1
|
FitzPatrick JA, Doucet BI, Holt SD, Patterson CM, Kooyers NJ. Unique drought resistance strategies occur among monkeyflower populations spanning an aridity gradient. AMERICAN JOURNAL OF BOTANY 2023; 110:e16207. [PMID: 37347451 DOI: 10.1002/ajb2.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023]
Abstract
PREMISE Annual plants often exhibit drought-escape and avoidance strategies to cope with limited water availability. Determining the extent of variation and factors underlying the evolution of divergent strategies is necessary for determining population responses to more frequent and severe droughts. METHODS We leveraged five Mimulus guttatus populations collected across an aridity gradient within manipulative drought and quantitative genetics experiments to examine constitutive and terminal-drought induced responses in drought resistance traits. RESULTS Populations varied considerably in drought-escape- and drought-avoidance-associated traits. The most mesic population demonstrated a unique resource conservative strategy. Xeric populations exhibited extreme plasticity when exposed to terminal drought that included flowering earlier at shorter heights, increasing water-use efficiency, and shifting C:N ratios. However, plasticity responses also differed between populations, with two populations slowing growth rates and flowering at earlier nodes and another population increasing growth rate. While nearly all traits were heritable, phenotypic correlations differed substantially between treatments and often, populations. CONCLUSIONS Our results suggest drought resistance strategies of populations may be finely adapted to local patterns of water availability. Substantial plastic responses suggest that xeric populations can already acclimate to drought through plasticity, but populations not frequently exposed to drought may be more vulnerable.
Collapse
Affiliation(s)
| | - Braden I Doucet
- Department of Biology, University of Louisiana, Lafayette, LA, 70503, USA
| | - Stacy D Holt
- Department of Biology, University of Louisiana, Lafayette, LA, 70503, USA
| | | | - Nicholas J Kooyers
- Department of Biology, University of Louisiana, Lafayette, LA, 70503, USA
| |
Collapse
|
2
|
Stöcker T, Uebermuth-Feldhaus C, Boecker F, Schoof H. A2TEA: Identifying trait-specific evolutionary adaptations. F1000Res 2023; 11:1137. [PMID: 37224329 PMCID: PMC10186066 DOI: 10.12688/f1000research.126463.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/26/2023] Open
Abstract
Background: Plants differ in their ability to cope with external stresses (e.g., drought tolerance). Genome duplications are an important mechanism to enable plant adaptation. This leads to characteristic footprints in the genome, such as protein family expansion. We explore genetic diversity and uncover evolutionary adaptation to stresses by exploiting genome comparisons between stress tolerant and sensitive species and RNA-Seq data sets from stress experiments. Expanded gene families that are stress-responsive based on differential expression analysis could hint at species or clade-specific adaptation, making these gene families exciting candidates for follow-up tolerance studies and crop improvement. Software: Integration of such cross-species omics data is a challenging task, requiring various steps of transformation and filtering. Ultimately, visualization is crucial for quality control and interpretation. To address this, we developed A2TEA: Automated Assessment of Trait-specific Evolutionary Adaptations, a Snakemake workflow for detecting adaptation footprints in silico. It functions as a one-stop processing pipeline, integrating protein family, phylogeny, expression, and protein function analyses. The pipeline is accompanied by an R Shiny web application that allows exploring, highlighting, and exporting the results interactively. This allows the user to formulate hypotheses regarding the genomic adaptations of one or a subset of the investigated species to a given stress. Conclusions: While our research focus is on crops, the pipeline is entirely independent of the underlying species and can be used with any set of species. We demonstrate pipeline efficiency on real-world datasets and discuss the implementation and limits of our analysis workflow as well as planned extensions to its current state. The A2TEA workflow and web application are publicly available at: https://github.com/tgstoecker/A2TEA.Workflow and https://github.com/tgstoecker/A2TEA.WebApp, respectively.
Collapse
Affiliation(s)
- Tyll Stöcker
- Crop Bioinformatics, University of Bonn, Bonn, NRW, 53115, Germany
| | | | - Florian Boecker
- Crop Bioinformatics, University of Bonn, Bonn, NRW, 53115, Germany
| | - Heiko Schoof
- Crop Bioinformatics, University of Bonn, Bonn, NRW, 53115, Germany
| |
Collapse
|
3
|
Healey AL, Piatkowski B, Lovell JT, Sreedasyam A, Carey SB, Mamidi S, Shu S, Plott C, Jenkins J, Lawrence T, Aguero B, Carrell AA, Nieto-Lugilde M, Talag J, Duffy A, Jawdy S, Carter KR, Boston LB, Jones T, Jaramillo-Chico J, Harkess A, Barry K, Keymanesh K, Bauer D, Grimwood J, Gunter L, Schmutz J, Weston DJ, Shaw AJ. Newly identified sex chromosomes in the Sphagnum (peat moss) genome alter carbon sequestration and ecosystem dynamics. NATURE PLANTS 2023; 9:238-254. [PMID: 36747050 PMCID: PMC9946827 DOI: 10.1038/s41477-022-01333-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Peatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S. divinum and S. angustifolium. Sphagnum genomes show no gene colinearity with any other reference genome to date, demonstrating that Sphagnum represents an unsampled lineage of land plant evolution. The genomes also revealed an average recombination rate an order of magnitude higher than vascular land plants and short putative U/V sex chromosomes. These newly described sex chromosomes interact with autosomal loci that significantly impact growth across diverse pH conditions. This discovery demonstrates that the ability of Sphagnum to sequester carbon in acidic peat bogs is mediated by interactions between sex, autosomes and environment.
Collapse
Affiliation(s)
- Adam L Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - Bryan Piatkowski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sarah B Carey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Sujan Mamidi
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Travis Lawrence
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Blanka Aguero
- Department of Biology, Duke University, Durham, NC, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Jayson Talag
- Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA
| | - Aaron Duffy
- Department of Biology, Duke University, Durham, NC, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kelsey R Carter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Lori-Beth Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Teresa Jones
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Alex Harkess
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Keykhosrow Keymanesh
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Diane Bauer
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Lee Gunter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | | |
Collapse
|
4
|
Cooper M, Messina CD. Breeding crops for drought-affected environments and improved climate resilience. THE PLANT CELL 2023; 35:162-186. [PMID: 36370076 PMCID: PMC9806606 DOI: 10.1093/plcell/koac321] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/01/2022] [Indexed: 05/12/2023]
Abstract
Breeding climate-resilient crops with improved levels of abiotic and biotic stress resistance as a response to climate change presents both opportunities and challenges. Applying the framework of the "breeder's equation," which is used to predict the response to selection for a breeding program cycle, we review methodologies and strategies that have been used to successfully breed crops with improved levels of drought resistance, where the target population of environments (TPEs) is a spatially and temporally heterogeneous mixture of drought-affected and favorable (water-sufficient) environments. Long-term improvement of temperate maize for the US corn belt is used as a case study and compared with progress for other crops and geographies. Integration of trait information across scales, from genomes to ecosystems, is needed to accurately predict yield outcomes for genotypes within the current and future TPEs. This will require transdisciplinary teams to explore, identify, and exploit novel opportunities to accelerate breeding program outcomes; both improved germplasm resources and improved products (cultivars, hybrids, clones, and populations) that outperform and replace the products in use by farmers, in combination with modified agronomic management strategies suited to their local environments.
Collapse
Affiliation(s)
- Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Carlos D Messina
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
5
|
Salt tolerance QTLs of an endemic rice landrace, Horkuch at seedling and reproductive stages. Sci Rep 2022; 12:17306. [PMID: 36243755 PMCID: PMC9569374 DOI: 10.1038/s41598-022-21737-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Salinity has a significant negative impact on production of rice. To cope with the increased soil salinity due to climate change, we need to develop salt tolerant rice varieties that can maintain their high yield. Rice landraces indigenous to coastal Bangladesh can be a great resource to study the genetic basis of salt adaptation. In this study, we implemented a QTL analysis framework with a reciprocal mapping population developed from a salt tolerant landrace Horkuch and a high yielding rice variety IR29. Our aim was to detect genetic loci that contributes to the salt adaptive responses of the two different developmental stages of rice which are very sensitive to salinity stress. We identified 14 QTLs for 9 traits and found that most are unique to specific developmental stages. In addition, we detected a significant effect of the cytoplasmic genome on the QTL model for some traits such as leaf total potassium and filled grain weight. This underscores the importance of considering cytoplasm-nuclear interaction for breeding programs. Finally, we identified QTLs co-localization for multiple traits that highlights the possible constraint of multiple QTL selection for breeding programs due to different contributions of a donor allele for different traits.
Collapse
|
6
|
Liang JW, Sen Ś. Sparse matrix linear models for structured high-throughput data. Ann Appl Stat 2022. [DOI: 10.1214/21-aoas1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jane W. Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health
| | - Śaunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center
| |
Collapse
|
7
|
Villalba-Bermell P, Marquez-Molins J, Marques MC, Hernandez-Azurdia AG, Corell-Sierra J, Picó B, Monforte AJ, Elena SF, Gomez GG. Combined Stress Conditions in Melon Induce Non-additive Effects in the Core miRNA Regulatory Network. FRONTIERS IN PLANT SCIENCE 2021; 12:769093. [PMID: 34899791 PMCID: PMC8656716 DOI: 10.3389/fpls.2021.769093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Climate change has been associated with a higher incidence of combined adverse environmental conditions that can promote a significant decrease in crop productivity. However, knowledge on how a combination of stresses might affect plant development is still scarce. MicroRNAs (miRNAs) have been proposed as potential targets for improving crop productivity. Here, we have combined deep-sequencing, computational characterization of responsive miRNAs and validation of their regulatory role in a comprehensive analysis of response of melon to several combinations of four stresses (cold, salinity, short day, and infection with a fungus). Twenty-two miRNA families responding to double and/or triple stresses were identified. The regulatory role of the differentially expressed miRNAs was validated by quantitative measurements of the expression of the corresponding target genes. A high proportion (ca. 60%) of these families (mainly highly conserved miRNAs targeting transcription factors) showed a non-additive response to multiple stresses in comparison with that observed under each one of the stresses individually. Among those miRNAs showing non-additive response to stress combinations, most interactions were negative, suggesting the existence of functional convergence in the miRNA-mediated response to combined stresses. Taken together, our results provide compelling pieces of evidence that the response to combined stresses cannot be easily predicted from the study individual stresses.
Collapse
Affiliation(s)
- Pascual Villalba-Bermell
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
| | - Joan Marquez-Molins
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
| | - María-Carmen Marques
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
| | - Andrea G. Hernandez-Azurdia
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
| | - Julia Corell-Sierra
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
| | - Belén Picó
- Instituto de Conservacióny Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Antonio J. Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
- The Santa Fe Institute, Santa Fe, NM, United States
| | - Gustavo G. Gomez
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
| |
Collapse
|
8
|
Zheng Y, Cabassa-Hourton C, Planchais S, Lebreton S, Savouré A. The proline cycle as an eukaryotic redox valve. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6856-6866. [PMID: 34331757 DOI: 10.1093/jxb/erab361] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The amino acid proline has been known for many years to be a component of proteins as well as an osmolyte. Many recent studies have demonstrated that proline has other roles such as regulating redox balance and energy status. In animals and plants, the well-described proline cycle is concomitantly responsible for the preferential accumulation of proline and shuttling of redox equivalents from the cytosol to mitochondria. The impact of the proline cycle goes beyond regulating proline levels. In this review, we focus on recent evidence of how the proline cycle regulates redox status in relation to other redox shuttles. We discuss how the interconversion of proline and glutamate shuttles reducing power between cellular compartments. Spatial aspects of the proline cycle in the entire plant are considered in terms of proline transport between organs with different metabolic regimes (photosynthesis versus respiration). Furthermore, we highlight the importance of this shuttle in the regulation of energy and redox power in plants, through a particularly intricate coordination, notably between mitochondria and cytosol.
Collapse
Affiliation(s)
- Yao Zheng
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Séverine Planchais
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Sandrine Lebreton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| |
Collapse
|
9
|
Rivera HE, Aichelman HE, Fifer JE, Kriefall NG, Wuitchik DM, Wuitchik SJS, Davies SW. A framework for understanding gene expression plasticity and its influence on stress tolerance. Mol Ecol 2021; 30:1381-1397. [PMID: 33503298 DOI: 10.1111/mec.15820] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Phenotypic plasticity can serve as a stepping stone towards adaptation. Recently, studies have shown that gene expression contributes to emergent stress responses such as thermal tolerance, with tolerant and susceptible populations showing distinct transcriptional profiles. However, given the dynamic nature of gene expression, interpreting transcriptomic results in a way that elucidates the functional connection between gene expression and the observed stress response is challenging. Here, we present a conceptual framework to guide interpretation of gene expression reaction norms in the context of stress tolerance. We consider the evolutionary and adaptive potential of gene expression reaction norms and discuss the influence of sampling timing, transcriptomic resilience, as well as complexities related to life history when interpreting gene expression dynamics and how these patterns relate to host tolerance. We highlight corals as a case study to demonstrate the value of this framework for non-model systems. As species face rapidly changing environmental conditions, modulating gene expression can serve as a mechanistic link from genetic and cellular processes to the physiological responses that allow organisms to thrive under novel conditions. Interpreting how or whether a species can employ gene expression plasticity to ensure short-term survival will be critical for understanding the global impacts of climate change across diverse taxa.
Collapse
Affiliation(s)
- Hanny E Rivera
- Department of Biology, Boston University, Boston, MA, USA
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Sara J S Wuitchik
- Department of Biology, Boston University, Boston, MA, USA.,FAS Informatics, Harvard University, Cambridge, MA, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
10
|
Simopoulos CMA, MacLeod MJR, Irani S, Sung WWL, Champigny MJ, Summers PS, Golding GB, Weretilnyk EA. Coding and long non-coding RNAs provide evidence of distinct transcriptional reprogramming for two ecotypes of the extremophile plant Eutrema salsugineum undergoing water deficit stress. BMC Genomics 2020; 21:396. [PMID: 32513102 PMCID: PMC7278158 DOI: 10.1186/s12864-020-06793-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background The severity and frequency of drought has increased around the globe, creating challenges in ensuring food security for a growing world population. As a consequence, improving water use efficiency by crops has become an important objective for crop improvement. Some wild crop relatives have adapted to extreme osmotic stresses and can provide valuable insights into traits and genetic signatures that can guide efforts to improve crop tolerance to water deficits. Eutrema salsugineum, a close relative of many cruciferous crops, is a halophytic plant and extremophyte model for abiotic stress research. Results Using comparative transcriptomics, we show that two E. salsugineum ecotypes display significantly different transcriptional responses towards a two-stage drought treatment. Even before visibly wilting, water deficit led to the differential expression of almost 1,100 genes for an ecotype from the semi-arid, sub-arctic Yukon, Canada, but only 63 genes for an ecotype from the semi-tropical, monsoonal, Shandong, China. After recovery and a second drought treatment, about 5,000 differentially expressed genes were detected in Shandong plants versus 1,900 genes in Yukon plants. Only 13 genes displayed similar drought-responsive patterns for both ecotypes. We detected 1,007 long non-protein coding RNAs (lncRNAs), 8% were only expressed in stress-treated plants, a surprising outcome given the documented association between lncRNA expression and stress. Co-expression network analysis of the transcriptomes identified eight gene clusters where at least half of the genes in each cluster were differentially expressed. While many gene clusters were correlated to drought treatments, only a single cluster significantly correlated to drought exposure in both ecotypes. Conclusion Extensive, ecotype-specific transcriptional reprogramming with drought was unexpected given that both ecotypes are adapted to saline habitats providing persistent exposure to osmotic stress. This ecotype-specific response would have escaped notice had we used a single exposure to water deficit. Finally, the apparent capacity to improve tolerance and growth after a drought episode represents an important adaptive trait for a plant that thrives under semi-arid Yukon conditions, and may be similarly advantageous for crop species experiencing stresses attributed to climate change.
Collapse
Affiliation(s)
- Caitlin M A Simopoulos
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada.,Current address: Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Canada
| | - Mitchell J R MacLeod
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - Solmaz Irani
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - Wilson W L Sung
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - Marc J Champigny
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - Peter S Summers
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - G Brian Golding
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | | |
Collapse
|
11
|
Xu G, Cao J, Wang X, Chen Q, Jin W, Li Z, Tian F. Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte. THE PLANT CELL 2019; 31:1990-2009. [PMID: 31227559 PMCID: PMC6751114 DOI: 10.1105/tpc.19.00111] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 05/04/2023]
Abstract
Maize (Zea mays subsp mays) was domesticated from its wild ancestor, teosinte (Zea mays subsp parviglumis). Maize's distinct morphology and adaptation to diverse environments required coordinated changes in various metabolic pathways. However, how the metabolome was reshaped since domestication remains poorly understood. Here, we report a comprehensive assessment of divergence in the seedling metabolome between maize and teosinte. In total, 461 metabolites exhibited significant divergence due to selection. Interestingly, teosinte and tropical and temperate maize, representing major stages of maize evolution, targeted distinct sets of metabolites. Alkaloids, terpenoids, and lipids were specifically targeted in the divergence between teosinte and tropical maize, while benzoxazinoids were specifically targeted in the divergence between tropical and temperate maize. To identify genetic factors controlling metabolic divergence, we assayed the seedling metabolome of a large maize-by-teosinte cross population. We show that the recent metabolic divergence between tropical and temperate maize tended to have simpler genetic architecture than the divergence between teosinte and tropical maize. Through integrating transcriptome data, we identified candidate genes contributing to metabolic divergence, many of which were under selection at the nucleotide and transcript levels. Through overexpression or mutant analysis, we verified the roles of Flavanone 3-hydroxylase1, Purple aleurone1, and maize terpene synthase1 in the divergence of their related biosynthesis pathways. Our findings not only provide important insights into domestication-associated changes in the metabolism but also highlight the power of combining omics data for trait dissection.
Collapse
Affiliation(s)
- Guanghui Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jingjing Cao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xufeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuyue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Bouzid M, He F, Schmitz G, Häusler RE, Weber APM, Mettler-Altmann T, De Meaux J. Arabidopsis species deploy distinct strategies to cope with drought stress. ANNALS OF BOTANY 2019; 124:27-40. [PMID: 30668651 PMCID: PMC6676377 DOI: 10.1093/aob/mcy237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 12/17/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Water limitation is an important determinant of the distribution, abundance and diversity of plant species. Yet, little is known about how the response to limiting water supply changes among closely related plant species with distinct ecological preferences. Comparison of the model annual species Arabidopsis thaliana with its close perennial relatives A. lyrata and A. halleri, can help disentangle the molecular and physiological changes contributing to tolerance and avoidance mechanisms, because these species must maintain tolerance and avoidance mechanisms to increase long-term survival, but they are exposed to different levels of water stress and competition in their natural habitat. METHODS A dry-down experiment was conducted to mimic a period of missing precipitation. The covariation of a progressive decrease in soil water content (SWC) with various physiological and morphological plant traits across a set of representative genotypes in A. thaliana, A. lyrata and A. halleri was quantified. Transcriptome changes to soil dry-down were further monitored. KEY RESULTS The analysis of trait covariation demonstrates that the three species differ in the strategies they deploy to respond to drought stress. Arabidopsis thaliana showed a drought avoidance reaction but failed to survive wilting. Arabidopsis lyrata efficiently combined avoidance and tolerance mechanisms. In contrast, A. halleri showed some degree of tolerance to wilting but it did not seem to protect itself from the stress imposed by drought. Transcriptome data collected just before plant wilting and after recovery corroborated the phenotypic analysis, with A. lyrata and A. halleri showing a stronger activation of recovery- and stress-related genes, respectively. CONCLUSIONS The response of the three Arabidopsis species to soil dry-down reveals that they have evolved distinct strategies to face drought stress. These strategic differences are in agreement with the distinct ecological priorities of the stress-tolerant A. lyrata, the competitive A. halleri and the ruderal A. thaliana.
Collapse
Affiliation(s)
- M Bouzid
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - F He
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - G Schmitz
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - R E Häusler
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - A P M Weber
- Institut of Plant Biochemistry, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - T Mettler-Altmann
- Institut of Plant Biochemistry, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - J De Meaux
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Ferguson J, Meyer R, Edwards K, Humphry M, Brendel O, Bechtold U. Accelerated flowering time reduces lifetime water use without penalizing reproductive performance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:1847-1867. [PMID: 30707443 PMCID: PMC6563486 DOI: 10.1111/pce.13527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/14/2019] [Indexed: 05/30/2023]
Abstract
Natural selection driven by water availability has resulted in considerable variation for traits associated with drought tolerance and leaf-level water-use efficiency (WUE). In Arabidopsis, little is known about the variation of whole-plant water use (PWU) and whole-plant WUE (transpiration efficiency). To investigate the genetic basis of PWU, we developed a novel proxy trait by combining flowering time and rosette water use to estimate lifetime PWU. We validated its usefulness for large-scale screening of mapping populations in a subset of ecotypes. This parameter subsequently facilitated the screening of water use and drought tolerance traits in a recombinant inbred line population derived from two Arabidopsis accessions with distinct water-use strategies, namely, C24 (low PWU) and Col-0 (high PWU). Subsequent quantitative trait loci mapping and validation through near-isogenic lines identified two causal quantitative trait loci, which showed that a combination of weak and nonfunctional alleles of the FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) genes substantially reduced plant water use due to their control of flowering time. Crucially, we observed that reducing flowering time and consequently water use did not penalize reproductive performance, as such water productivity (seed produced per unit of water transpired) improved. Natural polymorphisms of FRI and FLC have previously been elucidated as key determinants of natural variation in intrinsic WUE (δ13 C). However, in the genetic backgrounds tested here, drought tolerance traits, stomatal conductance, δ13 C. and rosette water use were independent of allelic variation at FRI and FLC, suggesting that flowering is critical in determining lifetime PWU but not always leaf-level traits.
Collapse
Affiliation(s)
- John N. Ferguson
- School of Biological SciencesUniversity of EssexColchesterUK
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Rhonda C. Meyer
- Department of Molecular GeneticsLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
| | - Kieron D. Edwards
- Sibelius Natural Products Health Wellness and FitnessOxfordUK
- Advanced Technologies CambridgeCambridgeUK
| | - Matt Humphry
- Advanced Technologies CambridgeCambridgeUK
- Quantitative GeneticsBritish American TobaccoCambridgeUK
| | - Oliver Brendel
- Université de LorraineAgroParisTech, INRA, SilvaNancyFrance
| | - Ulrike Bechtold
- School of Biological SciencesUniversity of EssexColchesterUK
| |
Collapse
|
14
|
Khasanova A, Lovell JT, Bonnette J, Weng X, Jenkins J, Yoshinaga Y, Schmutz J, Juenger TE. The Genetic Architecture of Shoot and Root Trait Divergence Between Mesic and Xeric Ecotypes of a Perennial Grass. FRONTIERS IN PLANT SCIENCE 2019; 10:366. [PMID: 31019518 PMCID: PMC6458277 DOI: 10.3389/fpls.2019.00366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 05/16/2023]
Abstract
Environmental heterogeneity can drive patterns of functional trait variation and lead to the formation of locally adapted ecotypes. Plant ecotypes are often differentiated by suites of correlated root and shoot traits that share common genetic, developmental, and physiological relationships. For instance, although plant water loss is largely governed by shoot systems, root systems determine water access and constrain shoot water status. To evaluate the genetic basis of root and shoot trait divergence, we developed a recombinant inbred population derived from mesic and xeric ecotypes of the perennial grass Panicum hallii. Our study sheds light on the genetic architecture underlying the relationships between root and shoot traits. We identified several genomic "hotspots" which control suites of correlated root and shoot traits, thus indicating genetic coordination between plant organ systems in the process of ecotypic divergence. Genomic regions of colocalized quantitative trait locus (QTL) for the majority of shoot and root growth related traits were independent of colocalized QTL for shoot and root resource acquisition traits. The allelic effects of individual QTL underscore ecological specialization for drought adaptation between ecotypes and reveal possible hybrid breakdown through epistatic interactions. These results have implications for understanding the factors constraining or facilitating local adaptation in plants.
Collapse
Affiliation(s)
- Albina Khasanova
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| | - John T. Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Jason Bonnette
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| | - Xiaoyu Weng
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Yuko Yoshinaga
- United States Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Thomas E. Juenger
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
15
|
Kalladan R, Lasky JR, Sharma S, Kumar MN, Juenger TE, Des Marais DL, Verslues PE. Natural Variation in 9-Cis-Epoxycartenoid Dioxygenase 3 and ABA Accumulation. PLANT PHYSIOLOGY 2019; 179:1620-1631. [PMID: 30710052 PMCID: PMC6446753 DOI: 10.1104/pp.18.01185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/23/2019] [Indexed: 05/18/2023]
Abstract
The stress hormone abscisic acid (ABA) is critical for drought resistance; however, mechanisms controlling ABA levels are unclear. At low water potential, ABA accumulation in the Arabidopsis (Arabidopsis thaliana) accession Shahdara (Sha) was less than that in Landsberg erecta (Ler) or Columbia. Analysis of a Ler × Sha recombinant inbred line population revealed a single major-effect quantitative trait locus for ABA accumulation, which included 9-cis-epoxycarotenoid dioxygenase3 (NCED3) as a candidate gene. NCED3 encodes a rate-limiting enzyme for stress-induced ABA synthesis. Complementation experiments indicated that Sha has a reduced-function NCED3 allele. Compared with Ler, Sha did not have reduced NCED3 gene expression or protein level but did have four amino acid substitutions within NCED3. Sha differed from Ler in the apparent molecular mass of NCED3, indicative of altered NCED3 proteolytic processing in the chloroplast. Site-directed mutagenesis demonstrated that substitution at amino acid 271 was critical for the altered NCED3 molecular mass pattern, while the other Sha NCED3 polymorphisms were also involved in the reduced ABA accumulation. Sha did not have a reduced level of thylakoid-bound NCED3 but did differ from Ler in the apparent molecular mass of stromal NCED3. As Sha was not impaired in known factors critical for NCED3 function in ABA synthesis (expression, chloroplast import, and thylakoid binding), the differences between Ler and Sha NCED3 may affect NCED3 activity or other factors influencing NCED3 function. These results identify functionally important sites on NCED3 and indicate a complex pattern of NCED3 posttranslational regulation in the chloroplast.
Collapse
Affiliation(s)
- Rajesh Kalladan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sandeep Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - M Nagaraj Kumar
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas, Austin, Texas 78712
| | - David L Des Marais
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
16
|
Takenaka S, Yamamoto R, Nakamura C. Differential and interactive effects of cytoplasmic substitution and seed ageing on submergence stress response in wheat ( Triticum aestivum L.). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1549960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Shotaro Takenaka
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Ryohei Yamamoto
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Chiharu Nakamura
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
17
|
Takenaka S, Yamamoto R, Nakamura C. Genetic diversity of submergence stress response in cytoplasms of the Triticum-Aegilops complex. Sci Rep 2018; 8:16267. [PMID: 30390041 PMCID: PMC6214928 DOI: 10.1038/s41598-018-34682-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Genetic diversity in cytoplasmic and nuclear genomes and their interaction affecting adaptive traits is an attractive research subject in plants. We addressed submergence stress response of wheat that has become increasingly important but remained largely uninvestigated. Our primary aim was to disclose cytoplasmic diversity using nucleus-cytoplasm (NC) hybrids possessing a series of heterologous cytoplasms in a common nuclear background. Effects of submergence on seedling emergence and growth from imbibed seeds were studied and compared with euplasmic lines. Marked phenotypic variabilities were observed among both lines, demonstrating divergent cytoplasmic and nuclear effects on submergence response. NC hybrids with cytoplasm of Aegilops mutica showed a less inhibition, indicative of their positive contribution to submergence tolerance, whereas cytoplasms of Aegilops umbellulata and related species caused a greater inhibition. Superoxide dismutase (SOD) activity showed a marked increase accompanied by retardation of seedling growth in a susceptible NC hybrid. The observation suggested that the elevated SOD activity was resulted from a high level of reactive oxygen species accumulated and remained in susceptible seedlings. Taken together, our results point to the usefulness of NC hybrids in further studies needed to clarify molecular mechanisms underlying the nucleus-cytoplasm interaction regulating submergence stress response in wheat.
Collapse
Affiliation(s)
- Shotaro Takenaka
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Ohe-cho, Seta, Otsu, 520-2194, Japan
| | - Ryohei Yamamoto
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Ohe-cho, Seta, Otsu, 520-2194, Japan
| | - Chiharu Nakamura
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Ohe-cho, Seta, Otsu, 520-2194, Japan.
| |
Collapse
|
18
|
Mideros SX, Chung CL, Wiesner-Hanks T, Poland JA, Wu D, Fialko AA, Turgeon BG, Nelson RJ. Determinants of Virulence and In Vitro Development Colocalize on a Genetic Map of Setosphaeria turcica. PHYTOPATHOLOGY 2018; 108:254-263. [PMID: 28952420 DOI: 10.1094/phyto-01-17-0021-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Generating effective and stable strategies for resistance breeding requires an understanding of the genetics of host-pathogen interactions and the implications for pathogen dynamics and evolution. Setosphaeria turcica causes northern leaf blight (NLB), an important disease of maize for which major resistance genes have been deployed. Little is known about the evolutionary dynamics of avirulence (AVR) genes in S. turcica. To test the hypothesis that there is a genetic association between avirulence and in vitro development traits, we (i) created a genetic map of S. turcica, (ii) located candidate AVRHt1 and AVRHt2 regions, and (iii) identified genetic regions associated with several in vitro development traits. A cross was generated between a race 1 and a race 23N strain, and 221 progeny were isolated. Genotyping by sequencing was used to score 2,078 single-nucleotide polymorphism markers. A genetic map spanning 1,981 centimorgans was constructed, consisting of 21 linkage groups. Genetic mapping extended prior evidence for the location and identity of the AVRHt1 gene and identified a region of interest for AVRHt2. The genetic location of AVRHt2 colocalized with loci influencing radial growth and mycelial abundance. Our data suggest a trade-off between virulence on Ht1 and Ht2 and the pathogen's vegetative growth rate. In addition, in-depth analysis of the genotypic data suggests the presence of significant duplication in the genome of S. turcica.
Collapse
Affiliation(s)
- Santiago X Mideros
- First author: University of Illinois at Urbana-Champaign, Urbana 61801; second author: National Taiwan University, Taipei, 10617, Taiwan; and third, fourth, fifth, sixth, seventh, and eighth authors: School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Chia-Lin Chung
- First author: University of Illinois at Urbana-Champaign, Urbana 61801; second author: National Taiwan University, Taipei, 10617, Taiwan; and third, fourth, fifth, sixth, seventh, and eighth authors: School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Tyr Wiesner-Hanks
- First author: University of Illinois at Urbana-Champaign, Urbana 61801; second author: National Taiwan University, Taipei, 10617, Taiwan; and third, fourth, fifth, sixth, seventh, and eighth authors: School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Jesse A Poland
- First author: University of Illinois at Urbana-Champaign, Urbana 61801; second author: National Taiwan University, Taipei, 10617, Taiwan; and third, fourth, fifth, sixth, seventh, and eighth authors: School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Dongliang Wu
- First author: University of Illinois at Urbana-Champaign, Urbana 61801; second author: National Taiwan University, Taipei, 10617, Taiwan; and third, fourth, fifth, sixth, seventh, and eighth authors: School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Ariel A Fialko
- First author: University of Illinois at Urbana-Champaign, Urbana 61801; second author: National Taiwan University, Taipei, 10617, Taiwan; and third, fourth, fifth, sixth, seventh, and eighth authors: School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - B Gillian Turgeon
- First author: University of Illinois at Urbana-Champaign, Urbana 61801; second author: National Taiwan University, Taipei, 10617, Taiwan; and third, fourth, fifth, sixth, seventh, and eighth authors: School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Rebecca J Nelson
- First author: University of Illinois at Urbana-Champaign, Urbana 61801; second author: National Taiwan University, Taipei, 10617, Taiwan; and third, fourth, fifth, sixth, seventh, and eighth authors: School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
19
|
Yatusevich R, Fedak H, Ciesielski A, Krzyczmonik K, Kulik A, Dobrowolska G, Swiezewski S. Antisense transcription represses Arabidopsis seed dormancy QTL DOG1 to regulate drought tolerance. EMBO Rep 2017; 18:2186-2196. [PMID: 29030481 PMCID: PMC5709759 DOI: 10.15252/embr.201744862] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022] Open
Abstract
Plants have developed multiple strategies to sense the external environment and to adapt growth accordingly. Delay of germination 1 (DOG1) is a major quantitative trait locus (QTL) for seed dormancy strength in Arabidopsis thaliana that is reported to be expressed exclusively in seeds. DOG1 is extensively regulated, with an antisense transcript (asDOG1) suppressing its expression in seeds. Here, we show that asDOG1 shows high levels in mature plants where it suppresses DOG1 expression under standard growth conditions. Suppression is released by shutting down antisense transcription, which is induced by the plant hormone abscisic acid (ABA) and drought. Loss of asDOG1 results in constitutive high-level DOG1 expression, conferring increased drought tolerance, while inactivation of DOG1 causes enhanced drought sensitivity. The unexpected role of DOG1 in environmental adaptation of mature plants is separate from its function in seed dormancy regulation. The requirement of asDOG1 to respond to ABA and drought demonstrates that antisense transcription is important for sensing and responding to environmental changes in plants.
Collapse
Affiliation(s)
- Ruslan Yatusevich
- Department of Protein Biosynthesis, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Halina Fedak
- Department of Protein Biosynthesis, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | | | - Katarzyna Krzyczmonik
- Department of Protein Biosynthesis, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Anna Kulik
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Grazyna Dobrowolska
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Szymon Swiezewski
- Department of Protein Biosynthesis, Institute of Biochemistry and Biophysics, Warsaw, Poland
| |
Collapse
|
20
|
Natural variation identifies genes affecting drought-induced abscisic acid accumulation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:11536-11541. [PMID: 29073083 DOI: 10.1073/pnas.1705884114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accumulation of the stress hormone abscisic acid (ABA) in response to drought and low water-potential controls many downstream acclimation mechanisms. However, mechanisms controlling ABA accumulation itself are less known. There was a 10-fold range of variation in ABA levels among nearly 300 Arabidopsis thaliana accessions exposed to the same low water-potential severity. Genome-wide association analysis (GWAS) identified genomic regions containing clusters of ABA-associated SNPs. Candidate genes within these regions included few genes with known stress or ABA-related function. The GWAS data were used to guide reverse genetic analysis, which found effectors of ABA accumulation. These included plasma-membrane-localized signaling proteins such as receptor-like kinases, aspartic protease, a putative lipid-binding START domain protein, and other membrane proteins of unknown function as well as a RING U-box protein and possible effect of tonoplast transport on ABA accumulation. Putative loss-of-function polymorphisms within the START domain protein were associated with climate factors at accession sites of origin, indicating its potential involvement in drought adaptation. Overall, using ABA accumulation as a basis for a combined GWAS-reverse genetic strategy revealed the broad natural variation in low-water-potential-induced ABA accumulation and was successful in identifying genes that affect ABA levels and may act in upstream drought-related sensing and signaling mechanisms. ABA effector loci were identified even when each one was of incremental effect, consistent with control of ABA accumulation being distributed among the many branches of ABA metabolism or mediated by genes with partially redundant function.
Collapse
|
21
|
Rymaszewski W, Vile D, Bediee A, Dauzat M, Luchaire N, Kamrowska D, Granier C, Hennig J. Stress-Related Gene Expression Reflects Morphophysiological Responses to Water Deficit. PLANT PHYSIOLOGY 2017; 174:1913-1930. [PMID: 28522456 PMCID: PMC5490902 DOI: 10.1104/pp.17.00318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/15/2017] [Indexed: 05/18/2023]
Abstract
Acclimation to water deficit (WD) enables plants to maintain growth under unfavorable environmental conditions, although the mechanisms are not completely understood. In this study, the natural variation of long-term acclimation to moderate and severe soil WD was investigated in 18 Arabidopsis (Arabidopsis thaliana) accessions using PHENOPSIS, an automated phenotyping platform. Soil water content was adjusted at an early stage of plant development and maintained at a constant level until reproductive age was achieved. The accessions were selected based on the expression levels of ANNEXIN1, a drought-related marker. Severe WD conditions had a greater effect on most of the measured morphophysiological traits than moderate WD conditions. Multivariate analyses indicated that trait responses associated with plant size and water management drove most of the variation. Accessions with similar responses at these two levels were grouped in clusters that displayed different response strategies to WD The expression levels of selected stress-response genes revealed large natural variation under WD conditions. Responses of morphophysiological traits, such as projected rosette area, transpiration rate, and rosette water content, were correlated with changes in the expression of stress-related genes, such as NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3 and N-MYC DOWNREGULATED-LIKE1 (NDL1), in response to WD Interestingly, the morphophysiological acclimation response to WD also was reflected in the gene expression levels (most notably those of NDL1, CHALCONE SYNTHASE, and MYB DOMAIN PROTEIN44) in plants cultivated under well-watered conditions. Our results may lead to the development of biomarkers and predictors of plant morphophysiological responses based on gene expression patterns.
Collapse
Affiliation(s)
- Wojciech Rymaszewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Denis Vile
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Alexis Bediee
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Myriam Dauzat
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Nathalie Luchaire
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Dominika Kamrowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Christine Granier
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Jacek Hennig
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
22
|
Chao H, Wang H, Wang X, Guo L, Gu J, Zhao W, Li B, Chen D, Raboanatahiry N, Li M. Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus. Sci Rep 2017; 7:46295. [PMID: 28393910 PMCID: PMC5385559 DOI: 10.1038/srep46295] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/15/2017] [Indexed: 02/07/2023] Open
Abstract
High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed.
Collapse
Affiliation(s)
- Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Xiaodong Wang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Liangxing Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianwei Gu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Baojun Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Dengyan Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
23
|
Shinde S, Villamor JG, Lin W, Sharma S, Verslues PE. Proline Coordination with Fatty Acid Synthesis and Redox Metabolism of Chloroplast and Mitochondria. PLANT PHYSIOLOGY 2016; 172:1074-1088. [PMID: 27512016 PMCID: PMC5047111 DOI: 10.1104/pp.16.01097] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/05/2016] [Indexed: 05/20/2023]
Abstract
Proline (Pro) accumulation is one of the most prominent changes in plant metabolism during drought and low water potential; however, the regulation and function of Pro metabolism remain unclear. We used a combination of forward genetic screening based on a Proline Dehydrogenase1 (PDH1) promoter-luciferase reporter (PDH1pro:LUC2) and RNA sequencing of the Pro synthesis mutant p5cs1-4 to identify multiple loci affecting Pro accumulation in Arabidopsis (Arabidopsis thaliana). Two mutants having high PDH1pro:LUC2 expression and increased Pro accumulation at low water potential were found to be alleles of Cytochrome P450, Family 86, Subfamily A, Polypeptide2 (CYP86A2) and Long Chain Acyl Synthetase2 (LACS2), which catalyze two successive steps in very-long-chain fatty acid (VLCFA) synthesis. Reverse genetic experiments found additional VLCFA and lipid metabolism-related mutants with increased Pro accumulation. Altered cellular redox status is a key factor in the coordination of Pro and VLCFA metabolism. The NADPH oxidase inhibitor diphenyleneiodonium (DPI) induced high levels of Pro accumulation and strongly repressed PDH1pro:LUC2 expression. cyp86a2 and lacs2 mutants were hypersensitive to diphenyleneiodonium but could be reverted to wild-type Pro and PDH1pro:LUC2 expression by reactive oxygen species scavengers. The coordination of Pro and redox metabolism also was indicated by the altered expression of chloroplast and mitochondria electron transport genes in p5cs1-4 These results show that Pro metabolism is both influenced by and influences cellular redox status via previously unknown coordination with several metabolic pathways. In particular, Pro and VLCFA synthesis share dual roles to help buffer cellular redox status while producing products useful for stress resistance, namely the compatible solute Pro and cuticle lipids.
Collapse
Affiliation(s)
- Suhas Shinde
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Joji Grace Villamor
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Wendar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Sandeep Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
24
|
Lovell JT, Shakirov EV, Schwartz S, Lowry DB, Aspinwall MJ, Taylor SH, Bonnette J, Palacio-Mejia JD, Hawkes CV, Fay PA, Juenger TE. Promises and Challenges of Eco-Physiological Genomics in the Field: Tests of Drought Responses in Switchgrass. PLANT PHYSIOLOGY 2016; 172:734-748. [PMID: 27246097 PMCID: PMC5047078 DOI: 10.1104/pp.16.00545] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/26/2016] [Indexed: 05/21/2023]
Abstract
Identifying the physiological and genetic basis of stress tolerance in plants has proven to be critical to understanding adaptation in both agricultural and natural systems. However, many discoveries were initially made in the controlled conditions of greenhouses or laboratories, not in the field. To test the comparability of drought responses across field and greenhouse environments, we undertook three independent experiments using the switchgrass reference genotype Alamo AP13. We analyzed physiological and gene expression variation across four locations, two sampling times, and three years. Relatively similar physiological responses and expression coefficients of variation across experiments masked highly dissimilar gene expression responses to drought. Critically, a drought experiment utilizing small pots in the greenhouse elicited nearly identical physiological changes as an experiment conducted in the field, but an order of magnitude more differentially expressed genes. However, we were able to define a suite of several hundred genes that were differentially expressed across all experiments. This list was strongly enriched in photosynthesis, water status, and reactive oxygen species responsive genes. The strong across-experiment correlations between physiological plasticity-but not differential gene expression-highlight the complex and diverse genetic mechanisms that can produce phenotypically similar responses to various soil water deficits.
Collapse
Affiliation(s)
- John T Lovell
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas (J.T.L., E.V.S., S.S., J.B., J.D.P.-M., C.V.H., T.E.J.); Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia (E.V.S.); Department of Plant Biology, Michigan State University, East Lansing, Michigan (D.B.L.);Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia (M.J.A.); Departments of Environmental Studies and Biology, Keene State College, Keene, New Hampshire USA (S.H.T.); andUSDA-ARS Grassland Soil and Water Research Laboratory, Temple, Texas 76502 (P.A.F.)
| | - Eugene V Shakirov
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas (J.T.L., E.V.S., S.S., J.B., J.D.P.-M., C.V.H., T.E.J.); Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia (E.V.S.); Department of Plant Biology, Michigan State University, East Lansing, Michigan (D.B.L.);Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia (M.J.A.); Departments of Environmental Studies and Biology, Keene State College, Keene, New Hampshire USA (S.H.T.); andUSDA-ARS Grassland Soil and Water Research Laboratory, Temple, Texas 76502 (P.A.F.)
| | - Scott Schwartz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas (J.T.L., E.V.S., S.S., J.B., J.D.P.-M., C.V.H., T.E.J.); Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia (E.V.S.); Department of Plant Biology, Michigan State University, East Lansing, Michigan (D.B.L.);Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia (M.J.A.); Departments of Environmental Studies and Biology, Keene State College, Keene, New Hampshire USA (S.H.T.); andUSDA-ARS Grassland Soil and Water Research Laboratory, Temple, Texas 76502 (P.A.F.)
| | - David B Lowry
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas (J.T.L., E.V.S., S.S., J.B., J.D.P.-M., C.V.H., T.E.J.); Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia (E.V.S.); Department of Plant Biology, Michigan State University, East Lansing, Michigan (D.B.L.);Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia (M.J.A.); Departments of Environmental Studies and Biology, Keene State College, Keene, New Hampshire USA (S.H.T.); andUSDA-ARS Grassland Soil and Water Research Laboratory, Temple, Texas 76502 (P.A.F.)
| | - Michael J Aspinwall
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas (J.T.L., E.V.S., S.S., J.B., J.D.P.-M., C.V.H., T.E.J.); Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia (E.V.S.); Department of Plant Biology, Michigan State University, East Lansing, Michigan (D.B.L.);Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia (M.J.A.); Departments of Environmental Studies and Biology, Keene State College, Keene, New Hampshire USA (S.H.T.); andUSDA-ARS Grassland Soil and Water Research Laboratory, Temple, Texas 76502 (P.A.F.)
| | - Samuel H Taylor
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas (J.T.L., E.V.S., S.S., J.B., J.D.P.-M., C.V.H., T.E.J.); Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia (E.V.S.); Department of Plant Biology, Michigan State University, East Lansing, Michigan (D.B.L.);Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia (M.J.A.); Departments of Environmental Studies and Biology, Keene State College, Keene, New Hampshire USA (S.H.T.); andUSDA-ARS Grassland Soil and Water Research Laboratory, Temple, Texas 76502 (P.A.F.)
| | - Jason Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas (J.T.L., E.V.S., S.S., J.B., J.D.P.-M., C.V.H., T.E.J.); Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia (E.V.S.); Department of Plant Biology, Michigan State University, East Lansing, Michigan (D.B.L.);Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia (M.J.A.); Departments of Environmental Studies and Biology, Keene State College, Keene, New Hampshire USA (S.H.T.); andUSDA-ARS Grassland Soil and Water Research Laboratory, Temple, Texas 76502 (P.A.F.)
| | - Juan Diego Palacio-Mejia
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas (J.T.L., E.V.S., S.S., J.B., J.D.P.-M., C.V.H., T.E.J.); Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia (E.V.S.); Department of Plant Biology, Michigan State University, East Lansing, Michigan (D.B.L.);Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia (M.J.A.); Departments of Environmental Studies and Biology, Keene State College, Keene, New Hampshire USA (S.H.T.); andUSDA-ARS Grassland Soil and Water Research Laboratory, Temple, Texas 76502 (P.A.F.)
| | - Christine V Hawkes
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas (J.T.L., E.V.S., S.S., J.B., J.D.P.-M., C.V.H., T.E.J.); Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia (E.V.S.); Department of Plant Biology, Michigan State University, East Lansing, Michigan (D.B.L.);Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia (M.J.A.); Departments of Environmental Studies and Biology, Keene State College, Keene, New Hampshire USA (S.H.T.); andUSDA-ARS Grassland Soil and Water Research Laboratory, Temple, Texas 76502 (P.A.F.)
| | - Philip A Fay
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas (J.T.L., E.V.S., S.S., J.B., J.D.P.-M., C.V.H., T.E.J.); Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia (E.V.S.); Department of Plant Biology, Michigan State University, East Lansing, Michigan (D.B.L.);Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia (M.J.A.); Departments of Environmental Studies and Biology, Keene State College, Keene, New Hampshire USA (S.H.T.); andUSDA-ARS Grassland Soil and Water Research Laboratory, Temple, Texas 76502 (P.A.F.)
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas (J.T.L., E.V.S., S.S., J.B., J.D.P.-M., C.V.H., T.E.J.); Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia (E.V.S.); Department of Plant Biology, Michigan State University, East Lansing, Michigan (D.B.L.);Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia (M.J.A.); Departments of Environmental Studies and Biology, Keene State College, Keene, New Hampshire USA (S.H.T.); andUSDA-ARS Grassland Soil and Water Research Laboratory, Temple, Texas 76502 (P.A.F.)
| |
Collapse
|
25
|
Chen B, Du Q, Chen J, Yang X, Tian J, Li B, Zhang D. Dissection of allelic interactions among Pto-miR257 and its targets and their effects on growth and wood properties in Populus. Heredity (Edinb) 2016; 117:73-83. [PMID: 27118153 DOI: 10.1038/hdy.2016.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/02/2016] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in the regulation of genes; however, for trees few studies have explored the potential impact of the interactions between miRNAs and their target genes. Here, we performed transcript profiling and association genetics (single-SNP, haplotype-based and multi-SNP associations) to study the genetic regulatory relationship of Pto-miR257 and its 12 target genes in 435 individuals of a natural population of Populus tomentosa. Expression profiling of Pto-miR257 and its targets showed a negative relationship between their expression levels. Of the 61 single-nucleotide polymorphisms (SNPs) detected in Pto-miR257, 6 in the pre-mature region strongly affected its secondary stability and 1 in the mature region could alter its target spectrum. Among the 1029 SNPs in the targets, 3 were located in target sites that could change the binding affinity of Pto-miR257. Single-SNP association analysis revealed that SNPs in Pto-miR257 and target genes associated with both growth and wood property traits, in agreement with haplotype-based identifications. Multi-SNP association found that 10 targets shared at least one common trait with Pto-miR257, with phenotypic variance from 0.5 to 8.5%, suggesting a possible internal genetic interaction between them. Epistasis analysis showed significant epistatic interactions among Pto-miR257 and its targets. Therefore, our study demonstrated Pto-miR257 and its 12 targets had roles in wood formation and revealed the genetic interaction network between the miRNA and its targets under additive, dominant and epistatic models. Thus, association genetics can be used to decipher the interactions between miRNAs and their target genes and to help understand the genetic architecture of complex traits.
Collapse
Affiliation(s)
- B Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Q Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - J Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - X Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - J Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - B Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Department of Forestry, North Carolina State University, Raleigh, NC, USA
| | - D Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
26
|
Lohman BK, Weber JN, Bolnick DI. Evaluation of TagSeq, a reliable low-cost alternative for RNAseq. Mol Ecol Resour 2016; 16:1315-1321. [DOI: 10.1111/1755-0998.12529] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Brian K. Lohman
- Department of Integrative Biology; University of Texas at Austin; One University Station C0990 Austin TX 78712 USA
| | - Jesse N. Weber
- Department of Integrative Biology; University of Texas at Austin; One University Station C0990 Austin TX 78712 USA
| | - Daniel I. Bolnick
- Department of Integrative Biology; University of Texas at Austin; One University Station C0990 Austin TX 78712 USA
| |
Collapse
|
27
|
Lovell JT, Schwartz S, Lowry DB, Shakirov EV, Bonnette JE, Weng X, Wang M, Johnson J, Sreedasyam A, Plott C, Jenkins J, Schmutz J, Juenger TE. Drought responsive gene expression regulatory divergence between upland and lowland ecotypes of a perennial C4 grass. Genome Res 2016; 26:510-8. [PMID: 26953271 PMCID: PMC4817774 DOI: 10.1101/gr.198135.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/26/2016] [Indexed: 01/18/2023]
Abstract
Climatic adaptation is an example of a genotype-by-environment interaction (G×E) of fitness. Selection upon gene expression regulatory variation can contribute to adaptive phenotypic diversity; however, surprisingly few studies have examined how genome-wide patterns of gene expression G×E are manifested in response to environmental stress and other selective agents that cause climatic adaptation. Here, we characterize drought-responsive expression divergence between upland (drought-adapted) and lowland (mesic) ecotypes of the perennial C4 grass,Panicum hallii, in natural field conditions. Overall, we find that cis-regulatory elements contributed to gene expression divergence across 47% of genes, 7.2% of which exhibit drought-responsive G×E. While less well-represented, we observe 1294 genes (7.8%) with transeffects.Trans-by-environment interactions are weaker and much less common than cis G×E, occurring in only 0.7% oft rans-regulated genes. Finally, gene expression heterosis is highly enriched in expression phenotypes with significant G×E. As such, modes of inheritance that drive heterosis, such as dominance or overdominance, may be common among G×E genes. Interestingly, motifs specific to drought-responsive transcription factors are highly enriched in the promoters of genes exhibiting G×E and transregulation, indicating that expression G×E and heterosis may result from the evolution of transcription factors or their binding sites.P. hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (Panicum virgatum). Accordingly, the results here not only aid in the discovery of the genetic mechanisms that underlie local adaptation but also provide a foundation to improve switchgrass yield under water-limited conditions.
Collapse
Affiliation(s)
- John T Lovell
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Scott Schwartz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - David B Lowry
- Department of Plant Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Eugene V Shakirov
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 42008, Republic of Tatarstan, Russia
| | - Jason E Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Mei Wang
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jenifer Johnson
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | - Christopher Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
28
|
Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field. Proc Natl Acad Sci U S A 2016; 113:3687-92. [PMID: 26979961 DOI: 10.1073/pnas.1520687113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits in Arabidopsis thaliana To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics ofA. thaliana.
Collapse
|
29
|
Albert E, Gricourt J, Bertin N, Bonnefoi J, Pateyron S, Tamby JP, Bitton F, Causse M. Genotype by watering regime interaction in cultivated tomato: lessons from linkage mapping and gene expression. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:395-418. [PMID: 26582510 DOI: 10.1007/s00122-015-2635-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/04/2015] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE In tomato, genotype by watering interaction resulted from genotype re-ranking more than scale changes. Interactive QTLs according to watering regime were detected. Differentially expressed genes were identified in some intervals. ABSTRACT As a result of climate change, drought will increasingly limit crop production in the future. Studying genotype by watering regime interactions is necessary to improve plant adaptation to low water availability. In cultivated tomato (Solanum lycopersicum L.), extensively grown in dry areas, well-mastered water deficits can stimulate metabolite production, increasing plant defenses and concentration of compounds involved in fruit quality, at the same time. However, few tomato Quantitative Trait Loci (QTLs) and genes involved in response to drought are identified or only in wild species. In this study, we phenotyped a population of 119 recombinant inbred lines derived from a cross between a cherry tomato and a large fruit tomato, grown in greenhouse under two watering regimes, in two locations. A large genetic variability was measured for 19 plant and fruit traits, under the two watering treatments. Highly significant genotype by watering regime interactions were detected and resulted from re-ranking more than scale changes. The population was genotyped for 679 SNP markers to develop a genetic map. In total, 56 QTLs were identified among which 11 were interactive between watering regimes. These later mainly exhibited antagonist effects according to watering treatment. Variation in gene expression in leaves of parental accessions revealed 2259 differentially expressed genes, among which candidate genes presenting sequence polymorphisms were identified under two main interactive QTLs. Our results provide knowledge about the genetic control of genotype by watering regime interactions in cultivated tomato and the possible use of deficit irrigation to improve tomato quality.
Collapse
Affiliation(s)
- Elise Albert
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, 67 Allée des chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143, Montfavet, France
| | - Justine Gricourt
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, 67 Allée des chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143, Montfavet, France
| | - Nadia Bertin
- INRA, UR 1115, Plante et Système de cultures Horticoles, 228 Route de l'aérodrome, Centre de Recherche PACA, Domaine Saint Paul, CS40509, 84914, Avignon Cedex 9, France
| | | | - Stéphanie Pateyron
- INRA, Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Rue de Noetzlin, Plateau du Moulon, 91405, Orsay, France
| | - Jean-Philippe Tamby
- INRA, Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Rue de Noetzlin, Plateau du Moulon, 91405, Orsay, France
| | - Frédérique Bitton
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, 67 Allée des chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143, Montfavet, France
| | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, 67 Allée des chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143, Montfavet, France.
| |
Collapse
|
30
|
Soltis NE, Kliebenstein DJ. Natural Variation of Plant Metabolism: Genetic Mechanisms, Interpretive Caveats, and Evolutionary and Mechanistic Insights. PLANT PHYSIOLOGY 2015; 169:1456-68. [PMID: 26272883 PMCID: PMC4634085 DOI: 10.1104/pp.15.01108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/12/2015] [Indexed: 05/06/2023]
Abstract
Combining quantitative genetics studies with metabolomics/metabolic profiling platforms, genomics, and transcriptomics is creating significant progress in identifying the causal genes controlling natural variation in metabolite accumulations and profiles. In this review, we discuss key mechanistic and evolutionary insights that are arising from these studies. This includes the potential role of transport and other processes in leading to a separation of the site of mechanistic causation and metabolic consequence. A reilluminated observation is the potential for genomic variation in the organelle to alter phenotypic variation alone and in epistatic interaction with the nuclear genetic variation. These studies are also highlighting new aspects of metabolic pleiotropy both in terms of the breadth of loci altering metabolic variation as well as the potential for broader effects on plant defense regulation of the metabolic variation than has previously been predicted. We also illustrate caveats that can be overlooked when translating quantitative genetics descriptors such as heritability and per-locus r(2) to mechanistic or evolutionary interpretations.
Collapse
Affiliation(s)
- Nicole E Soltis
- Department of Plant Sciences, University of California, Davis, California 95616 (N.E.S., D.J.K.); andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616 (N.E.S., D.J.K.); andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| |
Collapse
|
31
|
Drost DR, Puranik S, Novaes E, Novaes CRDB, Dervinis C, Gailing O, Kirst M. Genetical genomics of Populus leaf shape variation. BMC PLANT BIOLOGY 2015; 15:166. [PMID: 26122556 PMCID: PMC4486686 DOI: 10.1186/s12870-015-0557-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/16/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Leaf morphology varies extensively among plant species and is under strong genetic control. Mutagenic screens in model systems have identified genes and established molecular mechanisms regulating leaf initiation, development, and shape. However, it is not known whether this diversity across plant species is related to naturally occurring variation at these genes. Quantitative trait locus (QTL) analysis has revealed a polygenic control for leaf shape variation in different species suggesting that loci discovered by mutagenesis may only explain part of the naturally occurring variation in leaf shape. Here we undertook a genetical genomics study in a poplar intersectional pseudo-backcross pedigree to identify genetic factors controlling leaf shape. The approach combined QTL discovery in a genetic linkage map anchored to the Populus trichocarpa reference genome sequence and transcriptome analysis. RESULTS A major QTL for leaf lamina width and length:width ratio was identified in multiple experiments that confirmed its stability. A transcriptome analysis of expanding leaf tissue contrasted gene expression between individuals with alternative QTL alleles, and identified an ADP-ribosylation factor (ARF) GTPase (PtARF1) as a candidate gene for regulating leaf morphology in this pedigree. ARF GTPases are critical elements in the vesicular trafficking machinery. Disruption of the vesicular trafficking function of ARF by the pharmacological agent Brefeldin A (BFA) altered leaf lateral growth in the narrow-leaf P. trichocarpa suggesting a molecular mechanism of leaf shape determination. Inhibition of the vesicular trafficking processes by BFA interferes with cycling of PIN proteins and causes their accumulation in intercellular compartments abolishing polar localization and disrupting normal auxin flux with potential effects on leaf expansion. CONCLUSIONS In other model systems, ARF proteins have been shown to control the localization of auxin efflux carriers, which function to establish auxin gradients and apical-basal cell polarity in developing plant organs. Our results support a model where PtARF1 transcript abundance changes the dynamics of endocytosis-mediated PIN localization in leaf cells, thus affecting lateral auxin flux and subsequently lamina leaf expansion. This suggests that evolution of differential cellular polarity plays a significant role in leaf morphological variation observed in subgenera of genus Populus.
Collapse
Affiliation(s)
- Derek R Drost
- School of Forest Resources and Conservation, University of Florida, P.O. Box 110410, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA.
- Seminis, Inc., 37437 State Highway 16, Woodland, CA, 95695, USA.
| | - Swati Puranik
- School of Forest Resourse and Environmental Sciences, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Evandro Novaes
- School of Forest Resources and Conservation, University of Florida, P.O. Box 110410, Gainesville, FL, 32611, USA.
- Escola de Agronomia, Universidade Federal de Goiás, Rodovia Goiânia/Nova Veneza, Km0 - Caixa Postal 131, Goiânia, GO, 74690-900, Brazil.
| | - Carolina R D B Novaes
- School of Forest Resources and Conservation, University of Florida, P.O. Box 110410, Gainesville, FL, 32611, USA.
- Escola de Agronomia, Universidade Federal de Goiás, Rodovia Goiânia/Nova Veneza, Km0 - Caixa Postal 131, Goiânia, GO, 74690-900, Brazil.
| | - Christopher Dervinis
- School of Forest Resources and Conservation, University of Florida, P.O. Box 110410, Gainesville, FL, 32611, USA.
| | - Oliver Gailing
- School of Forest Resourse and Environmental Sciences, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, P.O. Box 110410, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA.
- University of Florida Genetics Institute, University of Florida, P.O. Box 103610, Gainesville, FL, 32611, USA.
| |
Collapse
|
32
|
Bhaskara GB, Yang TH, Verslues PE. Dynamic proline metabolism: importance and regulation in water limited environments. FRONTIERS IN PLANT SCIENCE 2015; 6:484. [PMID: 26161086 PMCID: PMC4479789 DOI: 10.3389/fpls.2015.00484] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/16/2015] [Indexed: 05/18/2023]
Abstract
Drought-induced proline accumulation observed in many plant species has led to the hypothesis that further increases in proline accumulation would promote drought tolerance. Here we discuss both previous and new data showing that proline metabolism and turnover, rather than just proline accumulation, functions to maintain growth during water limitation. Mutants of Δ (1)-Pyrroline-5-Carboxylate Synthetase1 (P5CS1) and Proline Dehydrogenase1 (PDH1), key enzymes in proline synthesis and catabolism respectively, both have similar reductions in growth during controlled soil drying. Such results are consistent with patterns of natural variation in proline accumulation and with evidence that turnover of proline can act to buffer cellular redox status during drought. Proline synthesis and catabolism are regulated by multiple cellular mechanisms, of which we know only a few. An example of this is immunoblot detection of P5CS1 and PDH1 showing that the Highly ABA-induced (HAI) protein phosphatase 2Cs (PP2Cs) have different effects on P5CS1 and PDH1 protein levels despite having similar increases in proline accumulation. Immunoblot data also indicate that both P5CS1 and PDH1 are subjected to unknown post-translational modifications.
Collapse
Affiliation(s)
| | | | - Paul E. Verslues
- *Correspondence: Paul E. Verslues, Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Section 2 Academia Road, Nankang District, Taipei 11529, Taiwan,
| |
Collapse
|