segregant analysis (BSA) and RNA-seq analysis and targeted a UMP kinase encoding gene, YGL8, which generated a splicing site change between exon 5 and 6 of YGL8 due to a G to A single-nucleotide transition in the 5th exon/intron junction in the ygl8 mutant. The splicing site change between exon 5 and 6 of YGL8 had no effects on chloroplast subcellular localization but resulted in an additional loop in the UMP kinase domain, which might disturb the access of the substrates. On one hand, the splicing site change between exon 5 and 6 of YGL8 downregulated the transcriptional expression of chloroplast-encoded genes and chlorophyll-biosynthesis-related genes in a temperature-dependent manner in the ygl8 mutant. On the other hand, the downregulation of bioactive GA-biosynthesis-related GA20ox genes and cell-wall-cellulose-biosynthesis-related CesA genes was also observed in the ygl8 mutant, which led to a reduction in plant height. Our study will facilitate the understanding of the regulation of leaf color and plant height in barley.
Collapse
Affiliation(s)
- Xue Xia
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhejiang Academy of Agricultural Sciences, National Barley Improvement Center, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Lei Liu
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhejiang Academy of Agricultural Sciences, National Barley Improvement Center, Hangzhou, China
| | - Kangfeng Cai
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhejiang Academy of Agricultural Sciences, National Barley Improvement Center, Hangzhou, China
| | - Xiujuan Song
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhejiang Academy of Agricultural Sciences, National Barley Improvement Center, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Wenhao Yue
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhejiang Academy of Agricultural Sciences, National Barley Improvement Center, Hangzhou, China
| | - Junmei Wang
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhejiang Academy of Agricultural Sciences, National Barley Improvement Center, Hangzhou, China
| |
Collapse
|
28
|
Han K, Zhao Y, Sun Y, Li Y. NACs, generalist in plant life. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2433-2457. [PMID: 37623750 PMCID: PMC10651149 DOI: 10.1111/pbi.14161] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA-binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target-binding domain at the N-terminus and a highly versatile C-terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC-mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research.
Collapse
Affiliation(s)
- Kunjin Han
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Ye Zhao
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
29
|
Mishra A, Mishra TK, Nanda S, Mohanty MK, Dash M. A comprehensive review on genetic modification of plant cell wall for improved saccharification efficiency. Mol Biol Rep 2023; 50:10509-10524. [PMID: 37921982 DOI: 10.1007/s11033-023-08886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
The focus is now on harnessing energy from green sources through sustainable technology to minimize environmental pollution. Several crop residues including rice and wheat straw are having enormous potential to be used as lignocellulosic source material for bioenergy production. The lignocellulosic feedstock is primarily composed of cellulose, hemicellulose, and lignin cell wall polymers. The hemicellulose and lignin polymers induce crosslinks in the cell wall, by firmly associating with cellulose microfibrils, and thereby, denying considerable access of cellulose to cellulase enzymes. This issue has been addressed by various researchers through downregulating several genes associated in monolignol biosynthesis in Arabidopsis, Poplar, Rice and Switchgrass to increase ethanol recovery. Similarly, xylan biosynthetic genes are also targeted to genetically culminate its accumulation in the secondary cell walls. Regulation of cellulose synthases (CesA) proves to be an effective tool in addressing the negative impact of these two factors. Modification in the expression of cellulose synthase aids in reducing cellulose crystallinity as well as polymerisation degree which in turn increases ethanol recovery. The engineered bioenergy crops and various fungal strains with state of art biomass processing techniques presents the most recent integrative biotechnology model for cost effective green fuels generation along with production of key value-added products with minuscule disturbances in the environment. Plant breeding strategies utilizing the existing variability for biomass traits will be key in developing dual purpose varieties. For this purpose, reorientation of conventional breeding techniques for incorporating useful biomass traits will be effective.
Collapse
Affiliation(s)
- Abinash Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Tapas Kumar Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Spandan Nanda
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Mahendra Kumar Mohanty
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
30
|
Gao Q, Hu S, Wang X, Han F, Luo H, Liu Z, Kang C. The red/far-red light photoreceptor FvePhyB regulates tissue elongation and anthocyanin accumulation in woodland strawberry. HORTICULTURE RESEARCH 2023; 10:uhad232. [PMID: 38143485 PMCID: PMC10745270 DOI: 10.1093/hr/uhad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Light is an important environmental signal that influences plant growth and development. Among the photoreceptors, phytochromes can sense red/far-red light to coordinate various biological processes. However, their functions in strawberry are not yet known. In this study, we identified an EMS mutant, named P8, in woodland strawberry (Fragaria vesca) that showed greatly increased plant height and reduced anthocyanin content. Mapping-by-sequencing revealed that the causal mutation in FvePhyB leads to premature termination of translation. The light treatment assay revealed that FvePhyB is a bona fide red/far-red light photoreceptor, as it specifically inhibits hypocotyl length under red light. Transcriptome analysis showed that the FvePhyB mutation affects the expression levels of genes involved in hormone synthesis and signaling and anthocyanin biosynthesis in petioles and fruits. The srl mutant with a longer internode is caused by a mutation in the DELLA gene FveRGA1 (Repressor of GA1) in the gibberellin pathway. We found that the P8 srl double mutant has much longer internodes than srl, suggesting a synergistic role of FvePhyB and FveRGA1 in this process. Taken together, these results demonstrate the important role of FvePhyB in regulating plant architecture and anthocyanin content in woodland strawberry.
Collapse
Affiliation(s)
- Qi Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoqiang Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiaoli Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Fu Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huifeng Luo
- Institute of Horticulture, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
31
|
Wu H, He Q, He B, He S, Zeng L, Yang L, Zhang H, Wei Z, Hu X, Hu J, Zhang Y, Shang L, Wang S, Cui P, Xiong G, Qian Q, Wang Q. Gibberellin signaling regulates lignin biosynthesis to modulate rice seed shattering. THE PLANT CELL 2023; 35:4383-4404. [PMID: 37738159 PMCID: PMC10689197 DOI: 10.1093/plcell/koad244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
The elimination of seed shattering was a key step in rice (Oryza sativa) domestication. In this paper, we show that increasing the gibberellic acid (GA) content or response in the abscission region enhanced seed shattering in rice. We demonstrate that SLENDER RICE1 (SLR1), the key repressor of GA signaling, could physically interact with the rice seed shattering-related transcription factors quantitative trait locus of seed shattering on chromosome 1 (qSH1), O. sativa HOMEOBOX 15 (OSH15), and SUPERNUMERARY BRACT (SNB). Importantly, these physical interactions interfered with the direct binding of these three regulators to the lignin biosynthesis gene 4-COUMARATE: COENZYME A LIGASE 3 (4CL3), thereby derepressing its expression. Derepression of 4CL3 led to increased lignin deposition in the abscission region, causing reduced rice seed shattering. Importantly, we also show that modulating GA content could alter the degree of seed shattering to increase harvest efficiency. Our results reveal that the "Green Revolution" phytohormone GA is important for regulating rice seed shattering, and we provide an applicable breeding strategy for high-efficiency rice harvesting.
Collapse
Affiliation(s)
- Hao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qi He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bing He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuyi He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | | | - Longbo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhaoran Wei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xingming Hu
- College of Agronomy, Anhui Agricultural University, Heifei 230026, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311401, China
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Suikang Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Peng Cui
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311401, China
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Agricultural Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Bai Y, Wang Z, Luo L, Xuan X, Tang W, Qu Z, Dong T, Qi Z, Yu M, Wu W, Fang J, Wang C. Characterization of VvmiR166s-Target Modules and Their Interaction Pathways in Modulation of Gibberellic-Acid-Induced Grape Seedless Berries. Int J Mol Sci 2023; 24:16279. [PMID: 38003470 PMCID: PMC10670991 DOI: 10.3390/ijms242216279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Exogenous GA is widely used to efficiently induce grape seedless berry development for significantly improving berry quality. Recently, we found that VvmiR166s are important regulators of response to GA in grapes, but its roles in GA-induced seedless grape berry development remain elusive. Here, the precise sequences of VvmiR166s and their targets VvREV, VvHB15 and VvHOX32 were determined in grape cv. 'Rosario Bianco', and the cleavage interactions of VvmiR166s-VvHB15/VvHOX32/VvREV modules and the variations in their cleavage roles were confirmed in grape berries. Exogenous GA treatment significantly induced a change in their expression correlations from positive to negative between VvmiR166s and their target genes at the seeds during the stone-hardening stages (32 DAF-46 DAF) in grape berries, indicating exogenous GA change action modes of VvmiR166s on their targets in this process, in which exogenous GA mainly enhanced the negative regulatory roles of VvmiR166s on VvHB15 among all three VvmiR166s-target pairs. The transient OE-VvmiR166a-h/OE-VvHB15 in tobacco confirmed that out of the VvmiR166 family, VvmiR166h/a/b might be the main factors in modulating lignin synthesis through inhibiting VvHB15, of which VvmiR166h-VvHB15-NtPAL4/NtCCR1/NtCCR2/NtCCoAMT5/NtCOMT1 and VvmiR166a/b-VvHB15-NtCAD1 are the potential key regulatory modules in lignin synthesis. Together with the GA-induced expression modes of VvmiR166s-VvHB15 and genes related to lignin synthesis in grape berries, we revealed that GA might repress lignin synthesis mainly by repressing VvCAD1/VvCCR2/VvPAL2/VvPAL3/Vv4CL/VvLac7 levels via mediating VvmiR166s-VvHB15 modules in GA-induced grape seedless berries. Our findings present a novel insight into the roles of VvmiR66s that are responsive to GA in repressing the lignin synthesis of grape seedless berries, with different lignin-synthesis-enzyme-dependent action pathways in diverse plants, which have important implications for the molecular breeding of high-quality seedless grape berries.
Collapse
Affiliation(s)
- Yunhe Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.)
| | - Zhuangwei Wang
- Jiangsu Academy of Agricultural Sciences, Institute of Pomology, Nanjing 210014, China; (Z.W.); (W.W.)
| | - Linjia Luo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.)
| | - Xuxian Xuan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.)
| | - Wei Tang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.)
| | - Ziyang Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.)
| | - Tianyu Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.)
| | - Ziyang Qi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.)
| | - Mucheng Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.)
| | - Weimin Wu
- Jiangsu Academy of Agricultural Sciences, Institute of Pomology, Nanjing 210014, China; (Z.W.); (W.W.)
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.)
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.)
| |
Collapse
|
33
|
Sun Z, Wu M, Wang S, Feng S, Wang Y, Wang T, Zhu C, Jiang X, Wang H, Wang R, Yuan X, Wang M, Zhong L, Cheng Y, Bao M, Zhang F. An insertion of transposon in DcNAP inverted its function in the ethylene pathway to delay petal senescence in carnation (Dianthus caryophyllus L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2307-2321. [PMID: 37626478 PMCID: PMC10579710 DOI: 10.1111/pbi.14132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023]
Abstract
Petal senescence is the final stage of flower development. Transcriptional regulation plays key roles in this process. However, whether and how post-transcriptional regulation involved is still largely unknown. Here, we identified an ethylene-induced NAC family transcription factor DcNAP in carnation (Dianthus caryophyllus L.). One allele, DcNAP-dTdic1, has an insertion of a dTdic1 transposon in its second exon. The dTdic1 transposon disrupts the structure of DcNAP and causes alternative splicing, which transcribes multiple domain-deleted variants (DcNAP2 and others). Conversely, the wild type allele DcNAP transcribes DcNAP1 encoding an intact NAC domain. Silencing DcNAP1 delays and overexpressing DcNAP1 accelerates petal senescence in carnation, while silencing and overexpressing DcNAP2 have the opposite effects, respectively. Further, DcNAP2 could interact with DcNAP1 and interfere the binding and activation activity of DcNAP1 to the promoters of its downstream target ethylene biosynthesis genes DcACS1 and DcACO1. Lastly, ethylene signalling core transcriptional factor DcEIL3-1 can activate the expression of DcNAP1 and DcNAP2 in the same way by binding their promoters. In summary, we discovered a novel mechanism by which DcNAP regulates carnation petal senescence at the post-transcriptional level. It may also provide a useful strategy to manipulate the NAC domains of NAC transcription factors for crop genetic improvement.
Collapse
|
34
|
Zheng K, Cai Y, Qu Y, Teng L, Wang C, Gao J, Chen Q. Effect of the HCT Gene on Lignin Synthesis and Fiber Development in Gossypium barbadense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 338:111914. [PMID: 39492445 DOI: 10.1016/j.plantsci.2023.111914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/07/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
As one of the key enzymes in the metabolic pathway of phenylpropane, shikimate hydroxycinnamoyl transferase (HCT) is mainly involved in the biosynthesis of the plant secondary cell wall, which is closely related to cotton fiber quality. In this study, whole-genome identification and bioinformatics analysis of the HCT gene family were performed in G. barbadense. In the whole genome, we identified 136 GbHCT genes encoding 309-504 amino acids. Phylogenetic analysis divided the genome into 5 subfamilies, which were located on 25 chromosomes. Collinear analysis of polyploidization and tandem duplication events were the main driving forces for the rapid expansion and evolution of this family, and the genes underwent loose purifying selection constraints after duplication. Gene promoters identified a variety of cis-acting elements related to plant hormones and the stress response. Several members of the GbHCT family were highly expressed during the development of cotton fiber, and different members had different expression patterns in cotton fiber. After GbHCT114 gene silencing in cotton, the amount of stem surface trichomes and lignin content decreased, and the cell morphology and arrangement changed. After the GbHCT114 gene was overexpressed in Arabidopsis thaliana (L.) Heynh., the number of stem and leaf surface trichomes and the cross-sectional area of the secondary xylem duct cell wall increased. In addition, utilizing transcriptomic analysis, differentially expressed genes associated with lignin synthesis and fiber development were identified. Taken together, the results obtained in this study confirm that the GbHCT114 gene regulates plant trichome development, which lays a theoretical foundation for future studies on the function of GbHCT114 in cotton.
Collapse
Affiliation(s)
- Kai Zheng
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572000, China; Postdoctoral Research Station, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Yongsheng Cai
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Yanying Qu
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Lu Teng
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Chaoyue Wang
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Jie Gao
- Postdoctoral Research Station, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Quanjia Chen
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
35
|
Xu Z, Wang T, Hou S, Ma J, Li D, Chen S, Gao X, Zhao Y, He Y, Yang G. A R2R3-MYB, BpMYB1, from paper mulberry interacts with DELLA protein BpGAI1 in soil cadmium phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132871. [PMID: 39492101 DOI: 10.1016/j.jhazmat.2023.132871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Heavy metal pollution has become increasingly prominent, and bioremediation of heavy metal polluted areas is urgently needed. Broussonetia papyrifera is a pioneer tree species for vegetation restoration in the tailings area, while its molecular mechanism of heavy metal adaptation is not clear. Here, we report that a R2R3 MYB from B. papyrifera (BpMYB1) is involved in Cd accumulation by controlling the down-stream genes and mineral accumulation. Overexpression of BpMYB1 in B. papyrifera resulted in a significant increase in Cd accumulation and multiple gene transcription. Among the up-regulated genes, BpMYB1 could bind to ferrochelatase (BpFC2), basic helix-loop-helix transcription factor bHLH93 (BpbHLH93), and basic leucine zipper transcription factor bZIPs (BpbZIP1, BpbZIP-CPC1) by recognizing TATCCAOSAMY (TATCCA) motif and related promoter segments. Further investigations revealed that overexpression of BpbZIP1 promotes the absorption of Cd, BpMYB1 regulate Cd uptake in plant relating to Fe accumulation without Fe-deficiency pathway via recognizing the downstream BpbHLH93 and involving in PCs biosynthetic pathway via recognizing the target BpFC2. Moreover, the Cd response effect mediated by BpMYB1 was boosted by interacting with a DELLA protein BpGAI1, a vital member of GA signaling. These results provide new insights into the molecular feedback mechanisms underlying BpMYB1-BpGAI1 controlled Cd uptake in plants, which will benefit for phytoremediation of Cd polluted soil.
Collapse
Affiliation(s)
- Zhenggang Xu
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410125 Hunan, China
| | - Tianyu Wang
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Siyu Hou
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Jiyan Ma
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Dapei Li
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Shuwen Chen
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Xiangqian Gao
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410125 Hunan, China
| | - Yi He
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Guiyan Yang
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
36
|
Zhang Y, Tian Z, Shi J, Yu R, Zhang S, Qiang S. Tissue-Specific Transcriptomes in the Secondary Cell Wall Provide an Understanding of Stem Growth Enhancement in Solidago canadensis during Invasion. BIOLOGY 2023; 12:1347. [PMID: 37887057 PMCID: PMC10604605 DOI: 10.3390/biology12101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
Invasive plants generally present a significant enhancement in aboveground vegetative growth, which is mainly caused by variation in secondary cell wall (SCW) deposition and vascular tissue development. However, the coordination of the transcriptional regulators of SCW biosynthesis is complex, and a comprehensive regulation map has not yet been clarified at a transcriptional level to explain the invasive mechanism of S. canadensis. Here, RNA sequencing was performed in the phloem and xylem of two typical native (US01) and invasive (CN25) S. canadensis populations with different stem morphologies. A total of 296.14 million high-quality clean reads were generated; 438,605 transcripts and 156,968 unigenes were assembled; and 66,648 and 19,510 differential expression genes (DEGs) were identified in the phloem and xylem, respectively. Bioinformatics analysis indicated that the SCW transcriptional network was dramatically altered during the successful invasion of S.canadensis. Based on a comprehensive analysis of SCW deposition gene expression profiles, we revealed that the invasive population is dedicated to synthesizing cellulose and reducing lignification, leading to an SCW with high cellulose content and low lignin content. A hypothesis thus has been proposed to explain the enhanced stem growth of S. canadensis through the modification of the SCW composition.
Collapse
Affiliation(s)
| | | | | | | | | | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.); (Z.T.); (J.S.); (R.Y.); (S.Z.)
| |
Collapse
|
37
|
Yang Q, Li Z, Wang X, Jiang C, Liu F, Nian Y, Fu X, Zhou G, Liu L, Wang H. Genome-Wide Identification and Characterization of the NAC Gene Family and Its Involvement in Cold Response in Dendrobium officinale. PLANTS (BASEL, SWITZERLAND) 2023; 12:3626. [PMID: 37896088 PMCID: PMC10609684 DOI: 10.3390/plants12203626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
The NAC (NAM, ATAF1/2 and CUC2) gene family is one of the largest plant-specific transcription factor families, functioning as crucial regulators in diverse biological processes such as plant growth and development as well as biotic and abiotic stress responses. Although it has been widely characterized in many plants, the significance of the NAC family in Dendrobium officinale remained elusive up to now. In this study, a genome-wide search method was conducted to identify NAC genes in Dendrobium officinale (DoNACs) and a total of 110 putative DoNACs were obtained. Phylogenetic analysis classified them into 15 subfamilies according to the nomenclature in Arabidopsis and rice. The members in the subfamilies shared more similar gene structures and conversed protein domain compositions. Furthermore, the expression profiles of these DoNACs were investigated in diverse tissues and under cold stress by RNA-seq data. Then, a total of five up-regulated and five down-regulated, cold-responsive DoNACs were validated through QRT-PCR analysis, demonstrating they were involved in regulating cold stress response. Additionally, the subcellular localization of two down-regulated candidates (DoNAC39 and DoNAC58) was demonstrated to be localized in the nuclei. This study reported the genomic organization, protein domain compositions and expression patterns of the NAC family in Dendrobium officinale, which provided targets for further functional studies of DoNACs and also contributed to the dissection of the role of NAC in regulating cold tolerance in Dendrobium officinale.
Collapse
Affiliation(s)
- Qianyu Yang
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
| | - Zhihui Li
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
| | - Xiao Wang
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chunqian Jiang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China (L.L.)
| | - Feihong Liu
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
| | - Yuxin Nian
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
| | - Xiaoyun Fu
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
| | - Guangzhu Zhou
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
| | - Lei Liu
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China (L.L.)
| | - Hui Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China (L.L.)
| |
Collapse
|
38
|
Zhu Y, Wang Y, Jiang H, Liu W, Zhang S, Hou X, Zhang S, Wang N, Zhang R, Zhang Z, Chen X. Transcriptome analysis reveals that PbMYB61 and PbMYB308 are involved in the regulation of lignin biosynthesis in pear fruit stone cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:217-233. [PMID: 37382050 DOI: 10.1111/tpj.16372] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Pear fruit stone cells have thick walls and are formed by the secondary deposition of lignin in the primary cell wall of thin-walled cells. Their content and size seriously affect fruit characteristics related to edibility. To reveal the regulatory mechanism underlying stone cell formation during pear fruit development and to identify hub genes, we examined the stone cell and lignin contents of 30 'Shannongsu' pear flesh samples and analyzed the transcriptomes of 15 pear flesh samples collected at five developmental stages. On the basis of the RNA-seq data, 35 874 differentially expressed genes were detected. Additionally, two stone cell-related modules were identified according to a WGCNA. A total of 42 lignin-related structural genes were subsequently obtained. Furthermore, nine hub structural genes were identified in the lignin regulatory network. We also identified PbMYB61 and PbMYB308 as candidate transcriptional regulators of stone cell formation after analyzing co-expression networks and phylogenetic relationships. Finally, we experimentally validated and characterized the candidate transcription factors and revealed that PbMYB61 regulates stone cell lignin formation by binding to the AC element in the PbLAC1 promoter to upregulate expression. However, PbMYB308 negatively regulates stone cell lignin synthesis by binding to PbMYB61 to form a dimer that cannot activate PbLAC1 expression. In this study, we explored the lignin synthesis-related functions of MYB family members. The results presented herein are useful for elucidating the complex mechanisms underlying lignin biosynthesis during pear fruit stone cell development.
Collapse
Affiliation(s)
- Yansong Zhu
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Yicheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Huiyan Jiang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Wenjun Liu
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Shuhui Zhang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xukai Hou
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Susu Zhang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Nan Wang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Rui Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Zongying Zhang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xuesen Chen
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
39
|
Wu H, Bai B, Lu X, Li H. A gibberellin-deficient maize mutant exhibits altered plant height, stem strength and drought tolerance. PLANT CELL REPORTS 2023; 42:1687-1699. [PMID: 37479884 DOI: 10.1007/s00299-023-03054-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
KEY MESSAGE The reduction in endogenous gibberellin improved drought resistance, but decreased cellulose and lignin contents, which made the mutant prone to lodging. It is well known that gibberellin (GA) is a hormone that plays a vital role in plant growth and development. In recent years, a growing number of studies have found that gibberellin plays an important role in regulating the plant height, stem length, and stressed growth surfaces. In this study, a dwarf maize mutant was screened from an EMS-induced mutant library of maize B73. The mutated gene was identified as KS, which encodes an ent-kaurene synthase (KS) enzyme functioning in the early biosynthesis of GA. The mutant was named as ks3-1. A significant decrease in endogenous GA levels was verified in ks3-1. A significantly decreased stem strength of ks3-1, compared with that of wild-type B73, was found. Significant decreases in the cellulose and lignin contents, as well as the number of epidermal cell layers, were further characterized in ks3-1. The expression levels of genes responsible for cellulose and lignin biosynthesis were induced by exogenous GA treatment. Under drought stress conditions, the survival rate of ks3-1 was significantly higher than that of the wild-type B73. The survival rates of both wild-type B73 and ks3-1 decreased significantly after exogenous GA treatment. In conclusion, we summarized that a decreased level of GA in ks3-1 caused a decreased plant height, a decreased stem strength as a result of cell wall defects, and an increased drought tolerance. Our results shed light on the importance of GA and GA-defective mutants in the genetic improvement of maize and breeding maize varieties.
Collapse
Affiliation(s)
- Hao Wu
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Beibei Bai
- Lab of Molecular Breeding By Design in Maize Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572000, China
| | - Xiaoduo Lu
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
- Lab of Molecular Breeding By Design in Maize Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572000, China.
- Institute of Advanced Agricultural Technology, Qilu Normal University, Jinan, 250200, China.
| | - Haiyan Li
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
40
|
Peng X, Tong B, Lee J, Wang K, Yu X, Huang X, Wen J, Makarem M, Pang H, Hinjan S, Yan X, Yao S, Lu F, Wang B, Peng F, Ralph J, Kim SH, Sederoff RR, Li Q. Overexpression of a gibberellin 20-oxidase gene in poplar xylem led to an increase in the size of nanocellulose fibrils and improved paper properties. Carbohydr Polym 2023; 314:120959. [PMID: 37173053 DOI: 10.1016/j.carbpol.2023.120959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Cellulose, the major component of secondary cell walls, is the most abundant renewable long-chain polymer on earth. Nanocellulose has become a prominent nano-reinforcement agent for polymer matrices in various industries. We report the generation of transgenic hybrid poplar overexpressing the Arabidopsis gibberellin 20-oxidase1 gene driven by a xylem-specific promoter to increase gibberellin (GA) biosynthesis in wood. X-ray diffraction (XRD) and sum frequency generation spectroscopic (SFG) analyses showed that cellulose in transgenic trees was less crystalline, but the crystal size was larger. The nanocellulose fibrils prepared from transgenic wood had an increased size compared to those from wild type. When such fibrils were used as a reinforcing agent in sheet paper preparation, the mechanical strength of the paper was significantly enhanced. Engineering the GA pathway can therefore affect nanocellulose properties, providing a new strategy for expanding nanocellulose applications.
Collapse
Affiliation(s)
- Xiaopeng Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Botong Tong
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jongcheol Lee
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kun Wang
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Yu
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Jialong Wen
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mohamadamin Makarem
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Subin Hinjan
- Bangkok Cordyceps Co., Ltd, Thanyaburi, Pathumthani 12130, Thailand
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fachuang Lu
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA
| | - Baichen Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Feng Peng
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA
| | - Seong H Kim
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ronald R Sederoff
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
41
|
Yang J, Xu J, Zhang Y, Cui J, Hu H, Xue J, Zhu L. Two R2R3-MYB transcription factors from Chinese cedar (Cryptomeria fortunei Hooibrenk) are involved in the regulation of secondary cell wall formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107879. [PMID: 37422947 DOI: 10.1016/j.plaphy.2023.107879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
As the most abundant renewable energy source, wood comprises the secondary cell wall (SCW). SCW biosynthesis involves lignin and cellulose deposition. Increasing studies have illustrated that R2R3-MYB transcription factors (TFs) play pivotal roles in affecting lignin accumulation and SCW formation. Nevertheless, the regulatory roles of R2R3-MYBs are still unresolved in Cryptomeria fortunei Hooibrenk cambium and wood formation. To dissect the potentials of CfMYBs, we successfully cloned and intensively studied the functions of CfMYB4 and CfMYB5 in SCW formation and abiotic stress response. They both contained the conserved MYB domain capable of forming a special structure that could bind to the core motifs of downstream genes. The phylogenetic tree implied that two CfMYBs clustered into different evolutionary branches. They were predominantly expressed in the stem and were localized to the nucleus. Furthermore, CfMYB4 functioned as an activator to enhance lignin and cellulose accumulation, and increase the SCW thickness by elevating the expression levels of SCW-related genes. By contrast, CfMYB5 negatively regulated lignin and cellulose biosynthesis, and decreased SCW formation by reducing the expression of SCW biosynthetic genes. Our data not only highlight the regulatory functions of CfMYBs in lignin deposition but also provide critical insights into the development of strategies for the genetic improvement of Cryptomeria fortunei wood biomass.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jin Xu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yingting Zhang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiebing Cui
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Hailiang Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinyu Xue
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Lijuan Zhu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
42
|
Feng K, Li X, Yan Y, Liu R, Li Z, Sun N, Yang Z, Zhao S, Wu P, Li L. Integrated morphological, metabolome, and transcriptome analyses revealed the mechanism of exogenous gibberellin promoting petiole elongation in Oenanthe javanica. FRONTIERS IN PLANT SCIENCE 2023; 14:1225635. [PMID: 37528973 PMCID: PMC10389089 DOI: 10.3389/fpls.2023.1225635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023]
Abstract
Oenanthe javanica (Blume) DC. is a popular vegetable with unique flavor and its leaf is the main product organ. Gibberellin (GA) is an important plant hormone that plays vital roles in regulating the growth of plants. In this study, the plants of water dropwort were treated with different concentrations of GA3. The plant height of water dropwort was significantly increased after GA3 treatment. Anatomical structure analysis indicated that the cell length of water dropwort was elongated under exogenous application of GA3. The metabolome analysis showed flavonoids were the most abundant metabolites and the biosynthesis of secondary metabolites were also regulated by GA3. The exogenous application of GA3 altered the gene expressions of plant hormone signal transduction (GID and DELLA) and metabolites biosynthesis pathways to regulate the growth of water dropwort. The GA contents were modulated by up-regulating the expression of GA metabolism gene GA2ox. The differentially expressed genes related to cell wall formation were significantly enriched. A total of 22 cellulose synthase involved in cellulose biosynthesis were identified from the genome of water dropwort. Our results indicated that GA treatment promoted the cell elongation by inducing the expression of cellulose synthase and cell wall formation in water dropwort. These results revealed the molecular mechanism of GA-mediated cell elongation, which will provide valuable reference for using GA to regulate the growth of water dropwort.
Collapse
Affiliation(s)
- Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Xibei Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yajie Yan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Ruozhenyi Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Zixuan Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Nan Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Zhiyuan Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Shuping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Liangjun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
43
|
Chen Y, Qi H, Yang L, Xu L, Wang J, Guo J, Zhang L, Tan Y, Pan R, Shu Q, Qian Q, Song S. The OsbHLH002/OsICE1-OSH1 module orchestrates secondary cell wall formation in rice. Cell Rep 2023; 42:112702. [PMID: 37384532 DOI: 10.1016/j.celrep.2023.112702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023] Open
Abstract
Transcriptional regulation of secondary cell wall (SCW) formation is strictly controlled by a complex network of transcription factors in vascular plants and has been shown to be mediated by a group of NAC master switches. In this study, we show that in a bHLH transcription factor, OsbHLH002/OsICE1, its loss-of-function mutant displays a lodging phenotype. Further results show that OsbHLH002 and Oryza sativa homeobox1 (OSH1) interact and share a set of common targets. In addition, the DELLA protein SLENDER RICE1, rice ortholog of KNOTTED ARABIDOPSIS THALIANA7, and OsNAC31 interact with OsbHLH002 and OSH1 and regulate their binding capacity on OsMYB61, a key regulatory factor in SCW development. Collectively, our results indicate OsbHLH002 and OSH1 as key regulators in SCW formation and shed light on molecular mechanisms of how active and repressive factors precisely orchestrate SCW synthesis in rice, which may provide a strategy for manipulating plant biomass production.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Haoyue Qi
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lijia Yang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liang Xu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiaxuan Wang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiazhuo Guo
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liang Zhang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Tan
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ronghui Pan
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qingyao Shu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Shiyong Song
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
44
|
Du T, Qin Z, Zhou Y, Zhang L, Wang Q, Li Z, Hou F. Comparative Transcriptome Analysis Reveals the Effect of Lignin on Storage Roots Formation in Two Sweetpotato ( Ipomoea batatas (L.) Lam.) Cultivars. Genes (Basel) 2023; 14:1263. [PMID: 37372443 DOI: 10.3390/genes14061263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most important crops with high storage roots yield. The formation and expansion rate of storage root (SR) plays a crucial role in the production of sweet potato. Lignin affects the SR formation; however, the molecular mechanisms of lignin in SR development have been lacking. To reveal the problem, we performed transcriptome sequencing of SR harvested at 32, 46, and 67 days after planting (DAP) to analyze two sweet potato lines, Jishu25 and Jishu29, in which SR expansion of Jishu29 was early and had a higher yield. A total of 52,137 transcripts and 21,148 unigenes were obtained after corrected with Hiseq2500 sequencing. Through the comparative analysis, 9577 unigenes were found to be differently expressed in the different stages in two cultivars. In addition, phenotypic analysis of two cultivars, combined with analysis of GO, KEGG, and WGCNA showed the regulation of lignin synthesis and related transcription factors play a crucial role in the early expansion of SR. The four key genes swbp1, swpa7, IbERF061, and IbERF109 were proved as potential candidates for regulating lignin synthesis and SR expansion in sweet potato. The data from this study provides new insights into the molecular mechanisms underlying the impact of lignin synthesis on the formation and expansion of SR in sweet potatoes and proposes several candidate genes that may affect sweet potato yield.
Collapse
Affiliation(s)
- Taifeng Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yuanyuan Zhou
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Lei Zhang
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zongyun Li
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
45
|
Naithani S, Mohanty B, Elser J, D’Eustachio P, Jaiswal P. Biocuration of a Transcription Factors Network Involved in Submergence Tolerance during Seed Germination and Coleoptile Elongation in Rice ( Oryza sativa). PLANTS (BASEL, SWITZERLAND) 2023; 12:2146. [PMID: 37299125 PMCID: PMC10255735 DOI: 10.3390/plants12112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Modeling biological processes and genetic-regulatory networks using in silico approaches provides a valuable framework for understanding how genes and associated allelic and genotypic differences result in specific traits. Submergence tolerance is a significant agronomic trait in rice; however, the gene-gene interactions linked with this polygenic trait remain largely unknown. In this study, we constructed a network of 57 transcription factors involved in seed germination and coleoptile elongation under submergence. The gene-gene interactions were based on the co-expression profiles of genes and the presence of transcription factor binding sites in the promoter region of target genes. We also incorporated published experimental evidence, wherever available, to support gene-gene, gene-protein, and protein-protein interactions. The co-expression data were obtained by re-analyzing publicly available transcriptome data from rice. Notably, this network includes OSH1, OSH15, OSH71, Sub1B, ERFs, WRKYs, NACs, ZFP36, TCPs, etc., which play key regulatory roles in seed germination, coleoptile elongation and submergence response, and mediate gravitropic signaling by regulating OsLAZY1 and/or IL2. The network of transcription factors was manually biocurated and submitted to the Plant Reactome Knowledgebase to make it publicly accessible. We expect this work will facilitate the re-analysis/re-use of OMICs data and aid genomics research to accelerate crop improvement.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| | - Bijayalaxmi Mohanty
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore;
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| |
Collapse
|
46
|
Li J, Zhang Y, Li Z, Dai H, Luan X, Zhong T, Chen S, Xie XM, Qin G, Zhang XQ, Peng H. OsPEX1, an extensin-like protein, negatively regulates root growth in a gibberellin-mediated manner in rice. PLANT MOLECULAR BIOLOGY 2023; 112:47-59. [PMID: 37097548 DOI: 10.1007/s11103-023-01347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/01/2023] [Indexed: 05/09/2023]
Abstract
Leucine-rich repeat extensins (LRXs) are required for plant growth and development through affecting cell growth and cell wall formation. LRX gene family can be classified into two categories: predominantly vegetative-expressed LRX and reproductive-expressed PEX. In contrast to the tissue specificity of Arabidopsis PEX genes in reproductive organs, rice OsPEX1 is also highly expressed in roots in addition to reproductive tissue. However, whether and how OsPEX1 affects root growth is unclear. Here, we found that overexpression of OsPEX1 retarded root growth by reducing cell elongation likely caused by an increase of lignin deposition, whereas knockdown of OsPEX1 had an opposite effect on root growth, indicating that OsPEX1 negatively regulated root growth in rice. Further investigation uncovered the existence of a feedback loop between OsPEX1 expression level and GA biosynthesis for proper root growth. This was supported by the facts that exogenous GA3 application downregulated transcript levels of OsPEX1 and lignin-related genes and rescued the root developmental defects of the OsPEX1 overexpression mutant, whereas OsPEX1 overexpression reduced GA level and the expression of GA biosynthesis genes. Moreover, OsPEX1 and GA showed antagonistic action on the lignin biosynthesis in root. OsPEX1 overexpression upregulated transcript levels of lignin-related genes, whereas exogenous GA3 application downregulated their expression. Taken together, this study reveals a possible molecular pathway of OsPEX1mediated regulation of root growth through coordinate modulation of lignin deposition via a negative feedback regulation between OsPEX1 expression and GA biosynthesis.
Collapse
Affiliation(s)
- Jieni Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, College of Food Science and Engineering, Foshan University, Foshan, 528000, China
| | - Yuexiong Zhang
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhenyong Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Dai
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Luan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tianxiu Zhong
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Shu Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xin-Ming Xie
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Gang Qin
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xiang-Qian Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, College of Food Science and Engineering, Foshan University, Foshan, 528000, China.
| | - Haifeng Peng
- Guangdong Laboratory for Lingnan Modern Agriculture,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
47
|
Gao J, Zhao Y, Zhao Z, Liu W, Jiang C, Li J, Zhang Z, Zhang H, Zhang Y, Wang X, Sun X, Li Z. RRS1 shapes robust root system to enhance drought resistance in rice. THE NEW PHYTOLOGIST 2023; 238:1146-1162. [PMID: 36862074 DOI: 10.1111/nph.18775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
A strong root system facilitates the absorption of water and nutrients from the soil, to improve the growth of crops. However, to date, there are still very few root development regulatory genes that can be used in crop breeding for agriculture. In this study, we cloned a negative regulator gene of root development, Robust Root System 1 (RRS1), which encodes an R2R3-type MYB family transcription factor. RRS1 knockout plants showed enhanced root growth, including longer root length, longer lateral root length, and larger lateral root density. RRS1 represses root development by directly activating the expression of OsIAA3 which is involved in the auxin signaling pathway. A natural variation in the coding region of RRS1 changes the transcriptional activity of its protein. RRS1T allele, originating from wild rice, possibly increases root length by means of weakening regulation of OsIAA3. Knockout of RRS1 enhances drought resistance by promoting water absorption and improving water use efficiency. This study provides a new gene resource for improving root systems and cultivating drought-resistant rice varieties with important values in agricultural applications.
Collapse
Affiliation(s)
- Jie Gao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Zhao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhikun Zhao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wei Liu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Conghui Jiang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Jinjie Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yage Zhang
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
| | - Xiaoning Wang
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
| | - Xingming Sun
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
| |
Collapse
|
48
|
Cao S, Wang Y, Gao Y, Xu R, Ma J, Xu Z, Shang-Guan K, Zhang B, Zhou Y. The RLCK-VND6 module coordinates secondary cell wall formation and adaptive growth in rice. MOLECULAR PLANT 2023:S1674-2052(23)00104-1. [PMID: 37050877 DOI: 10.1016/j.molp.2023.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/05/2023] [Accepted: 04/08/2023] [Indexed: 05/27/2023]
Abstract
The orderly deposition of secondary cell wall (SCW) in plants is implicated in various biological programs and is precisely controlled. Although many positive and negative regulators of SCW have been documented, the molecular mechanisms underlying SCW formation coordinated with distinct cellular physiological processes during plant adaptive growth remain largely unclear. Here, we report the identification of Cellulose Synthase co-expressed Kinase1 (CSK1), which encodes a receptor-like cytoplasmic kinase, as a negative regulator of SCW formation and its signaling cascade in rice. Transcriptome deep sequencing of developing internodes and genome-wide co-expression assays revealed that CSK1 is co-expressed with cellulose synthase genes and is responsive to various stress stimuli. The increased SCW thickness and vigorous vessel transport in csk1 indicate that CSK1 functions as a negative regulator of SCW biosynthesis. Through observation of green fluorescent protein-tagged CSK1 in rice protoplasts and stable transgenic plants, we found that CSK1 is localized in the nucleus and cytoplasm adjacent to the plasma membrane. Biochemical and molecular assays demonstrated that CSK1 phosphorylates VASCULAR-RELATED NAC-DOMAIN 6 (VND6), a master SCW-associated transcription factor, in the nucleus, which reduces the transcription of a suite of SCW-related genes, thereby attenuating SCW accumulation. Consistently, genetic analyses show that CSK1 functions upstream of VND6 in regulating SCW formation. Interestingly, our physiological analyses revealed that CSK1 and VND6 are involved in abscisic acid-mediated regulation of cell growth and SCW deposition. Taken together, these results indicate that the CSK1-VND6 module is an important component of the SCW biosynthesis machinery, which coordinates SCW accumulation and adaptive growth in rice. Our study not only identifies a new regulator of SCW biosynthesis but also reveals a fine-tuned mechanism for precise control of SCW deposition, offering tools for rationally tailoring agronomic traits.
Collapse
Affiliation(s)
- Shaoxue Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuopeng Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Keke Shang-Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
49
|
Xu S, Sun M, Yao JL, Liu X, Xue Y, Yang G, Zhu R, Jiang W, Wang R, Xue C, Mao Z, Wu J. Auxin inhibits lignin and cellulose biosynthesis in stone cells of pear fruit via the PbrARF13-PbrNSC-PbrMYB132 transcriptional regulatory cascade. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37031416 DOI: 10.1111/pbi.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Stone cells are often present in pear fruit, and they can seriously affect the fruit quality when present in large numbers. The plant growth regulator NAA, a synthetic auxin, is known to play an active role in fruit development regulation. However, the genetic mechanisms of NAA regulation of stone cell formation are still unclear. Here, we demonstrated that exogenous application of 200 μM NAA reduced stone cell content and also significantly decreased the expression level of PbrNSC encoding a transcriptional regulator. PbrNSC was shown to bind to an auxin response factor, PbrARF13. Overexpression of PbrARF13 decreased stone cell content in pear fruit and secondary cell wall (SCW) thickness in transgenic Arabidopsis plants. In contrast, knocking down PbrARF13 expression using virus-induced gene silencing had the opposite effect. PbrARF13 was subsequently shown to inhibit PbrNSC expression by directly binding to its promoter, and further to reduce stone cell content. Furthermore, PbrNSC was identified as a positive regulator of PbrMYB132 through analyses of co-expression network of stone cell formation-related genes. PbrMYB132 activated the expression of gene encoding cellulose synthase (PbrCESA4b/7a/8a) and lignin laccase (PbrLAC5) binding to their promotors. As expected, overexpression or knockdown of PbrMYB132 increased or decreased stone cell content in pear fruit and SCW thickness in Arabidopsis transgenic plants. In conclusion, our study shows that the 'PbrARF13-PbrNSC-PbrMYB132' regulatory cascade mediates the biosynthesis of lignin and cellulose in stone cells of pear fruit in response to auxin signals and also provides new insights into plant SCW formation.
Collapse
Affiliation(s)
- Shaozhuo Xu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Manyi Sun
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Ltd, Mt Albert Research Centre, Auckland, New Zealand
| | - Xiuxia Liu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Yongsong Xue
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guangyan Yang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rongxiang Zhu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weitao Jiang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Runze Wang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Cheng Xue
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Zhiquan Mao
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
50
|
Liu Z, Ma Y, Lv X, Li N, Li X, Xing J, Li C, Hu B. Abiotic factors and endophytes co-regulate flavone and terpenoid glycoside metabolism in Glycyrrhiza uralensis. Appl Microbiol Biotechnol 2023; 107:2671-2688. [PMID: 36864204 PMCID: PMC10033487 DOI: 10.1007/s00253-023-12441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Recently, endorhizospheric microbiota is realized to be able to promote the secondary metabolism in medicinal plants, but the detailed metabolic regulation metabolisms and whether the promotion is influenced by environmental factors are unclear yet. Here, the major flavonoids and endophytic bacterial communities in various Glycyrrhiza uralensis Fisch. roots collected from seven distinct places in northwest China, as well as the edaphic conditions, were characterized and analyzed. It was found that the soil moisture and temperature might modulate the secondary metabolism in G. uralensis roots partially through some endophytes. One rationally isolated endophyte Rhizobium rhizolycopersici GUH21 was proved to promote the accumulation of isoliquiritin and glycyrrhizic acid significantly in roots of the potted G. uralensis under the relatively high-level watering and low temperature. Furthermore, we did the comparative transcriptome analysis of G. uralensis seedling roots in different treatments to investigate the detailed mechanisms of the environment-endophyte-plant interactions and found that the low temperature went hand in hand with the high-level watering to activate the aglycone biosynthesis in G. uralensis, while GUH21 and the high-level watering cooperatively promoted the in planta glucosyl unit production. Our study is of significance for the development of methods to rationally promote the medicinal plant quality. KEY POINTS: • Soil temperature and moisture related to isoliquiritin contents in Glycyrrhiza uralensis Fisch. • Soil temperature and moisture related to the hosts' endophytic bacterial community structures. • The causal relation among abiotic factors-endophytes-host was proved through the pot experiment.
Collapse
Affiliation(s)
- Zidi Liu
- Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China
| | - Yunyang Ma
- Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China
| | - Xuelian Lv
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, People's Republic of China
| | - Nannan Li
- Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China
| | - Xiaohan Li
- Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Bing Hu
- Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China.
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology of China, Beijing, 102401, People's Republic of China.
| |
Collapse
|