1
|
Zhu H, Zhou T, Guan J, Li Z, Yang X, Li Y, Sun J, Xu Q, Xuan YH. Precise genome editing of Dense and Erect Panicle 1 promotes rice sheath blight resistance and yield production in japonica rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1832-1846. [PMID: 40035150 PMCID: PMC12018817 DOI: 10.1111/pbi.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
The primary goals of crop breeding are to enhance yield and improve disease resistance. However, the "trade-off" mechanism, in which signalling pathways for resistance and yield are antagonistically regulated, poses challenges for achieving both simultaneously. Previously, we demonstrated that knock-out mutants of the Dense and Erect Panicle 1 (DEP1) gene can significantly enhance rice resistance to sheath blight (ShB), and we mapped DEP1's association with panicle length. In this study, we discovered that dep1 mutants significantly reduced rice yield. Nonetheless, truncated DEP1 was able to achieve both ShB resistance and yield increase in japonica rice. To further explore the function of truncated DEP1 in promoting yield and ShB resistance, we generated CRISPR/Cas9-mediated genome editing mutants, including a full-length deletion mutant of DEP1, named dep1, and a truncated version, dep1-cys. Upon inoculation with Rhizoctonia solani, the dep1-cys mutant demonstrated stronger ShB resistance than the dep1 mutant. Additionally, dep1-cys increased yield per plant, whereas dep1 reduced it. Compared to the full DEP1 protein, the truncated DEP1 (dep1-cys) demonstrated a decreased interaction affinity with IDD14 and increased affinity with IDD10, which are known to positively and negatively regulate ShB resistance through the activation of PIN1a and ETR2, respectively. The dep1-cys mutant exhibited higher PIN1a and lower ETR2 expression than wild-type plants, suggesting that dep1-cys modulated IDD14 and IDD10 interactions to regulate PIN1a and ETR2, thereby enhancing ShB resistance. Overall, these data indicate that precise genome editing of DEP1 could simultaneously improve both ShB resistance and yield, effectively mitigating trade-off regulation in rice.
Collapse
Affiliation(s)
- Hongyao Zhu
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
- College of Plant Protection, Shenyang Agricultural UniversityShenyangChina
| | - Tiange Zhou
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
- College of Plant Protection, Shenyang Agricultural UniversityShenyangChina
| | | | - Zhuo Li
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
- College of Plant Protection, Shenyang Agricultural UniversityShenyangChina
| | - Xiurong Yang
- Institute of Plant Protection, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Yuejiao Li
- Institute of Plant Protection, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural UniversityShenyangChina
- Yazhouwan National LaboratorySanya CityHainan ProvinceChina
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural UniversityShenyangChina
| | - Yuan Hu Xuan
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
| |
Collapse
|
2
|
Li Z, Chen H, Yuan DP, Jiang X, Li ZM, Wang ST, Zhou TG, Zhu HY, Bian Q, Zhu XF, Xuan YH. IDD10-NAC079 transcription factor complex regulates sheath blight resistance by inhibiting ethylene signaling in rice. J Adv Res 2025; 71:93-106. [PMID: 38825317 DOI: 10.1016/j.jare.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
INTRODUCTION Rhizoctonia solani Kühn is a pathogen causing rice sheath blight (ShB). Ammonium transporter 1 (AMT1) promotes resistance of rice to ShB by activating ethylene signaling. However, how AMT1 activates ethylene signaling remains unclear. OBJECTIVE In this study, the indeterminate domain 10 (IDD10)-NAC079 interaction model was used to investigate whether ethylene signaling is modulated downstream of ammonium signaling and modulates ammonium-mediated ShB resistance. METHODS RT-qPCR assay was used to identify the relative expression levels of nitrogen and ethylene related genes. Yeast two-hybrid assays, Bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) assay were conducted to verify the IDD10-NAC079-calcineurin B-like interacting protein kinase 31 (CIPK31) transcriptional complex. Yeast one-hybrid assay, Chromatin immunoprecipitation (ChIP) assay, and Electrophoretic mobility shift assay (EMSA) were used to verify whether ETR2 was activated by IDD10 and NAC079. Ethylene quantification assay was used to verify ethylene content in IDD10 transgenic plants. Genetic analysis is used to detect the response of IDD10, NAC079 and CIPK31 to ShB infestation. RESULTS IDD10-NAC079 forms a transcription complex that activates ETR2 to inhibit the ethylene signaling pathway to negatively regulating ShB resistance. CIPK31 interacts and phosphorylates NAC079 to enhance its transcriptional activation activity. In addition, AMT1-mediated ammonium absorption and subsequent N assimilation inhibit the expression of IDD10 and CIPK31 to activate the ethylene signaling pathway, which positively regulates ShB resistance. CONCLUSION The study identified the link between ammonium and ethylene signaling and improved the understanding of the rice resistance mechanism.
Collapse
Affiliation(s)
- Zhuo Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Huan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - De Peng Yuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Xu Jiang
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Zhi Min Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Si Ting Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Tian Ge Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Hong Yao Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Feng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Yan C, Zhang J, Yang W, Liu Y, Bai X, Zeng Q, Liu X, Ren Y, Shao D, Li B. Transcriptional activation of BolBCAT4 genes enhanced aliphatic glucosinolate accumulation in cabbage. FRONTIERS IN PLANT SCIENCE 2025; 16:1548003. [PMID: 40303857 PMCID: PMC12037493 DOI: 10.3389/fpls.2025.1548003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Aliphatic glucosinolates are a large group of plant-specialized metabolites in Brassica vegetables, and some of their degradation products are key nutrients with significant beneficial effects on human health. Increasing the nutritional quality is one of the central research questions and breeding goals for Brassica vegetables. Major progress has been made in understanding transcriptional regulation of aliphatic glucosinolates biosynthesis in the model plant, while little is known about it in Brassica vegetables. In this study, we used cabbage to study the transcriptional regulation of BolBCAT4 genes, the first set of biosynthetic genes in methionine-derived aliphatic glucosinolate metabolism, and identified and functionally validated four upstream positive regulators of BolBCAT4 genes, BolMYB3R, BolbHLH153, BolMED4 and BolERF74, with consistent phenotypic effects of inducing short-chain aliphatic glucosinolates, including glucoraphanin. Our work confirmed the biological functions of BolBCAT4 genes, identified dozens of candidate upstream regulators, and provided valuable regulatory mechanisms and breeding targets for enhancing the nutritional quality of cabbage.
Collapse
Affiliation(s)
- Chengtai Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Jiahao Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Wenjing Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Yao Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Xue Bai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Qi Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Xifan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Yanjing Ren
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining, China
| | - Dengkui Shao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining, China
| | - Baohua Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Zeng Q, Liu X, Yan X, Zhang J, Li C, Yan C, Zhang Y, Kliebenstein D, Li B. Novel Regulators and Their Epistatic Networks in Arabidopsis' Defence Responses to Alternaria alternata Infection. MOLECULAR PLANT PATHOLOGY 2025; 26:e70058. [PMID: 39894981 PMCID: PMC11788323 DOI: 10.1111/mpp.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Necrotrophic pathogens cause serious threats to agricultural crops, and understanding the resistance genes and their genetic networks is key to breeding new plant cultivars with better resistance traits. Although Alternaria alternata causes black spot in important leafy brassica vegetables, and leads to significant loss of yield and food quality, little is known about plant-A. alternata interactions. In this study, we used a unique and large collection of single, double and triple mutant lines of defence metabolite regulators in Arabidopsis to explore how these transcription factors and their epistatic networks may influence A. alternata infections. This identified nine novel regulators and 20 pairs of epistatic interactions that modulate Arabidopsis plants' defence responses to A. alternata infection. We further showed that the glucosinolate 4-methoxy-indol-3-ylmethyl is the only glucosinolate consistently responsive to A. alternata infection in Col-0 ecotype. With the further exploration of the regulators and the genetic networks on modulating the accumulation of glucosinolates under A. alternata infection, an inverted triangle regulatory model was proposed for Arabidopsis plants' defence responses at a metabolic level and a phenotypic level.
Collapse
Affiliation(s)
- Qi Zeng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xifan Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xuemei Yan
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Jiahao Zhang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chengtai Yan
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi ProvinceYanglingShaanxiChina
| | | | - Baohua Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
5
|
Kim SH, Bae S, Sung YW, Hwang YS. Effects of particle size on toxicity, bioaccumulation, and translocation of zinc oxide nanoparticles to bok choy (Brassica chinensis L.) in garden soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116519. [PMID: 38833977 DOI: 10.1016/j.ecoenv.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
The indiscriminate use of zinc oxide nanoparticles (ZnO NPs) in daily life can lead to their release into soil environment. These ZnO NPs can be taken up by crops and translocated to their edible part, potentially causing risks to the ecosystem and human health. In this study, we conducted pot experiments to determine phytotoxicity, bioaccumulation and translocation depending on the size (10 - 30 nm, 80 - 200 nm and 300 nm diameter) and concentration (0, 100, 500 and 1000 mg Zn/kg) of ZnO NPs and Zn ion (Zn2+) in bok choy, a leafy green vegetable crop. After 14 days of exposure, our results showed that large-sized ZnO NPs (i.e., 300 nm) at the highest concentration exhibited greater phytotoxicity, including obstruction of leaf and root weight (42.5 % and 33.8 %, respectively) and reduction of chlorophyll a and b content (50.2 % and 85.2 %, respectively), as well as changes in the activities of oxidative stress responses compared to those of small-sized ZnO NPs, although their translocation ability was relatively lower than that of smaller ones. The translocation factor (TF) values decreased as the size of ZnO NPs increased, with TF values of 0.68 for 10 - 30 nm, 0.55 for 80 - 200 nm, and 0.27 for 300 nm ZnO NPs, all at the highest exposure concentration. Both the results of micro X-ray fluorescence (μ-XRF) spectrometer and bio-transmission electron microscopy (bio-TEM) showed that the Zn elements were mainly localized at the edges of leaves exposed to small-sized ZnO NPs. However, the Zn elements upon exposure to large-sized ZnO NP were primarily observed in the primary veins of leaves in the μ-XRF data, indicating a limitation in their ability to translocate from roots to leaves. This study not only advances our comprehension of the environmental impact of nanotechnology but also holds considerable implications for the future of sustainable agriculture and food safety.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, Republic of Korea; Department of Southern Area Crop Science, National Institute of Crop Science, Miryang, Republic of Korea
| | - Sujin Bae
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Yu Sik Hwang
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, Republic of Korea.
| |
Collapse
|
6
|
Pastor-Cantizano N, Angelos ER, Ruberti C, Jiang T, Weng X, Reagan BC, Haque T, Juenger TE, Brandizzi F. Programmed cell death regulator BAP2 is required for IRE1-mediated unfolded protein response in Arabidopsis. Nat Commun 2024; 15:5804. [PMID: 38987268 PMCID: PMC11237027 DOI: 10.1038/s41467-024-50105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
Environmental and physiological situations can challenge the balance between protein synthesis and folding capacity of the endoplasmic reticulum (ER) and cause ER stress, a potentially lethal condition. The unfolded protein response (UPR) restores ER homeostasis or actuates programmed cell death (PCD) when ER stress is unresolved. The cell fate determination mechanisms of the UPR are not well understood, especially in plants. Here, we integrate genetics and ER stress profiling with natural variation and quantitative trait locus analysis of 350 natural accessions of the model species Arabidopsis thaliana. Our analyses implicate a single nucleotide polymorphism to the loss of function of the general PCD regulator BON-ASSOCIATED PROTEIN2 (BAP2) in UPR outcomes. We establish that ER stress-induced BAP2 expression is antagonistically regulated by the UPR master regulator, inositol-requiring enzyme 1 (IRE1), and that BAP2 controls adaptive UPR amplitude in ER stress and ignites pro-death mechanisms in conditions of UPR insufficiency.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjassot, Spain
| | - Evan R Angelos
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Botany & Plant Sciences Department, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Cristina Ruberti
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Biosciences, University of Milan, Milano, Italy
| | - Tao Jiang
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Mid-Florida Research and Education Center, University of Florida, Apopka, FL, USA
| | - Xiaoyu Weng
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Brandon C Reagan
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - Taslima Haque
- Department of Integrative Biology, University of Texas, Austin, TX, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Plant Biology Department, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Li Z, Chen H, Guan Q, Li L, Xuan YH. Gibberellic acid signaling promotes resistance to saline-alkaline stress by increasing the uptake of ammonium in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108424. [PMID: 38335888 DOI: 10.1016/j.plaphy.2024.108424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Gibberellic acid (GA) plays important roles in diverse biological processes in plants. However, its function in rice (Oryza sativa) resistance to saline-alkaline (SAK) stress is unclear. This study showed that SAK stimuli changed GA signaling gene expression levels. Genetic analyses using the mutants of key GA signaling regulators, Slender rice 1 (SLR1) and Dwarf 1(D1), demonstrated that SLR1 negatively, while D1 positively regulated the resistance of rice to SAK stress, suggesting that the GA signaling positively regulates the resistance of rice to SAK. Further analyses revealed that SLR1 interacted with and inhibited the transcription activation activity of IDD10 and bZIP23. Furthermore, IDD10 interacted with bZIP23 to activate Ammonium transporter 1;2 (AMT1;2), and slr1, IDD10 OX and bZIP23 OX accumulated more ammonium (NH4+), while idd10 and bzip23 accumulated less NH4+ than the wild-type (WT). In addition, the bzip23 mutant was more sensitive to SAK, while bZIP23 OX was less sensitive compared with the WT, suggesting that bZIP23 positively regulates the resistance of rice to SAK. These findings demonstrate that GA signaling promoted rice's SAK resistance by regulating NH4+ uptake through the SLR1-IDD10-bZIP23 pathway.
Collapse
Affiliation(s)
- Zhuo Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huan Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Qingjie Guan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China.
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China.
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
8
|
Bruinsma K, Rioja C, Zhurov V, Santamaria ME, Arbona V, Navarro M, Cazaux M, Auger P, Migeon A, Wybouw N, Van Leeuwen T, Diaz I, Gómez-Cadenas A, Grbic M, Navajas M, Grbic V. Host adaptation and specialization in Tetranychidae mites. PLANT PHYSIOLOGY 2023; 193:2605-2621. [PMID: 37437113 DOI: 10.1093/plphys/kiad412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Composite generalist herbivores are comprised of host-adapted populations that retain the ability to shift hosts. The degree and overlap of mechanisms used by host-adapted generalist and specialist herbivores to overcome the same host plant defenses are largely unknown. Tetranychidae mites are exceptionally suited to address the relationship between host adaptation and specialization in herbivores as this group harbors closely related species with remarkably different host ranges-an extreme generalist the two-spotted spider mite (Tetranychus urticae Koch [Tu]) and the Solanaceous specialist Tetranychus evansi (Te). Here, we used tomato-adapted two-spotted spider mite (Tu-A) and Te populations to compare mechanisms underlying their host adaptation and specialization. We show that both mites attenuate induced tomato defenses, including protease inhibitors (PIs) that target mite cathepsin L digestive proteases. While Te solely relies on transcriptional attenuation of PI induction, Tu and Tu-A have elevated constitutive activity of cathepsin L proteases, making them less susceptible to plant anti-digestive proteins. Tu-A and Te also rely on detoxification of tomato constitutive defenses. Te uses esterase and P450 activities, while Tu-A depends on the activity of all major detoxification enzymatic classes to disarm tomato defensive compounds to a lesser extent. Thus, even though both Tu-A and Te use similar mechanisms to counteract tomato defenses, Te can better cope with them. This finding is congruent with the ecological and evolutionary times required to establish mite adaptation and specialization states, respectively.
Collapse
Affiliation(s)
- Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Cristina Rioja
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Maria Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
| | - Vicent Arbona
- Department of Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Campus Riu Sec, E-12071 Castellón, Spain
| | - Marie Navarro
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Marc Cazaux
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Philippe Auger
- Institut Agro, IRD, Institut national de recherche pour l'agronomie, l'alimentation et l'environnement (INRAE) Centre de Biologie et Gestion des Populations (CBGP), Univ Montpellier, 34988 Montferrier-sur-Lez, France
| | - Alain Migeon
- Institut Agro, IRD, Institut national de recherche pour l'agronomie, l'alimentation et l'environnement (INRAE) Centre de Biologie et Gestion des Populations (CBGP), Univ Montpellier, 34988 Montferrier-sur-Lez, France
| | - Nicky Wybouw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
| | - Aurelio Gómez-Cadenas
- Department of Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Campus Riu Sec, E-12071 Castellón, Spain
| | - Miodrag Grbic
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
- Department of Agriculture and Food, University of La Rioja, Logroño, La Rioja 26006, Spain
- Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Maria Navajas
- Institut Agro, IRD, Institut national de recherche pour l'agronomie, l'alimentation et l'environnement (INRAE) Centre de Biologie et Gestion des Populations (CBGP), Univ Montpellier, 34988 Montferrier-sur-Lez, France
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| |
Collapse
|
9
|
Maguire SM, McClimon JB, Zhang AC, Keller AW, Bilchak CR, Ohno K, Carpick RW, Composto RJ. Nanoscale Structure-Property Relations in Self-Regulated Polymer-Grafted Nanoparticle Composite Structures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10974-10985. [PMID: 36802474 DOI: 10.1021/acsami.2c15786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using a model system of poly(methyl methacrylate)-grafted silica nanoparticles (PMMA-NP) and poly(styrene-ran-acrylonitrile) (SAN), we generate unique polymer nanocomposite (PNC) morphologies by balancing the degree of surface enrichment, phase separation, and wetting within the films. Depending on the annealing temperature and time, thin films undergo different stages of phase evolution, resulting in homogeneously dispersed systems at low temperatures, enriched PMMA-NP layers at the PNC interfaces at intermediate temperatures, and three-dimensional bicontinuous structures of PMMA-NP pillars sandwiched between two PMMA-NP wetting layers at high temperatures. Using a combination of atomic force microscopy (AFM), AFM nanoindentation, contact angle goniometry, and optical microscopy, we show that these self-regulated structures lead to nanocomposites with increased elastic modulus, hardness, and thermal stability compared to analogous PMMA/SAN blends. These studies demonstrate the ability to reliably control the size and spatial correlations of both the surface-enriched and phase-separated nanocomposite microstructures, which have attractive technological applications where properties such as wettability, toughness, and wear resistance are important. In addition, these morphologies lend themselves to substantially broader applications, including: (1) structural color applications, (2) tuning optical adsorption, and (3) barrier coatings.
Collapse
Affiliation(s)
- Shawn M Maguire
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - J Brandon McClimon
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aria C Zhang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Austin W Keller
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Connor R Bilchak
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kohji Ohno
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Robert W Carpick
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Kim SH, Bae S, Hwang YS. Comparative bioaccumulation, translocation, and phytotoxicity of metal oxide nanoparticles and metal ions in soil-crop system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158938. [PMID: 36152853 DOI: 10.1016/j.scitotenv.2022.158938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/18/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Exposure of the soil environment to metal nanoparticles (MNPs) has been extensive because of their indiscriminate use and the disposal of MNP products in various applications. In MNP-amended soil, various crops can absorb the nanoparticles, and accumulation of the MNPs in farm products has potential risks for bioconcentration in humans and livestock. Here, we evaluated the comparative bioaccumulation, translocation, and phytotoxicity of MNPs (ZnO and CuO NPs) and metal ions (Zn(NO3)2 and Cu(NO3)2) in four different crops, namely lettuce, radish, bok choy, and tomato. We carried out pot experiments to evaluate the phytotoxicity in the crops from the presence of MNPs and metal ions. Phytotoxicity from different treatments differed depending on the plant species, and metal types. In addition, exposure to Zn and Cu showed positive dose-dependent effects on their bioaccumulation in each crop. However, there were no significant differences in metal bioaccumulation depending on whether the crops were exposed to MNPs or metal ions. By calculating the bioconcentration factor (BCF) and translocation factor (TF), we were able to estimate the biological uptake and translocation abilities of MNPs and metal ions for each crop. It was found that lettuce and radish had greater BCFs than bok choy and tomato, while bok choy and tomato had higher TFs. Also, the uptake and translocation of Zn were better than those of Cu. However, the values for BCF and TF for each crop showed no significant differences between MNP and metal ion exposure. A micro X-ray fluorescence (μ-XRF) spectrometer analysis demonstrated that only Zn elements appeared in the primary veins and edges of all leaves and the storage root of radish. Our study aims to estimate bioaccumulation, translocation, and the implied potential risks from MNPs accumulated in different plant species.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, South Korea
| | - Sujin Bae
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, South Korea
| | - Yu Sik Hwang
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, South Korea.
| |
Collapse
|
11
|
Zhao Y, Zhao B, Xie Y, Jia H, Li Y, Xu M, Wu G, Ma X, Li Q, Hou M, Li C, Xia Z, He G, Xu H, Bai Z, Kong D, Zheng Z, Liu Q, Liu Y, Zhong J, Tian F, Wang B, Wang H. The evening complex promotes maize flowering and adaptation to temperate regions. THE PLANT CELL 2023; 35:369-389. [PMID: 36173348 PMCID: PMC9806612 DOI: 10.1093/plcell/koac296] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/16/2022] [Indexed: 05/30/2023]
Abstract
Maize (Zea mays) originated in southern Mexico and has spread over a wide latitudinal range. Maize expansion from tropical to temperate regions has necessitated a reduction of its photoperiod sensitivity. In this study, we cloned a quantitative trait locus (QTL) regulating flowering time in maize and show that the maize ortholog of Arabidopsis thaliana EARLY FLOWERING3, ZmELF3.1, is the causal locus. We demonstrate that ZmELF3.1 and ZmELF3.2 proteins can physically interact with ZmELF4.1/4.2 and ZmLUX1/2, to form evening complex(es; ECs) in the maize circadian clock. Loss-of-function mutants for ZmELF3.1/3.2 and ZmLUX1/2 exhibited delayed flowering under long-day and short-day conditions. We show that EC directly represses the expression of several flowering suppressor genes, such as the CONSTANS, CONSTANS-LIKE, TOC1 (CCT) genes ZmCCT9 and ZmCCT10, ZmCONSTANS-LIKE 3, and the PSEUDORESPONSE REGULATOR (PRR) genes ZmPRR37a and ZmPRR73, thus alleviating their inhibition, allowing florigen gene expression and promoting flowering. Further, we identify two closely linked retrotransposons located in the ZmELF3.1 promoter that regulate the expression levels of ZmELF3.1 and may have been positively selected during postdomestication spread of maize from tropical to temperate regions during the pre-Columbian era. These findings provide insights into circadian clock-mediated regulation of photoperiodic flowering in maize and new targets of genetic improvement for breeding.
Collapse
Affiliation(s)
- Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- HainanYazhou Bay Seed Lab, Sanya, 572025, China
| | - Hong Jia
- Department of Plant Genetics and Breeding, State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, China Agricultural University, Beijing, 100193, China
| | - Yongxiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 10008, China
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- HainanYazhou Bay Seed Lab, Sanya, 572025, China
| | - Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojing Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Quanquan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mei Hou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanchao Xia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gang He
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hua Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhijing Bai
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dexin Kong
- School of Life Sciences, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhigang Zheng
- School of Life Sciences, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Liu
- School of Life Sciences, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yuting Liu
- School of Life Sciences, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jinshun Zhong
- School of Life Sciences, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Feng Tian
- Department of Plant Genetics and Breeding, State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, China Agricultural University, Beijing, 100193, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- HainanYazhou Bay Seed Lab, Sanya, 572025, China
| | - Haiyang Wang
- School of Life Sciences, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
12
|
Clark SB, Lippe MP. Vicarious learning and communication self-efficacy: A pediatric end-of-life simulation for pre-licensure nursing students. J Prof Nurs 2022; 43:107-116. [PMID: 36496231 DOI: 10.1016/j.profnurs.2022.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND End-of-life clinical experiences, particularly in pediatrics, are quite limited for pre-licensure nursing students. Though effective, end-of-life simulations can be costly, require facilitators trained in palliative and end-of-life care, and are restricted by limited space and time availability. Such barriers prompt the question as to whether there is an effective alternative to simulation by which students can gain improved self-efficacy in therapeutic communication during pediatric end-of-life situations. PURPOSE Bandura's Social Cognitive Theory and work exploring self-efficacy posits that vicarious learning provides learners opportunities to gain experience and knowledge through observation of peers in simulated settings. This study evaluated the effectiveness of vicarious versus active learning on pre-licensure nursing students' perceived self-efficacy in providing therapeutic communication during a pediatric end-of-life situation. METHOD Data were collected over three time points - pre-simulation, post-simulation, and post-debriefing - using a modified Self-Efficacy in Communication Scale. RESULTS Learners in both groups had significant improvement in self-efficacy across all time points. Only two items had significant differences between vicarious and active learner groups, but the effect was minor. CONCLUSION Vicarious learning presents as a viable pedagogical approach for providing pre-licensure nursing students important learning opportunities related to pediatric end-of-life simulations during both the scenario and debriefing.
Collapse
Affiliation(s)
- Stephanie B Clark
- One Harrison Plaza, Anderson College of Nursing and Health Professions, Harrison Hall Box 5054, University of North Alabama, Florence, AL 35632, United States.
| | - Megan P Lippe
- University of Alabama Capstone College of Nursing, Box 870358, Tuscaloosa, AL 35487, United States.
| |
Collapse
|
13
|
Draves MA, Muench RL, Lang MG, Kelley DR. Maize Seedling Growth and Hormone Response Assays Using the Rolled Towel Method. Curr Protoc 2022; 2:e562. [PMID: 36194012 PMCID: PMC11648833 DOI: 10.1002/cpz1.562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Root system architecture is a critical factor in maize health and stress resilience. Determining the genetic and environmental factors that shape maize root system architecture is an active research area. However, the ability to phenotype juvenile root systems is hindered by the use of field-grown and soil-based systems. An alternative to soil- and field-based growing conditions for maize seedlings is a controlled environment with a soil-free medium, which can facilitate root system phenotyping. Here, we describe how to grow maize under soil-free conditions for up to 12 days to facilitate root phenotyping. Maize seeds are sterilized and planted on specialized seed germination paper to minimize fungal contamination and ensure synchronized seedling growth, followed by imaging at the desired time point. The root images are then analyzed to quantify traits of interest, such as primary root length, lateral root density, seminal root length, and seminal root number. In addition, juvenile shoot traits can be quantified using manual annotation methods. We also outline the steps for performing rigorous hormone response assays for four classical phytohormones: auxin, brassinosteroid, cytokinin, and jasmonic acid. This protocol can be rapidly scaled up and is compatible with genetic screens and sample collection for downstream molecular analyses such as transcriptomics and proteomics. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Maize seedling rolled towel assay and phenotyping Basic Protocol 2: Maize seedling hormone response assays using the rolled towel assay.
Collapse
Affiliation(s)
- Melissa A. Draves
- Department of Genetics, Development, and Cell BiologyIowa State UniversityAmesIowa
| | - Rebekah L. Muench
- Department of Genetics, Development, and Cell BiologyIowa State UniversityAmesIowa
| | - Michelle G. Lang
- Current address: Corteva Agriscience8325 NW 62nd AveJohnstonIowa
| | - Dior R. Kelley
- Department of Genetics, Development, and Cell BiologyIowa State UniversityAmesIowa
| |
Collapse
|
14
|
Dixit S, Widemann E, Bensoussan N, Salehipourshirazi G, Bruinsma K, Milojevic M, Shukla A, Romero LC, Zhurov V, Bernards MA, Chruszcz M, Grbić M, Grbić V. β-Cyanoalanine synthase protects mites against Arabidopsis defenses. PLANT PHYSIOLOGY 2022; 189:1961-1975. [PMID: 35348790 PMCID: PMC9342966 DOI: 10.1093/plphys/kiac147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/07/2022] [Indexed: 05/06/2023]
Abstract
Glucosinolates are antiherbivory chemical defense compounds in Arabidopsis (Arabidopsis thaliana). Specialist herbivores that feed on brassicaceous plants have evolved various mechanisms aimed at preventing the formation of toxic isothiocyanates. In contrast, generalist herbivores typically detoxify isothiocyanates through glutathione conjugation upon exposure. Here, we examined the response of an extreme generalist herbivore, the two-spotted spider mite Tetranychus urticae (Koch), to indole glucosinolates. Tetranychus urticae is a composite generalist whose individual populations have a restricted host range but have an ability to rapidly adapt to initially unfavorable plant hosts. Through comparative transcriptomic analysis of mite populations that have differential susceptibilities to Arabidopsis defenses, we identified β-cyanoalanine synthase of T. urticae (TuCAS), which encodes an enzyme with dual cysteine and β-cyanoalanine synthase activities. We combined Arabidopsis genetics, chemical complementation and mite reverse genetics to show that TuCAS is required for mite adaptation to Arabidopsis through its β-cyanoalanine synthase activity. Consistent with the β-cyanoalanine synthase role in detoxification of hydrogen cyanide (HCN), we discovered that upon mite herbivory, Arabidopsis plants release HCN. We further demonstrated that indole glucosinolates are sufficient for cyanide formation. Overall, our study uncovered Arabidopsis defenses that rely on indole glucosinolate-dependent cyanide for protection against mite herbivory. In response, Arabidopsis-adapted mites utilize the β-cyanoalanine synthase activity of TuCAS to counter cyanide toxicity, highlighting the mite's ability to activate resistant traits that enable this extreme polyphagous herbivore to exploit cyanogenic host plants.
Collapse
Affiliation(s)
| | | | - Nicolas Bensoussan
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | - Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Maja Milojevic
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Akanchha Shukla
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, E-41092 Seville, Spain
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Mark A Bernards
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | |
Collapse
|
15
|
Klein H, Gallagher J, Demesa-Arevalo E, Abraham-Juárez MJ, Heeney M, Feil R, Lunn JE, Xiao Y, Chuck G, Whipple C, Jackson D, Bartlett M. Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022. [PMID: 34996873 DOI: 10.1101/2021.09.03.458935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
Affiliation(s)
- Harry Klein
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Joseph Gallagher
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | | | - María Jazmín Abraham-Juárez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato 36821, Mexico
| | - Michelle Heeney
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Yuguo Xiao
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - George Chuck
- Plant Gene Expression Center, University of California, Berkeley, CA 94710
| | - Clinton Whipple
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - David Jackson
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Madelaine Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003;
| |
Collapse
|
16
|
Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022; 119:2115871119. [PMID: 34996873 PMCID: PMC8764674 DOI: 10.1073/pnas.2115871119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Floral morphology is immensely diverse. One developmental process acting to shape this diversity is growth suppression. For example, grass flowers exhibit extreme diversity in floral sexuality, arising through differential suppression of stamens or carpels. The genes regulating this growth suppression and how they have evolved remain largely unknown. We discovered that two classic developmental genes with ancient roles in controlling vegetative branching were recruited to suppress carpel development in maize. Our results highlight the power of forward genetics to reveal unpredictable genetic interactions and hidden pleiotropy of developmental genes. More broadly, our findings illustrate how ancient gene functions are recruited to new developmental contexts in the evolution of plant form. Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
|
17
|
Salehipourshirazi G, Bruinsma K, Ratlamwala H, Dixit S, Arbona V, Widemann E, Milojevic M, Jin P, Bensoussan N, Gómez-Cadenas A, Zhurov V, Grbic M, Grbic V. Rapid specialization of counter defenses enables two-spotted spider mite to adapt to novel plant hosts. PLANT PHYSIOLOGY 2021; 187:2608-2622. [PMID: 34618096 PMCID: PMC8644343 DOI: 10.1093/plphys/kiab412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/05/2021] [Indexed: 05/06/2023]
Abstract
Genetic adaptation, occurring over a long evolutionary time, enables host-specialized herbivores to develop novel resistance traits and to efficiently counteract the defenses of a narrow range of host plants. In contrast, physiological acclimation, leading to the suppression and/or detoxification of host defenses, is hypothesized to enable broad generalists to shift between plant hosts. However, the host adaptation mechanisms used by generalists composed of host-adapted populations are not known. Two-spotted spider mite (TSSM; Tetranychus urticae) is an extreme generalist herbivore whose individual populations perform well only on a subset of potential hosts. We combined experimental evolution, Arabidopsis thaliana genetics, mite reverse genetics, and pharmacological approaches to examine mite host adaptation upon the shift of a bean (Phaseolus vulgaris)-adapted population to Arabidopsis. We showed that cytochrome P450 monooxygenases are required for mite adaptation to Arabidopsis. We identified activities of two tiers of P450s: general xenobiotic-responsive P450s that have a limited contribution to mite adaptation to Arabidopsis and adaptation-associated P450s that efficiently counteract Arabidopsis defenses. In approximately 25 generations of mite selection on Arabidopsis plants, mites evolved highly efficient detoxification-based adaptation, characteristic of specialist herbivores. This demonstrates that specialization to plant resistance traits can occur within the ecological timescale, enabling the TSSM to shift to novel plant hosts.
Collapse
Affiliation(s)
| | - Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Huzefa Ratlamwala
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Sameer Dixit
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, E-12071, Spain
| | - Emilie Widemann
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Maja Milojevic
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Pengyu Jin
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Nicolas Bensoussan
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, E-12071, Spain
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Miodrag Grbic
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
- Instituto de Ciencias de la Vid y el Vino (CSIC, UR, Gobiernode La Rioja), Logrono 26006, Spain
- Department of Biology, University of Belgrade, Belgrade, Serbia
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
- Author for communication:
| |
Collapse
|
18
|
Zhou M, Zhang LL, Ye JY, Zhu QY, Du WX, Zhu YX, Liu XX, Lin XY, Jin CW. Knockout of FER decreases cadmium concentration in roots of Arabidopsis thaliana by inhibiting the pathway related to iron uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149285. [PMID: 34340090 DOI: 10.1016/j.scitotenv.2021.149285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Identifying the genes that affect cadmium (Cd) accumulation in plants is a prerequisite for minimizing dietary Cd uptake from contaminated edible parts of plants by genetic engineering. This study showed that Cd stress inhibited the expression of FERONIA (FER) gene in the roots of wild-type Arabidopsis. Knockout of FER in fer-4 mutants downregulated the Cd-induced expression of several genes related to iron (Fe) uptake, including IRT1, bHLH38, NRAMP1, NRAMP3, FRO2 andFIT. In addition, the Cd concentration in fer-4 mutant roots reduced to approximately half of that in the wild-type seedlings. As a result, the Cd tolerance of fer-4 was higher. Furthermore, increased Fe supplementation had little effect on the Cd tolerance of fer-4 mutants, but clearly improved the Cd tolerance of wild-type seedlings, showing that the alleviation of Cd toxicity by Fe depends on the action of FER. Taken together, the findings demonstrate that the knockout of FER might provide a strategy to reduce Cd contamination and improve the Cd tolerance in plants by regulating the pathways related to Fe uptake.
Collapse
Affiliation(s)
- Miao Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Lin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia Yuan Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing Yang Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Xin Du
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ya Xin Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xing Xing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xian Yong Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Casino-García AM, Llopis-Bueno MJ, Gómez-Vivo MG, Juan-Grau A, Shuali-Trachtenberg T, Llinares-Insa LI. "Developing Capabilities". Inclusive Extracurricular Enrichment Programs to Improve the Well-Being of Gifted Adolescents. Front Psychol 2021; 12:731591. [PMID: 34707541 PMCID: PMC8542728 DOI: 10.3389/fpsyg.2021.731591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022] Open
Abstract
The educational inclusion of gifted students requires not only equity but also emotional accessibility and social participation. However, different studies indicate that gifted students constitute a vulnerable group (for example, the incidence of bullying is higher). Psychosocial variables are determinants for the development and expression of giftedness, particularly during adolescence. This study analyzes the impact of an inclusive extracurricular enrichment program for gifted secondary school students on the well-being of adolescents. The program was based on the enrichment model of Renzulli and Reis (2016). The objective was to develop a cluster to facilitate high-achieving learning in collaboration with teachers, administrators, and guidance counselors from their schools as well as university professors and students that would address their emotions and socialization across the board and benefit or involve their peers in their regular classrooms. The intervention took place over two years: eight sessions, one afternoon per week, for five months during each school year. The sample consisted of 47 students from the first and second years of compulsory secondary education (Educación Secundaria Obligatoria - ESO) (age, mean (M) = 12.57, standard deviation (SD) = 0.82) during the first year and 27 students from the first, second, and third years of ESO (age, M = 13.48, SD = 0.94) during the second year; 61.4% were girls. Participants completed a questionnaire before (T1) and (T3) and after (T2) and (T4) each intervention. The results show better outcomes for psychological and subjective well-being, more positive moods, and a significant reduction in school fears. The results from this study indicate the importance of educational screening and support for gifted students to promote their well-being through collaborative enrichment activities.
Collapse
Affiliation(s)
- Ana María Casino-García
- Departamento de Educación Inclusiva y Desarrollo Sociocomunitario, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - María José Llopis-Bueno
- Departamento de Didáctica General, Teoría de la Educación e Innovación Tecnológica, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - María Gloria Gómez-Vivo
- Departamento de Didáctica General, Teoría de la Educación e Innovación Tecnológica, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Amparo Juan-Grau
- Departamento de Educación Inclusiva y Desarrollo Sociocomunitario, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Tamar Shuali-Trachtenberg
- Departamento de Didáctica General, Teoría de la Educación e Innovación Tecnológica, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Lucía I. Llinares-Insa
- Departamento de Psicología Social, Facultad de Psicología, Universitat de València, Valencia, Spain
| |
Collapse
|
20
|
Widemann E, Bruinsma K, Walshe-Roussel B, Rioja C, Arbona V, Saha RK, Letwin D, Zhurov V, Gómez-Cadenas A, Bernards MA, Grbić M, Grbić V. Multiple indole glucosinolates and myrosinases defend Arabidopsis against Tetranychus urticae herbivory. PLANT PHYSIOLOGY 2021; 187:116-132. [PMID: 34618148 PMCID: PMC8418412 DOI: 10.1093/plphys/kiab247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/25/2021] [Indexed: 05/05/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) defenses against herbivores are regulated by the jasmonate (JA) hormonal signaling pathway, which leads to the production of a plethora of defense compounds. Arabidopsis defense compounds include tryptophan-derived metabolites, which limit Arabidopsis infestation by the generalist herbivore two-spotted spider mite, Tetranychus urticae. However, the phytochemicals responsible for Arabidopsis protection against T. urticae are unknown. Here, we used Arabidopsis mutants disrupted in the synthesis of tryptophan-derived secondary metabolites to identify phytochemicals involved in the defense against T. urticae. We show that of the three tryptophan-dependent pathways found in Arabidopsis, the indole glucosinolate (IG) pathway is necessary and sufficient to assure tryptophan-mediated defense against T. urticae. We demonstrate that all three IGs can limit T. urticae herbivory, but that they must be processed by myrosinases to hinder T. urticae oviposition. Putative IG breakdown products were detected in mite-infested leaves, suggesting in planta processing by myrosinases. Finally, we demonstrate that besides IGs, there are additional JA-regulated defenses that control T. urticae herbivory. Together, our results reveal the complexity of Arabidopsis defenses against T. urticae that rely on multiple IGs, specific myrosinases, and additional JA-dependent defenses.
Collapse
Affiliation(s)
- Emilie Widemann
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Brendan Walshe-Roussel
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Natural and Non-Prescription Health Products Directorate Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Cristina Rioja
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071 Castelló de la Plana, Spain
| | - Repon Kumer Saha
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - David Letwin
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071 Castelló de la Plana, Spain
| | - Mark A. Bernards
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vojislava Grbić
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Author for communication:
| |
Collapse
|
21
|
Ye JY, Tian WH, Zhou M, Zhu QY, Du WX, Jin CW. Improved Plant Nitrate Status Involves in Flowering Induction by Extended Photoperiod. FRONTIERS IN PLANT SCIENCE 2021; 12:629857. [PMID: 33643357 PMCID: PMC7907640 DOI: 10.3389/fpls.2021.629857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/19/2021] [Indexed: 05/06/2023]
Abstract
The floral transition stage is pivotal for sustaining plant populations and is affected by several environmental factors, including photoperiod. However, the mechanisms underlying photoperiodic flowering responses are not fully understood. Herein, we have shown that exposure to an extended photoperiod effectively induced early flowering in Arabidopsis plants, at a range of different nitrate concentrations. However, these photoperiodic flowering responses were attenuated when the nitrate levels were suboptimal for flowering. An extended photoperiod also improved the root nitrate uptake of by NITRATE TRANSPORTER 1.1 (NRT1.1) and NITRATE TRANSPORTER 2.1 (NRT2.1), whereas the loss of function of NRT1.1/NRT2.1 in the nrt1.1-1/2.1-2 mutants suppressed the expression of the key flowering genes CONSTANS (CO) and FLOWERING LOCUS T (FT), and reduced the sensitivity of the photoperiodic flowering responses to elevated levels of nitrate. These results suggest that the upregulation of root nitrate uptake during extended photoperiods, contributed to the observed early flowering. The results also showed that the sensitivity of photoperiodic flowering responses to elevated levels of nitrate, were also reduced by either the replacement of nitrate with its assimilation intermediate product, ammonium, or by the dysfunction of the nitrate assimilation pathway. This indicates that nitrate serves as both a nutrient source for plant growth and as a signaling molecule for floral induction during extended photoperiods.
Collapse
Affiliation(s)
- Jia Yuan Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Wen Hao Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China
| | - Miao Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Qing Yang Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Wen Xin Du
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
- *Correspondence: Chong Wei Jin,
| |
Collapse
|
22
|
Lambert I, Paysant-Le Roux C, Colella S, Martin-Magniette ML. DiCoExpress: a tool to process multifactorial RNAseq experiments from quality controls to co-expression analysis through differential analysis based on contrasts inside GLM models. PLANT METHODS 2020; 16:68. [PMID: 32426025 PMCID: PMC7216733 DOI: 10.1186/s13007-020-00611-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/03/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND RNAseq is nowadays the method of choice for transcriptome analysis. In the last decades, a high number of statistical methods, and associated bioinformatics tools, for RNAseq analysis were developed. More recently, statistical studies realised neutral comparison studies using benchmark datasets, shedding light on the most appropriate approaches for RNAseq data analysis. RESULTS DiCoExpress is a script-based tool implemented in R that includes methods chosen based on their performance in neutral comparisons studies. DiCoExpress uses pre-existing R packages including FactoMineR, edgeR and coseq, to perform quality control, differential, and co-expression analysis of RNAseq data. Users can perform the full analysis, providing a mapped read expression data file and a file containing the information on the experimental design. Following the quality control step, the user can move on to the differential expression analysis performed using generalized linear models thanks to the automated contrast writing function. A co-expression analysis is implemented using the coseq package. Lists of differentially expressed genes and identified co-expression clusters are automatically analyzed for enrichment of annotations provided by the user. We used DiCoExpress to analyze a publicly available RNAseq dataset on the transcriptional response of Brassica napus L. to silicon treatment in plant roots and mature leaves. This dataset, including two biological factors and three replicates for each condition, allowed us to demonstrate in a tutorial all the features of DiCoExpress. CONCLUSIONS DiCoExpress is an R script-based tool allowing users to perform a full RNAseq analysis from quality controls to co-expression analysis through differential analysis based on contrasts inside generalized linear models. DiCoExpress focuses on the statistical modelling of gene expression according to the experimental design and facilitates the data analysis leading the biological interpretation of the results.
Collapse
Affiliation(s)
- Ilana Lambert
- LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, INRAE, SupAgro, Univ Montpellier, Montpellier, France
| | - Christine Paysant-Le Roux
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Bat. 630, 91405 Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, Bat. 630, 91405 Orsay, France
| | - Stefano Colella
- LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, INRAE, SupAgro, Univ Montpellier, Montpellier, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Bat. 630, 91405 Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, Bat. 630, 91405 Orsay, France
- UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, 75005 Paris, France
| |
Collapse
|
23
|
Xuan YH, Kumar V, Han X, Kim SH, Jeong JH, Kim CM, Gao Y, Han CD. CBL-INTERACTING PROTEIN KINASE 9 regulates ammonium-dependent root growth downstream of IDD10 in rice (Oryza sativa). ANNALS OF BOTANY 2019; 124:947-960. [PMID: 30715138 PMCID: PMC6881222 DOI: 10.1093/aob/mcy242] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/02/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS INDETERMINATE DOMAIN 10 (IDD10) is a key transcription factor gene that activates the expression of a large number of NH4+-responsive genes including AMMONIUM TRANSPORTER 1;2 (AMT1;2). Primary root growth of rice (Oryza sativa) idd10 mutants is hypersensitive to NH4+. The involvement of CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE (CIPK) genes in the action of IDD10 on NH4+-mediated root growth was investigated. METHODS Quantitative reverse transcription-PCR was used to analyse NH4+- and IDD10-dependent expression of CIPK genes. IDD10-regulated CIPK target genes were identified using electrophoretic mobility shift assays, chromatin immunoprecipitation and transient transcription assays. Root growth rate, ammonium content and 15N uptake of cipk mutants were measured to determine their sensitivity to NH4+ and to compare these phenotypes with those of idd10. The genetic relationship between CIPK9 OX and idd10 was investigated by crosses between the CIPK9 and IDD10 lines. KEY RESULTS AMT1;2 was overexpressed in idd10 to determine whether NH4+-hypersensitive root growth of idd10 resulted from limitations in NH4+ uptake or from low cellular levels of NH4+. High NH4+ levels in idd10/AMT1;2 OX did not rescue the root growth defect. Next, the involvement of CIPK genes in NH4+-dependent root growth and interactions between IDD10 and CIPK genes was investigated. Molecular analysis revealed that IDD10 directly activated transcription of CIPK9 and CIPK14. Expression of CIPK8, 9, 14/15 and 23 was sensitive to exogenous NH4+. Further studies revealed that cipk9 and idd10 had almost identical NH4+-sensitive root phenotypes, including low efficiency of 15NH4+ uptake. Analysis of plants containing both idd10 and CIPK9 OX showed that CIPK9 OX could rescue the NH4+-dependent root growth defects of idd10. CONCLUSIONS CIPK9 was involved in NH4+-dependent root growth and appeared to act downstream of IDD10. This information will be useful in future explorations of NH4+ signalling in plants.
Collapse
Affiliation(s)
- Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- For correspondence. E-mails: or
| | - Vikranth Kumar
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Sung Hoon Kim
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Jin Hee Jeong
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Chul Min Kim
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Yue Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chang-deok Han
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
- For correspondence. E-mails: or
| |
Collapse
|
24
|
Wu G, Zhao Y, Shen R, Wang B, Xie Y, Ma X, Zheng Z, Wang H. Characterization of Maize Phytochrome-Interacting Factors in Light Signaling and Photomorphogenesis. PLANT PHYSIOLOGY 2019; 181:789-803. [PMID: 31350363 PMCID: PMC6776846 DOI: 10.1104/pp.19.00239] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/18/2019] [Indexed: 05/07/2023]
Abstract
Increasing planting density has been an effective means of increasing maize (Zea mays ssp. mays) yield per unit of land area over the past few decades. However, high-density planting will cause a reduction in the ratio of red to far-red incident light, which could trigger the shade avoidance syndrome and reduce yield. The molecular mechanisms regulating the shade avoidance syndrome are well established in Arabidopsis (Arabidopsis thaliana) but poorly understood in maize. Here, we conducted an initial functional characterization of the maize Phytochrome-Interacting Factor (PIF) gene family in regulating light signaling and photomorphogenesis. The maize genome contains seven distinct PIF genes, which could be grouped into three subfamilies: ZmPIF3s, ZmPIF4s, and ZmPIF5s Similar to the Arabidopsis PIFs, all ZmPIF proteins are exclusively localized to the nucleus and most of them can form nuclear bodies upon light irradiation. We show that all of the ZmPIF proteins could interact with ZmphyB. Heterologous expression of each ZmPIF member could partially or fully rescue the phenotype of the Arabidopsis pifq mutant, and some of these proteins conferred enhanced shade avoidance syndrome in Arabidopsis. Interestingly, all ZmPIF proteins expressed in Arabidopsis are much more stable than their Arabidopsis counterparts upon exposure to red light. Moreover, the Zmpif3, Zmpif4, and Zmpif5 knockout mutants generated via CRISPR/Cas9 technology all showed severely suppressed mesocotyl elongation in dark-grown seedlings and were less responsive to simulated shade treatment. Taken together, our results reveal both conserved and distinct molecular properties of ZmPIFs in regulating light signaling and photomorphogenesis in maize.
Collapse
Affiliation(s)
- Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaojing Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
25
|
Djami-Tchatchou AT, Matsaunyane LBT, Ntushelo K. Gene expression responses of tomato inoculated with Pectobacterium carotovorum subsp. carotovorum. Microbiologyopen 2019; 8:e911. [PMID: 31536683 PMCID: PMC6925151 DOI: 10.1002/mbo3.911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/12/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022] Open
Abstract
Defense responses of tomato (Solanum lycopersicum L.) against attack by Pectobacterium carotovorum subsp. carotovorum (Pcc), the causal agent of soft rot diseases, were studied. The expression of some tomato defense genes were evaluated by real‐time PCR quantification analysis, 24 and 72 hr after actively growing tomato plants were inoculated with Pcc. These included: MYB transcriptor factor, ethylene response element‐binding protein, suppressor of the G2 allele of Skp1, cytochrome P450, small Sar1 GTPase, hydroxycinnamoyl‐CoA:quinate hydroxycinnamoyl transferase, pathogenesis‐related protein 1a, endo‐1,3‐beta‐glucanase, chitinase, proteinase inhibitor, defensin, CC‐NBS‐LRR resistance protein, and phenylalanine ammonia lyase. The results showed dynamic transcriptomic changes, with transcripts exhibiting different expression kinetics at 24 and 72 hr to confer resistance to tomato against Pcc infection.
Collapse
Affiliation(s)
- Arnaud T Djami-Tchatchou
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida, South Africa
| | | | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida, South Africa
| |
Collapse
|
26
|
Scherbakov AM, Zhabinskii VN, Khripach VA, Shcherbinin DS, Mekhtiev AR, Shchegolev YY, Savochka AP, Andreeva OE. Biological Evaluation of a New Brassinosteroid: Antiproliferative Effects and Targeting Estrogen Receptor
α
Pathways. Chem Biodivers 2019; 16:e1900332. [DOI: 10.1002/cbdv.201900332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Alexander M. Scherbakov
- Department of Experimental Tumor BiologyBlokhin N.N. National Medical Research Center of Oncology Ministry of Health of Russia Kashirskoe shosse 24 115522 Moscow Russia
| | - Vladimir N. Zhabinskii
- Institute of Bioorganic ChemistryNational Academy of Sciences of Belarus Kuprevich str. 5/2 220141 Minsk Belarus
| | - Vladimir A. Khripach
- Institute of Bioorganic ChemistryNational Academy of Sciences of Belarus Kuprevich str. 5/2 220141 Minsk Belarus
| | - Dmitrii S. Shcherbinin
- Institute of Biomedical Chemistry, 10 building 8 Pogodinskaya str. 119121 Moscow Russia
- Department of Molecular TechnologiesPirogov Russian National Research Medical University 117997 Moscow Russia
| | - Arif R. Mekhtiev
- Institute of Biomedical Chemistry, 10 building 8 Pogodinskaya str. 119121 Moscow Russia
| | - Yuri Yu. Shchegolev
- Department of Experimental Tumor BiologyBlokhin N.N. National Medical Research Center of Oncology Ministry of Health of Russia Kashirskoe shosse 24 115522 Moscow Russia
| | - Aleh P. Savochka
- Institute of Bioorganic ChemistryNational Academy of Sciences of Belarus Kuprevich str. 5/2 220141 Minsk Belarus
| | - Olga E. Andreeva
- Department of Experimental Tumor BiologyBlokhin N.N. National Medical Research Center of Oncology Ministry of Health of Russia Kashirskoe shosse 24 115522 Moscow Russia
| |
Collapse
|
27
|
Li L, Quan S, Li D, Wang J, Zang H, Zhang L. Development of near infrared spectroscopy methodology for human albumin determination using a new calibration approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:256-262. [PMID: 30947134 DOI: 10.1016/j.saa.2019.03.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Though near infrared spectroscopy (NIRS) has been applied widely in the field of pharmaceutical, there is still a bottleneck which limits its development. The main barrier is that conventional NIRS calibration method is based on experiences and trials, which causes the established model is not stable and difficult to explain. Therefore, a new strategy which was based on design of experiment (DoE) combined with statistical analysis was provided to solve the limitations. A pre-processing method library was set up first and orthogonal experiment design was then introduced to investigate the effects and interactions of different pre-processing methods. Paired t-test was used to select the most suitable pre-processing method. Finally, the pre-processing method selected above and three commonly used variable selection methods (CARS, UVE, VIP) were combined randomly to select the best calibration model. The results showed that the new calibration approach could provide a reasonable way for researchers to establish a more stable, objective calibration model.
Collapse
Affiliation(s)
- Lian Li
- School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Shuang Quan
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Danyang Li
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Jiayue Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Hengchang Zang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; National Glycoengineering Research Center, Shandong University, Jinan 250012, China.
| | - Lining Zhang
- School of Basic Medical Science, Shandong University, Jinan 250012, China.
| |
Collapse
|
28
|
Han X, Li S, Zhang M, Yang L, Liu Y, Xu J, Zhang S. Regulation of GDSL Lipase Gene Expression by the MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factors in Arabidopsis Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:673-684. [PMID: 30598046 DOI: 10.1094/mpmi-06-18-0171-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades serve as unified signaling modules in plant development and defense response. Previous reports demonstrated an essential role of Arabidopsis GLIP1, a member of the GDSL-like-motif lipase family, in both local and systemic resistance. GLIP1 expression is highly induced by pathogen attack. However, the one or more signaling pathways involved are unknown. Here, we report that two pathogen-responsive MAPKs, MPK3 and MPK6, are implicated in regulating gene expression of GLIP1 as well as GLIP3 and GLIP4. After gain-of-function activation, MPK3 and MPK6 can strongly induce the expression of GLIP1, GLIP3, and GLIP4. Both GLIP1 and GLIP3 contribute to the plant resistance to Botrytis cinerea. WRKY33, a MPK3/MPK6 substrate, is essential for the MPK3/MPK6-dependent GLIP1 induction. In addition, WRKY2 and WRKY34, two close homologs of WRKY33, have a minor effect in MPK3/MPK6-regulated GLIP1 expression in B. cinerea-infected plants. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis demonstrated that the GLIP1 gene is a direct target of WRKY33. In addition, we demonstrated that MPK3/MPK6-induced GLIP1 expression is independent of ethylene and jasmonic acid, two important hormones in plant defense. Our results provide insights into the regulation of the GLIP family at the transcriptional level in plant immunity.
Collapse
Affiliation(s)
- Xiaofei Han
- 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| | - Sen Li
- 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| | - Miao Zhang
- 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| | - Liuyi Yang
- 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| | - Yidong Liu
- 2 Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| | - Juan Xu
- 1 State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| | - Shuqun Zhang
- 2 Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
29
|
Zhang Y, Wen CK. Statistics as Part of Scientific Reasoning in Plant Sciences: Overlooked Issues and Recommended Solutions. MOLECULAR PLANT 2019; 12:7-9. [PMID: 30543992 DOI: 10.1016/j.molp.2018.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 05/11/2023]
Affiliation(s)
- Ying Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
30
|
Xu J, van Herwijnen ZO, Dräger DB, Sui C, Haring MA, Schuurink RC. SlMYC1 Regulates Type VI Glandular Trichome Formation and Terpene Biosynthesis in Tomato Glandular Cells. THE PLANT CELL 2018; 30:2988-3005. [PMID: 30518626 PMCID: PMC6354261 DOI: 10.1105/tpc.18.00571] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/07/2018] [Accepted: 11/21/2018] [Indexed: 05/22/2023]
Abstract
Tomato (Solanum lycopersicum) glandular trichomes function as biochemical factories that synthesize a diverse array of specialized metabolites. Terpenoids are the most diverse class of plant specialized metabolites, with volatile mono- and sesquiterpenes playing important roles in plant defense. Although the biosynthetic pathways of volatile terpenes in tomato glandular trichomes have been well described, little is known about their regulation. Here, we demonstrate that SlMYC1, a basic helix-loop-helix transcription factor, differentially regulates mono- and sesquiterpene biosynthesis in the type VI glandular trichomes of tomato leaves and stems. SlMYC1 functions as a positive regulator of monoterpene biosynthesis in both leaf and stem trichomes but as a negative regulator of sesquiterpene biosynthesis in stem trichomes. SlMYC1 is also essential for type VI glandular trichome development, as knocking down SlMYC1 led to the production of smaller type VI glandular trichomes at lower densities, and knocking out this gene led to their absence. Our findings reveal a role for SlMYC1 not only in type VI glandular trichome development but also in the regulation of terpene biosynthesis in tomato.
Collapse
Affiliation(s)
- Jiesen Xu
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Zeger O van Herwijnen
- Rijk Zwaan Breeding B.V., Burgemeester Crezéelaan 40, 2678 ZG De Lier, The Netherlands
| | - Dörthe B Dräger
- Rijk Zwaan Breeding B.V., Burgemeester Crezéelaan 40, 2678 ZG De Lier, The Netherlands
| | - Chun Sui
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Michel A Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
31
|
Yu Y, Assmann SM. Inter-relationships between the heterotrimeric Gβ subunit AGB1, the receptor-like kinase FERONIA, and RALF1 in salinity response. PLANT, CELL & ENVIRONMENT 2018; 41:2475-2489. [PMID: 29907954 PMCID: PMC6150805 DOI: 10.1111/pce.13370] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 05/06/2023]
Abstract
Plant heterotrimeric G proteins modulate numerous developmental stress responses. Recently, receptor-like kinases (RLKs) have been implicated as functioning with G proteins and may serve as plant G-protein-coupled-receptors. The RLK FERONIA (FER), in the Catharantus roseus RLK1-like subfamily, is activated by a family of polypeptides called rapid alkalinization factors (RALFs). We previously showed that the Arabidopsis G protein β subunit, AGB1, physically interacts with FER, and that RALF1 regulation of stomatal movement through FER requires AGB1. Here, we investigated genetic interactions of AGB1 and FER in plant salinity response by comparing salt responses in the single and double mutants of agb1 and fer. We show that AGB1 and FER act additively or synergistically depending on the conditions of the NaCl treatments. We further show that the synergism likely occurs through salt-induced ROS production. In addition, we show that RALF1 enhances salt toxicity through increasing Na+ accumulation and decreasing K+ accumulation rather than by inducing ROS production, and that the RALF1 effect on salt response occurs in an AGB1-independent manner. Our results indicate that RLK epistatic relationships are not fixed, as AGB1 and FER display different genetic relationships to RALF1 in stomatal versus salinity responses.
Collapse
Affiliation(s)
| | - Sarah M. Assmann
- To whom correspondence should be addressed: , tel. 814-863-9579, fax. 814-865-9131
| |
Collapse
|
32
|
Nakata MT, Tameshige T, Takahara M, Mitsuda N, Okada K. The functional balance between the WUSCHEL-RELATED HOMEOBOX1 gene and the phytohormone auxin is a key factor for cell proliferation in Arabidopsis seedlings. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:141-154. [PMID: 31819716 PMCID: PMC6879388 DOI: 10.5511/plantbiotechnology.18.0427a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/27/2018] [Indexed: 05/18/2023]
Abstract
The WUSCHEL-RELATED HOMEOBOX1 (WOX1) transcription factor and its homolog PRESSED FLOWER (PRS) are multifunctional regulators of leaf development that act as transcriptional repressors. These genes promote cell proliferation under certain conditions, but the related molecular mechanisms are not well understood. Here, we present a new function for WOX1 in cell proliferation. To identify the WOX1 downstream genes, we performed a microarray analysis of shoot apices of transgenic Arabidopsis thaliana lines harboring [35Sp::WOX1-glucocorticoid receptor (GR)] in which the WOX1 function was temporarily enhanced by dexamethasone. The downregulated genes were significantly enriched for the Gene Ontology term "response to auxin stimulus", whereas the significantly upregulated genes contained auxin transport-associated PIN1 and AUX1 and the auxin response factor MP, which are involved in formation of auxin response maxima. Simultaneous treatments of synthetic auxin and dexamethasone induced the formation of green compact calli and the unorganized proliferation of cells in the hypocotyl. A microarray analysis of 35Sp::WOX1-GR plants treated with indole-3-acetic acid and dexamethasone revealed that WOX1 and auxin additively influenced their common downstream genes. Furthermore, in the presence of an auxin-transport inhibitor, cell proliferation during leaf initiation was suppressed in the prs mutant but induced in a broad region of the peripheral zone of the shoot apical meristem in the ectopic WOX1-expressing line FILp::WOX1. Thus, our results clarify the additive effect of WOX1/PRS and auxin on their common downstream genes and highlight the importance of the balance between their functions in controlling cell proliferation.
Collapse
Affiliation(s)
- Miyuki T. Nakata
- National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- E-mail: Tel: +81-29-861-2641 Fax: +81-29-861-3026
| | - Toshiaki Tameshige
- National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa 244-0813, Japan
| | | | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Kiyotaka Okada
- National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan
- National Institutes of Natural Sciences, Minato, Tokyo 105-0001, Japan
- Department of Agriculture, Ryukoku University, 1-5 Yokotani, Otsu, Shiga 520-2194, Japan
| |
Collapse
|
33
|
Li S, Han X, Yang L, Deng X, Wu H, Zhang M, Liu Y, Zhang S, Xu J. Mitogen-activated protein kinases and calcium-dependent protein kinases are involved in wounding-induced ethylene biosynthesis in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2018; 41:134-147. [PMID: 28543054 DOI: 10.1111/pce.12984] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/24/2017] [Indexed: 05/18/2023]
Abstract
Ethylene, an important hormone in plant growth, development and response to environmental stimuli, is rapidly induced by mechanical injury or wounding. Although induction of ACS (1-aminocyclopropane-1-carboxylic acid synthase) gene expression has been associated with this process, the detailed regulatory mechanism is unclear. Here, we report that the wounding-induced ethylene production is modulated by both mitogen-activated protein kinase (MAPK) pathway and calcium-dependent protein kinase (CPK) pathway. Study using acs mutants demonstrated that four ACS isoforms, including ACS2, ACS6, ACS7 and ACS8, contribute to ethylene production in response to wounding. Loss-of-function analysis defines the role of MPK3 and MPK6, and their upstream MKK4 and MKK5, in wounding-induced ethylene production. They play an important role in the wounding-induced up-regulation of all four ACS genes expression. Independent of MAPK pathway, CPK5 and CPK6 are also involved in the wounding-induced ethylene production by regulating the expression of ACS2, ACS6 and ACS8 genes. Taken together, we demonstrate that two independent kinase signalling pathways, MPK3/MPK6 cascade and CPK5/CPK6, are involved in the wounding-induced ethylene biosynthesis via differential regulation of ACS genes at transcriptional level.
Collapse
Affiliation(s)
- Sen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiaofei Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liuyi Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiangxiong Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongjiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Mengmeng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Shuqun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
34
|
Xie Y, Liu Y, Wang H, Ma X, Wang B, Wu G, Wang H. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nat Commun 2017; 8:348. [PMID: 28839125 PMCID: PMC5570905 DOI: 10.1038/s41467-017-00404-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/24/2017] [Indexed: 12/22/2022] Open
Abstract
Plants have evolved a repertoire of strategies collectively termed the shade-avoidance syndrome to avoid shade from canopy and compete for light with their neighbors. However, the signaling mechanism governing the adaptive changes of adult plant architecture to shade is not well understood. Here, we show that in Arabidopsis, compared with the wild type, several PHYTOCHROME-INTERACTING FACTORS (PIFS) overexpressors all display constitutive shade-avoidance syndrome under normal high red to far-red light ratio conditions but are less sensitive to the simulated shade, whereas the MIR156 overexpressors exhibit an opposite phenotype. The simulated shade induces rapid accumulation of PIF proteins, reduced expression of multiple MIR156 genes, and concomitant elevated expression of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family genes. Moreover, in vivo and in vitro assays indicate that PIFs bind to the promoters of several MIR156 genes directly and repress their expression. Our results establish a direct functional link between the phytochrome-PIFs and miR156-SPL regulatory modules in mediating shade-avoidance syndrome.Plants employ developmental strategies to avoid shade and compete with neighbors for light. Here, Xie et al. show that phytochrome-interacting factors, which are regulated in a light-dependent manner, directly repress MIR156 genes and promote the expression of SPL genes to enhance shade-avoidance responses.
Collapse
Affiliation(s)
- Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojing Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
35
|
Hartmann M, Kim D, Bernsdorff F, Ajami-Rashidi Z, Scholten N, Schreiber S, Zeier T, Schuck S, Reichel-Deland V, Zeier J. Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity. PLANT PHYSIOLOGY 2017; 174:124-153. [PMID: 28330936 PMCID: PMC5411157 DOI: 10.1104/pp.17.00222] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/21/2017] [Indexed: 05/03/2023]
Abstract
The nonprotein amino acid pipecolic acid (Pip) regulates plant systemic acquired resistance and basal immunity to bacterial pathogen infection. In Arabidopsis (Arabidopsis thaliana), the lysine (Lys) aminotransferase AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) mediates the pathogen-induced accumulation of Pip in inoculated and distal leaf tissue. Here, we show that ALD1 transfers the α-amino group of l-Lys to acceptor oxoacids. Combined mass spectrometric and infrared spectroscopic analyses of in vitro assays and plant extracts indicate that the final product of the ALD1-catalyzed reaction is enaminic 2,3-dehydropipecolic acid (DP), whose formation involves consecutive transamination, cyclization, and isomerization steps. Besides l-Lys, recombinant ALD1 transaminates l-methionine, l-leucine, diaminopimelate, and several other amino acids to generate oxoacids or derived products in vitro. However, detailed in planta analyses suggest that the biosynthesis of 2,3-DP from l-Lys is the major in vivo function of ALD1. Since ald1 mutant plants are able to convert exogenous 2,3-DP into Pip, their Pip deficiency relies on the inability to form the 2,3-DP intermediate. The Arabidopsis reductase ornithine cyclodeaminase/μ-crystallin, alias SYSTEMIC ACQUIRED RESISTANCE-DEFICIENT4 (SARD4), converts ALD1-generated 2,3-DP into Pip in vitro. SARD4 significantly contributes to the production of Pip in pathogen-inoculated leaves but is not the exclusive reducing enzyme involved in Pip biosynthesis. Functional SARD4 is required for proper basal immunity to the bacterial pathogen Pseudomonas syringae Although SARD4 knockout plants show greatly reduced accumulation of Pip in leaves distal to P. syringae inoculation, they display a considerable systemic acquired resistance response. This suggests a triggering function of locally accumulating Pip for systemic resistance induction.
Collapse
Affiliation(s)
- Michael Hartmann
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Denis Kim
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Friederike Bernsdorff
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Ziba Ajami-Rashidi
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Nicola Scholten
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Stefan Schreiber
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Stefan Schuck
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Vanessa Reichel-Deland
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| |
Collapse
|
36
|
Xuan YH, Duan FY, Je BI, Kim CM, Li TY, Liu JM, Park SJ, Cho JH, Kim TH, von Wiren N, Han CD. Related to ABI3/VP1-Like 1 (RAVL1) regulates brassinosteroid-mediated activation of AMT1;2 in rice (Oryza sativa). JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:727-737. [PMID: 28035023 DOI: 10.1093/jxb/erw442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The promotive effects of brassinosteroids (BRs) on plant growth and development have been widely investigated; however, it is not known whether BRs directly affect nutrient uptake. Here, we explored the possibility of a direct relationship between BRs and ammonium uptake via AMT1-type genes in rice (Oryza sativa). BR treatment increased the expression of AMT1;1 and AMT1;2, whereas in the mutant d61-1, which is defective in the BR-receptor gene BRI1, BR-dependent expression of these genes was suppressed. We then employed Related to ABI3/VP1-Like 1 (RAVL1), which is involved in BR homeostasis, to investigate BR-mediated AMT1 expression and its effect on NH4+ uptake in rice roots. AMT1;2 expression was lower in the ravl1 mutant, but higher in the RAVL1-overexpressing lines. EMSA and ChIP analyses showed that RAVL1 activates the expression of AMT1;2 by directly binding to E-box motifs in its promoter. Moreover, 15NH4+ uptake, cellular ammonium contents, and root responses to methyl-ammonium strongly depended on RAVL1 levels. Analysing AMT1;2 expression levels in different crosses between BRI1 and RAVL1 mutant and overexpression lines indicated that RAVL1 acts downstream of BRI1 in the regulation of AMT1;2. Thus, the present study shows how BRs may be involved in the transcriptional regulation of nutrient transporters to modulate their uptake capacity.
Collapse
Affiliation(s)
- Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Dongling Road, Shenyang, China
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Feng Ying Duan
- Leibniz-Institute for Plant Genetics and Crop Plant Research, Physiology and Cell Biology, Gatersleben, Germany
| | - Byoung Il Je
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Chul Min Kim
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Tian Ya Li
- College of Plant Protection, Shenyang Agricultural University, Dongling Road, Shenyang, China
| | - Jing Miao Liu
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Soon Ju Park
- Department of Biological Science, Wonkwang University, Iksan, Jeonbuk, Korea
| | - Jun Hyeon Cho
- Department of Southern Area Crop Science, National Institute of Crop Science (NICS), RDA, 20th Jeompiljaero, Miryang, Gyeongnam, Korea
| | - Tae Ho Kim
- National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Nicolaus von Wiren
- Leibniz-Institute for Plant Genetics and Crop Plant Research, Physiology and Cell Biology, Gatersleben, Germany
| | - Chang-Deok Han
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| |
Collapse
|
37
|
Bjornson M, Dandekar AM, Chory J, Dehesh K. Brassinosteroid's multi-modular interaction with the general stress network customizes stimulus-specific responses in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:165-177. [PMID: 27457993 DOI: 10.1016/j.plantsci.2016.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
Adaptation to fluctuating environmental conditions is a universal feature of plant life, governed by fundamental mechanisms optimizing resource allocation. This balance is achieved in part through tightly regulated communication networks among growth and stress response signaling pathways. Understanding the communication modules between brassinosteroids (BRs), the ubiquitous hormones known to control growth and stress adaptation, and the general stress response (GSR), a rapid and transient transcriptional output in response to perturbations, provides an optimal platform to unravel new facet(s) of plant stress adaptation. Here, we explore communication facets of BR with GSR via in planta quantification of the GSR in Arabidopsis expressing luciferase driven by a functional GSR cis-element, the Rapid Stress Response Element (4xRSRE:LUC). We establish that application of exogenous BR suppresses microbe-associated molecular pattern-activated GSR, but enhances the wound-triggered GSR. The enhanced wound-activated GSR in BR-treated plants results in a greater wound-induced resistance to Botrytis cinerea. A combination of molecular genetics using BR signaling mutants and application of an activator of BR signaling, bikinin, confirms these results and places the chief point of BR-GSR interaction downstream of potential membrane receptor circuitry. These results support a multi-modular interaction between BRs and stress signaling, instrumental in customizing stimulus-specific responses in Arabidopsis.
Collapse
Affiliation(s)
- Marta Bjornson
- Department of Plant Sciences, University of California, Davis, CA, USA; Department of Plant Biology, University of California, Davis, CA, USA
| | - Abhaya M Dandekar
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Joanne Chory
- Howard Hughes Medical Institute and Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Katayoon Dehesh
- Department of Plant Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
38
|
Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proc Natl Acad Sci U S A 2016; 113:E5242-9. [PMID: 27528686 DOI: 10.1073/pnas.1519555113] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plants experience hyperosmotic stress when faced with saline soils and possibly with drought stress, but it is currently unclear how plant roots perceive this stress in an environment of dynamic water availabilities. Hyperosmotic stress induces a rapid rise in intracellular Ca(2+) concentrations ([Ca(2+)]i) in plants, and this Ca(2+) response may reflect the activities of osmo-sensory components. Here, we find in the reference plant Arabidopsis thaliana that the rapid hyperosmotic-induced Ca(2+) response exhibited enhanced response magnitudes after preexposure to an intermediate hyperosmotic stress. We term this phenomenon "osmo-sensory potentiation." The initial sensing and potentiation occurred in intact plants as well as in roots. Having established a quantitative understanding of wild-type responses, we investigated effects of pharmacological inhibitors and candidate channel/transporter mutants. Quintuple mechano-sensitive channels of small conductance-like (MSL) plasma membrane-targeted channel mutants as well as double mid1-complementing activity (MCA) channel mutants did not affect the response. Interestingly, however, double mutations in the plastid K(+) exchange antiporter (KEA) transporters kea1kea2 and a single mutation that does not visibly affect chloroplast structure, kea3, impaired the rapid hyperosmotic-induced Ca(2+) responses. These mutations did not significantly affect sensory potentiation of the response. These findings suggest that plastids may play an important role in early steps mediating the response to hyperosmotic stimuli. Together, these findings demonstrate that the plant osmo-sensory components necessary to generate rapid osmotic-induced Ca(2+) responses remain responsive under varying osmolarities, endowing plants with the ability to perceive the dynamic intensities of water limitation imposed by osmotic stress.
Collapse
|
39
|
Metabolic parameters linked by phenotype microarray to acid resistance profiles of poultry-associated Salmonella enterica. Res Microbiol 2016; 167:745-756. [PMID: 27418207 DOI: 10.1016/j.resmic.2016.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 11/22/2022]
Abstract
Phenotype microarrays were analyzed for 51 datasets derived from Salmonella enterica. The top 4 serotypes associated with poultry products and one associated with turkey, respectively Typhimurium, Enteritidis, Heidelberg, Infantis and Senftenberg, were represented. Datasets were partitioned initially into two clusters based on ranking by values at pH 4.5 (PM10 A03). Negative control wells were used to establish 90 respiratory units as the point differentiating acid resistance from sensitive strains. Thus, 24 isolates that appeared most acid-resistant were compared initially to 27 that appeared most acid-sensitive (24 × 27 format). Paired cluster analysis was also done and it included the 7 most acid-resistant and -sensitive datasets (7 × 7 format). Statistical analyses of ranked data were then calculated in order of standard deviation, probability value by the Student's t-test and a measure of the magnitude of difference called effect size. Data were reported as significant if, by order of filtering, the following parameters were calculated: i) a standard deviation of 24 respiratory units or greater from all datasets for each chemical, ii) a probability value of less than or equal to 0.03 between clusters and iii) an effect size of at least 0.50 or greater between clusters. Results suggest that between 7.89% and 23.16% of 950 chemicals differentiated acid-resistant isolates from sensitive ones, depending on the format applied. Differences were more evident at the extremes of phenotype using the subset of data in the paired 7 × 7 format. Results thus provide a strategy for selecting compounds for additional research, which may impede the emergence of acid-resistant Salmonella enterica in food.
Collapse
|
40
|
Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait. Genetics 2016; 204:337-53. [PMID: 27412712 PMCID: PMC5012398 DOI: 10.1534/genetics.116.190678] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.
Collapse
|
41
|
Makarevitch I, Martinez-Vaz B. Killing two birds with one stone: Model plant systems as a tool to teach the fundamental concepts of gene expression while analyzing biological data. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:166-173. [PMID: 27155065 DOI: 10.1016/j.bbagrm.2016.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/23/2016] [Accepted: 04/29/2016] [Indexed: 11/25/2022]
Abstract
Plants are ideal systems to teach core biology concepts due to their unique physiological and developmental features. Advances in DNA sequencing technology and genomics have allowed scientists to generate genome sequences and transcriptomics data for numerous model plant species. This information is publicly available and presents a valuable tool to introduce undergraduate students to the fundamental concepts of gene expression in the context of modern quantitative biology and bioinformatics. Modern biology classrooms must provide authentic research experiences to allow developing core competencies such as scientific inquiry, critical interpretation of experimental results, and quantitative analyses of large dataset using computational approaches. Recent educational research has shown that undergraduate students struggle when connecting gene expression concepts to classic genetics, phenotypic analyses, and overall flow of biological information in living organisms, suggesting that novel approaches are necessary to enhance learning of gene expression and regulation. This review describes different strategies and resources available to instructors willing to incorporate authentic research experiences, genomic tools, and bioinformatics analyses when teaching transcriptional regulation and gene expression in undergraduate courses. A variety of laboratory exercises and pedagogy materials developed to teach gene expression using plants are discussed. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Irina Makarevitch
- Department of Biology, Hamline University, Saint Paul, MN 55104, United States.
| | - Betsy Martinez-Vaz
- Department of Biology, Hamline University, Saint Paul, MN 55104, United States
| |
Collapse
|
42
|
Xu J, Meng J, Meng X, Zhao Y, Liu J, Sun T, Liu Y, Wang Q, Zhang S. Pathogen-Responsive MPK3 and MPK6 Reprogram the Biosynthesis of Indole Glucosinolates and Their Derivatives in Arabidopsis Immunity. THE PLANT CELL 2016; 28:1144-62. [PMID: 27081184 PMCID: PMC4904669 DOI: 10.1105/tpc.15.00871] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 05/18/2023]
Abstract
Antimicrobial compounds have critical roles in plant immunity; for example, Arabidopsis thaliana and other crucifers deploy phytoalexins and glucosinolate derivatives in defense against pathogens. The pathogen-responsive MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6 have essential functions in the induction of camalexin, the major phytoalexin in Arabidopsis. In search of cyanide, a coproduct of ethylene and camalexin biosynthesis, we found that MPK3 and MPK6 also affect the accumulation of extracellular thiocyanate ion derived from the indole glucosinolate (IGS) pathway. Botrytis cinerea infection activates MPK3/MPK6, which promote indole-3-yl-methylglucosinolate (I3G) biosynthesis and its conversion to 4-methoxyindole-3-yl-methylglucosinolate (4MI3G). Gain- and loss-of-function analyses demonstrated that MPK3/MPK6 regulate the expression of MYB51 and MYB122, two key regulators of IGS biosynthesis, as well as CYP81F2 and IGMT1/IGMT2, which encode enzymes in the conversion of I3G to 4MI3G, through ETHYLENE RESPONSE FACTOR6 (ERF6), a substrate of MPK3/MPK6. Under the action of PENETRATION2 (PEN2), an atypical myrosinase, and PEN3, an ATP binding cassette transporter, 4MI3G is converted to extracellular unstable antimicrobial compounds, possibly isothiocyanates that can react with nucleophiles and release the stable thiocyanate ion. Recent studies demonstrated the importance of PEN2/PEN3-dependent IGS derivatives in plant immunity. Here, we report that MPK3/MPK6 and their substrate ERF6 promote the biosynthesis of IGSs and the conversion of I3G to 4MI3G, a target of PEN2/PEN3-dependent chemical defenses in plant immunity.
Collapse
Affiliation(s)
- Juan Xu
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Meng
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangzong Meng
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Yanting Zhao
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianmin Liu
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tiefeng Sun
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Qiaomei Wang
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuqun Zhang
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
43
|
Yu J, Zhang Y, Di C, Zhang Q, Zhang K, Wang C, You Q, Yan H, Dai SY, Yuan JS, Xu W, Su Z. JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:751-62. [PMID: 26547795 PMCID: PMC4737072 DOI: 10.1093/jxb/erv487] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
JASMONATE ZIM-domain (JAZ) proteins play important roles in plant defence and growth by regulating jasmonate signalling. Through data mining, we discovered that the JAZ7 gene was up-regulated in darkness. In the dark, the jaz7 mutant displayed more severe leaf yellowing, quicker chlorophyll degradation, and higher hydrogen peroxide accumulation compared with wild-type (WT) plants. The mutant phenotype of dark-induced leaf senescence could be rescued in the JAZ7-complemented and -overexpression lines. Moreover, the double mutants of jaz7 myc2 and jaz7 coi1 exhibited delayed leaf senescence. We further employed GeneChip analysis to study the molecular mechanism. Some key genes down-regulated in the triple mutant myc2 myc3 myc4 were up-regulated in the jaz7 mutant under darkness. The Gene Ontology terms 'leaf senescence' and 'cell death' were significantly enriched in the differentially expressed genes. Combining the genetic and transcriptomic analyses together, we proposed a model whereby darkness can induce JAZ7, which might further block MYC2 to suppress dark-induced leaf senescence. In darkness, the mutation of JAZ7 might partially liberate MYC2/MYC3/MYC4 from suppression, leading the MYC proteins to bind to the G-box/G-box-like motifs in the promoters, resulting in the up-regulation of the downstream genes related to indole-glucosinolate biosynthesis, sulphate metabolism, callose deposition, and JA-mediated signalling pathways. In summary, our genetic and transcriptomic studies established the JAZ7 protein as an important regulator in dark-induced leaf senescence.
Collapse
Affiliation(s)
- Juan Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yixiang Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Chao Di
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qunlian Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Kang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qi You
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Hong Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Susie Y Dai
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Joshua S Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
44
|
Gábrišová D, Klubicová K, Danchenko M, Gömöry D, Berezhna VV, Skultety L, Miernyk JA, Rashydov N, Hajduch M. Do Cupins Have a Function Beyond Being Seed Storage Proteins? FRONTIERS IN PLANT SCIENCE 2016; 6:1215. [PMID: 26793203 PMCID: PMC4711306 DOI: 10.3389/fpls.2015.01215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/17/2015] [Indexed: 05/24/2023]
Abstract
Plants continue to flourish around the site of the Chernobyl Nuclear Power Plant disaster. The ability of plants to transcend the radio-contaminated environment was not anticipated and is not well understood. The aim of this study was to evaluate the proteome of flax (Linum usitatissimum L.) during seed filling by plants grown for a third generation near Chernobyl. For this purpose, seeds were harvested at 2, 4, and 6 weeks after flowering and at maturity, from plants grown in either non-radioactive or radio-contaminated experimental fields. Total proteins were extracted and the two-dimensional gel electrophoresis (2-DE) patterns analyzed. This approach established paired abundance profiles for 130 2-DE spots, e.g., profiles for the same spot across seed filling in non-radioactive and radio-contaminated experimental fields. Based on Analysis of Variance (ANOVA) followed by sequential Bonferroni correction, eight of the paired abundance profiles were discordant. Results from tandem mass spectrometry show that four 2-DE spots are discordant because they contain fragments of the cupin superfamily-proteins. Most of the fragments were derived from the N-terminal half of native cupins. Revisiting previously published data, it was found that cupin-fragments were also involved with discordance in paired abundance profiles of second generation flax seeds. Based on these observations we present an updated working model for the growth and reproductive success of flax in a radio-contaminated Chernobyl environment. This model suggests that the increased abundance of cupin fragments or isoforms and monomers contributes to the successful growth and reproduction of flax in a radio-contaminated environment.
Collapse
Affiliation(s)
- Daša Gábrišová
- Department of Developmental and Reproduction Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of SciencesNitra, Slovakia
| | - Katarína Klubicová
- Department of Developmental and Reproduction Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of SciencesNitra, Slovakia
| | - Maksym Danchenko
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of UkraineKyiv, Ukraine
| | | | - Valentyna V. Berezhna
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of UkraineKyiv, Ukraine
| | - Ludovit Skultety
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Ján A. Miernyk
- United States Department of Agriculture, Agricultural Research Service, University of MissouriColumbia, MO, USA
| | - Namik Rashydov
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of UkraineKyiv, Ukraine
| | - Martin Hajduch
- Department of Developmental and Reproduction Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of SciencesNitra, Slovakia
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| |
Collapse
|
45
|
Bernsdorff F, Döring AC, Gruner K, Schuck S, Bräutigam A, Zeier J. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. THE PLANT CELL 2016; 28:102-29. [PMID: 26672068 PMCID: PMC4746677 DOI: 10.1105/tpc.15.00496] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/30/2015] [Accepted: 12/13/2015] [Indexed: 05/18/2023]
Abstract
We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants.
Collapse
Affiliation(s)
- Friederike Bernsdorff
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Anne-Christin Döring
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Stefan Schuck
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute for Plant Biochemistry, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
46
|
Weber APM. Discovering New Biology through Sequencing of RNA. PLANT PHYSIOLOGY 2015; 169:1524-31. [PMID: 26353759 PMCID: PMC4634082 DOI: 10.1104/pp.15.01081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/09/2015] [Indexed: 05/08/2023]
Abstract
Sequencing of RNA (RNA-Seq) was invented approximately 1 decade ago and has since revolutionized biological research. This update provides a brief historic perspective on the development of RNA-Seq and then focuses on the application of RNA-Seq in qualitative and quantitative analyses of transcriptomes. Particular emphasis is given to aspects of data analysis. Since the wet-lab and data analysis aspects of RNA-Seq are still rapidly evolving and novel applications are continuously reported, a printed review will be rapidly outdated and can only serve to provide some examples and general guidelines for planning and conducting RNA-Seq studies. Hence, selected references to frequently update online resources are given.
Collapse
Affiliation(s)
- Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich-Heine-Universität, D-40231 Duesseldorf, Germany
| |
Collapse
|