1
|
Zhu M, Hsu CW, Peralta Ogorek LL, Taylor IW, La Cavera S, Oliveira DM, Verma L, Mehra P, Mijar M, Sadanandom A, Perez-Cota F, Boerjan W, Nolan TM, Bennett MJ, Benfey PN, Pandey BK. Single-cell transcriptomics reveal how root tissues adapt to soil stress. Nature 2025:10.1038/s41586-025-08941-z. [PMID: 40307555 DOI: 10.1038/s41586-025-08941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Land plants thrive in soils showing vastly different properties and environmental stresses1. Root systems can adapt to contrasting soil conditions and stresses, yet how their responses are programmed at the individual cell scale remains unclear. Using single-cell RNA sequencing and spatial transcriptomic approaches, we showed major expression changes in outer root cell types when comparing the single-cell transcriptomes of rice roots grown in gel versus soil conditions. These tissue-specific transcriptional responses are related to nutrient homeostasis, cell wall integrity and defence in response to heterogeneous soil versus homogeneous gel growth conditions. We also demonstrate how the model soil stress, termed compaction, triggers expression changes in cell wall remodelling and barrier formation in outer and inner root tissues, regulated by abscisic acid released from phloem cells. Our study reveals how root tissues communicate and adapt to contrasting soil conditions at single-cell resolution.
Collapse
Affiliation(s)
- Mingyuan Zhu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Lucas L Peralta Ogorek
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Isaiah W Taylor
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Salvatore La Cavera
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lokesh Verma
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Poonam Mehra
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Medhavinee Mijar
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Ari Sadanandom
- Department of Biosciences, University of Durham, Durham, UK
| | - Fernando Perez-Cota
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Malcolm J Bennett
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK.
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| | - Bipin K Pandey
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
2
|
Zhou J, Fang S, Liu X, Luo L, Liu Y, Zhang H. OsERF2 Acts as a Direct Downstream Target of OsEIL1 to Negatively Regulate Salt Tolerance in Rice. RICE (NEW YORK, N.Y.) 2025; 18:29. [PMID: 40272638 PMCID: PMC12021750 DOI: 10.1186/s12284-025-00787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/04/2025] [Indexed: 04/27/2025]
Abstract
Salinity is a significant limiting factor that adversely affects plant growth, distribution and crop yield. Ethylene responsive factors play crucial roles in plant responses to and tolerance of various abiotic stresses. Recently, we revealed that OsERF2 is involved in root growth by transcriptionally regulating hormone and sugar signaling in rice. Here, we report that OsERF2 is a direct target gene of OsEIL1 and negatively regulates salt tolerance in rice. Compared to the wild type, the gain-of-function mutant of OsERF2 (nsf2857) and the knockdown of OsERF2 via an artificial microRNA (Ami-ERF2) exhibited decreased and increased salt tolerance, respectively. The enhanced salt tolerance observed in Ami-OsERF2 lines was associated with lower accumulations of malondialdehyde and reactive oxygen species (ROS) under salt stress, while the opposite was true for nsf2857 plants, which exhibited decreased salt tolerance. At the transcriptional level, several stress-related genes encoding ROS and NAD(P)H-related oxidoreductases were downregulated in nsf2857 plants but upregulated in Ami-ERF2 plants. Furthermore, yeast one-hybrid and ChIP assays revealed that OsEIL1 can bind to the of EBS cis element present in the promoter of OsERF2 (-bp), suggesting that OsEIL1 may directly regulate the expression of OsERF2. Collectively, our findings indicate that OsERF2 is a direct downstream factor involved in the regulation of salt tolerance in rice, highlighting its potential application in the genetic improvement of tolerance to abiotic stresses in this crop.
Collapse
Affiliation(s)
- Jiahao Zhou
- College of Life Science, Hengyang Normal University, Hengyang, 421000, China.
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang, 421000, China.
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shengliang Fang
- Rice Research Institute, Hengyang Academy of Agricultural Sciences, Hengyang, 421000, China
| | - Xinjie Liu
- College of Life Science, Hengyang Normal University, Hengyang, 421000, China
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang, 421000, China
| | - Lei Luo
- College of Life Science, Hengyang Normal University, Hengyang, 421000, China
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang, 421000, China
| | - Yuhua Liu
- College of Life Science, Hengyang Normal University, Hengyang, 421000, China.
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang, 421000, China.
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Fu H, Yang X, Han S, Wang K, Wang H. Functional characterization of Ganoderma lucidum polysaccharide and the mechanism of inducing tomato resistance to Tomato yellow leaf curl virus. Int J Biol Macromol 2025; 303:140617. [PMID: 39904440 DOI: 10.1016/j.ijbiomac.2025.140617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Using functional polysaccharides as elicitors to induce plant disease resistance has emerged as an effective plant protection strategy. In this study, we found that crude polysaccharides derived from by-products of Ganoderma lucidum can effectively prevent and control the Tomato Yellow Leaf Curl Virus (TYLCV). As a result, we isolated and purified a homogeneous polysaccharide known as glucan-like peptide (GLP1), from crude polysaccharide of G. lucidum and explored the mechanism behind GLP1's ability to induce resistance in tomatoes against TYLCV. Analysis of the monosaccharide composition and high-performance gel permeation chromatography (HPGPC) revealed that GLP1 is solely composed of glucose, with molecular weight (Mw), 7.367 KDa, a number-average molecular weight (Mn) of 6.876 KDa, and peak molecular weight (Mp) values 7.505 KDa. Fourier transform infrared spectroscopy indicated that GLP1 may have a pyranose structure with an α-glycosidic bond. Plant hormones play a crucial role in disease resistance, and we found that GLP1 affects hormone levels in tomato plants by increasing jasmonic acid (JA) and ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC). Additionally, GLP1 promoting the expression of genes associated with the ethylene signaling pathway. When inhibitors of ethylene synthesis blocked ethylene signaling, the resistance of tomato to TYLCV was significantly reduced. These findings suggest that ethylene signaling is involved in GLP1-induced tomato resistance and likely interacts with other pathways to contribute to this resistance.
Collapse
Affiliation(s)
- Haoran Fu
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiu Yang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shuangshuang Han
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Kaiyun Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongyan Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
4
|
Sun Z, An H, Qiu Z, Li J, Li J, Yang B, Liu J, Chen T, Zhang Y, Lu B, Liu Y, Wang B, Xu D. Identification of QTLs and a candidate gene affecting rice grain volume via high-density genetic mapping. FRONTIERS IN PLANT SCIENCE 2025; 16:1579589. [PMID: 40230609 PMCID: PMC11994671 DOI: 10.3389/fpls.2025.1579589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025]
Abstract
Introduction Grain volume is a key agronomic trait of rice. It is coordinately determined by grain length, width, thickness, and roundness, which influences the rice yield and quality, yet the molecular mechanism is still not fully understood. Methods In this study, a mapping population of Ludao (weedy rice) and Guangbaixiangzhan (GBXZ) was developed in Lianyungang, Jiangsu province, China, and was employed to construct a high-density genetic map by use of the RICE 1 K mGPS chip in 2021. The mapping of QTLs was carried out with IciMapping software using the inclusive composite interval mapping (ICIM) method. Results and discussion A total of eight QTLs for grain volume, explained 4.22-19.75% of the total phenotypic variation, were detected with LOD scores ranging from 3.33 to 13.25. Among these loci, five are known genes or loci related to grain size, and three loci, qGV4-2, qGV7-1, and qGV7-2, were newly identified. The major QTL, qGV7-2, explained the highest phenotypic variation, was validated using NIL pairs. By combining gene functional annotation, gene expression analysis and sequence comparison within the mapping interval of qGV7-2, a candidate gene (LOC_Os07g15540), encoding an ethylene receptor, OsETR4, was identified. Further haplotype-phenotype analysis revealed this gene to be significantly associated with grain length, width, and thousand-grain weight. Thus we identified LOC_Os07g15540 as the most likely candidate gene. Taken together, our findings provide a basis for functional research on qGV7-2, and broaden our understanding of role of genetic factors in regulating grain volume, thus providing an important resource for yield improvement in rice.
Collapse
Affiliation(s)
- Zhiguang Sun
- Institute of Rice Research, Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Hongzhou An
- The Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zeyu Qiu
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingfang Li
- Institute of Rice Research, Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Jian Li
- Institute of Rice Research, Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Bo Yang
- Institute of Rice Research, Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Jinbo Liu
- Institute of Rice Research, Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Tingmu Chen
- Institute of Rice Research, Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Yuqin Zhang
- Institute of Rice Research, Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Baiguan Lu
- Institute of Rice Research, Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Yan Liu
- Institute of Rice Research, Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Baoxiang Wang
- Institute of Rice Research, Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Dayong Xu
- Institute of Rice Research, Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| |
Collapse
|
5
|
Xiong Y, Song X, Mehra P, Yu S, Li Q, Tashenmaimaiti D, Bennett M, Kong X, Bhosale R, Huang G. ABA-auxin cascade regulates crop root angle in response to drought. Curr Biol 2025; 35:542-553.e4. [PMID: 39798563 DOI: 10.1016/j.cub.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 01/15/2025]
Abstract
Enhancing drought resistance through the manipulation of root system architecture (RSA) in crops represents a crucial strategy for addressing food insecurity challenges. Abscisic acid (ABA) plays important roles in drought tolerance; yet, its molecular mechanisms in regulating RSA, especially in cereal crops, remain unclear. In this study, we report a new mechanism whereby ABA mediates local auxin biosynthesis to regulate root gravitropic response, thereby controlling the alteration of RSA in response to drought in cereal crops. Under drought conditions, wild-type (WT) plants displayed a steep root angle compared with normal conditions, while ABA biosynthetic mutants (mhz4, mhz5, osaba1, and osaba2) showed a significantly shallower crown root angle. Gravitropic assays revealed that ABA biosynthetic mutants have reduced gravitropic responses compared with WT plants. Hormone profiling analysis indicated that the mhz5 mutant has reduced auxin levels in root tips, and exogenous auxin (naphthaleneacetic acid [NAA]) application restored its root gravitropic defects. Consistently, auxin reporter analysis in mhz5 showed a reduced auxin gradient formation in root epidermis during gravitropic bending response compared with WT plants. Furthermore, NAA, rather than ABA, was able to rescue the compromised gravitropic response in the auxin biosynthetic mutant mhz10-1/tryptophan amino transferase2 (ostar2). Additionally, the maize ABA biosynthetic mutant viviparous5 (vp5) also showed gravitropic defects and a shallower seminal root angle than WT plants, which were restored by external auxin treatment. Collectively, we suggest that ABA-induced auxin synthesis governs the root gravitropic machinery, thereby influencing root angle in rice, maize, and possibly other cereal crops.
Collapse
Affiliation(s)
- Yali Xiong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Song
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Poonam Mehra
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Suhang Yu
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Qiaoyi Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dilixiadanmu Tashenmaimaiti
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Malcolm Bennett
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Xiuzhen Kong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rahul Bhosale
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK.
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Zhang N, Liu Y, Gui S, Wang Y. Regulation of tillering and panicle branching in rice and wheat. J Genet Genomics 2024:S1673-8527(24)00354-0. [PMID: 39675465 DOI: 10.1016/j.jgg.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat. Cereal crops develop tillers during the vegetative stage and panicle or spike branches during the reproductive stage, respectively, both of which are significantly impacted by hormones and genetic factors. Tillering and panicle branching are closely interconnected and exhibit high environmental plasticity. Here, we summarize the recent progress in genetic, hormonal, and environmental factors regulation in the branching of rice and wheat. This review not only provides a comprehensive overview of the current knowledge on branching mechanisms in rice and wheat, but also explores the prospects for future research aimed at optimizing crop architecture for enhanced productivity.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yuhao Liu
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Songtao Gui
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yonghong Wang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
7
|
Peralta Ogorek LL, Gao Y, Farrar E, Pandey BK. Soil compaction sensing mechanisms and root responses. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00282-6. [PMID: 39562237 DOI: 10.1016/j.tplants.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Soil compaction is an agricultural challenge with profound influence on the physical, chemical, and biological properties of the soil. It causes drastic changes by increasing mechanical impedance, reducing water infiltration, gaseous exchange, and biological activities. Soil compaction hinders root growth, limiting nutrient and water foraging abilities of plants. Recent research reveals that plant roots sense soil compaction due to higher ethylene accumulation in and around root tips. Ethylene orchestrates auxin and abscisic acid as downstream signals to regulate root adaptive responses to soil compaction. In this review, we describe the changes inflicted by soil compaction ranging from cell to organ scale and explore the latest research regarding plant root compaction sensing and response.
Collapse
Affiliation(s)
- Lucas L Peralta Ogorek
- Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Yiqun Gao
- Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Edward Farrar
- Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Bipin K Pandey
- Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| |
Collapse
|
8
|
Liu XD, Zeng YY, Hasan MM, Ghimire S, Jiang H, Qi SH, Tian XQ, Fang XW. Diverse functional interactions between ABA and ethylene in plant development and responses to stress. PHYSIOLOGIA PLANTARUM 2024; 176:e70000. [PMID: 39686889 DOI: 10.1111/ppl.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Abscisic acid (ABA) and ethylene are two essential hormones that play crucial roles throughout the entire plant life cycle and in their tolerance to abiotic or biotic stress. In recent decades, increasing research has revealed that, in addition to their individual roles, these two hormones are more likely to function through their interactions, forming a complex regulatory network. More importantly, their functions change and their interactions vary from synergistic to antagonistic depending on the specific plant organ and development stage, which is less focused, compared and systematically summarized. In this review, we first introduce the general synthesis and action signaling pathways of these two plant hormones individually and their interactions in relation to seed dormancy and germination, primary root growth, shoot development, fruit ripening, leaf senescence and abscission, and stomatal movement regulation under both normal and stress conditions. A better understanding of the complex interactions between ABA and ethylene will enhance our knowledge of how plant hormones regulate development and respond to stress and may facilitate the development of crops with higher yields and greater tolerance to stressful environments through tissue-specific genetic modifications in the future.
Collapse
Affiliation(s)
- Xu-Dong Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Yuan-Yuan Zeng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shantwana Ghimire
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Hui Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shi-Hua Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xue-Qian Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Zhou Y, Gao YH, Zhang BC, Yang HL, Tian YB, Huang YH, Yin CC, Tao JJ, Wei W, Zhang WK, Chen SY, Zhou YH, Zhang JS. CELLULOSE SYNTHASE-LIKE C proteins modulate cell wall establishment during ethylene-mediated root growth inhibition in rice. THE PLANT CELL 2024; 36:3751-3769. [PMID: 38943676 PMCID: PMC11371184 DOI: 10.1093/plcell/koae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
The cell wall shapes plant cell morphogenesis and affects the plasticity of organ growth. However, the way in which cell wall establishment is regulated by ethylene remains largely elusive. Here, by analyzing cell wall patterns, cell wall composition and gene expression in rice (Oryza sativa, L.) roots, we found that ethylene induces cell wall thickening and the expression of cell wall synthesis-related genes, including CELLULOSE SYNTHASE-LIKE C1, 2, 7, 9, 10 (OsCSLC1, 2, 7, 9, 10) and CELLULOSE SYNTHASE A3, 4, 7, 9 (OsCESA3, 4, 7, 9). Overexpression and mutant analyses revealed that OsCSLC2 and its homologs function in ethylene-mediated induction of xyloglucan biosynthesis mainly in the cell wall of root epidermal cells. Moreover, OsCESA-catalyzed cellulose deposition in the cell wall was enhanced by ethylene. OsCSLC-mediated xyloglucan biosynthesis likely plays an important role in restricting cell wall extension and cell elongation during the ethylene response in rice roots. Genetically, OsCSLC2 acts downstream of ETHYLENE-INSENSITIVE3-LIKE1 (OsEIL1)-mediated ethylene signaling, and OsCSLC1, 2, 7, 9 are directly activated by OsEIL1. Furthermore, the auxin signaling pathway is synergistically involved in these regulatory processes. These findings link plant hormone signaling with cell wall establishment, broadening our understanding of root growth plasticity in rice and other crops.
Collapse
Affiliation(s)
- Yang Zhou
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hong Gao
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao-Cai Zhang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Han-Lei Yang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan-Bao Tian
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hua Huang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Jun Tao
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hua Zhou
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Song Zhang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Li XK, Huang YH, Zhao R, Cao WQ, Lu L, Han JQ, Zhou Y, Zhang X, Wu WA, Tao JJ, Wei W, Zhang WK, Chen SY, Ma B, Zhao H, Yin CC, Zhang JS. Membrane protein MHZ3 regulates the on-off switch of ethylene signaling in rice. Nat Commun 2024; 15:5987. [PMID: 39013913 PMCID: PMC11252128 DOI: 10.1038/s41467-024-50290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Ethylene regulates plant growth, development, and stress adaptation. However, the early signaling events following ethylene perception, particularly in the regulation of ethylene receptor/CTRs (CONSTITUTIVE TRIPLE RESPONSE) complex, remains less understood. Here, utilizing the rapid phospho-shift of rice OsCTR2 in response to ethylene as a sensitive readout for signal activation, we revealed that MHZ3, previously identified as a stabilizer of ETHYLENE INSENSITIVE 2 (OsEIN2), is crucial for maintaining OsCTR2 phosphorylation. Genetically, both functional MHZ3 and ethylene receptors prove essential for OsCTR2 phosphorylation. MHZ3 physically interacts with both subfamily I and II ethylene receptors, e.g., OsERS2 and OsETR2 respectively, stabilizing their association with OsCTR2 and thereby maintaining OsCTR2 activity. Ethylene treatment disrupts the interactions within the protein complex MHZ3/receptors/OsCTR2, reducing OsCTR2 phosphorylation and initiating downstream signaling. Our study unveils the dual role of MHZ3 in fine-tuning ethylene signaling activation, providing insights into the initial stages of the ethylene signaling cascade.
Collapse
Affiliation(s)
- Xin-Kai Li
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Hua Huang
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Zhao
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wu-Qiang Cao
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia-Qi Han
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Zhou
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xun Zhang
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Ai Wu
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - He Zhao
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
| | - Cui-Cui Yin
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Song Zhang
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Wang Z, Wang R, Yuan H, Fan F, Li S, Cheng M, Tian Z. Comprehensive identification and analysis of DUF640 genes associated with rice growth. Gene 2024; 914:148404. [PMID: 38521113 DOI: 10.1016/j.gene.2024.148404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Protein domains with conserved amino acid sequences and uncharacterized functions are called domains of unknown function (DUF). The DUF640 gene family plays a crucial role in plant growth, particularly in light regulation, floral organ development, and fruit development. However, there exists a lack of systematic understanding of the evolutionary relationships and functional differentiation of DUF640 within the Oryza genus. In this study, 61 DUF640 genes were identified in the Oryza genus. The expression of DUF640s is induced by multiple hormonal stressors including abscisic acid (ABA), cytokinin (CK), ethylene (ETH), and indole-3-acetic acid (IAA). Specifically, OiDUF640-10 expression significantly increased after ETH treatment. Transgenic experiments showed that overexpressing OiDUF640-10 lines were sensitive to ETH, and seedling length was obstructed. Evolutionary analysis revealed differentiation of the OiDUF640-10 gene in O. sativa ssp. indica and japonica varieties, likely driven by natural selection during the domestication of cultivated rice. These results indicate that OiDUF640-10 plays a vital role in the regulation of rice seedling length.
Collapse
Affiliation(s)
- Zhikai Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Life Science, Yangtze University, Jingzhou, China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| | - Zhihong Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Life Science, Yangtze University, Jingzhou, China.
| |
Collapse
|
12
|
Kong X, Xiong Y, Song X, Wadey S, Yu S, Rao J, Lale A, Lombardi M, Fusi R, Bhosale R, Huang G. Ethylene regulates auxin-mediated root gravitropic machinery and controls root angle in cereal crops. PLANT PHYSIOLOGY 2024; 195:1969-1980. [PMID: 38446735 DOI: 10.1093/plphys/kiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
Root angle is a critical factor in optimizing the acquisition of essential resources from different soil depths. The regulation of root angle relies on the auxin-mediated root gravitropism machinery. While the influence of ethylene on auxin levels is known, its specific role in governing root gravitropism and angle remains uncertain, particularly when Arabidopsis (Arabidopsis thaliana) core ethylene signaling mutants show no gravitropic defects. Our research, focusing on rice (Oryza sativa L.) and maize (Zea mays), clearly reveals the involvement of ethylene in root angle regulation in cereal crops through the modulation of auxin biosynthesis and the root gravitropism machinery. We elucidated the molecular components by which ethylene exerts its regulatory effect on auxin biosynthesis to control root gravitropism machinery. The ethylene-insensitive mutants ethylene insensitive2 (osein2) and ethylene insensitive like1 (oseil1), exhibited substantially shallower crown root angle compared to the wild type. Gravitropism assays revealed reduced root gravitropic response in these mutants. Hormone profiling analysis confirmed decreased auxin levels in the root tips of the osein2 mutant, and exogenous auxin (NAA) application rescued root gravitropism in both ethylene-insensitive mutants. Additionally, the auxin biosynthetic mutant mao hu zi10 (mhz10)/tryptophan aminotransferase2 (ostar2) showed impaired gravitropic response and shallow crown root angle phenotypes. Similarly, maize ethylene-insensitive mutants (zmein2) exhibited defective gravitropism and root angle phenotypes. In conclusion, our study highlights that ethylene controls the auxin-dependent root gravitropism machinery to regulate root angle in rice and maize, revealing a functional divergence in ethylene signaling between Arabidopsis and cereal crops. These findings contribute to a better understanding of root angle regulation and have implications for improving resource acquisition in agricultural systems.
Collapse
Affiliation(s)
- Xiuzhen Kong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yali Xiong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Song
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel Wadey
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Suhang Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinliang Rao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aneesh Lale
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Marco Lombardi
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Riccardo Fusi
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Rahul Bhosale
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Hyderabad, India
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Qi X, Zhuang Z, Ji X, Bian J, Peng Y. The Mechanism of Exogenous Salicylic Acid and 6-Benzylaminopurine Regulating the Elongation of Maize Mesocotyl. Int J Mol Sci 2024; 25:6150. [PMID: 38892338 PMCID: PMC11172663 DOI: 10.3390/ijms25116150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The elongation of the mesocotyl plays an important role in the emergence of maize deep-sowing seeds. This study was designed to explore the function of exogenous salicylic acid (SA) and 6-benzylaminopurine (6-BA) in the growth of the maize mesocotyl and to examine its regulatory network. The results showed that the addition of 0.25 mmol/L exogenous SA promoted the elongation of maize mesocotyls under both 3 cm and 15 cm deep-sowing conditions. Conversely, the addition of 10 mg/L exogenous 6-BA inhibited the elongation of maize mesocotyls. Interestingly, the combined treatment of exogenous SA-6-BA also inhibited the elongation of maize mesocotyls. The longitudinal elongation of mesocotyl cells was the main reason affecting the elongation of maize mesocotyls. Transcriptome analysis showed that exogenous SA and 6-BA may interact in the hormone signaling regulatory network of mesocotyl elongation. The differential expression of genes related to auxin (IAA), jasmonic acid (JA), brassinosteroid (BR), cytokinin (CTK) and SA signaling pathways may be related to the regulation of exogenous SA and 6-BA on the growth of mesocotyls. In addition, five candidate genes that may regulate the length of mesocotyls were screened by Weighted Gene Co-Expression Network Analysis (WGCNA). These genes may be involved in the growth of maize mesocotyls through auxin-activated signaling pathways, transmembrane transport, methylation and redox processes. The results enhance our understanding of the plant hormone regulation of mesocotyl growth, which will help to further explore and identify the key genes affecting mesocotyl growth in plant hormone signaling regulatory networks.
Collapse
Affiliation(s)
- Xue Qi
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Zelong Zhuang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiangzhuo Ji
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianwen Bian
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
14
|
Qiao J, Quan R, Wang J, Li Y, Xiao D, Zhao Z, Huang R, Qin H. OsEIL1 and OsEIL2, two master regulators of rice ethylene signaling, promote the expression of ROS scavenging genes to facilitate coleoptile elongation and seedling emergence from soil. PLANT COMMUNICATIONS 2024; 5:100771. [PMID: 37994014 PMCID: PMC10943563 DOI: 10.1016/j.xplc.2023.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/21/2023] [Accepted: 11/20/2023] [Indexed: 11/24/2023]
Abstract
Successful emergence from the soil is a prerequisite for survival of germinating seeds in their natural environment. In rice, coleoptile elongation facilitates seedling emergence and establishment, and ethylene plays an important role in this process. However, the underlying regulatory mechanism remains largely unclear. Here, we report that ethylene promotes cell elongation and inhibits cell expansion in rice coleoptiles, resulting in longer and thinner coleoptiles that facilitate seedlings emergence from the soil. Transcriptome analysis showed that genes related to reactive oxygen species (ROS) generation are upregulated and genes involved in ROS scavenging are downregulated in the coleoptiles of ethylene-signaling mutants. Further investigations showed that soil coverage promotes accumulation of ETHYLENE INSENSITIVE 3-LIKE 1 (OsEIL1) and OsEIL2 in the upper region of the coleoptile, and both OsEIL1 and OsEIL2 can bind directly to the promoters of the GDP-mannose pyrophosphorylase (VTC1) gene OsVTC1-3 and the peroxidase (PRX) genes OsPRX37, OsPRX81, OsPRX82, and OsPRX88 to activate their expression. This leads to increased ascorbic acid content, greater peroxidase activity, and decreased ROS accumulation in the upper region of the coleoptile. Disruption of ROS accumulation promotes coleoptile growth and seedling emergence from soil. These findings deepen our understanding of the roles of ethylene and ROS in controlling coleoptile growth, and this information can be used by breeders to produce rice varieties suitable for direct seeding.
Collapse
Affiliation(s)
- Jinzhu Qiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dinglin Xiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zihan Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China.
| | - Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China.
| |
Collapse
|
15
|
Yuan H, Zheng Z, Bao Y, Zhao X, Lv J, Tang C, Wang N, Liang Z, Li H, Xiang J, Qian Y, Shi Y. Identification and Regulation of Hypoxia-Tolerant and Germination-Related Genes in Rice. Int J Mol Sci 2024; 25:2177. [PMID: 38396854 PMCID: PMC10889564 DOI: 10.3390/ijms25042177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In direct seeding, hypoxia is a major stress faced by rice plants. Therefore, dissecting the response mechanism of rice to hypoxia stress and the molecular regulatory network is critical to the development of hypoxia-tolerant rice varieties and direct seeding of rice. This review summarizes the morphological, physiological, and ecological changes in rice under hypoxia stress, the discovery of hypoxia-tolerant and germination-related genes/QTLs, and the latest research on candidate genes, and explores the linkage of hypoxia tolerance genes and their distribution in indica and japonica rice through population variance analysis and haplotype network analysis. Among the candidate genes, OsMAP1 is a typical gene located on the MAPK cascade reaction for indica-japonica divergence; MHZ6 is involved in both the MAPK signaling and phytohormone transduction pathway. MHZ6 has three major haplotypes and one rare haplotype, with Hap3 being dominated by indica rice varieties, and promotes internode elongation in deep-water rice by activating the SD1 gene. OsAmy3D and Adh1 have similar indica-japonica varietal differentiation, and are mainly present in indica varieties. There are three high-frequency haplotypes of OsTPP7, namely Hap1 (n = 1109), Hap2 (n = 1349), and Hap3 (n = 217); Hap2 is more frequent in japonica, and the genetic background of OsTPP7 was derived from the japonica rice subpopulation. Further artificial selection, natural domestication, and other means to identify more resistance mechanisms of this gene may facilitate future research to breed superior rice cultivars. Finally, this study discusses the application of rice hypoxia-tolerant germplasm in future breeding research.
Collapse
Affiliation(s)
- Hongyan Yuan
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Zhenzhen Zheng
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaling Bao
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Xueyu Zhao
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Jiaqi Lv
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Chenghang Tang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Nansheng Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Zhaojie Liang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Hua Li
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Jun Xiang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Yingzhi Qian
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| |
Collapse
|
16
|
Qin H, Xiao M, Li Y, Huang R. Ethylene Modulates Rice Root Plasticity under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:432. [PMID: 38337965 PMCID: PMC10857340 DOI: 10.3390/plants13030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Plants live in constantly changing environments that are often unfavorable or stressful. Root development strongly affects plant growth and productivity, and the developmental plasticity of roots helps plants to survive under abiotic stress conditions. This review summarizes the progress being made in understanding the regulation of the phtyohormone ethylene in rice root development in response to abiotic stresses, highlighting the complexity associated with the integration of ethylene synthesis and signaling in root development under adverse environments. Understanding the molecular mechanisms of ethylene in regulating root architecture and response to environmental signals can contribute to the genetic improvement of crop root systems, enhancing their adaptation to stressful environmental conditions.
Collapse
Affiliation(s)
- Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Minggang Xiao
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China;
| | - Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (R.H.)
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| |
Collapse
|
17
|
Zhao X, Li J, Niu Y, Hossain Z, Gao X, Bai X, Mao T, Qi G, He F. Exogenous Serotonin (5-HT) Promotes Mesocotyl and Coleoptile Elongation in Maize Seedlings under Deep-Seeding Stress through Enhancing Auxin Accumulation and Inhibiting Lignin Formation. Int J Mol Sci 2023; 24:17061. [PMID: 38069387 PMCID: PMC10707020 DOI: 10.3390/ijms242317061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Serotonin (5-HT), an indoleamine compound, has been known to mediate many physiological responses of plants under environmental stress. The deep-seeding (≥20 cm) of maize seeds is an important cultivation strategy to ensure seedling emergence and survival under drought stress. However, the role of 5-HT in maize deep-seeding tolerance remains unexplored. Understanding the mechanisms and evaluating the optimal concentration of 5-HT in alleviating deep-seeding stress could benefit maize production. In this study, two maize inbred lines were treated with or without 5-HT at both sowing depths of 20 cm and 3 cm, respectively. The effects of different concentrations of 5-HT on the growth phenotypes, physiological metabolism, and gene expression of two maize inbred lines were examined at the sowing depths of 20 cm and 3 cm. Compared to the normal seedling depth of 3 cm, the elongation of the mesocotyl (average elongation 3.70 cm) and coleoptile (average elongation 0.58 cm), secretion of indole-3-acetic acid (IAA; average increased 3.73 and 0.63 ng g-1 FW), and hydrogen peroxide (H2O2; average increased 1.95 and 0.63 μM g-1 FW) in the mesocotyl and coleoptile were increased under 20 cm stress, with a concomitant decrease in lignin synthesis (average decreased 0.48 and 0.53 A280 g-1). Under 20 cm deep-seeding stress, the addition of 5-HT activated the expression of multiple genes of IAA biosynthesis and signal transduction, including Zm00001d049601, Zm00001d039346, Zm00001d026530, and Zm00001d049659, and it also stimulated IAA production in both the mesocotyl and coleoptile of maize seedlings. On the contrary, 5-HT suppressed the expression of genes for lignin biosynthesis (Zm00001d016471, Zm00001d005998, Zm00001d032152, and Zm00001d053554) and retarded the accumulation of H2O2 and lignin, resulting in the elongation of the mesocotyl and coleoptile of maize seedlings. A comprehensive evaluation analysis showed that the optimum concentration of 5-HT in relieving deep-seeding stress was 2.5 mg/L for both inbred lines, and 5-HT therefore could improve the seedling emergence rate and alleviate deep-seeding stress in maize seedlings. These findings could provide a novel strategy for improving maize deep-seeding tolerance, thus enhancing yield potential under drought and water stress.
Collapse
Affiliation(s)
- Xiaoqiang Zhao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (J.L.); (X.B.); (T.M.); (G.Q.); (F.H.)
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayao Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (J.L.); (X.B.); (T.M.); (G.Q.); (F.H.)
| | - Yining Niu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (J.L.); (X.B.); (T.M.); (G.Q.); (F.H.)
| | - Zakir Hossain
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada;
| | - Xiquan Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodong Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (J.L.); (X.B.); (T.M.); (G.Q.); (F.H.)
| | - Taotao Mao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (J.L.); (X.B.); (T.M.); (G.Q.); (F.H.)
| | - Guoxiang Qi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (J.L.); (X.B.); (T.M.); (G.Q.); (F.H.)
| | - Fuqiang He
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (J.L.); (X.B.); (T.M.); (G.Q.); (F.H.)
| |
Collapse
|
18
|
Huang YH, Han JQ, Ma B, Cao WQ, Li XK, Xiong Q, Zhao H, Zhao R, Zhang X, Zhou Y, Wei W, Tao JJ, Zhang WK, Qian W, Chen SY, Yang C, Yin CC, Zhang JS. A translational regulator MHZ9 modulates ethylene signaling in rice. Nat Commun 2023; 14:4674. [PMID: 37542048 PMCID: PMC10403538 DOI: 10.1038/s41467-023-40429-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
Ethylene plays essential roles in rice growth, development and stress adaptation. Translational control of ethylene signaling remains unclear in rice. Here, through analysis of an ethylene-response mutant mhz9, we identified a glycine-tyrosine-phenylalanine (GYF) domain protein MHZ9, which positively regulates ethylene signaling at translational level in rice. MHZ9 is localized in RNA processing bodies. The C-terminal domain of MHZ9 interacts with OsEIN2, a central regulator of rice ethylene signaling, and the N-terminal domain directly binds to the OsEBF1/2 mRNAs for translational inhibition, allowing accumulation of transcription factor OsEIL1 to activate the downstream signaling. RNA-IP seq and CLIP-seq analyses reveal that MHZ9 associates with hundreds of RNAs. Ribo-seq analysis indicates that MHZ9 is required for the regulation of ~ 90% of genes translationally affected by ethylene. Our study identifies a translational regulator MHZ9, which mediates translational regulation of genes in response to ethylene, facilitating stress adaptation and trait improvement in rice.
Collapse
Affiliation(s)
- Yi-Hua Huang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia-Qi Han
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biao Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wu-Qiang Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Kai Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - He Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Jun Tao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shou-Yi Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao Yang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Cui-Cui Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Song Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Fartash AH, Ben C, Mazurier M, Ebrahimi A, Ghalandar M, Gentzbittel L, Rickauer M. Medicago truncatula quantitative resistance to a new strain of Verticillium alfalfae from Iran revealed by a genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1125551. [PMID: 37123855 PMCID: PMC10140629 DOI: 10.3389/fpls.2023.1125551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Verticillium wilt is a major threat to many crops, among them alfalfa (Medicago sativa). The model plant Medicago truncatula, a close relative of alfalfa was used to study the genetic control of resistance towards a new Verticillium alfalfae isolate. The accidental introduction of pathogen strains through global trade is a threat to crop production and such new strains might also be better adapted to global warming. Isolates of V. alfalfae were obtained from alfalfa fields in Iran and characterized. The Iranian isolate AF1 was used in a genome-wide association study (GWAS) involving 242 accessions from the Mediterranean region. Root inoculations were performed with conidia at 25°C and symptoms were scored regularly. Maximum Symptom Score and Area under Disease Progess Curve were computed as phenotypic traits to be used in GWAS and for comparison to a previous study with French isolate V31.2 at 20°C. This comparison showed high correlation with a shift to higher susceptibility, and similar geographical distribution of resistant and susceptible accessions to AF1 at 25°C, with resistant accessions mainly in the western part. GWAS revealed 30 significant SNPs linked to resistance towards isolate AF1. None of them were common to the previous study with isolate V31.2 at 20°C. To confirm these loci, the expression of nine underlying genes was studied. All genes were induced in roots following inoculation, in susceptible and resistant plants. However, in resistant plants induction was higher and lasted longer. Taken together, the use of a new pathogen strain and a shift in temperature revealed a completely different genetic control compared to a previous study that demonstrated the existence of two major QTLs. These results can be useful for Medicago breeding programs to obtain varieties better adapted to future conditions.
Collapse
Affiliation(s)
- Amir Hossein Fartash
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, Centre National de Recherche Scientifique, Toulouse Institut National Polytechnique, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
| | - Cécile Ben
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, Centre National de Recherche Scientifique, Toulouse Institut National Polytechnique, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
- Project Center for Agro Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mélanie Mazurier
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, Centre National de Recherche Scientifique, Toulouse Institut National Polytechnique, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
| | - Asa Ebrahimi
- Department of Plant Breeding and Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Ghalandar
- Plant Protection Department, Markazi Agricultural and Natural Resources Research and Education Center, Arak, Iran
| | - Laurent Gentzbittel
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, Centre National de Recherche Scientifique, Toulouse Institut National Polytechnique, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
- Project Center for Agro Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Martina Rickauer
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, Centre National de Recherche Scientifique, Toulouse Institut National Polytechnique, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
20
|
Yin CC, Huang YH, Zhang X, Zhou Y, Chen SY, Zhang JS. Ethylene-mediated regulation of coleoptile elongation in rice seedlings. PLANT, CELL & ENVIRONMENT 2023; 46:1060-1074. [PMID: 36397123 DOI: 10.1111/pce.14492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Rice is an important food crop in the world and the study of its growth and plasticity has a profound influence on sustainable development. Ethylene modulates multiple agronomic traits of rice as well as abiotic and biotic stresses during its lifecycle. It has diverse roles, depending on the organs, developmental stages and environmental conditions. Compared to Arabidopsis (Arabidopsis thaliana), rice ethylene signalling pathway has its own unique features due to its special semiaquatic living environment and distinct plant structure. Ethylene signalling and responses are part of an intricate network in crosstalk with internal and external factors. This review will summarize the current progress in the mechanisms of ethylene-regulated coleoptile growth in rice, with a special focus on ethylene signaling and interaction with other hormones. Insights into these molecular mechanisms may shed light on ethylene biology and should be beneficial for the genetic improvement of rice and other crops.
Collapse
Affiliation(s)
- Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Yi-Hua Huang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Xun Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Cheng J, Hill C, Han Y, He T, Ye X, Shabala S, Guo G, Zhou M, Wang K, Li C. New semi-dwarfing alleles with increased coleoptile length by gene editing of gibberellin 3-oxidase 1 using CRISPR-Cas9 in barley (Hordeum vulgare L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:806-818. [PMID: 36587283 PMCID: PMC10037138 DOI: 10.1111/pbi.13998] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The green revolution was based on genetic modification of the gibberellin (GA) hormone system with "dwarfing" gene mutations that reduces GA signals, conferring shorter stature, thus enabling plant adaptation to modern farming conditions. Strong GA-related mutants with shorter stature often have reduced coleoptile length, discounting yield gain due to their unsatisfactory seedling emergence under drought conditions. Here we present gibberellin (GA) 3-oxidase1 (GA3ox1) as an alternative semi-dwarfing gene in barley that combines an optimal reduction in plant height without restricting coleoptile and seedling growth. Using large-scale field trials with an extensive collection of barley accessions, we showed that a natural GA3ox1 haplotype moderately reduced plant height by 5-10 cm. We used CRISPR/Cas9 technology, generated several novel GA3ox1 mutants and validated the function of GA3ox1. We showed that altered GA3ox1 activities changed the level of active GA isoforms and consequently increased coleoptile length by an average of 8.2 mm, which could provide essential adaptation to maintain yield under climate change. We revealed that CRISPR/Cas9-induced GA3ox1 mutations increased seed dormancy to an ideal level that could benefit the malting industry. We conclude that selecting HvGA3ox1 alleles offers a new opportunity for developing barley varieties with optimal stature, longer coleoptile and additional agronomic traits.
Collapse
Affiliation(s)
- Jingye Cheng
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartTASAustralia
- Western Crop Genetics Alliance, Food Futures Institute, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWAAustralia
| | - Camilla Hill
- Western Crop Genetics Alliance, Food Futures Institute, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWAAustralia
| | - Yong Han
- Agriculture and Food, Department of Primary Industries and Regional DevelopmentSouth PerthWAAustralia
| | - Tianhua He
- Western Crop Genetics Alliance, Food Futures Institute, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWAAustralia
| | - Xingguo Ye
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Sergey Shabala
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartTASAustralia
- School of Biological ScienceUniversity of Western AustraliaPerthWAAustralia
| | - Ganggang Guo
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Meixue Zhou
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartTASAustralia
| | - Ke Wang
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Chengdao Li
- Western Crop Genetics Alliance, Food Futures Institute, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWAAustralia
- Agriculture and Food, Department of Primary Industries and Regional DevelopmentSouth PerthWAAustralia
| |
Collapse
|
22
|
Qin H, Wang J, Zhou J, Qiao J, Li Y, Quan R, Huang R. Abscisic acid promotes auxin biosynthesis to inhibit primary root elongation in rice. PLANT PHYSIOLOGY 2023; 191:1953-1967. [PMID: 36535001 PMCID: PMC10022642 DOI: 10.1093/plphys/kiac586] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/19/2022] [Indexed: 06/01/2023]
Abstract
Soil compaction is a global problem causing inadequate rooting and poor yield in crops. Accumulating evidence indicates that phytohormones coordinately regulate root growth via regulating specific growth processes in distinct tissues. However, how abscisic acid (ABA) signaling translates into auxin production to control root growth during adaptation to different soil environments is still unclear. In this study, we report that ABA has biphasic effects on primary root growth in rice (Oryza sativa) through an auxin biosynthesis-mediated process, causing suppression of root elongation and promotion of root swelling in response to soil compaction. We found that ABA treatment induced the expression of auxin biosynthesis genes and auxin accumulation in roots. Conversely, blocking auxin biosynthesis reduced ABA sensitivity in roots, showing longer and thinner primary roots with larger root meristem size and smaller root diameter. Further investigation revealed that the transcription factor basic region and leucine zipper 46 (OsbZIP46), involved in ABA signaling, can directly bind to the YUCCA8/rice ethylene-insensitive 7 (OsYUC8/REIN7) promoter to activate its expression, and genetic analysis revealed that OsYUC8/REIN7 is located downstream of OsbZIP46. Moreover, roots of mutants defective in ABA or auxin biosynthesis displayed the enhanced ability to penetrate compacted soil. Thus, our results disclose the mechanism in which ABA employs auxin as a downstream signal to modify root elongation and radial expansion, resulting in short and swollen roots impaired in their ability to penetrate compacted soil. These findings provide avenues for breeders to select crops resilient to soil compaction.
Collapse
Affiliation(s)
- Hua Qin
- Authors for correspondence: (H.Q.); (R.H.)
| | | | | | - Jinzhu Qiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | | |
Collapse
|
23
|
Li S, Liu S, Zhang Q, Cui M, Zhao M, Li N, Wang S, Wu R, Zhang L, Cao Y, Wang L. The interaction of ABA and ROS in plant growth and stress resistances. FRONTIERS IN PLANT SCIENCE 2022; 13:1050132. [PMID: 36507454 PMCID: PMC9729957 DOI: 10.3389/fpls.2022.1050132] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 05/31/2023]
Abstract
The plant hormone ABA (abscisic acid) plays an extremely important role in plant growth and adaptive stress, including but are not limited to seed germination, stomatal closure, pathogen infection, drought and cold stresses. Reactive oxygen species (ROS) are response molecules widely produced by plant cells under biotic and abiotic stress conditions. The production of apoplast ROS is induced and regulated by ABA, and participates in the ABA signaling pathway and its regulated plant immune system. In this review, we summarize ABA and ROS in apoplast ROS production, plant response to biotic and abiotic stresses, plant growth regulation, ABA signal transduction, and the regulatory relationship between ABA and other plant hormones. In addition, we also discuss the effects of protein post-translational modifications on ABA and ROS related factors.
Collapse
Affiliation(s)
- Shenghui Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Qiong Zhang
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, China
| | - Meixiang Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Min Zhao
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Nanyang Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Suna Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Ruigang Wu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunpeng Cao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
24
|
Zhou Y, Ma B, Tao JJ, Yin CC, Hu Y, Huang YH, Wei W, Xin PY, Chu JF, Zhang WK, Chen SY, Zhang JS. Rice EIL1 interacts with OsIAAs to regulate auxin biosynthesis mediated by the tryptophan aminotransferase MHZ10/OsTAR2 during root ethylene responses. THE PLANT CELL 2022; 34:4366-4387. [PMID: 35972379 PMCID: PMC9614475 DOI: 10.1093/plcell/koac250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 05/11/2023]
Abstract
Ethylene plays essential roles in adaptive growth of rice (Oryza sativa). Understanding of the crosstalk between ethylene and auxin (Aux) is limited in rice. Here, from an analysis of the root-specific ethylene-insensitive rice mutant mao hu zi 10 (mhz10), we identified the tryptophan aminotransferase (TAR) MHZ10/OsTAR2, which catalyzes the key step in indole-3-pyruvic acid-dependent Aux biosynthesis. Genetically, OsTAR2 acts downstream of ethylene signaling in root ethylene responses. ETHYLENE INSENSITIVE3 like1 (OsEIL1) directly activated OsTAR2 expression. Surprisingly, ethylene induction of OsTAR2 expression still required the Aux pathway. We also show that Os indole-3-acetic acid (IAA)1/9 and OsIAA21/31 physically interact with OsEIL1 and show promotive and repressive effects on OsEIL1-activated OsTAR2 promoter activity, respectively. These effects likely depend on their EAR motif-mediated histone acetylation/deacetylation modification. The special promoting activity of OsIAA1/9 on OsEIL1 may require both the EAR motifs and the flanking sequences for recruitment of histone acetyltransferase. The repressors OsIAA21/31 exhibit earlier degradation upon ethylene treatment than the activators OsIAA1/9 in a TIR1/AFB-dependent manner, allowing OsEIL1 activation by activators OsIAA1/9 for OsTAR2 expression and signal amplification. This study reveals a positive feedback regulation of ethylene signaling by Aux biosynthesis and highlights the crosstalk between ethylene and Aux pathways at a previously underappreciated level for root growth regulation in rice.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Hua Huang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei-Yong Xin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Fang Chu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Song S, Ge M, Wang W, Gu C, Chen K, Zhang Q, Yu Q, Liu G, Jiang J. BpEIN3.1 represses leaf senescence by inhibiting synthesis of ethylene and abscisic acid in Betula platyphylla. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111330. [PMID: 35696929 DOI: 10.1016/j.plantsci.2022.111330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence and abscission play crucial role in annual plant adapting to seasonal alteration and climate changes by shortening life cycle and development process in response to abiotic and/or biotic stressors underlying phytohormones and environmental signals. Ethylene and abscisic acid are the major phytohormones that promotes leaf senescence, involving various transcription factors, such as EIN3 (ethylene-insensitive 3) and EIL (ethylene-insensitive 3-like) gene family, controlling leaf senescence through metabolite biosynthesis and signal transduction pathways. However, the roles of EIN3 regulating leaf senescence responding to environmental changes in perennial plant, especially forestry tree, remain unclear. In this study, we found that BpEIN3.1 from a subordinated to EIL3 subclade, is a transcription repressor and regulated light-dependent premature leaf senescence in birch (Betula platyphylla). BpEIN3.1 might inhibits the transcription of BpATPS1 by binding to its promoter. Shading suppressed premature leaf senescence in birch ein3.1 mutant line. Ethylene and abscisic acid biosynthesis were also reduced. In addition, abscisic acid positively regulated the expression of BpEIN3.1. This was demonstrated by the hormone-response element analysis of BpEIN3.1 promoter and its gene expression after the hormone treatments. Moreover, our results showed that abscisic acid is also involved in maintaining homeostasis. The molecular mechanism of leaf senescence provides a possibility to increasing wood production by delaying of leaf senescence.
Collapse
Affiliation(s)
- Shiyu Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Mengyan Ge
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wei Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenrui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Kun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, United States
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
26
|
Nayak JJ, Anwar S, Krishna P, Chen ZH, Plett JM, Foo E, Cazzonelli CI. Tangerine tomato roots show increased accumulation of acyclic carotenoids, less abscisic acid, drought sensitivity, and impaired endomycorrhizal colonization. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111308. [PMID: 35696908 DOI: 10.1016/j.plantsci.2022.111308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The Heirloom Golden tangerine tomato fruit variety is highly nutritious due to accumulation of tetra-cis-lycopene, that has a higher bioavailability and recognised health benefits in treating anti-inflammatory diseases compared to all-trans-lycopene isomers found in red tomatoes. We investigated if photoisomerization of tetra-cis-lycopene occurs in roots of the MicroTom tangerine (tangmic) tomato and how this affects root to shoot biomass, mycorrhizal colonization, abscisic acid accumulation, and responses to drought. tangmic plants grown in soil under glasshouse conditions displayed a reduction in height, number of flowers, fruit yield, and root length compared to wild-type (WT). Soil inoculation with Rhizophagus irregularis revealed fewer arbuscules and other fungal structures in the endodermal cells of roots in tangmic relative to WT. The roots of tangmic hyperaccumulated acyclic cis-carotenes, while only trace levels of xanthophylls and abscisic acid were detected. In response to a water deficit, leaves from the tangmic plants displayed a rapid decline in maximum quantum yield of photosystem II compared to WT, indicating a defective root to shoot signalling response to drought. The lack of xanthophylls biosynthesis in tangmic roots reduced abscisic acid levels, thereby likely impairing endomycorrhizal colonisation and drought-induced root to shoot signalling.
Collapse
Affiliation(s)
- Jwalit J Nayak
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Sidra Anwar
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Priti Krishna
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
27
|
Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms. Proc Natl Acad Sci U S A 2022; 119:e2201072119. [PMID: 35858424 PMCID: PMC9335218 DOI: 10.1073/pnas.2201072119] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intensive agriculture and changing tillage practices are causing soils to become increasingly compacted. Hard soils cause roots to accumulate the hormone ethylene, triggering reduced root elongation and increased radial swelling. We demonstrate that ethylene regulates these distinct root growth responses using different downstream signals, auxin, and abscisic acid (ABA). Auxin is primarily required to reduce cell elongation during a root compaction response, whereas ABA promotes radial cell expansion. Radial swelling was originally thought to aid root penetration in hard soil, yet rice ABA-deficient mutants disrupted in radial swelling of root tips penetrate compacted soil better than wild-type plants. The combined growth responses to auxin and ABA function to reduce the ability of roots to penetrate compacted soil. Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8. Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil.
Collapse
|
28
|
Chen H, Wu Q, Ni M, Chen C, Han C, Yu F. Transcriptome Analysis of Endogenous Hormone Response Mechanism in Roots of Styrax tonkinensis Under Waterlogging. FRONTIERS IN PLANT SCIENCE 2022; 13:896850. [PMID: 35734248 PMCID: PMC9208659 DOI: 10.3389/fpls.2022.896850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 06/02/2023]
Abstract
As a promising oil species, Styrax tonkinensis has great potential as a biofuel due to an excellent fatty acid composition. However, frequent flooding caused by global warming and the low tolerance of the species to waterlogging largely halted its expansion in waterlogged areas. To explore endogenous hormones and phytohormone-related molecular response mechanism of S. tonkinensis under waterlogging, we determined 1-aminocyclopropane-1-carboxylic acid (ACC) and three phytohormone content (ABA, abscisic acid; SA, salicylic acid; IAA, indole-3-acetic acid) and analyzed the transcriptome of its seedlings under waterlogged condition of 3-5 cm. The sample collecting time was 0, 9, 24, and 72 h, respectively. It was concluded that ACC presented an upward trend, but other plant hormones showed a downward trend from 0 to 72 h under waterlogging stress. A total of 84,601 unigenes were assembled with a total length of 81,389,823 bp through transcriptome analysis. The GO enrichment analysis of total differentially expressed genes (DEGs) revealed that 4,637 DEGs, 8,238 DEGs, and 7,146 DEGs were assigned into three main GO functional categories in 9 vs. 0 h, 24 vs. 0 h, and 72 vs. 0 h, respectively. We also discovered several DEGs involved in phytohormone synthesis pathway and plant hormone signaling pathway. It was concluded that the decreased transcription of PYL resulted in the weak ABA signal transduction pathway. Moreover, decreased SA content caused by the low-expressed PAL might impact the resistance of S. tonkinensis seedlings under waterlogging stress. Our research may provide a scientific basis for the understanding of the endogenous hormone response mechanism of S. tonkinensis to waterlogging and lay a foundation for further exploration of the waterlogging defect resistance genes of S. tonkinensis and improving its resistance to waterlogging stress.
Collapse
Affiliation(s)
- Hong Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Qikui Wu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Ming Ni
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Chen Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Chao Han
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| |
Collapse
|
29
|
Peng Y, Chen Y, Yuan Y, Liu B, Yu P, Song S, Yi Y, Teng Z, Yi Z, Zhang J, Meng S, Ye N, Duan M. Post‐anthesis saline‐alkali stress inhibits grain filling by promoting ethylene production and signal transduction. Food Energy Secur 2022. [DOI: 10.1002/fes3.384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yaqiong Peng
- Hunan Provincial Key Laboratory of Rice Stress Biology Hunan Agricultural University Changsha China
- Hengyang Academy of Agricultural Sciences Hengyang China
| | - Yinke Chen
- Hunan Provincial Key Laboratory of Rice Stress Biology Hunan Agricultural University Changsha China
| | | | - Bohan Liu
- Hunan Provincial Key Laboratory of Rice Stress Biology Hunan Agricultural University Changsha China
| | - Peng Yu
- Bureau of Agriculture and Rural Affairs of Hengshan County Hengyang China
| | - Shihao Song
- Hunan Provincial Key Laboratory of Rice Stress Biology Hunan Agricultural University Changsha China
| | - Yake Yi
- Hunan Provincial Key Laboratory of Rice Stress Biology Hunan Agricultural University Changsha China
| | - Zhenning Teng
- Hunan Provincial Key Laboratory of Rice Stress Biology Hunan Agricultural University Changsha China
| | - Zhenxie Yi
- Hunan Provincial Key Laboratory of Rice Stress Biology Hunan Agricultural University Changsha China
- College of Agriculture Hunan Agricultural University Changsha China
| | - Jianhua Zhang
- Department of Biology Hong Kong Baptist University Kowloon China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology The Chinese University of Hong Kong Shatin China
| | - Shuan Meng
- Hunan Provincial Key Laboratory of Rice Stress Biology Hunan Agricultural University Changsha China
- College of Agriculture Hunan Agricultural University Changsha China
| | - Nenghui Ye
- Hunan Provincial Key Laboratory of Rice Stress Biology Hunan Agricultural University Changsha China
- College of Agriculture Hunan Agricultural University Changsha China
| | - Meijuan Duan
- Hunan Provincial Key Laboratory of Rice Stress Biology Hunan Agricultural University Changsha China
- College of Agriculture Hunan Agricultural University Changsha China
| |
Collapse
|
30
|
Genetic Dissection of Rice Ratooning Ability Using an Introgression Line Population and Substitution Mapping of a Pleiotropic Quantitative Trait Locus qRA5. PLANTS 2022; 11:plants11091134. [PMID: 35567135 PMCID: PMC9100519 DOI: 10.3390/plants11091134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Ratooning ability is a key factor that influences ratoon rice yield, in the area where light and temperature are not enough for second season rice. In the present study, an introgression line population derived from Minghui 63 as the recipient parent and 02428 as the donor parent was developed, and a high-density bin map containing 4568 bins was constructed. Nine ratooning-ability-related traits were measured, including maximum tiller number, panicle number, and grain yield per plant in the first season and ratoon season, as well as three secondary traits, maximum tiller number ratio, panicle number ratio, and grain yield ratio. A total of 22 main-effect QTLs were identified and explained for 3.26–18.63% of the phenotypic variations in the introgression line population. Three genomic regions, including 14.12–14.65 Mb on chromosome 5, 4.64–5.76 Mb on chromosome 8, and 10.64–15.52 Mb on chromosome 11, were identified to simultaneously control different ratooning-ability-related traits. Among them, qRA5 in the region of 14.12–14.65 Mb on chromosome 5 was validated for its pleiotropic effects on maximum tiller number and panicle number in the first season, as well as its maximum tiller number ratio, panicle number ratio, and grain yield ratio. Moreover, qRA5 was independent of genetic background and delimited into a 311.16 kb region by a substitution mapping approach. These results will help us better understand the genetic basis of rice ratooning ability and provide a valuable gene resource for breeding high-yield ratoon rice varieties.
Collapse
|
31
|
Qin H, Pandey BK, Li Y, Huang G, Wang J, Quan R, Zhou J, Zhou Y, Miao Y, Zhang D, Bennett MJ, Huang R. Orchestration of ethylene and gibberellin signals determines primary root elongation in rice. THE PLANT CELL 2022; 34:1273-1288. [PMID: 35021223 PMCID: PMC8972239 DOI: 10.1093/plcell/koac008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/06/2022] [Indexed: 05/10/2023]
Abstract
Primary root growth in cereal crops is fundamental for early establishment of the seedling and grain yield. In young rice (Oryza sativa) seedlings, the primary root grows rapidly for 7-10 days after germination and then stops; however, the underlying mechanism determining primary root growth is unclear. Here, we report that the interplay of ethylene and gibberellin (GA) controls the orchestrated development of the primary root in young rice seedlings. Our analyses advance the knowledge that primary root growth is maintained by higher ethylene production, which lowers bioactive GA contents. Further investigations unraveled that ethylene signaling transcription factor ETHYLENE INSENSITIVE3-LIKE 1 (OsEIL1) activates the expression of the GA metabolism genes GIBBERELLIN 2-OXIDASE 1 (OsGA2ox1), OsGA2ox2, OsGA2ox3, and OsGA2ox5, thereby deactivating GA activity, inhibiting cell proliferation in the root meristem, and ultimately gradually inhibiting primary root growth. Mutation in OsGA2ox3 weakened ethylene-induced GA inactivation and reduced the ethylene sensitivity of the root. Genetic analysis revealed that OsGA2ox3 functions downstream of OsEIL1. Taken together, we identify a molecular pathway impacted by ethylene during primary root elongation in rice and provide insight into the coordination of ethylene and GA signals during root development and seedling establishment.
Collapse
Affiliation(s)
- Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Bipin K Pandey
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoqiang Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jiahao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Zhou
- Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Yuchen Miao
- Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Author for correspondence: (R.H.), (M.J.B.), and (D.Z.)
| | - Malcolm J Bennett
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
- Author for correspondence: (R.H.), (M.J.B.), and (D.Z.)
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
- Author for correspondence: (R.H.), (M.J.B.), and (D.Z.)
| |
Collapse
|
32
|
Ranjan A, Sinha R, Singla-Pareek SL, Pareek A, Singh AK. Shaping the root system architecture in plants for adaptation to drought stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13651. [PMID: 35174506 DOI: 10.1111/ppl.13651] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Root system architecture plays an important role in plant adaptation to drought stress. The root system architecture (RSA) consists of several structural features, which includes number and length of main and lateral roots along with the density and length of root hairs. These features exhibit plasticity under water-limited environments and could be critical to developing crops with efficient root systems for adaptation under drought. Recent advances in the omics approaches have significantly improved our understanding of the regulatory mechanisms of RSA remodeling under drought and the identification of genes and other regulatory elements. Plant response to drought stress at physiological, morphological, biochemical, and molecular levels in root cells is regulated by various phytohormones and their crosstalk. Stress-induced reactive oxygen species play a significant role in regulating root growth and development under drought stress. Several transcription factors responsible for the regulation of RSA under drought have proven to be beneficial for developing drought tolerant crops. Molecular breeding programs for developing drought-tolerant crops have been greatly benefitted by the availability of quantitative trait loci (QTLs) associated with the RSA regulation. In the present review, we have discussed the role of various QTLs, signaling components, transcription factors, microRNAs and crosstalk among various phytohormones in shaping RSA and present future research directions to better understand various factors involved in RSA remodeling for adaptation to drought stress. We believe that the information provided herein may be helpful in devising strategies to develop crops with better RSA for efficient uptake and utilization of water and nutrients under drought conditions.
Collapse
Affiliation(s)
- Alok Ranjan
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Ragini Sinha
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, India
| |
Collapse
|
33
|
Pan X, Guan L, Lei K, Li J, Zhang X. Transcriptional and physiological data revealed cold tolerance in a photo-thermo sensitive genic male sterile line Yu17S. BMC PLANT BIOLOGY 2022; 22:44. [PMID: 35062884 PMCID: PMC8781465 DOI: 10.1186/s12870-022-03437-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rice is highly sensitive to chilling stress during the seedling stage. However, the adaptable photo-thermo sensitive genic male sterile (PTGMS) rice line, Yu17S, exhibits tolerance to low temperatures. Currently, the molecular characteristics of Yu17S are unclear. RESULTS To evaluate the molecular mechanisms behind cold responses in rice seedlings, a comparative transcriptome analysis was performed in Yu17S during seedling development under normal temperature and low temperature conditions. In total, 9317 differentially expressed genes were detected. Gene ontology and pathway analyses revealed that these genes were involved mostly in photosynthesis, carotenoid biosynthesis, carbohydrate metabolism and plant hormone signal transduction. An integrated analysis of specific pathways combined with physiological data indicated that rice seedlings improved the performance of photosystem II when exposed to cold conditions. Genes involved in starch degradation and sucrose metabolism were activated in rice plants exposed to cold stress treatments, which was accompanied by the accumulation of soluble sugar, trehalose, raffinose and galactinol. Furthermore, chilling stress induced the expression of phytoene desaturase, 15-cis-ζ-carotene isomerase, ζ-carotene desaturase, carotenoid isomerase and β-carotene hydroxylase; this was coupled with the activation of carotenoid synthase activity and increases in abscisic acid (ABA) levels in rice seedlings. CONCLUSIONS Our results suggest that Yu17S exhibited better tolerance to cold stress with the activation of carotenoid synthase activity and increasing of ABA levels, and as well as the expression of photosynthesis-related genes under cold condition in rice seedlings.
Collapse
Affiliation(s)
- Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Ling Guan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Kairong Lei
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Jingyong Li
- Chongqing Rationing Rice Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, China
| | - Xianwei Zhang
- Chongqing Rationing Rice Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, China.
| |
Collapse
|
34
|
Motto M, Sahay S. Energy plants (crops): potential natural and future designer plants. HANDBOOK OF BIOFUELS 2022:73-114. [DOI: 10.1016/b978-0-12-822810-4.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
35
|
Zou H, Jiang H, Li L, Huang R. Integration of transcriptome and targeted metabolome profiling reveals hormone related genes involved in the growth of Bletilla striata. Sci Rep 2021; 11:21950. [PMID: 34754039 PMCID: PMC8578652 DOI: 10.1038/s41598-021-01532-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/28/2021] [Indexed: 11/11/2022] Open
Abstract
Bletilla striata (Thunb.) Reichb.f. (BS) is a traditional Chinese medicine with numerous beneficial effects. In our previous study, Aspergillus flavus was isolated from B. striata. To explore the physiological and molecular mechanisms of Aspergillus flavus elicitor (1-G4) that promoted Bletilla striata growth, in this study, we performed the determination of growth indexes and transcriptomics and metabolomics analysis under 5% and 10% 1-G4 conditions. Results showed that 1-G4 elicitor could significantly promote the growth and development of B. striata. With the increasing concentration of 1-G4 elicitor, the contents of SA, ICAld, and ME-IAA significantly increased while the IP and ACC contents decreased dramatically. A total of 1657 DEGs (763 up-regulated and 894 down-regulated) between the control (CK) and 5% elicitor (CK vs G5) and 2415 DEGs (1208 up-regulated and 1207 down-regulated) between the control and 10% elicitor (CK vs G10) were identified. Further, we found that 22, 38, and 2 unigenes were involved in ME-IAA, IP, and ACC, respectively. It was indicated that these unigenes might be involved in B. striata growth. Overall, the current study laid a theoretical foundation for the effective utilization of endophytic fungi and the optimization of germplasm resources of B. striata.
Collapse
Affiliation(s)
- Hengwei Zou
- College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Hanxiao Jiang
- College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Liangbo Li
- College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Rongshao Huang
- College of Agriculture, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
36
|
Huang Y, Zhou J, Li Y, Quan R, Wang J, Huang R, Qin H. Salt Stress Promotes Abscisic Acid Accumulation to Affect Cell Proliferation and Expansion of Primary Roots in Rice. Int J Mol Sci 2021; 22:ijms221910892. [PMID: 34639232 PMCID: PMC8509385 DOI: 10.3390/ijms221910892] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/16/2023] Open
Abstract
The primary root is the basic component of the root system and plays a key role in early seedling growth in rice. Its growth is easily affected by environmental cues, such as salt stress. Abscisic acid (ABA) plays an essential role in root development, but the molecular mechanism underlying ABA-regulated root growth in response to salt stress remains poorly understood. In this study, we report that salt stress inhibits primary root elongation and promotes primary root swelling. Moreover, salt stress induces the expression of ABA-responsive genes and ABA accumulation in the primary root, revealing that ABA plays an essential role in salt-modulated root growth. Transgenic lines of OsSAPK10-OE and OsABIL2-OE, which constitutively express OsSAPK10 or OsABIL2, with enhanced or attenuated ABA signaling, show increased and decreased sensitivity to salt, correspondingly. Microscopic analysis indicates that salt and ABA inhibits cell proliferation and promotes cell expansion in the root apical meristem. Transcriptome analysis showed that ABA induces the expression of EXPANSIN genes. Further investigations indicate that ABA exerts these effects largely through ABA signaling. Thus, our findings deepen our understanding of the role of ABA in controlling primary root growth in response to salt stress, and this knowledge can be used by breeders to cultivate rice varieties suitable for saline–alkali land.
Collapse
Affiliation(s)
- Yingying Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
| | - Jiahao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
| | - Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
- Correspondence:
| |
Collapse
|
37
|
Zhang Y, Zhang GQ, Zhang D, Liu XD, Xu XY, Sun WH, Yu X, Zhu X, Wang ZW, Zhao X, Zhong WY, Chen H, Yin WL, Huang T, Niu SC, Liu ZJ. Chromosome-scale assembly of the Dendrobium chrysotoxum genome enhances the understanding of orchid evolution. HORTICULTURE RESEARCH 2021; 8:183. [PMID: 34465765 PMCID: PMC8408244 DOI: 10.1038/s41438-021-00621-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 05/03/2023]
Abstract
As one of the largest families of angiosperms, the Orchidaceae family is diverse. Dendrobium represents the second largest genus of the Orchidaceae. However, an assembled high-quality genome of species in this genus is lacking. Here, we report a chromosome-scale reference genome of Dendrobium chrysotoxum, an important ornamental and medicinal orchid species. The assembled genome size of D. chrysotoxum was 1.37 Gb, with a contig N50 value of 1.54 Mb. Of the sequences, 95.75% were anchored to 19 pseudochromosomes. There were 30,044 genes predicted in the D. chrysotoxum genome. Two whole-genome polyploidization events occurred in D. chrysotoxum. In terms of the second event, whole-genome duplication (WGD) was also found to have occurred in other Orchidaceae members, which diverged mainly via gene loss immediately after the WGD event occurred; the first duplication was found to have occurred in most monocots (tau event). We identified sugar transporter (SWEET) gene family expansion, which might be related to the abundant medicinal compounds and fleshy stems of D. chrysotoxum. MADS-box genes were identified in D. chrysotoxum, as well as members of TPS and Hsp90 gene families, which are associated with resistance, which may contribute to the adaptive evolution of orchids. We also investigated the interplay among carotenoid, ABA, and ethylene biosynthesis in D. chrysotoxum to elucidate the regulatory mechanisms of the short flowering period of orchids with yellow flowers. The reference D. chrysotoxum genome will provide important insights for further research on medicinal active ingredients and breeding and enhances the understanding of orchid evolution.
Collapse
Affiliation(s)
- Yongxia Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | - Guo-Qiang Zhang
- Laboratory for Orchid Conservation and Utilization, Orchid Conservation and Research Center, The National Orchid Conservation Center, Shenzhen, 518114, China
- School of Food Science and Technology, Foshan University, Foshan, 528225, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xue-Die Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin-Yu Xu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei-Hong Sun
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xia Yu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoen Zhu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | | | | | | | - Hongfeng Chen
- Key Laboratory of Plant Resources Conservation Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wei-Lun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China.
| | - Shan-Ce Niu
- College of Horticulture, Hebei Agricultural University, Baoding, 071000, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
38
|
Molecular mechanisms of mesocotyl elongation induced by brassinosteroid in maize under deep-seeding stress by RNA-sequencing, microstructure observation, and physiological metabolism. Genomics 2021; 113:3565-3581. [PMID: 34455034 DOI: 10.1016/j.ygeno.2021.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022]
Abstract
Deep-seeding is an important way to improve maize drought resistance, mesocotyl elongation can significantly enhance its seedling germination. To improve our understanding of transcription-mediated maize mesocotyl elongation under deep-seeding stress. RNA-sequencing was used to identify differentially expressed genes (DEGs) in both deep-seeding tolerant W64A and intolerant K12 mesocotyls following culture for 10 days after 2.0 mg·L-1 24-epibrassinolide (EBR) induced stress at the depths of 3 and 20 cm. Phenotypically, the mesocotyl length of both maize significantly increased under 20 cm stress and in the presence of EBR. Microstructure observations revealed that the mesocotyls underwent programmed cell death under deep-seeding stress, which was alleviated by EBR. This was found to be regulated by multiple DEGs encoding cysteine protease/senescence-specific cysteine protease, aspartic protease family protein, phospholipase D, etc. and transcription factors (TFs; MYB, NAC). Additionally, some DEGs associated with cell wall components, i.e., cellulose synthase/cellulose synthase like protein (CESA/CSL), fasciclin-like arabinogalactan (APG), leucine-rich repeat protein (LRR) and lignin biosynthesis enzymes including phenylalanine ammonia-lyase, S-adenosyl-L-methionine-dependent methyltransferases, 4-coumarate-CoA ligase, cinnamoyl CoA reductase, cinnamyl alcohol dehydrogenase, catalase, peroxiredoxin/peroxidase were found to control cell wall sclerosis. Moreover, in auxin, ethylene, brassinosteriod, cytokinin, zeatin, abscisic acid, gibberellin, jasmonic acid, and salicylic acid signaling transduction pathways, the corresponding DEGs were activated/inhibited by TFs (ARF, BZR1/2, B-ARR, A-ARR, MYC2, ABF, TGA) and synthesis of phytohormones-related metabolites. These findings provide information on the molecular mechanisms controlling maize deep-seeding tolerance and will aid in the breeding of deep-seeding maize varieties.
Collapse
|
39
|
Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2857-2876. [PMID: 33471899 DOI: 10.1093/jxb/erab024] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 05/22/2023]
Abstract
With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
40
|
Pei X, Wang X, Fu G, Chen B, Nazir MF, Pan Z, He S, Du X. Identification and functional analysis of 9-cis-epoxy carotenoid dioxygenase (NCED) homologs in G. hirsutum. Int J Biol Macromol 2021; 182:298-310. [PMID: 33811933 DOI: 10.1016/j.ijbiomac.2021.03.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/20/2022]
Abstract
9-cis-epoxy carotenoid dioxygenase (NCED) is a fundamental enzyme, which plays an essential role in the process of organ development and stress resistance by regulating abscisic acid (ABA) synthesis in plant. In this study, a total of 7, 7, 14 and 14 NCED genes were identified from the genomes of G. arboreum, G. raimondii, G. barbadense and G. hirsutum, respectively. Phylogenetic tree showed that all forty-two NCED genes could be classified into three groups in cotton genus. Collinear analysis revealed that the NCED genes in G. hirsutum were not amplified by tandem repeats after polyploidy events. The function of NCED genes was evaluated between two accessions with contrasting plant height. The results showed that expression of the NCED genes in dwarf accession was higher than that in taller ones. GhNCED1-silenced cotton plants confirmed that suppression of NCED genes could increase the plant height, but reduce the resistance abilities to drought and salt stress. Our study systematically identified the homologs of NCED genes and their functions in cotton, which could provide new genetic resources for improving plant height and stress in future cotton breeding.
Collapse
Affiliation(s)
- Xinxin Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoyong Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Baojun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| |
Collapse
|
41
|
Zhou H, Yang M, Zhao L, Zhu Z, Liu F, Sun H, Sun C, Tan L. HIGH-TILLERING AND DWARF 12 modulates photosynthesis and plant architecture by affecting carotenoid biosynthesis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1212-1224. [PMID: 33097962 DOI: 10.1093/jxb/eraa497] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/20/2020] [Indexed: 05/27/2023]
Abstract
Photosynthesis and plant architecture are important factors influencing grain yield in rice (Oryza sativa L.). Here, we identified a high-tillering and dwarf 12 (htd12) mutant and analyzed the effects of the HTD12 mutation on these important factors. HTD12 encodes a 15-cis-ζ-carotene isomerase (Z-ISO) belonging to the nitrite and nitric oxide reductase U (NnrU) protein family, as revealed by positional mapping and transformation experiments. Sequence analysis showed that a single nucleotide transition from guanine (G) to adenine (A) in the 3' acceptor site between the first intron and second exon of HTD12 alters its mRNA splicing in htd12 plants, resulting in a 49-amino acid deletion that affects carotenoid biosynthesis and photosynthesis. In addition, compared with the wild type, htd12 had significantly lower concentrations of ent-2'-epi-5-deoxystrigol (epi-5DS), a native strigolactone, in both roots and root exudates, resulting in an obvious increase in tiller number and decrease in plant height. These findings indicate that HTD12, the rice homolog of Z-ISO, regulates chloroplast development and photosynthesis by functioning in carotenoid biosynthesis, and modulates plant architecture by affecting strigolactone concentrations.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, China
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Mai Yang
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Lei Zhao
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Zuofeng Zhu
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, China
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Hongying Sun
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, China
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Lubin Tan
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Zhao H, Yin CC, Ma B, Chen SY, Zhang JS. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:102-125. [PMID: 33095478 DOI: 10.1111/jipb.13028] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 05/22/2023]
Abstract
Ethylene is a gaseous hormone which plays important roles in both plant growth and development and stress responses. Based on studies in the dicot model plant species Arabidopsis, a linear ethylene signaling pathway has been established, according to which ethylene is perceived by ethylene receptors and transduced through CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) and ETHYLENE-INSENSITIVE 2 (EIN2) to activate transcriptional reprogramming. In addition to this canonical signaling pathway, an alternative ethylene receptor-mediated phosphor-relay pathway has also been proposed to participate in ethylene signaling. In contrast to Arabidopsis, rice, a monocot, grows in semiaquatic environments and has a distinct plant structure. Several novel regulators and/or mechanisms of the rice ethylene signaling pathway have recently been identified, indicating that the ethylene signaling pathway in rice has its own unique features. In this review, we summarize the latest progress and compare the conserved and divergent aspects of the ethylene signaling pathway between Arabidopsis and rice. The crosstalk between ethylene and other plant hormones is also reviewed. Finally, we discuss how ethylene regulates plant growth, stress responses and agronomic traits. These analyses should help expand our knowledge of the ethylene signaling mechanism and could further be applied for agricultural purposes.
Collapse
Affiliation(s)
- He Zhao
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
43
|
Liu X, Hu Q, Yan J, Sun K, Liang Y, Jia M, Meng X, Fang S, Wang Y, Jing Y, Liu G, Wu D, Chu C, Smith SM, Chu J, Wang Y, Li J, Wang B. ζ-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. MOLECULAR PLANT 2020; 13:1784-1801. [PMID: 33038484 DOI: 10.1016/j.molp.2020.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/06/2020] [Accepted: 10/03/2020] [Indexed: 05/18/2023]
Abstract
Rice tillering is an important agronomic trait affecting grain yield. Here, we identified a high-tillering mutant tillering20 (t20), which could be restored to the wild type by treatment with the strigolactone (SL) analog rac-GR24. T20 encodes a chloroplast ζ-carotene isomerase (Z-ISO), which is involved in the biosynthesis of carotenoids and their metabolites, SL and abscisic acid (ABA). The t20 mutant has reduced SL and ABA, raising the question of how SL and ABA biosynthesis is coordinated, and whether they have overlapping functions in tillering. We discovered that rac-GR24 stimulated T20 expression and enhanced all-trans-β-carotene biosynthesis. Importantly, rac-GR24 also stimulated expression of Oryza sativa 9-CIS-EPOXYCAROTENOID DIOXYGENASE 1 (OsNCED1) through induction of Oryza sativa HOMEOBOX12 (OsHOX12), promoting ABA biosynthesis in shoot base. On the other hand, ABA treatment significantly repressed SL biosynthesis and the ABA biosynthetic mutants displayed elevated SL biosynthesis. ABA treatment reduced the number of basal tillers in both t20 and wild-type plants. Furthermore, while ABA-deficient mutants aba1 and aba2 had the same number of basal tillers as wild type, they had more unproductive upper tillers at maturity. This work demonstrates complex interactions in the biosynthesis of carotenoid, SLs and ABA, and reveals a role for ABA in the regulation of rice tillering.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingliang Hu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jijun Yan
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Sun
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Meiru Jia
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Fang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agriculture Sciences, Zhejiang University, Hangzhou 310029, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven M Smith
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; School of Natural Sciences, University of Tasmania, Hobart 7001, Australia
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yonghong Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
44
|
Rativa AGS, Junior ATDA, Friedrich DDS, Gastmann R, Lamb TI, Silva ADS, Adamski JM, Fett JP, Ricachenevsky FK, Sperotto RA. Root responses of contrasting rice genotypes to low temperature stress. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153307. [PMID: 33142180 DOI: 10.1016/j.jplph.2020.153307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/05/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Rice (Oryza sativa L.) ssp. indica is the most cultivated species in the South of Brazil. However, these plants face low temperature stress from September to November, which is the period of early sowing, affecting plant development during the initial stages of growth, and reducing rice productivity. This study aimed to characterize the root response to low temperature stress during the early vegetative stage of two rice genotypes contrasting in their cold tolerance (CT, cold-tolerant; and CS, cold-sensitive). Root dry weight and length, as well as the number of root hairs, were higher in CT than CS when exposed to cold treatment. Histochemical analyses indicated that roots of CS genotype present higher levels of lipid peroxidation and H2O2 accumulation, along with lower levels of plasma membrane integrity than CT under low temperature stress. RNAseq analyses revealed that the contrasting genotypes present completely different molecular responses to cold stress. The number of over-represented functional categories was lower in CT than CS under cold condition, suggesting that CS genotype is more impacted by low temperature stress than CT. Several genes might contribute to rice cold tolerance, including the ones related with cell wall remodeling, cytoskeleton and growth, signaling, antioxidant system, lipid metabolism, and stress response. On the other hand, high expression of the genes SRC2 (defense), root architecture associated 1 (growth), ACC oxidase, ethylene-responsive transcription factor, and cytokinin-O-glucosyltransferase 2 (hormone-related) seems to be related with cold sensibility. Since these two genotypes have a similar genetic background (sister lines), the differentially expressed genes found here can be considered candidate genes for cold tolerance and could be used in future biotechnological approaches aiming to increase rice tolerance to low temperature.
Collapse
Affiliation(s)
| | | | | | - Rodrigo Gastmann
- Biological Sciences and Health Center, University of Taquari Valley - Univates, Lajeado, Brazil
| | - Thainá Inês Lamb
- Biological Sciences and Health Center, University of Taquari Valley - Univates, Lajeado, Brazil
| | | | | | - Janette Palma Fett
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Klein Ricachenevsky
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Raul Antonio Sperotto
- Graduate Program in Biotechnology, University of Taquari Valley - Univates, Lajeado, Brazil; Biological Sciences and Health Center, University of Taquari Valley - Univates, Lajeado, Brazil.
| |
Collapse
|
45
|
An ERF Transcription Factor Gene from Malus baccata (L.) Borkh, MbERF11, Affects Cold and Salt Stress Tolerance in Arabidopsis. FORESTS 2020. [DOI: 10.3390/f11050514] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apple, as one of the most important economic forest tree species, is widely grown in the world. Abiotic stress, such as low temperature and high salt, affect apple growth and development. Ethylene response factors (ERFs) are widely involved in the responses of plants to biotic and abiotic stresses. In this study, a new ethylene response factor gene was isolated from Malus baccata (L.) Borkh and designated as MbERF11. The MbERF11 gene encoded a protein of 160 amino acid residues with a theoretical isoelectric point of 9.27 and a predicated molecular mass of 17.97 kDa. Subcellular localization showed that MbERF11 was localized to the nucleus. The expression of MbERF11 was enriched in root and stem, and was highly affected by cold, salt, and ethylene treatments in M. baccata seedlings. When MbERF11 was introduced into Arabidopsis thaliana, it greatly increased the cold and salt tolerance in transgenic plant. Increased expression of MbERF11 in transgenic A. thaliana also resulted in higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), higher contents of proline and chlorophyll, while malondialdehyde (MDA) content was lower, especially in response to cold and salt stress. Therefore, these results suggest that MbERF11 probably plays an important role in the response to cold and salt stress in Arabidopsis by enhancing the scavenging capability for reactive oxygen species (ROS).
Collapse
|
46
|
Zhao H, Ma B, Duan KX, Li XK, Lu X, Yin CC, Tao JJ, Wei W, Zhang WK, Xin PY, Man Lam S, Chu JF, Shui GH, Chen SY, Zhang JS. The GDSL Lipase MHZ11 Modulates Ethylene Signaling in Rice Roots. THE PLANT CELL 2020; 32:1626-1643. [PMID: 32184349 PMCID: PMC7203933 DOI: 10.1105/tpc.19.00840] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/02/2020] [Accepted: 03/15/2020] [Indexed: 05/04/2023]
Abstract
Ethylene plays important roles in plant growth and development, but the regulation of ethylene signaling is largely unclear, especially in crops such as rice (Oryza sativa). Here, by analysis of the ethylene-insensitive mutant mao huzi 11 (mhz11), we identified the GDSL lipase MHZ11, which modulates ethylene signaling in rice roots. MHZ11 localized to the endoplasmic reticulum membrane and has acyl-hydrolyzing activity. This activity affects the homeostasis of sterols in rice roots and is required for root ethylene response. MHZ11 overexpression caused constitutive ethylene response in roots. Genetically, MHZ11 acts with the ethylene receptor ETHYLENE RESPONSE SENSOR2 (OsERS2) upstream of CONSTITUTIVE TRIPLE RESPONSE2 (OsCTR2) and ETHYLENE INSENSITIVE2 (OsEIN2). The mhz11 mutant maintains more OsCTR2 in the phosphorylated form whereas MHZ11 overexpression promotes ethylene-mediated inhibition of OsCTR2 phosphorylation. MHZ11 colocalized with the ethylene receptor OsERS2, and its effect on OsCTR2 phosphorylation requires ethylene perception and initiation of ethylene signaling. The mhz11 mutant overaccumulated sterols and blocking sterol biosynthesis partially rescued the mhz11 ethylene response, likely by reducing receptor-OsCTR2 interaction and OsCTR2 phosphorylation. We propose that MHZ11 reduces sterol levels to impair receptor-OsCTR2 interactions and OsCTR2 phosphorylation for triggering ethylene signaling. Our study reveals a mechanism by which MHZ11 participates in ethylene signaling for regulation of root growth in rice.
Collapse
Affiliation(s)
- He Zhao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Ma
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100024, China
| | - Kai-Xuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Kai Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei-Yong Xin
- National Center of Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Fang Chu
- National Center of Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guang-Hou Shui
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Identification of EIL and ERF Genes Related to Fruit Ripening in Peach. Int J Mol Sci 2020; 21:ijms21082846. [PMID: 32325835 PMCID: PMC7216043 DOI: 10.3390/ijms21082846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/30/2022] Open
Abstract
Peach (Prunus persica) is a climacteric fruit with a relatively short shelf life due to its fast ripening or softening process. Here, we report the association of gene families encoding ethylene insensitive-3 like (EIL) and ethylene response factor (ERF) with fruit ripening in peach. In total, 3 PpEILs and 12 PpERFs were highly expressed in fruit, with the majority showing a peak of expression at different stages. All three EILs could activate ethylene biosynthesis genes PpACS1 and PpACO1. One out of the 12 PpERFs, termed PpERF.E2, is a homolog of ripening-associated ERFs in tomato, with a consistently high expression throughout fruit development and an ability to activate PpACS1 and PpACO1. Additionally, four subgroup F PpERFs harboring the EAR repressive motif were able to repress the PpACO1 promoter but could also activate the PpACS1 promoter. Promoter deletion assay revealed that PpEILs and PpERFs could participate in transcriptional regulation of PpACS1 through either direct or indirect interaction with various cis-elements. Taken together, these results suggested that all three PpEILs and PpERF.E2 are candidates involved in ethylene biosynthesis, and EAR motif-containing PpERFs may function as activator or repressor of ethylene biosynthesis genes in peach. Our study provides an insight into the roles of EILs and ERFs in the fruit ripening process.
Collapse
|
48
|
Al Murad M, Khan AL, Muneer S. Silicon in Horticultural Crops: Cross-talk, Signaling, and Tolerance Mechanism under Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:E460. [PMID: 32268477 PMCID: PMC7238200 DOI: 10.3390/plants9040460] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 11/24/2022]
Abstract
Agricultural land is extensively affected by salinity stress either due to natural phenomena or by agricultural practices. Saline stress possesses two major threats to crop growth: osmotic stress and oxidative stress. The response of these changes is often accompanied by variety of symptoms, such as the decrease in leaf area and internode length and increase in leaf thickness and succulence, abscission of leaves, and necrosis of root and shoot. Salinity also delays the potential physiological activities, such as photosynthesis, transpiration, phytohormonal functions, metabolic pathways, and gene/protein functions. However, crops in response to salinity stress adopt counter cascade mechanisms to tackle salinity stress incursion, whilst continuous exposure to saline stress overcomes the defense mechanism system which results in cell death and compromises the function of essential organelles in crops. To overcome the salinity, a large number of studies have been conducted on silicon (Si); one of the beneficial elements in the Earth's crust. Si application has been found to mitigate salinity stress and improve plant growth and development, involving signaling transduction pathways of various organelles and other molecular mechanisms. A large number of studies have been conducted on several agricultural crops, whereas limited information is available on horticultural crops. In the present review article, we have summarized the potential role of Si in mitigating salinity stress in horticultural crops and possible mechanism of Si-associated improvements in them. The present review also scrutinizes the need of future research to evaluate the role of Si and gaps to saline stress in horticultural crops for their improvement.
Collapse
Affiliation(s)
- Musa Al Murad
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil Nadu 632014, India;
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil Nadu 632014, India;
| |
Collapse
|
49
|
Zheng H, Dong L, Han X, Jin H, Yin C, Han Y, Li B, Qin H, Zhang J, Shen Q, Zhang K, Wang D. The TuMYB46L-TuACO3 module regulates ethylene biosynthesis in einkorn wheat defense to powdery mildew. THE NEW PHYTOLOGIST 2020; 225:2526-2541. [PMID: 31675430 PMCID: PMC7065006 DOI: 10.1111/nph.16305] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/22/2019] [Indexed: 05/22/2023]
Abstract
Powdery mildew disease, elicited by the obligate fungal pathogen Blumeria graminis f.sp. tritici (Bgt), causes widespread yield losses in global wheat crop. However, the molecular mechanisms governing wheat defense to Bgt are still not well understood. Here we found that TuACO3, encoding the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase functioning in ethylene (ET) biosynthesis, was induced by Bgt infection of the einkorn wheat Triticum urartu, which was accompanied by increased ET content. Silencing TuACO3 decreased ET production and compromised wheat defense to Bgt, whereas both processes were enhanced in the transgenic wheat overexpressing TuACO3. TuMYB46L, phylogenetically related to Arabidopsis MYB transcription factor AtMYB46, was found to bind to the TuACO3 promoter region in yeast-one-hybrid and EMSA experiments. TuMYB46L expression decreased rapidly following Bgt infection. Silencing TuMYB46L promoted ET content and Bgt defense, but the reverse was observed when TuMYB46L was overexpressed. Hence, decreased expression of TuMYB46L permits elevated function of TuACO3 in ET biosynthesis in Bgt-infected wheat. The TuMYB46L-TuACO3 module regulates ET biosynthesis to promote einkorn wheat defense against Bgt. Furthermore, we found four chitinase genes acting downstream of the TuMYB46L-TuACO3 module. Collectively, our data shed a new light on the molecular mechanisms underlying wheat defense to Bgt.
Collapse
Affiliation(s)
- Hongyuan Zheng
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Lingli Dong
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Xinyun Han
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Huaibing Jin
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Cuicui Yin
- The State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Yali Han
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Bei Li
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Huanju Qin
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Jinsong Zhang
- The State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qianhua Shen
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Kunpu Zhang
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- The State Key Laboratory of Wheat and Maize Crop ScienceHenan Agricultural UniversityZhengzhou450002China
| |
Collapse
|
50
|
Wu YS, Yang CY. Comprehensive Transcriptomic Analysis of Auxin Responses in Submerged Rice Coleoptile Growth. Int J Mol Sci 2020; 21:E1292. [PMID: 32075118 PMCID: PMC7072898 DOI: 10.3390/ijms21041292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
Cultivating rice in wet or water direct seeding systems is simple and time and labor efficient. Rice (Oryza sativa) seeds are a unique cereal that can germinate not only when submerged, but also in anoxic conditions. Many complicated hormone signals interact in submerged seed germination. Ethylene is involved in rice coleoptile elongation, but little is known regarding the role of auxin signaling under submergence. This study demonstrated that the coleoptile is shorter and curlier when submerged with 2,3,5-triiodobenzoic acid (TIBA). In transcriptomic analysis, 3448 of the 31,860 genes were upregulated, and 4360 genes were downregulated with submergence and TIBA treatment. The Gene Ontology function classification results demonstrated that upregulated differentially expressed genes (DEGs) were mainly involved in redox, stress, and signal transduction, whereas the down-regulated DEGs were mainly involved in RNA transcription, stress, and development. Furthermore, auxin signaling involved in the carbohydrate metabolism pathway was demonstrated while using transcriptomic analysis and confirmed in a quantitative real-time polymerase chain reaction. In addition, the transcript levels of development-related genes and mitochondria-electron- transport-related genes were regulated by auxin signaling under submergence. Auxin signaling was not only involved in regulating rice coleoptile elongation and development, but also regulated secondary metabolism, carbohydrate metabolism, and mitochondria electron transport under submergence. Our results presented that auxin signaling plays an important role during rice coleoptile elongation upon the submergence condition and improving the advance of research of direct rice seeding system.
Collapse
Affiliation(s)
- Yu-Sian Wu
- Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chin-Ying Yang
- Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan;
- Pervasive AI Research (PAIR) Labs, Hsinchu 30010, Taiwan
| |
Collapse
|