1
|
Somers DE. HSP90 in morphogenesis: taking the heat and keeping the dark. THE NEW PHYTOLOGIST 2023; 239:1157-1159. [PMID: 37292049 PMCID: PMC10524854 DOI: 10.1111/nph.19062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article is a Commentary on Zeng et al. (2023), 239: 1253–1265.
Collapse
Affiliation(s)
- David E. Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Zhang L, Wang Y, Yue M, Jiang L, Zhang N, Luo Y, Chen Q, Zhang Y, Wang Y, Li M, Zhang Y, Lin Y, Tang H. FaMYB5 Interacts with FaBBX24 to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Strawberry ( Fragaria × ananassa). Int J Mol Sci 2023; 24:12185. [PMID: 37569565 PMCID: PMC10418308 DOI: 10.3390/ijms241512185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
MYB and BBX transcription factors play important roles in flavonoid biosynthesis. Here, we obtained transgenic woodland strawberry with stable overexpression of FaMYB5, demonstrating that FaMYB5 can increase anthocyanin and proanthocyanidin content in roots, stems and leaves of woodland strawberry. In addition, bimolecular fluorescence complementation assays and yeast two-hybridization demonstrated that the N-terminal (1-99aa) of FaBBX24 interacts with FaMYB5. Transient co-expression of FaBBX24 and FaMYB5 in cultivated strawberry 'Xiaobai' showed that co-expression strongly promoted the expression of F3'H, 4CL-2, TT12, AHA10 and ANR and then increased the content of anthocyanin and proanthocyanidin in strawberry fruits. We also determined that FaBBX24 is also a positive regulator of anthocyanin and proanthocyanidin biosynthesis in strawberry. The results reveal a novel mechanism by which the FaMYB5-FaBBX24 module collaboratively regulates anthocyanin and proanthocyanidin in strawberry fruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.Z.); (Y.W.); (M.Y.); (L.J.); (N.Z.); (Y.L.); (Q.C.); (Y.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
3
|
Li S, Ou C, Wang F, Zhang Y, Ismail O, Elaziz YSA, Edris S, Jiang S, Li H. Mutant Ppbbx24-delgene positively regulates light-induced anthocyanin accumulation in the red pear.. [DOI: 10.1101/2023.05.19.541476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractAnthocyanins are pigments and nutrients in red pears regulated by BBX family genes. Herein, we characterized a 14-nucleotide deletion mutation in the coding region of thePpBBX24gene from ‘Red Zaosu’ pear (Pyrus pyrifoliaWhite Pear Group), namedPpbbx24-del. Genetic and biochemical approaches were used to compare the roles of PpBBX24 and Ppbbx24-del in anthocyanin accumulation.Ppbbx24-delplayed a positive role in anthocyanin biosynthesis of the ‘Red Zaosu’ pear peel by light treatment. Functional analyses based on overexpression in tobacco and transient overexpression in pear fruit peels showed thatPpbbx24-delpromoted anthocyanin accumulation. Cyanidin and peonidin were major differentially expressed anthocyanins, and transcript levels of some structural genes in the anthocyanin biosynthesis pathway were significantly increased. Protein interaction assays showed that PpBBX24 was located in the nucleus and interacted with PpHY5, whereas Ppbbx24-del was colocalized in the nucleoplasm and did not interact with PpHY5. PpHY5 and Ppbbx24-del had positive regulatory effects on the expression ofPpCHS,PpCHI, andPpMYB10when acting alone, but had cumulative effects on gene activation when acting simultaneously. Alone, PpBBX24 had no significant effect on the expression ofPpCHS,PpCHI, orPpMYB10, whereas it inhibited the activation effects of PpHY5 on downstream genes when it existed with PpHY5. Our study demonstrated that mutant Ppbbx24-del positively regulates the anthocyanin accumulation in pear. The results of this study clarify the mechanism and enrich the regulatory network of anthocyanin biosynthesis, which lays a theoretical foundation forPpbbx24-deluse to create red pear cultivars.
Collapse
|
4
|
Cao J, Yuan J, Zhang Y, Chen C, Zhang B, Shi X, Niu R, Lin F. Multi-layered roles of BBX proteins in plant growth and development. STRESS BIOLOGY 2023; 3:1. [PMID: 37676379 PMCID: PMC10442040 DOI: 10.1007/s44154-022-00080-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/18/2022] [Indexed: 09/08/2023]
Abstract
Light and phytohormone are external and internal cues that regulate plant growth and development throughout their life cycle. BBXs (B-box domain proteins) are a group of zinc finger proteins that not only directly govern the transcription of target genes but also associate with other factors to create a meticulous regulatory network to precisely regulate numerous aspects of growth and developmental processes in plants. Recent studies demonstrate that BBXs play pivotal roles in light-controlled plant growth and development. Besides, BBXs have been documented to regulate phytohormone-mediated physiological procedures. In this review, we summarize and highlight the multi-faced role of BBXs, with a focus in photomorphogenesis, photoperiodic flowering, shade avoidance, abiotic stress, and phytohormone-mediated growth and development in plant.
Collapse
Affiliation(s)
- Jing Cao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiale Yuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingli Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chen Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Beihong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xianming Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rui Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Xuefen D, Wei X, Wang B, Xiaolin Z, Xian W, Jincheng L. Genome-wide identification and expression pattern analysis of quinoa BBX family. PeerJ 2022; 10:e14463. [PMID: 36523472 PMCID: PMC9745916 DOI: 10.7717/peerj.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/03/2022] [Indexed: 12/11/2022] Open
Abstract
BBX is a transcription factor encoding zinc finger protein that plays a key role in plant growth and development as well as in responding to abiotic stresses. However, in quinoa, which is known as a "super grain" and has extremely high nutritional value, this gene family has not yet been thoroughly studied. In this study, in order to fully understand the family function of the BBX in quinoa, a total of 31 BBX members were identified by bioinformatics methods. These BBX members were mainly acidic proteins, and most of their secondary structures were random coil s, 31 CqBBX members were unevenly distributed on 17 chromosomes, and the analysis of replication events found that quinoa BBX genes produced a total of 14 pairs of gene replication. The BBX genes were divided into five subfamilies according to phylogenetics, and its gene structure and conserved motif were basically consistent with the classification of its phylogenetic tree. In addition, a total of 43 light response elements, hormone response elements, tissue-specific expression response elements, and abiotic stress response elements were found in the promoter region, involving stress elements such as drought and low temperature. Finally, the expression patterns of CqBBX genes in different tissues and abiotic stresses were studied by combining transcriptome data and qRT-PCR , and all 13 genes responded to drought, salt, and low-temperature stress to varying degrees. This study is the first comprehensive study of the BBX family of quinoa, and its results provide important clues for further analysis of the function of the abiotic stress response.
Collapse
Affiliation(s)
- Du Xuefen
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu, Lanzhou, China,Gansu Agricultural University, College of Life Science and Technology, Gansu, Lanzhou, China
| | - Xiaohong Wei
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu, Lanzhou, China,Gansu Agricultural University, College of Life Science and Technology, Gansu, Lanzhou, China,Gansu Agricultural University, College of Agronomy, Gansu, Lanzhou, China
| | - Baoqiang Wang
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu, Lanzhou, China,Gansu Agricultural University, College of Life Science and Technology, Gansu, Lanzhou, China
| | - Zhu Xiaolin
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu, Lanzhou, China,Gansu Agricultural University, College of Life Science and Technology, Gansu, Lanzhou, China,Gansu Agricultural University, College of Agronomy, Gansu, Lanzhou, China
| | - Wang Xian
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu, Lanzhou, China,Gansu Agricultural University, College of Life Science and Technology, Gansu, Lanzhou, China
| | - Luo Jincheng
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu, Lanzhou, China,Gansu Agricultural University, College of Life Science and Technology, Gansu, Lanzhou, China
| |
Collapse
|
6
|
Lira BS, Oliveira MJ, Shiose L, Vicente MH, Souza GPC, Floh EIS, Purgatto E, Nogueira FTS, Freschi L, Rossi M. SlBBX28 positively regulates plant growth and flower number in an auxin-mediated manner in tomato. PLANT MOLECULAR BIOLOGY 2022; 110:253-268. [PMID: 35798935 DOI: 10.1007/s11103-022-01298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
SlBBX28 is a positive regulator of auxin metabolism and signaling, affecting plant growth and flower number in tomato B-box domain-containing proteins (BBXs) comprise a family of transcription factors that regulate several processes, such as photomorphogenesis, flowering, and stress responses. For this reason, attention is being directed toward the functional characterization of these proteins, although knowledge in species other than Arabidopsis thaliana remains scarce. Particularly in the tomato, Solanum lycopersicum, only three out of 31 SlBBX proteins have been functionally characterized to date. To deepen the understanding of the role of these proteins in tomato plant development and yield, SlBBX28, a light-responsive gene, was constitutively silenced, resulting in plants with smaller leaves and fewer flowers per inflorescence. Moreover, SlBBX28 knockdown reduced hypocotyl elongation in darkness-grown tomato. Analyses of auxin content and responsiveness revealed that SlBBX28 promotes auxin-mediated responses. Altogether, the data revealed that SlBBX28 promotes auxin production and signaling, ultimately leading to proper hypocotyl elongation, leaf expansion, and inflorescence development, which are crucial traits determining tomato yield.
Collapse
Affiliation(s)
- Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria José Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lumi Shiose
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mateus Henrique Vicente
- Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Eduardo Purgatto
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Zeng L, Chen H, Wang Y, Hicks D, Ke H, Pruneda-Paz J, Dehesh K. ORA47 is a transcriptional regulator of a general stress response hub. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:562-571. [PMID: 35092704 DOI: 10.1111/tpj.15688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Transcriptional regulators of the general stress response (GSR) reprogram the expression of selected genes to transduce informational signals into cellular events, ultimately manifested in a plant's ability to cope with environmental challenges. Identification of the core GSR regulatory proteins will uncover the principal modules and their mode of action in the establishment of adaptive responses. To define the GSR regulatory components, we employed a yeast-one-hybrid assay to identify the protein(s) binding to the previously established functional GSR motif, termed the rapid stress response element (RSRE). This led to the isolation of octadecanoid-responsive AP2/ERF-domain transcription factor 47 (ORA47), a methyl jasmonate inducible protein. Subsequently, ORA47 transcriptional activity was confirmed using the RSRE-driven luciferase (LUC) activity assay performed in the ORA47 loss- and gain-of-function lines introgressed into the 4xRSRE::Luc background. In addition, the prime contribution of CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 (CAMTA3) protein in the induction of RSRE was reaffirmed by genetic studies. Moreover, exogenous application of methyl jasmonate led to enhanced levels of ORA47 and CAMTA3 transcripts, as well as the induction of RSRE::LUC activity. Metabolic analyses illustrated the reciprocal functional inputs of ORA47 and CAMTA3 in increasing JA levels. Lastly, transient assays identified JASMONATE ZIM-domain1 (JAZ1) as a repressor of RSRE::LUC activity. Collectively, the present study provides fresh insight into the initial features of the mechanism that transduces informational signals into adaptive responses. This mechanism involves the functional interplay between the JA biosynthesis/signaling cascade and the transcriptional reprogramming that potentiates GSR. Furthermore, these findings offer a window into the role of intraorganellar communication in the establishment of adaptive responses.
Collapse
Affiliation(s)
- Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Hao Chen
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yaqi Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Derrick Hicks
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Jose Pruneda-Paz
- Section of Cell and Developmental Biology, University of California, La Jolla, CA, 92093, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
8
|
Veciana N, Martín G, Leivar P, Monte E. BBX16 mediates the repression of seedling photomorphogenesis downstream of the GUN1/GLK1 module during retrograde signalling. THE NEW PHYTOLOGIST 2022; 234:93-106. [PMID: 35043407 PMCID: PMC9305768 DOI: 10.1111/nph.17975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Plastid-to-nucleus retrograde signalling (RS) initiated by dysfunctional chloroplasts impact photomorphogenic development. We have previously shown that the transcription factor GLK1 acts downstream of the RS regulator GUN1 in photodamaging conditions to regulate not only the well established expression of photosynthesis-associated nuclear genes (PhANGs) but also to regulate seedling morphogenesis. Specifically, the GUN1/GLK1 module inhibits the light-induced phytochrome-interacting factor (PIF)-repressed transcriptional network to suppress cotyledon development when chloroplast integrity is compromised, modulating the area exposed to potentially damaging high light. However, how the GUN1/GLK1 module inhibits photomorphogenesis upon chloroplast damage remained undefined. Here, we report the identification of BBX16 as a novel direct target of GLK1. BBX16 is induced and promotes photomorphogenesis in moderate light and is repressed via GUN1/GLK1 after chloroplast damage. Additionally, we showed that BBX16 represents a regulatory branching point downstream of GUN1/GLK1 in the regulation of PhANG expression and seedling development upon RS activation. The gun1 phenotype in lincomycin and the gun1-like phenotype of GLK1OX are markedly suppressed in gun1bbx16 and GLK1OXbbx16. This study identified BBX16 as the first member of the BBX family involved in RS, and defines a molecular bifurcation mechanism operated by GLK1/BBX16 to optimise seedling de-etiolation, and to ensure photoprotection in unfavourable light conditions.
Collapse
Affiliation(s)
- Nil Veciana
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Guiomar Martín
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Pablo Leivar
- Laboratory of BiochemistryInstitut Químic de SarriàUniversitat Ramon Llull08017BarcelonaSpain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
- Consejo Superior de Investigaciones Científicas (CSIC)08028BarcelonaSpain
| |
Collapse
|
9
|
Xu X, Xu J, Yuan C, Chen Q, Liu Q, Wang X, Qin C. BBX17 Interacts with CO and Negatively Regulates Flowering Time in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2022; 63:401-409. [PMID: 35016218 DOI: 10.1093/pcp/pcac005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Floral transition, the change from vegetative growth to reproductive development, is dramatic in flowering plants. Here, we show that one subgroup III member of the B-box (BBX) family, BBX17, is a repressor of floral transition under long-day conditions. BBX17 contains a B-box domain and a CCT domain. Although the phenotype of the BBX17 loss-of-function plants was comparable to that of wild-type plants, BBX17-overexpression plants displayed a delayed-flowering phenotype under long-day conditions. The delayed-flowering phenotype was not the result of an altered CONSTANS (CO) expression level but rather the repression of the FLOWERING LOCUS T (FT) expression level. BBX17 physically associated with CO and repressed its ability to control FT expression. Furthermore, the BBX17 protein degraded in the dark, but irradiating seedlings with white, blue, red or far-red light stabilized the BBX17 level. We also proved that the degradation of BBX17 was via 26S proteasome and requires COP1. Thus, BBX17 acts as a key factor in the CO-FT regulatory system to control Arabidopsis thaliana flowering.
Collapse
Affiliation(s)
- Xiaorui Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingya Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chen Yuan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qianqian Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qinggang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agriproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Chen P, Zhi F, Li X, Shen W, Yan M, He J, Bao C, Fan T, Zhou S, Ma F, Guan Q. Zinc-finger protein MdBBX7/MdCOL9, a target of MdMIEL1 E3 ligase, confers drought tolerance in apple. PLANT PHYSIOLOGY 2022; 188:540-559. [PMID: 34618120 PMCID: PMC8774816 DOI: 10.1093/plphys/kiab420] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 05/21/2023]
Abstract
Water deficit is one of the main challenges for apple (Malus × domestica) growth and productivity. Breeding drought-tolerant cultivars depends on a thorough understanding of the drought responses of apple trees. Here, we identified the zinc-finger protein B-BOX 7/CONSTANS-LIKE 9 (MdBBX7/MdCOL9), which plays a positive role in apple drought tolerance. The overexpression of MdBBX7 enhanced drought tolerance, whereas knocking down MdBBX7 expression reduced it. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis identified one cis-element of MdBBX7, CCTTG, as well as its known binding motif, the T/G box. ChIP-seq and RNA-seq identified 1,197 direct targets of MdBBX7, including ETHYLENE RESPONSE FACTOR (ERF1), EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15), and GOLDEN2-LIKE 1 (GLK1) and these were further verified by ChIP-qPCR and electronic mobility shift assays. Yeast two-hybrid screen identified an interacting protein of MdBBX7, RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1). Further examination revealed that MdMIEL1 could mediate the ubiquitination and degradation of MdBBX7 by the 26S proteasome pathway. Genetic interaction analysis suggested that MdMIEL1 acts as an upstream factor of MdBBX7. In addition, MdMIEL1 was a negative regulator of the apple drought stress response. Taken together, our results illustrate the molecular mechanisms by which the MdMIEL1-MdBBX7 module influences the response of apple to drought stress.
Collapse
Affiliation(s)
- Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianle Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangxi Zhou
- The New Zealand Institute for Plant and Food Research Ltd., Hawke's Bay 4130, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Li M, Kim C. Chloroplast ROS and stress signaling. PLANT COMMUNICATIONS 2022; 3:100264. [PMID: 35059631 PMCID: PMC8760138 DOI: 10.1016/j.xplc.2021.100264] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 05/23/2023]
Abstract
Chloroplasts overproduce reactive oxygen species (ROS) under unfavorable environmental conditions, and these ROS are implicated in both signaling and oxidative damage. There is mounting evidence for their roles in translating environmental fluctuations into distinct physiological responses, but their targets, signaling cascades, and mutualism and antagonism with other stress signaling cascades and within ROS signaling remain poorly understood. Great efforts made in recent years have shed new light on chloroplast ROS-directed plant stress responses, from ROS perception to plant responses, in conditional mutants of Arabidopsis thaliana or under various stress conditions. Some articles have also reported the mechanisms underlying the complexity of ROS signaling pathways, with an emphasis on spatiotemporal regulation. ROS and oxidative modification of affected target proteins appear to induce retrograde signaling pathways to maintain chloroplast protein quality control and signaling at a whole-cell level using stress hormones. This review focuses on these seemingly interconnected chloroplast-to-nucleus retrograde signaling pathways initiated by ROS and ROS-modified target molecules. We also discuss future directions in chloroplast stress research to pave the way for discovering new signaling molecules and identifying intersectional signaling components that interact in multiple chloroplast signaling pathways.
Collapse
|
12
|
Zhao H, Bao Y. PIF4: Integrator of light and temperature cues in plant growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111086. [PMID: 34763871 DOI: 10.1016/j.plantsci.2021.111086] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/18/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Plants are sessile and lack behavioural responses to avoid extreme environmental changes linked to annual seasons. For survival, they have evolved elaborate sensory systems coordinating their architecture and physiology with fluctuating diurnal and seasonal temperatures. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) was initially identified as a key component of the Arabidopsis thaliana phytochrome signalling pathway. It was then identified as playing a central role in promoting plant hypocotyl growth via the activation of auxin synthesis and signalling-related genes. Recent studies expanded its known regulatory functions to thermomorphogenesis and defined PIF4 as a central molecular hub for the integration of environmental light and temperature cues. The present review comprehensively summarizes recent progress in our understanding of PIF4 function in Arabidopsis thaliana, including PIF4-mediated photomorphogenesis and thermomorphogenesis, and the contribution of PIF4 to plant growth via the integration of environmental light and temperature cues. Remaining questions and possible directions for future research on PIF4 are also discussed.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| | - Ying Bao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
13
|
Lin F, Cao J, Yuan J, Liang Y, Li J. Integration of Light and Brassinosteroid Signaling during Seedling Establishment. Int J Mol Sci 2021; 22:12971. [PMID: 34884771 PMCID: PMC8657978 DOI: 10.3390/ijms222312971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 01/02/2023] Open
Abstract
Light and brassinosteroid (BR) are external stimuli and internal cue respectively, that both play critical roles in a wide range of developmental and physiological process. Seedlings grown in the light exhibit photomorphogenesis, while BR promotes seedling etiolation. Light and BR oppositely control the development switch from shotomorphogenesis in the dark to photomorphogenesis in the light. Recent progress report that substantial components have been identified as hubs to integrate light and BR signals. Photomorphogenic repressors including COP1, PIFs, and AGB1 have been reported to elevate BR response, while photomorphogenesis-promoting factors such as HY5, BZS1, and NF-YCs have been proven to repress BR signal. In addition, BR components also modulate light signal. Here, we review the current research on signaling network associated with light and brassinosteroids, with a focus on the integration of light and BR signals enabling plants to thrive in the changeable environment.
Collapse
Affiliation(s)
- Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (J.Y.); (Y.L.); (J.L.)
| | | | | | | | | |
Collapse
|
14
|
Xu Y, Zhu Z. PIF4 and PIF4-Interacting Proteins: At the Nexus of Plant Light, Temperature and Hormone Signal Integrations. Int J Mol Sci 2021; 22:10304. [PMID: 34638641 PMCID: PMC8509071 DOI: 10.3390/ijms221910304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Basic helix-loop-helix (bHLH) family transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is necessary for plant adaption to light or high ambient temperature. PIF4 directly associates with plenty of its target genes and modulates the global transcriptome to induce or reduce gene expression levels. However, PIF4 activity is tightly controlled by its interacting proteins. Until now, twenty-five individual proteins have been reported to physically interact with PIF4. These PIF4-interacting proteins act together with PIF4 and form a unique nexus for plant adaption to light or temperature change. In this review, we will discuss the different categories of PIF4-interacting proteins, including photoreceptors, circadian clock regulators, hormone signaling components, and transcription factors. These distinct PIF4-interacting proteins either integrate light and/or temperature cues with endogenous hormone signaling, or control PIF4 abundances and transcriptional activities. Taken together, PIF4 and PIF4-interacting proteins play major roles for exogenous and endogenous signal integrations, and therefore establish a robust network for plants to cope with their surrounding environmental alterations.
Collapse
Affiliation(s)
- Yang Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Li C, Pei J, Yan X, Cui X, Tsuruta M, Liu Y, Lian C. A poplar B-box protein PtrBBX23 modulates the accumulation of anthocyanins and proanthocyanidins in response to high light. PLANT, CELL & ENVIRONMENT 2021; 44:3015-3033. [PMID: 34114251 DOI: 10.1111/pce.14127] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 05/20/2023]
Abstract
Flavonoids, which modulate plant resistance to various stresses, can be induced by high light. B-box (BBX) transcription factors (TFs) play crucial roles in the transcriptional regulation of flavonoids biosynthesis, but limited information is available on the association of BBX proteins with high light. We present a detailed overview of 45 Populus trichocarpa BBX TFs. Phylogenetic relationships, gene structure, tissue-specific expression patterns and expression profiles were determined under 10 stress or phytohormone treatments to screen candidate BBX proteins associated with the flavonoid pathway. Sixteen candidate genes were identified, of which five were expressed predominantly in young leaves and roots, and BBX23 showed the most distinct response to high light. Overexpression of BBX23 in poplar activated expression of MYB TFs and structural genes in the flavonoid pathway, thereby promoting the accumulation of proanthocyanidins and anthocyanins. CRISPR/Cas9-generated knockout of BBX23 resulted in the opposite trend. Furthermore, the phenotype induced by BBX23 overexpression was enhanced under exposure to high light. BBX23 was capable of binding directly to the promoters of proanthocyanidin- and anthocyanin-specific genes, and its interaction with HY5 enhanced activation activity. We identified novel regulators of flavonoid biosynthesis in poplar, thereby enhancing our general understanding of the transcriptional regulatory mechanisms involved.
Collapse
Affiliation(s)
- Chaofeng Li
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jinli Pei
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Yan
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Momi Tsuruta
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ying Liu
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunlan Lian
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Yuan L, Yu Y, Liu M, Song Y, Li H, Sun J, Wang Q, Xie Q, Wang L, Xu X. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. THE PLANT CELL 2021; 33:2602-2617. [PMID: 34164694 PMCID: PMC8408442 DOI: 10.1093/plcell/koab133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 05/19/2023]
Abstract
The core plant circadian oscillator is composed of multiple interlocked transcriptional-translational feedback loops, which synchronize endogenous diel physiological rhythms to the cyclic changes of environmental cues. PSEUDO-RESPONSE REGULATORS (PRRs) have been identified as negative components in the circadian clock, though their underlying molecular mechanisms remain largely unknown. Here, we found that a subfamily of zinc finger transcription factors, B-box (BBX)-containing proteins, have a critical role in fine-tuning circadian rhythm. We demonstrated that overexpressing Arabidopsis thaliana BBX19 and BBX18 significantly lengthened the circadian period, while the null mutation of BBX19 accelerated the circadian speed. Moreover, BBX19 and BBX18, which are expressed during the day, physically interacted with PRR9, PRR7, and PRR5 in the nucleus in precise temporal ordering from dawn to dusk, consistent with the respective protein accumulation pattern of PRRs. Our transcriptomic and genetic analysis indicated that BBX19 and PRR9, PRR7, and PRR5 cooperatively inhibited the expression of morning-phased clock genes. PRR proteins affected BBX19 recruitment to the CCA1, LHY, and RVE8 promoters. Collectively, our findings show that BBX19 interacts with PRRs to orchestrate circadian rhythms, and suggest the indispensable role of transcriptional regulators in fine-tuning the circadian clock.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yingjun Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yang Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Hongmin Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junqiu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiao Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| |
Collapse
|
17
|
BBX11 promotes red light-mediated photomorphogenic development by modulating phyB-PIF4 signaling. ABIOTECH 2021; 2:117-130. [PMID: 36304757 PMCID: PMC9590482 DOI: 10.1007/s42994-021-00037-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/24/2021] [Indexed: 12/03/2022]
Abstract
phytochrome B (phyB) acts as the red light photoreceptor and negatively regulates the growth-promoting factor PHYTOCHROME INTERACTING 4 (PIF4) through a direct physical interaction, which in turn changes the expression of a large number of genes. phyB-PIF4 module regulates a variety of biological and developmental processes in plants. In this study, we demonstrate that B-BOX PROTEIN 11 (BBX11) physically interacts with both phyB and PIF4. BBX11 negatively regulates PIF4 accumulation as well as its biochemical activity, consequently leading to the repression of PIF4-controlled genes' expression and promotion of photomorphogenesis in the prolonged red light. This study reveals a regulatory mechanism that mediates red light signal transduction and sheds a light on phyB-PIF4 module in promoting red light-dependent photomorphognenesis. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00037-2.
Collapse
|
18
|
Coordinative regulation of plants growth and development by light and circadian clock. ABIOTECH 2021; 2:176-189. [PMID: 36304756 PMCID: PMC9590570 DOI: 10.1007/s42994-021-00041-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022]
Abstract
The circadian clock, known as an endogenous timekeeping system, can integrate various cues to regulate plant physiological functions for adapting to the changing environment and thus ensure optimal plant growth. The synchronization of internal clock with external environmental information needs a process termed entrainment, and light is one of the predominant entraining signals for the plant circadian clock. Photoreceptors can detect and transmit light information to the clock core oscillator through transcriptional or post-transcriptional interactions with core-clock components to sustain circadian rhythms and regulate a myriad of downstream responses, including photomorphogenesis and photoperiodic flowering which are key links in the process of growth and development. Here we summarize the current understanding of the molecular network of the circadian clock and how light information is integrated into the circadian system, especially focus on how the circadian clock and light signals coordinately regulate the common downstream outputs. We discuss the functions of the clock and light signals in regulating photoperiodic flowering among various crop species.
Collapse
|
19
|
An JP, Wang XF, Zhang XW, You CX, Hao YJ. Apple B-box protein BBX37 regulates jasmonic acid mediated cold tolerance through the JAZ-BBX37-ICE1-CBF pathway and undergoes MIEL1-mediated ubiquitination and degradation. THE NEW PHYTOLOGIST 2021; 229:2707-2729. [PMID: 33119890 DOI: 10.1111/nph.17050] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/23/2020] [Indexed: 05/03/2023]
Abstract
The plant hormone jasmonic acid (JA) is involved in the cold stress response, and the inducer of CBF expression 1 (ICE1)- C-repeat binding factor (CBF) regulatory cascade plays a key role in the regulation of cold stress tolerance. In this study, we showed that a novel B-box (BBX) protein MdBBX37 positively regulates JA-mediated cold-stress resistance in apple. We found that MdBBX37 bound to the MdCBF1 and MdCBF4 promoters to activate their transcription, and also interacted with MdICE1 to enhance the transcriptional activity of MdICE1 on MdCBF1, thus promoting its cold tolerance. Two JA signaling repressors, MdJAZ1 and MdJAZ2 (JAZ, JAZMONATE ZIM-DOMAIN), interacted with MdBBX37 to repress the transcriptional activity of MdBBX37 on MdCBF1 and MdCBF4, and also interfered with the interaction between MdBBX37 and MdICE1, thus negatively regulating JA-mediated cold tolerance. E3 ligase MdMIEL1 (MIEL1, MYB30-Interacting E3 Ligase1) reduced MdBBX37-improved cold resistance by mediating ubiquitination and degradation of the MdBBX37 protein. The data reveal that MIEL1 and JAZ proteins co-regulate JA-mediated cold stress tolerance through the BBX37-ICE1-CBF module in apple. These results will aid further examination of the post-translational modification of BBX proteins and the regulatory mechanism of JA-mediated cold stress tolerance.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
20
|
Yan J, Kim YJ, Somers DE. Post-Translational Mechanisms of Plant Circadian Regulation. Genes (Basel) 2021; 12:325. [PMID: 33668215 PMCID: PMC7995963 DOI: 10.3390/genes12030325] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The molecular components of the circadian system possess the interesting feature of acting together to create a self-sustaining oscillator, while at the same time acting individually, and in complexes, to confer phase-specific circadian control over a wide range of physiological and developmental outputs. This means that many circadian oscillator proteins are simultaneously also part of the circadian output pathway. Most studies have focused on transcriptional control of circadian rhythms, but work in plants and metazoans has shown the importance of post-transcriptional and post-translational processes within the circadian system. Here we highlight recent work describing post-translational mechanisms that impact both the function of the oscillator and the clock-controlled outputs.
Collapse
Affiliation(s)
| | | | - David E. Somers
- Department of Molecular Genetics, The Ohio State University; Columbus, OH 43210, USA; (J.Y.); (Y.J.K.)
| |
Collapse
|
21
|
Zhao H, Xu D, Tian T, Kong F, Lin K, Gan S, Zhang H, Li G. Molecular and functional dissection of EARLY-FLOWERING 3 (ELF3) and ELF4 in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110786. [PMID: 33487361 DOI: 10.1016/j.plantsci.2020.110786] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/31/2020] [Accepted: 11/28/2020] [Indexed: 05/18/2023]
Abstract
The circadian clock is an endogenous timekeeper system that generates biological rhythms of approximately 24 h in most organisms. EARLY FLOWERING 3 (ELF3) and ELF4 were initially identified as negative regulators of flowering time in Arabidopsis thaliana. They were then found to play crucial roles in the circadian clock by integrating environmental light and ambient temperature signals and transmitting them to the central oscillator, thereby regulating various downstream cellular and physiological processes. At dusk, ELF3 acts as a scaffold, interacting with ELF4 and the transcription factor LUX ARRHYTHMO (PHYTOCLOCK1) to form an EVENING COMPLEX (EC). This complex represses the transcription of multiple circadian clock-related genes, thus inhibiting hypocotyl elongation and flowering. Subsequent studies have expanded knowledge about the regulatory roles of the EC in thermomorphogenesis and shade responses. In addition, ELF3 and ELF4 also form multiple complexes with other proteins including chromatin remodeling factors, histone deacetylase, and transcription factors, thus enabling the transcriptional repression of diverse targets. In this review, we summarize the recent advances in elucidating the regulatory mechanisms of ELF3 and ELF4 in plants and discuss directions for future research on ELF3 and ELF4.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China; College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Di Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Tian Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Fanying Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Ke Lin
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China; Department of Biology Science and Technology, Taishan University, Tai'an, 271000, China
| | - Shuo Gan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Haisen Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271000, China.
| |
Collapse
|
22
|
Ponnu J, Hoecker U. Illuminating the COP1/SPA Ubiquitin Ligase: Fresh Insights Into Its Structure and Functions During Plant Photomorphogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:662793. [PMID: 33841486 PMCID: PMC8024647 DOI: 10.3389/fpls.2021.662793] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 05/07/2023]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 functions as an E3 ubiquitin ligase in plants and animals. Discovered originally in Arabidopsis thaliana, COP1 acts in a complex with SPA proteins as a central repressor of light-mediated responses in plants. By ubiquitinating and promoting the degradation of several substrates, COP1/SPA regulates many aspects of plant growth, development and metabolism. In contrast to plants, human COP1 acts as a crucial regulator of tumorigenesis. In this review, we discuss the recent important findings in COP1/SPA research including a brief comparison between COP1 activity in plants and humans.
Collapse
|
23
|
Hwang G, Park J, Kim S, Park J, Seo D, Oh E. Overexpression of BBX18 Promotes Thermomorphogenesis Through the PRR5-PIF4 Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:782352. [PMID: 34899810 PMCID: PMC8651621 DOI: 10.3389/fpls.2021.782352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/03/2021] [Indexed: 05/19/2023]
Abstract
Thermomorphogenesis is the morphological response of plants to an elevation in the ambient temperature, which is mediated by the bHLH transcription factor PIF4. The evening-expressed clock component, PRR5, directly represses the expression of PIF4 mRNA. Additionally, PRR5 interacts with PIF4 protein and represses its transactivation activity, which in turn suppresses the thermoresponsive growth in the evening. Here, we found that the B-box zinc finger protein, BBX18, interacts with PRR5 through the B-Box2 domain. Deletion of the B-Box2 domain abolished the functions of BBX18, including the stimulation of PIF4 mRNA expression and hypocotyl growth. Overexpression of BBX18, and not of B-Box2-deleted BBX18, restored the expression of thermoresponsive genes in the evening. We further show that BBX18 prevents PRR5 from inhibiting PIF4-mediated high temperature responses. Taken together, our results suggest that BBX18 regulates thermoresponsive growth through the PRR5-PIF4 pathway.
Collapse
|
24
|
Bu X, Wang X, Yan J, Zhang Y, Zhou S, Sun X, Yang Y, Ahammed GJ, Liu Y, Qi M, Wang F, Li T. Genome-Wide Characterization of B-Box Gene Family and Its Roles in Responses to Light Quality and Cold Stress in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:698525. [PMID: 34290726 PMCID: PMC8287887 DOI: 10.3389/fpls.2021.698525] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/28/2021] [Indexed: 05/17/2023]
Abstract
Perceiving incoming environmental information is critical for optimizing plant growth and development. Multiple B-box proteins (BBXs) play essential roles in light-dependent developmental processes in plants. However, whether BBXs function as a signal integrator between light and temperature in tomato plants remains elusive. In this study, 31 SlBBX genes were identified from the newly released tomato (Solanum lycopersicum) genome sequences and were clustered into five subgroups. Gene structure and protein motif analyses showed relatively high conservation of closely clustered SlBBX genes within each subgroup; however, genome mapping analysis indicated the uneven distribution of the SlBBX genes on tomato chromosomes. Promoter cis-regulatory elements prediction and gene expression indicated that SlBBX genes were highly responsive to light, hormones, and stress conditions. Reverse genetic approaches revealed that disruption of SlBBX7, SlBBX9, and SlBBX20 largely suppressed the cold tolerance of tomato plants. Furthermore, the impairment of SlBBX7, SlBBX9, and SlBBX20 suppressed the photosynthetic response immediately after cold stress. Due to the impairment of non-photochemical quenching (NPQ), the excess photon energy and electron flow excited by low temperature were not consumed in SlBBX7-, SlBBX9-, and SlBBX20- silenced plants, leading to the over reduction of electron carriers and damage of the photosystem. Our study emphasized the positive roles of light signaling transcription factors SlBBXs in cold tolerance in tomato plants, which may improve the current understanding of how plants integrate light and temperature signals to adapt to adverse environments.
Collapse
Affiliation(s)
- Xin Bu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Xiujie Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jiarong Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ying Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shunyuan Zhou
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xin Sun
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Youxin Yang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- *Correspondence: Feng Wang orcid.org/0000-0001-5351-1531
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Tianlai Li
| |
Collapse
|
25
|
Lira BS, Oliveira MJ, Shiose L, Wu RTA, Rosado D, Lupi ACD, Freschi L, Rossi M. Light and ripening-regulated BBX protein-encoding genes in Solanum lycopersicum. Sci Rep 2020; 10:19235. [PMID: 33159121 PMCID: PMC7648751 DOI: 10.1038/s41598-020-76131-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
Light controls several aspects of plant development through a complex signalling cascade. Several B-box domain containing proteins (BBX) were identified as regulators of Arabidopsis thaliana seedling photomorphogenesis. However, the knowledge about the role of this protein family in other physiological processes and species remains scarce. To fill this gap, here BBX protein encoding genes in tomato genome were characterised. The robust phylogeny obtained revealed how the domain diversity in this protein family evolved in Viridiplantae and allowed the precise identification of 31 tomato SlBBX proteins. The mRNA profiling in different organs revealed that SlBBX genes are regulated by light and their transcripts accumulation is directly affected by the chloroplast maturation status in both vegetative and fruit tissues. As tomato fruits develops, three SlBBXs were found to be upregulated in the early stages, controlled by the proper chloroplast differentiation and by the PHYTOCHROME (PHY)-dependent light perception. Upon ripening, other three SlBBXs were transcriptionally induced by RIPENING INHIBITOR master transcriptional factor, as well as by PHY-mediated signalling and proper plastid biogenesis. Altogether, the results obtained revealed a conserved role of SlBBX gene family in the light signalling cascade and identified putative members affecting tomato fruit development and ripening.
Collapse
Affiliation(s)
- Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Maria José Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Lumi Shiose
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Raquel Tsu Ay Wu
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Daniele Rosado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | | | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil.
| |
Collapse
|
26
|
Song Z, Yan T, Liu J, Bian Y, Heng Y, Lin F, Jiang Y, Wang Deng X, Xu D. BBX28/BBX29, HY5 and BBX30/31 form a feedback loop to fine-tune photomorphogenic development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:377-390. [PMID: 32654323 DOI: 10.1111/tpj.14929] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 05/23/2023]
Abstract
Light is one of the key environmental cues controlling photomorphogenic development in plants. A group of B-box (BBX) proteins play critical roles in this developmental process through diverse regulatory mechanisms. In this study we report that BBX29 acts as a negative regulator of light signaling. BBX29 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and undergoes COP1-mediated degradation in the dark. Mutant seedlings with loss of BBX29 function show shortened hypocotyls, while transgenic plants overexpressing BBX29 display elongated hypocotyls in the light. Both BBX28 and BBX29 interfere with the binding of ELONGATED HYPOCOTYL 5 (HY5) to the promoters of BBX30 and BBX31, consequently leading to the upregulation of their transcript levels. BBX30 and BBX31 associate with the promoter regions of BBX28 and BBX29, which in turn promotes the expression of these genes. Taken together, this study reveals a transcriptional feedback loop consisting of BBX28, BBX29, BBX30, BBX31, and HY5 that serves to fine-tune photomorphogenesis in response to light in plants.
Collapse
Affiliation(s)
- Zhaoqing Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Yan
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiujie Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yueqin Heng
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Jiang
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xing Wang Deng
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
27
|
Song Z, Bian Y, Liu J, Sun Y, Xu D. B-box proteins: Pivotal players in light-mediated development in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1293-1309. [PMID: 32237198 DOI: 10.1111/jipb.12935] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2020] [Indexed: 05/05/2023]
Abstract
Light signals mediate a number of physiological and developmental processes in plants, such as flowering, photomorphogenesis, and pigment accumulation. Emerging evidence has revealed that a group of B-box proteins (BBXs) function as central players in these light-mediated developmental processes. B-box proteins are a class of zinc-coordinated transcription factors or regulators that not only directly mediate the transcription of target genes but also interact with various other factors to create a complex regulatory network involved in the precise control of plant growth and development. This review summarizes and highlights the recent findings concerning the critical regulatory functions of BBXs in photoperiodic flowering, light signal transduction and light-induced pigment accumulation and their molecular modes of action at the transcriptional and post-translational levels in plants.
Collapse
Affiliation(s)
- Zhaoqing Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiujie Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuting Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
28
|
Sun YB, Zhang XJ, Zhong MC, Dong X, Yu DM, Jiang XD, Wang D, Cui WH, Chen JH, Hu JY. Genome-wide identification of WD40 genes reveals a functional diversification of COP1-like genes in Rosaceae. PLANT MOLECULAR BIOLOGY 2020; 104:81-95. [PMID: 32621166 DOI: 10.1007/s11103-020-01026-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Genome-wide identification of WD40-like genes reveals a duplication of COP1-like genes, one of the key players involved in regulation of flowering time and photomorphogenesis, with strong functional diversification in Rosaceae. WD40 proteins play crucial roles in a broad spectrum of developmental and physiological processes. Here, we conducted a systematic characterization of this family of genes in Rosa chinensis 'Old Blush' (OB), a founder genotype for modern rose domestication. We identified 187 rose WD40 genes and classified them into 5 clusters and 15 subfamilies with 11 of RcWD40s presumably generated via tandem duplication. We found RcWD40 genes were expressed differentially following stages of vegetative and reproductive development. We detected a duplication of CONSTITUTIVE PHOTOMORPHOGENIC1-like genes in rose (RcCOP1 and RcCOP1L) and other Rosaceae plants. Featuring a distinct expression pattern and a different profile of cis-regulatory-elements in the transcriptional regulatory regions, RcCOP1 seemed being evolutionarily conserved while RcCOP1L did not dimerize with RcHY5 and RcSPA4. Our data thus reveals a functional diversification of COP1-like genes in Rosacaeae plants, and provides a valuable resource to explore the potential function and evolution of WD40-like genes in Rosaceae plants.
Collapse
Affiliation(s)
- Yi-Bo Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jia Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, 650223, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong-Mei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Hua Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang-Hua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, 650223, Yunnan, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
29
|
Müller LM, Mombaerts L, Pankin A, Davis SJ, Webb AAR, Goncalves J, von Korff M. Differential Effects of Day/Night Cues and the Circadian Clock on the Barley Transcriptome. PLANT PHYSIOLOGY 2020; 183:765-779. [PMID: 32229608 PMCID: PMC7271788 DOI: 10.1104/pp.19.01411] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/04/2020] [Indexed: 05/05/2023]
Abstract
The circadian clock is a complex transcriptional network that regulates gene expression in anticipation of the day/night cycle and controls agronomic traits in plants. However, in crops, how the internal clock and day/night cues affect the transcriptome remains poorly understood. We analyzed the diel and circadian leaf transcriptomes in the barley (Hordeum vulgare) cultivar 'Bowman' and derived introgression lines harboring mutations in EARLY FLOWERING3 (ELF3), LUX ARRHYTHMO1 (LUX1), and EARLY MATURITY7 (EAM7). The elf3 and lux1 mutants exhibited abolished circadian transcriptome oscillations under constant conditions, whereas eam7 maintained oscillations of ≈30% of the circadian transcriptome. However, day/night cues fully restored transcript oscillations in all three mutants and thus compensated for a disrupted oscillator in the arrhythmic barley clock mutants elf3 and lux1 Nevertheless, elf3, but not lux1, affected the phase of the diel oscillating transcriptome and thus the integration of external cues into the clock. Using dynamical modeling, we predicted a structure of the barley circadian oscillator and interactions of its individual components with day/night cues. Our findings provide a valuable resource for exploring the function and output targets of the circadian clock and for further investigations into the diel and circadian control of the barley transcriptome.
Collapse
Affiliation(s)
- Lukas M Müller
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
- Max-Planck-Institute for Plant Breeding Research, Cologne 50829, Germany
| | | | - Artem Pankin
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
- Max-Planck-Institute for Plant Breeding Research, Cologne 50829, Germany
- Cluster of Excellence on Plant Sciences, "SMART Plants for Tomorrow's Needs," Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Seth J Davis
- Max-Planck-Institute for Plant Breeding Research, Cologne 50829, Germany
- Department of Department of Biology, University of York, York YO10 5DD, United Kingdom
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 15 475004, China
| | - Alex A R Webb
- Circadian Signal Transduction, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Jorge Goncalves
- Systems Control Group, University of Luxembourg, 1009 Luxembourg
| | - Maria von Korff
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
- Max-Planck-Institute for Plant Breeding Research, Cologne 50829, Germany
- Cluster of Excellence on Plant Sciences, "SMART Plants for Tomorrow's Needs," Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
30
|
Zheng Q, Chen Y, Jia X, Wang Y, Wu T, Xu X, Han Z, Zhang Z, Zhang X. MicroRNA156 (miR156) Negatively Impacts Mg-Protoporphyrin IX (Mg-Proto IX) Biosynthesis and Its Plastid-Nucleus Retrograde Signaling in Apple. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9050653. [PMID: 32455854 PMCID: PMC7285031 DOI: 10.3390/plants9050653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 05/07/2023]
Abstract
Plastid-nucleus retrograde signaling (PNRS) play essential roles in regulating nuclear gene expression during plant growth and development. Excessive reactive oxygen species can trigger PNRS. We previously reported that in apple (Malus domestica Borkh.) seedlings, the expression of microRNA156 (miR156) was significantly low in the adult phase, which was accompanied by high levels of hydrogen peroxide (H2O2) accumulation in chloroplasts. However, it was unclear whether adult-phase-specific chloroplast H2O2 may induce PNRS and affect miR156 expression, or miR156 triggers adult phase PNRS during the ontogenesis. In this paper, we examined the relationship between miR156 levels and six PNRS components in juvenile and adult phase leaves from 'Zisai Pearl'×'Red Fuji' hybrids. We found that PNRS generated by singlet oxygen (1O2), the photosynthetic redox state, methylerythritol cyclodiphosphate (MEcPP), SAL1-3-phosphoadenosine 5-phosphate (PAP) and WHIRLY1 were not involved. The accumulation of Mg-protoporphyrin IX (Mg-Proto IX), the expression of the synthetic genes MdGUN5 and MdGUN6, and Mg-Proto IX PNRS related nuclear genes increased with ontogenesis. These changes were negatively correlated with miR156 expression. Manipulating Mg-Proto IX synthesis with 5-aminolevulinic acid (ALA) or gabaculine did not affect miR156 expression in vitro shoots. In contrast, modulating miR156 expression via MdGGT1 or MdMIR156a6 transgenesis led to changes in Mg-Proto IX contents and the corresponding gene expressions. It was concluded that the Mg-Proto IX PNRS was regulated downstream of miR156 regardless of adult-phase-specific plastid H2O2 accumulation. The findings may facilitate the understanding of the mechanism of ontogenesis in higher plants.
Collapse
Affiliation(s)
- Qingbo Zheng
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.Z.); (Y.C.); (Y.W.); (T.W.); (X.X.); (Z.H.)
| | - Yakun Chen
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.Z.); (Y.C.); (Y.W.); (T.W.); (X.X.); (Z.H.)
| | - Xiaolin Jia
- Plant Genomics and Molecular Breeding, Henan Agricultural University, Zhengzhou 450002, China;
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.Z.); (Y.C.); (Y.W.); (T.W.); (X.X.); (Z.H.)
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.Z.); (Y.C.); (Y.W.); (T.W.); (X.X.); (Z.H.)
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.Z.); (Y.C.); (Y.W.); (T.W.); (X.X.); (Z.H.)
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.Z.); (Y.C.); (Y.W.); (T.W.); (X.X.); (Z.H.)
| | - Zhihong Zhang
- Horticulture College, Shenyang Agricultural University, Shenyang 110161, China
- Correspondence: (Z.Z.); (X.Z.)
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.Z.); (Y.C.); (Y.W.); (T.W.); (X.X.); (Z.H.)
- Correspondence: (Z.Z.); (X.Z.)
| |
Collapse
|
31
|
Ou C, Zhang X, Wang F, Zhang L, Zhang Y, Fang M, Wang J, Wang J, Jiang S, Zhang Z. A 14 nucleotide deletion mutation in the coding region of the PpBBX24 gene is associated with the red skin of "Zaosu Red" pear ( Pyrus pyrifolia White Pear Group): a deletion in the PpBBX24 gene is associated with the red skin of pear. HORTICULTURE RESEARCH 2020; 7:39. [PMID: 32257225 PMCID: PMC7109114 DOI: 10.1038/s41438-020-0259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 05/02/2023]
Abstract
Red skin is an important quality trait for pear fruits and is determined by the concentration and composition of anthocyanins. The regulatory mechanism underlying anthocyanin accumulation is a popular topic in fruit research. Red mutants are ideal materials for studying the molecular mechanism of color diversity in pear. Although several red pear mutants have been cultivated and are in production, no exact locus containing the responsible genetic mutation has been identified. In this study, by combining the bulked segregant analysis with whole-genome sequencing, we identified a 14 nucleotide deletion mutation in the coding region of the PpBBX24 gene from the red pear mutant "Zaosu Red". We further verified that the deletion was present only in the red mutant of "Zaosu" and in its red offspring, which was different from that which occurred in other red pear fruits. This deletion results in a coding frame shift such that there is an early termination of the PpBBX24 gene and loss of key NLS and VP domains from PpBBX24. The lost domains may reduce or alter the normal function of PpBBX24. In addition, we found that the transcript levels of the PpMYB10 and PpHY5 genes in red samples were significantly higher than those in green samples, whereas the results for the normal-type PpBBX24 gene were the opposite. We ultimately revealed that the 14 nucleotide deletion mutation in the coding region of the PpBBX24 gene is associated with the red skin of the "Zaosu Red" pear. This finding of somatic mutational events will be helpful for breeding new red pear cultivars and for understanding the regulatory mechanisms involved in pear skin pigmentation.
Collapse
Affiliation(s)
- Chunqing Ou
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110161 Liaoning PR China
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100 Liaoning PR China
| | - Xiaoli Zhang
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Horticultural Crops Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091 Xinjiang PR China
| | - Fei Wang
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100 Liaoning PR China
| | - Liyi Zhang
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100 Liaoning PR China
| | - Yanjie Zhang
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100 Liaoning PR China
| | - Ming Fang
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100 Liaoning PR China
| | - Jiahong Wang
- Biomarker Technologies Corporation, Beijing, 101300 PR China
| | - Jixun Wang
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Horticultural Crops Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091 Xinjiang PR China
| | - Shuling Jiang
- Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100 Liaoning PR China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110161 Liaoning PR China
| |
Collapse
|
32
|
Wei H, Wang P, Chen J, Li C, Wang Y, Yuan Y, Fang J, Leng X. Genome-wide identification and analysis of B-BOX gene family in grapevine reveal its potential functions in berry development. BMC PLANT BIOLOGY 2020; 20:72. [PMID: 32054455 PMCID: PMC7020368 DOI: 10.1186/s12870-020-2239-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/03/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND The B-BOX (BBX) proteins are the class of zinc-finger transcription factors and can regulate plant growth, development, and endure stress response. In plants, the BBX gene family has been identified in Arabidopsis, rice, and tomato. However, no systematic analysis of BBX genes has been undertaken in grapevine. RESULTS In this study, 24 grapevine BBX (VvBBX) genes were identified by comprehensive bioinformatics analysis. Subsequently, the chromosomal localizations, gene structure, conserved domains, phylogenetic relationship, gene duplication, and cis-acting elements were analyzed. Phylogenetic analysis divided VvBBX genes into five subgroups. Numerous cis-acting elements related to plant development, hormone and/or stress responses were identified in the promoter of the VvBBX genes. The tissue-specific expressional dynamics of VvBBX genes demonstrated that VvBBXs might play important role in plant growth and development. The transcript analysis from transcriptome data and qRT-PCR inferred that 11 VvBBX genes were down-regulated in different fruit developmental stages, while three VvBBX genes were up-regulated. It is also speculated that VvBBX genes might be involved in multiple hormone signaling (ABA, ethylene, GA3, and CPPU) as transcriptional regulators to modulate berry development and ripening. VvBBX22 seems to be responsive to multiple hormone signaling, including ABA, ethylene GA3, and CPPU. Some VvBBX genes were strongly induced by Cu, salt, waterlogging, and drought stress treatment. Furthermore, the expression of VvBBX22 proposed its involvement in multiple functions, including leaf senescence, abiotic stress responses, fruit development, and hormone response. CONCLUSIONS Our results will provide the reference for functional studies of BBX gene family, and highlight its functions in grapevine berry development and ripening. The results will help us to better understand the complexity of the BBX gene family in abiotic stress tolerance and provide valuable information for future functional characterization of specific genes in grapevine.
Collapse
Affiliation(s)
- Hongru Wei
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Peipei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianqing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Changjun Li
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Yongzhang Wang
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Yongbing Yuan
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Xiangpeng Leng
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| |
Collapse
|
33
|
An JP, Wang XF, Espley RV, Lin-Wang K, Bi SQ, You CX, Hao YJ. An Apple B-Box Protein MdBBX37 Modulates Anthocyanin Biosynthesis and Hypocotyl Elongation Synergistically with MdMYBs and MdHY5. PLANT & CELL PHYSIOLOGY 2020; 61:130-143. [PMID: 31550006 DOI: 10.1093/pcp/pcz185] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/13/2019] [Indexed: 05/18/2023]
Abstract
As an important environment factor, light affects plant growth and development throughout life. B-BOX (BBX) proteins play key roles in the regulation of light signaling. Although the multiple roles of BBX proteins have been extensively studied in Arabidopsis, the research in apple is much less extensive. In this study, we systematically characterized the negative role of an apple BBX protein MdBBX37 in light signaling, including inhibiting anthocyanin biosynthesis and promoting hypocotyl elongation. We found that MdBBX37 interacted with MdMYB1 and MdMYB9, two key positive regulators of anthocyanin biosynthesis, and inhibited the binding of those two proteins to their target genes and, therefore, negatively regulated anthocyanin biosynthesis. In addition, MdBBX37 directly bound to the promoter of MdHY5, a positive regulator of light signaling, and suppressed its expression, and thus relieved MdHY5-mediated hypocotyl inhibition. Taken together, our investigations suggest that MdBBX37 is a negative regulator of light signaling in apple. Our study will provide reference for further study on the functions of BBX proteins in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert, Auckland, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert, Auckland, New Zealand
| | - Si-Qi Bi
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
34
|
Khokhar W, Hassan MA, Reddy ASN, Chaudhary S, Jabre I, Byrne LJ, Syed NH. Genome-Wide Identification of Splicing Quantitative Trait Loci (sQTLs) in Diverse Ecotypes of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:1160. [PMID: 31632417 PMCID: PMC6785726 DOI: 10.3389/fpls.2019.01160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/26/2019] [Indexed: 05/27/2023]
Abstract
Alternative splicing (AS) of pre-mRNAs contributes to transcriptome diversity and enables plants to generate different protein isoforms from a single gene and/or fine-tune gene expression during different development stages and environmental changes. Although AS is pervasive, the genetic basis for differential isoform usage in plants is still emerging. In this study, we performed genome-wide analysis in 666 geographically distributed diverse ecotypes of Arabidopsis thaliana to identify genomic regions [splicing quantitative trait loci (sQTLs)] that may regulate differential AS. These ecotypes belong to different microclimatic conditions and are part of the relict and non-relict populations. Although sQTLs were spread across the genome, we observed enrichment for trans-sQTL (trans-sQTLs hotspots) on chromosome one. Furthermore, we identified several sQTL (911) that co-localized with trait-linked single nucleotide polymorphisms (SNP) identified in the Arabidopsis genome-wide association studies (AraGWAS). Many sQTLs were enriched among circadian clock, flowering, and stress-responsive genes, suggesting a role for differential isoform usage in regulating these important processes in diverse ecotypes of Arabidopsis. In conclusion, the current study provides a deep insight into SNPs affecting isoform ratios/genes and facilitates a better mechanistic understanding of trait-associated SNPs in GWAS studies. To the best of our knowledge, this is the first report of sQTL analysis in a large set of Arabidopsis ecotypes and can be used as a reference to perform sQTL analysis in the Brassicaceae family. Since whole genome and transcriptome datasets are available for these diverse ecotypes, it could serve as a powerful resource for the biological interpretation of trait-associated loci, splice isoform ratios, and their phenotypic consequences to help produce more resilient and high yield crop varieties.
Collapse
Affiliation(s)
- Waqas Khokhar
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Musa A. Hassan
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Saurabh Chaudhary
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Ibtissam Jabre
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Lee J. Byrne
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Naeem H. Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| |
Collapse
|
35
|
Bai M, Sun J, Liu J, Ren H, Wang K, Wang Y, Wang C, Dehesh K. The B-box protein BBX19 suppresses seed germination via induction of ABI5. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1192-1202. [PMID: 31112314 PMCID: PMC6744306 DOI: 10.1111/tpj.14415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 05/04/2023]
Abstract
Seed germination is a fundamental process in the plant life cycle and is regulated by functionally opposing internal and external inputs. Here we explored the role of a negative regulator of photomorphogenesis, a B-box-containing protein (BBX19), as a molecular link between the inhibitory action of the phytohormone abscisic acid (ABA) and the promoting role of light in germination. We show that seeds of BBX19-overexpressing lines, in contrast to those of BBX19 RNA interference lines, display ABA hypersensitivity, albeit independently of elongated hypocotyl 5 (HY5). Moreover, we establish that BBX19 functions neither via perturbation of GA signaling, the ABA antagonistic phytohormone, nor through interference with the DELLA protein germination repressors. Rather, BBX19 functions as an inducer of ABA INSENSITIVE5 (ABI5) by binding to the light-responsive GT1 motifs in the gene promoter. In summary, we identify BBX19 as a regulatory checkpoint, directing diverse developmental processes and tailoring adaptive responses to distinct endogenous and exogenous signals.
Collapse
Affiliation(s)
- Mengjuan Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Haoran Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Kang Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yanling Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, P.R. China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506, USA
| |
Collapse
|
36
|
Heng Y, Lin F, Jiang Y, Ding M, Yan T, Lan H, Zhou H, Zhao X, Xu D, Deng XW. B-Box Containing Proteins BBX30 and BBX31, Acting Downstream of HY5, Negatively Regulate Photomorphogenesis in Arabidopsis. PLANT PHYSIOLOGY 2019; 180:497-508. [PMID: 30765480 PMCID: PMC6501093 DOI: 10.1104/pp.18.01244] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/04/2019] [Indexed: 05/04/2023]
Abstract
Light-mediated seedling development is coordinately controlled by a variety of key regulators. Here, we identified two B-box (BBX)-containing proteins, BBX30 and BBX31, as repressors of photomorphogenesis. ELONGATED HYPOCOTYL5, a central regulator of light signaling, directly binds to the G-box cis-element present in the promoters of BBX30 and BBX31 and negatively controls their transcription levels in the light. Seedlings with mutations in BBX30 or BBX31 are hypersensitive to light, whereas the overexpression of BBX30 or BBX31 leads to hypo-photomorphogenic growth in the light. Furthermore, transgenic and phenotypic analysis revealed that the B-box domain of BBX30 or BBX31 is essential for their respective functioning in the regulation of photomorphogenic development in plants. In conclusion, BBX30 and BBX31 act as key negative regulators of light signaling, and their transcription is repressed by ELONGATED HYPOCOTYL5 through directly associating with their promoters.
Collapse
Affiliation(s)
- Yueqin Heng
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Lin
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingquan Ding
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A&F University, Lin'an 311300, China
| | - Tingting Yan
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongxia Lan
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hua Zhou
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xianhai Zhao
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Wang Deng
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Jones MA. Retrograde signalling as an informant of circadian timing. THE NEW PHYTOLOGIST 2019; 221:1749-1753. [PMID: 30299544 DOI: 10.1111/nph.15525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1749 I. The circadian system is responsive to environmental change 1749 II. Photoassimilates regulate circadian timing 1750 III. Retrograde signals contribute to circadian timing 1750 IV. Conclusions 1752 Acknowledgements 1752 References 1752 SUMMARY: The circadian system comprises interlocking transcriptional-translational feedback loops that regulate gene expression and consequently modulate plant development and physiology. In order to maximize utility, the circadian system is entrained by changes in temperature and light, allowing endogenous rhythms to be synchronized with both daily and seasonal environmental change. Although a great deal of environmental information is decoded by a suite of photoreceptors, it is also becoming apparent that changes in cellular metabolism also contribute to circadian timing, through either the stimulation of metabolic pathways or the accumulation of metabolic intermediates as a consequence of environmental stress. As the source of many of these metabolic byproducts, mitochondria and chloroplasts have begun to be viewed as environmental sensors, and rapid advancement of this field is revealing the complex web of signalling pathways initiated by organelle perturbation. This review highlights recent advances in our understanding of how this metabolic regulation influences circadian timing.
Collapse
Affiliation(s)
- Matthew A Jones
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
38
|
Wirojsirasak W, Kalapanulak S, Saithong T. Pan- and core- gene association networks: Integrative approaches to understanding biological regulation. PLoS One 2019; 14:e0210481. [PMID: 30625202 PMCID: PMC6326509 DOI: 10.1371/journal.pone.0210481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/25/2018] [Indexed: 02/06/2023] Open
Abstract
The rapid increase in transcriptome data provides an opportunity to access the complex regulatory mechanisms in cellular systems through gene association network (GAN). Nonetheless, GANs derived from single datasets generally allow us to envisage only one side of the regulatory network, even under the particular condition of study. The circumstance is well demonstrated by inconsistent GANs of individual datasets proposed for similar experimental conditions, which always leads to ambiguous interpretation. Here, pan- and core-gene association networks (pan- and core-GANs), analogous to the pan- and core-genome concepts, are proposed to increase the power of inference through the integration of multiple, diverse datasets. The core-GAN represents the consensus associations of genes that were inferred from all individual networks. On the other hand, the pan-GAN represents the extensive gene-gene associations that occurred in each individual network. The pan- and core-GANs prospects were demonstrated based on three time series microarray datasets in leaves of Arabidopsis thaliana grown under diurnal conditions. We showed the overall performance of pan- and core-GANs was more robust to the number of data points in gene expression data compared to the GANs inferred from individual datasets. In addition, the incorporation of multiple data broadened our understanding of the biological regulatory system. While the pan-GAN enabled us to observe the landscape of gene association system, core-GAN highlighted the basic gene-associations in essence of the regulation regulating starch metabolism in leaves of Arabidopsis.
Collapse
Affiliation(s)
- Warodom Wirojsirasak
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Saowalak Kalapanulak
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Treenut Saithong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- * E-mail:
| |
Collapse
|
39
|
Wang L, Yin Y, Wang LF, Wang M, Zhao M, Tian Y, Li YF. Transcriptome Profiling of the Elongating Internode of Cotton ( Gossypium hirsutum L.) Seedlings in Response to Mepiquat Chloride. FRONTIERS IN PLANT SCIENCE 2019; 10:1751. [PMID: 32047505 PMCID: PMC6997534 DOI: 10.3389/fpls.2019.01751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/13/2019] [Indexed: 05/22/2023]
Abstract
The plant growth retardant mepiquat chloride (MC) has been extensively used to produce compact plant canopies and increase yield in cotton (Gossypium hirsutum L.). Previous studies showed that MC reduced plant height and internode length by inhibiting GA biosynthesis and cell elongation. However, whether there are other molecular mechanisms underlying MC-induced growth retardation has remained largely unknown. In the present study, we conducted histological, transcriptomic, and phytohormone analyses of the second elongating internodes of cotton seedlings treated with MC. Histological analysis revealed that the MC shortened the internodes through suppressing both cell division and cell elongation. Consistent with the observed phenotype, many genes related to cell growth were significantly downregulated by MC. Transcriptome profiling showed that the expression of genes related not only to GA, but also to auxin, brassinosteroid (BR), and ethylene metabolism and signaling was remarkably suppressed, whereas that of genes related to cytokinin (CK) and abscisic acid (ABA) metabolism was induced by MC. Consistent with the expression pattern, significant decrease of endogenous GA, auxin, and BR content, but an increase in CK content was observed after MC treatment. Most of these hormone related genes displayed opposite regulation pattern by exogenous GA3 treatment compared to MC; simultaneous application of MC and GA3 could alleviate the genes expression changes induced by MC treatment, indicating MC does not directly affect other plant hormones, but through the inhibition of the GA biosynthesis. In addition, the expression of genes related to secondary metabolism and many transcription factors (TFs) were differentially regulated by MC. In summary, we confirmed the important role of GA in MC-induced growth inhibition of cotton, and further found that other hormones were also involved in this process in a GA-dependent manner. This study provides novel insights into the molecular mechanism underlying the MC-mediated inhibition of internode elongation in cotton seedlings.
Collapse
Affiliation(s)
- Li Wang
- *Correspondence: Yong-Fang Li, ; Li Wang,
| | | | | | | | | | | | | |
Collapse
|
40
|
Steinbach Y. The Arabidopsis thaliana CONSTANS- LIKE 4 ( COL4) - A Modulator of Flowering Time. FRONTIERS IN PLANT SCIENCE 2019; 10:651. [PMID: 31191575 PMCID: PMC6546890 DOI: 10.3389/fpls.2019.00651] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/30/2019] [Indexed: 05/22/2023]
Abstract
Appropriate control of flowering time is crucial for crop yield and the reproductive success of plants. Flowering can be induced by a number of molecular pathways that respond to internal and external signals. In Arabidopsis, expression of the key florigenic signal FLOWERING LOCUS T (FT) is positively regulated by CONSTANS (CO) a BBX protein sharing high sequence similarity with 16 CO-like proteins. Within this study, we investigated the role of the Arabidopsis CONSTANS-LIKE 4 (COL4), whose role in flowering control was unknown. We demonstrate that, unlike CO, COL4 is a flowering repressor in long days (LD) and short days (SD) and acts on the expression of FT and FT-like genes as well as on SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Reduction of COL4 expression level leads to an increase of FT and APETALA 1 (AP1) expression and to accelerated flowering, while the increase of COL4 expression causes a flowering delay. Further, the observed co-localization of COL4 protein and CO in nuclear speckles supports the idea that the two act as an antagonistic pair of transcription factors. This interaction may serve the fine-tuning of flowering time control and other light dependent plant developmental processes.
Collapse
|
41
|
Mombaerts L, Carignano A, Robertson FC, Hearn TJ, Junyang J, Hayden D, Rutterford Z, Hotta CT, Hubbard KE, Maria MRC, Yuan Y, Hannah MA, Goncalves J, Webb AAR. Dynamical differential expression (DyDE) reveals the period control mechanisms of the Arabidopsis circadian oscillator. PLoS Comput Biol 2019; 15:e1006674. [PMID: 30703082 PMCID: PMC6377142 DOI: 10.1371/journal.pcbi.1006674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 02/15/2019] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
The circadian oscillator, an internal time-keeping device found in most organisms, enables timely regulation of daily biological activities by maintaining synchrony with the external environment. The mechanistic basis underlying the adjustment of circadian rhythms to changing external conditions, however, has yet to be clearly elucidated. We explored the mechanism of action of nicotinamide in Arabidopsis thaliana, a metabolite that lengthens the period of circadian rhythms, to understand the regulation of circadian period. To identify the key mechanisms involved in the circadian response to nicotinamide, we developed a systematic and practical modeling framework based on the identification and comparison of gene regulatory dynamics. Our mathematical predictions, confirmed by experimentation, identified key transcriptional regulatory mechanisms of circadian period and uncovered the role of blue light in the response of the circadian oscillator to nicotinamide. We suggest that our methodology could be adapted to predict mechanisms of drug action in complex biological systems.
Collapse
Affiliation(s)
- Laurent Mombaerts
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Alberto Carignano
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Fiona C. Robertson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Timothy J. Hearn
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Jin Junyang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David Hayden
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Zoe Rutterford
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Carlos T. Hotta
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Katherine E. Hubbard
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Marti Ruiz C. Maria
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ye Yuan
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | | | - Jorge Goncalves
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Alex A. R. Webb
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
42
|
Vaishak KP, Yadukrishnan P, Bakshi S, Kushwaha AK, Ramachandran H, Job N, Babu D, Datta S. The B-box bridge between light and hormones in plants. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 191:164-174. [PMID: 30640143 DOI: 10.1016/j.jphotobiol.2018.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/23/2018] [Accepted: 12/27/2018] [Indexed: 11/29/2022]
Abstract
Plant development is meticulously modulated by interactions between the surrounding environment and the endogenous phytohormones. Light, as an external signal coordinates with the extensive networks of hormones inside the plant to execute its effects on growth and development. Several proteins in plants have been identified for their crucial roles in mediating light regulated development. Among these are the B-box (BBX) family of transcription factors characterized by the presence of zinc-finger B-box domain in their N-terminal region. In Arabidopsis there are 32 BBX proteins that are divided into five structural groups on the basis of the domains present. Several BBX proteins play important roles in seedling photomorphogenesis, neighbourhood detection and photoperiodic regulation of flowering. There is increasing evidence that besides light signaling BBX proteins also play integral roles in several hormone signaling pathways in plants. Here we attempt to comprehensively integrate the roles of multiple BBX proteins in various light and hormone signaling pathways. We further discuss the role of the BBX proteins in mediating crosstalk between the two signaling pathways to harmonize plant growth and development. Finally, we try to analyse the conservation of BBX genes across species and discuss the role of BBX proteins in regulating economically important traits in crop plants.
Collapse
Affiliation(s)
- K P Vaishak
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India; School of Biological Sciences, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, India
| | - Premachandran Yadukrishnan
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Souvika Bakshi
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Amit Kumar Kushwaha
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Harshil Ramachandran
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Nikhil Job
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Dion Babu
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Sourav Datta
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India.
| |
Collapse
|
43
|
Two B-Box Domain Proteins, BBX18 and BBX23, Interact with ELF3 and Regulate Thermomorphogenesis in Arabidopsis. Cell Rep 2018; 25:1718-1728.e4. [DOI: 10.1016/j.celrep.2018.10.060] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022] Open
|
44
|
Zhu C, Peng Q, Fu D, Zhuang D, Yu Y, Duan M, Xie W, Cai Y, Ouyang Y, Lian X, Wu C. The E3 Ubiquitin Ligase HAF1 Modulates Circadian Accumulation of EARLY FLOWERING3 to Control Heading Date in Rice under Long-Day Conditions. THE PLANT CELL 2018; 30:2352-2367. [PMID: 30242038 PMCID: PMC6241267 DOI: 10.1105/tpc.18.00653] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 05/21/2023]
Abstract
The ubiquitin 26S proteasome system (UPS) is critical for enabling plants to alter their proteomes to integrate internal and external signals for the photoperiodic induction of flowering. We previously demonstrated that HAF1, a C3HC4 RING domain-containing E3 ubiquitin ligase, is essential to precisely modulate the timing of Heading Date1 accumulation and to ensure appropriate photoperiodic responses under short-day conditions in rice (Oryza sativa). However, how HAF1 mediates flowering under long-day conditions remains unknown. In this study, we show that OsELF3 (EARLY FLOWERING3) is the direct substrate of HAF1 for ubiquitination in vitro and in vivo. HAF1 is required for maintaining the circadian rhythm of OsELF3 accumulation during photoperiodic responses in rice. In addition, the haf1 oself3 double mutant headed as late as oself3 plants under long-day conditions. An amino acid variation (L558S) within the interaction domain of OsELF3 with HAF1 greatly contributes to the variation in heading date among japonica rice accessions. The japonica accessions carrying the OsELF3(L)-type allele are found at higher latitudes, while varieties carrying the OsELF3(S)-type allele are found at lower latitudes. Taken together, our findings suggest that HAF1 precisely modulates the diurnal rhythm of OsELF3 accumulation to ensure the appropriate heading date in rice.
Collapse
Affiliation(s)
- Chunmei Zhu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Peng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Debao Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongxia Zhuang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yiming Yu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Min Duan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yaohui Cai
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang 330200, China
| | - Yidang Ouyang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xingming Lian
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
45
|
Lin F, Jiang Y, Li J, Yan T, Fan L, Liang J, Chen ZJ, Xu D, Deng XW. B-BOX DOMAIN PROTEIN28 Negatively Regulates Photomorphogenesis by Repressing the Activity of Transcription Factor HY5 and Undergoes COP1-Mediated Degradation. THE PLANT CELL 2018; 30:2006-2019. [PMID: 30099385 PMCID: PMC6181009 DOI: 10.1105/tpc.18.00226] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 08/06/2018] [Indexed: 05/04/2023]
Abstract
Plants have evolved a delicate molecular system to fine-tune their growth and development in response to dynamically changing light environments. In this study, we found that BBX28, a B-box domain protein, negatively regulates photomorphogenic development in a dose-dependent manner in Arabidopsis thaliana BBX28 interferes with the binding of transcription factor HY5 to the promoters of its target genes through physical interactions, thereby repressing its activity and negatively affecting HY5-regulated gene expression. In darkness, BBX28 associates with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and undergoes COP1-mediated degradation via the 26S proteasome system. Collectively, these results demonstrate that BBX28 acts as a key factor in the COP1-HY5 regulatory hub by maintaining proper HY5 activity to ensure normal photomorphogenic development in plants.
Collapse
Affiliation(s)
- Fang Lin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Jiang
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Tingting Yan
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liumin Fan
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiansheng Liang
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712
| | - Dongqing Xu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
46
|
Wu W, Liu LL, Yang T, Wang JH, Wang JY, Lv P, Yan YC. Gene expression analysis reveals function of TERF1 in plastid-nucleus retrograde signaling under drought stress conditions. BIOLOGIA PLANTARUM 2018. [PMID: 0 DOI: 10.1007/s10535-018-0771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
47
|
Jiang J, Rodriguez-Furlan C, Wang JZ, de Souza A, Ke H, Pasternak T, Lasok H, Ditengou FA, Palme K, Dehesh K. Interplay of the two ancient metabolites auxin and MEcPP regulates adaptive growth. Nat Commun 2018; 9:2262. [PMID: 29891932 PMCID: PMC5995930 DOI: 10.1038/s41467-018-04708-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
The ancient morphoregulatory hormone auxin dynamically realigns dedicated cellular processes that shape plant growth under prevailing environmental conditions. However, the nature of the stress-responsive signal altering auxin homeostasis remains elusive. Here we establish that the evolutionarily conserved plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) controls adaptive growth by dual transcriptional and post-translational regulatory inputs that modulate auxin levels and distribution patterns in response to stress. We demonstrate that in vivo accumulation or exogenous application of MEcPP alters the expression of two auxin reporters, DR5:GFP and DII-VENUS, and reduces the abundance of the auxin-efflux carrier PIN-FORMED1 (PIN1) at the plasma membrane. However, pharmacological intervention with clathrin-mediated endocytosis blocks the PIN1 reduction. This study provides insight into the interplay between these two indispensable signaling metabolites by establishing the mode of MEcPP action in altering auxin homeostasis, and as such, positioning plastidial function as the primary driver of adaptive growth. MEcPP is an evolutionarily conserved plastidial metabolite functioning as a retrograde signal to the nucleus in response to environmental stresses. Here Jiang et al. show that MEcPP can reduce the abundance of auxin and an auxin transporter, providing a mechanistic link between plastids and adaptive growth responses.
Collapse
Affiliation(s)
- Jishan Jiang
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92506, USA
| | - Cecilia Rodriguez-Furlan
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92506, USA
| | - Jin-Zheng Wang
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92506, USA
| | - Amancio de Souza
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92506, USA
| | - Haiyan Ke
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92506, USA
| | - Taras Pasternak
- University of Freiburg, Faculty of Biology; BIOSS Centre for Biological Signaling Studies and ZBSA Centre for Biosystems Studies, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Hanna Lasok
- University of Freiburg, Faculty of Biology; BIOSS Centre for Biological Signaling Studies and ZBSA Centre for Biosystems Studies, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Franck A Ditengou
- University of Freiburg, Faculty of Biology; BIOSS Centre for Biological Signaling Studies and ZBSA Centre for Biosystems Studies, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Klaus Palme
- University of Freiburg, Faculty of Biology; BIOSS Centre for Biological Signaling Studies and ZBSA Centre for Biosystems Studies, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92506, USA.
| |
Collapse
|
48
|
Edwards KD, Takata N, Johansson M, Jurca M, Novák O, Hényková E, Liverani S, Kozarewa I, Strnad M, Millar AJ, Ljung K, Eriksson ME. Circadian clock components control daily growth activities by modulating cytokinin levels and cell division-associated gene expression in Populus trees. PLANT, CELL & ENVIRONMENT 2018; 41:1468-1482. [PMID: 29520862 PMCID: PMC6001645 DOI: 10.1111/pce.13185] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 05/30/2023]
Abstract
Trees are carbon dioxide sinks and major producers of terrestrial biomass with distinct seasonal growth patterns. Circadian clocks enable the coordination of physiological and biochemical temporal activities, optimally regulating multiple traits including growth. To dissect the clock's role in growth, we analysed Populus tremula × P. tremuloides trees with impaired clock function due to down-regulation of central clock components. late elongated hypocotyl (lhy-10) trees, in which expression of LHY1 and LHY2 is reduced by RNAi, have a short free-running period and show disrupted temporal regulation of gene expression and reduced growth, producing 30-40% less biomass than wild-type trees. Genes important in growth regulation were expressed with an earlier phase in lhy-10, and CYCLIN D3 expression was misaligned and arrhythmic. Levels of cytokinins were lower in lhy-10 trees, which also showed a change in the time of peak expression of genes associated with cell division and growth. However, auxin levels were not altered in lhy-10 trees, and the size of the lignification zone in the stem showed a relative increase. The reduced growth rate and anatomical features of lhy-10 trees were mainly caused by misregulation of cell division, which may have resulted from impaired clock function.
Collapse
Affiliation(s)
- Kieron D. Edwards
- School of Biological Sciences, C.H. Waddington BuildingUniversity of EdinburghEdinburghEH9 3BFUK
| | - Naoki Takata
- Department of Plant Physiology, Umeå Plant Science CentreUmeå University901 87UmeåSweden
| | - Mikael Johansson
- Department of Plant Physiology, Umeå Plant Science CentreUmeå University901 87UmeåSweden
- RNA Biology and Molecular PhysiologyBielefeld University33615BielefeldGermany
| | - Manuela Jurca
- Department of Plant Physiology, Umeå Plant Science CentreUmeå University901 87UmeåSweden
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany ASCR and Palacký University783 71OlomoucCzech Republic
| | - Eva Hényková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany ASCR and Palacký University783 71OlomoucCzech Republic
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural Sciences901 83UmeåSweden
| | - Silvia Liverani
- Department of StatisticsUniversity of WarwickCoventryCV4 7ALUK
| | - Iwanka Kozarewa
- Department of Plant Physiology, Umeå Plant Science CentreUmeå University901 87UmeåSweden
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany ASCR and Palacký University783 71OlomoucCzech Republic
| | - Andrew J. Millar
- School of Biological Sciences, C.H. Waddington BuildingUniversity of EdinburghEdinburghEH9 3BFUK
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural Sciences901 83UmeåSweden
| | - Maria E. Eriksson
- Department of Plant Physiology, Umeå Plant Science CentreUmeå University901 87UmeåSweden
| |
Collapse
|
49
|
Crawford T, Lehotai N, Strand Å. The role of retrograde signals during plant stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2783-2795. [PMID: 29281071 DOI: 10.1093/jxb/erx481] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/11/2017] [Indexed: 05/23/2023]
Abstract
Chloroplast and mitochondria not only provide the energy to the plant cell but due to the sensitivity of organellar processes to perturbations caused by abiotic stress, they are also key cellular sensors of environmental fluctuations. Abiotic stresses result in reduced photosynthetic efficiency and thereby reduced energy supply for cellular processes. Thus, in order to acclimate to stress, plants must re-program gene expression and cellular metabolism to divert energy from growth and developmental processes to stress responses. To restore cellular energy homeostasis following exposure to stress, the activities of the organelles must be tightly co-ordinated with the transcriptional re-programming in the nucleus. Thus, communication between the organelles and the nucleus, so-called retrograde signalling, is essential to direct the energy use correctly during stress exposure. Stress-triggered retrograde signals are mediated by reactive oxygen species and metabolites including β-cyclocitral, MEcPP (2-C-methyl-d-erythritol 2,4-cyclodiphosphate), PAP (3'-phosphoadenosine 5'-phosphate), and intermediates of the tetrapyrrole biosynthesis pathway. However, for the plant cell to respond optimally to environmental stress, these stress-triggered retrograde signalling pathways must be integrated with the cytosolic stress signalling network. We hypothesize that the Mediator transcriptional co-activator complex may play a key role as a regulatory hub in the nucleus, integrating the complex stress signalling networks originating in different cellular compartments.
Collapse
Affiliation(s)
- Tim Crawford
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nóra Lehotai
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
50
|
Xu D, Jiang Y, Li J, Holm M, Deng XW. The B-Box Domain Protein BBX21 Promotes Photomorphogenesis. PLANT PHYSIOLOGY 2018; 176:2365-2375. [PMID: 29259103 PMCID: PMC5841706 DOI: 10.1104/pp.17.01305] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
B-box-containing (BBX) proteins play critical roles in a variety of cellular and developmental processes in plants. BBX21 (also known as SALT TOLERANCE HOMOLOG2), which contains two B-box domains in tandem at the N terminus, has been previously demonstrated as a key component involved in the COP1-HY5 signaling hub. However, the exact molecular and physiological roles of B-box domains in BBX21 are largely unclear. Here, we found that structurally disruption of the second B-box domain, but not the first one, in BBX21 completely abolishes its biological and physiological activity in conferring hyperphotomorphogenetic phenotype in Arabidopsis (Arabidopsis thaliana). Intact B-box domains in BBX21 are not required for interaction with COP1 and its degradation by COP1 via the 26S proteasome system. However, disruption of the second B-box of BBX21 nearly impairs its ability for binding of T/G-box within the HY5 promoter both in vitro and in vivo, as well as controlling HY5 and HY5-regulated gene expression in Arabidopsis seedlings. Taken together, this study provides a mechanistic framework in which BBX21 directly binds to the T/G-box present in the HY5 promoter possibly through its second B-box domain, which in turn controls HY5 and HY5-regulated gene expression to promote photomorphogenesis.
Collapse
Affiliation(s)
- Dongqing Xu
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712
| | - Yan Jiang
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Magnus Holm
- Department of Biological and Environmental Sciences, Gothenburg University, SE-405 30 Gothenburg, Sweden
| | - Xing Wang Deng
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|