1
|
Xiao J, Liu W, Wu B, Zhang Y, Li S, Li E. Root hair: An important guest-meeting avenue for rhizobia in legume-Rhizobium symbiosis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112518. [PMID: 40274194 DOI: 10.1016/j.plantsci.2025.112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Root hairs anchor the plant in the soil, facilitating nutrient assimilation, water absorption, and interaction of plants with their environment. In legumes, they play a key role in the early infection of rhizobia. This review aimed to summarize the recent progress about the nodulation factor receptors on the root hair surface. It also discussed the importance of downstream signaling pathways of nodulation factor receptors and highlighted Rho of plants signaling pathway that controls infection thread polar growth and nodulation.
Collapse
Affiliation(s)
- Jingwen Xiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxu Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bicong Wu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuling Zhang
- School of Foreign Languages, Qingdao Agricultural University, Qingdao 266109, China
| | - Sha Li
- QAU-RAU Joint Institute for Advanced Agricultural Technology Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - En Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Jacott CN, Del Cerro P. CNGC15 and DMI1 ion channel gating in nuclear calcium signaling: opening new questions and closing controversies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6998-7005. [PMID: 39140702 DOI: 10.1093/jxb/erae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Nuclear calcium (Ca2+) signaling is crucial for symbiotic interactions between legumes and beneficial microbes, such as rhizobia and arbuscular mycorrhizal fungi. The ion channels DMI1 and CNGC15 are key to generating repetitive nuclear Ca2+ oscillations. Despite more than 20 years of research on symbiotic nuclear Ca2+ spiking, important questions remain, including the exact function of the DMI1 channel. This review highlights recent developments that have filled knowledge gaps regarding the regulation of CNGC15 and its interplay with DMI1. We also explore new insights into the evolutionary conservation of DMI1-induced symbiotic nuclear Ca2+ oscillations and the roles of CNGC15 and DMI1 beyond symbiosis, such as in nitrate signaling, and discuss new questions this raises. As we delve deeper into the regulatory mechanisms and evolutionary history of these ion channels, we move closer to fully understanding the roles of nuclear Ca2+ signaling in plant life.
Collapse
Affiliation(s)
| | - Pablo Del Cerro
- Department of Microbiology, University of Seville, Seville, Spain
| |
Collapse
|
3
|
Choudhury SR, Pandey S. SymRK Regulates G-Protein Signaling During Nodulation in Soybean ( Glycine max) by Modifying RGS Phosphorylation and Activity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024:MPMI04240036R. [PMID: 39167823 DOI: 10.1094/mpmi-04-24-0036-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Molecular interspecies dialogue between leguminous plants and nitrogen-fixing rhizobia results in the development of symbiotic root nodules. This is initiated by several nodulation-related receptors present on the surface of root hair epidermal cells. We have shown previously that specific subunits of heterotrimeric G-proteins and their associated regulator of G-protein signaling (RGS) proteins act as molecular links between the receptors and downstream components during nodule formation in soybeans. Nod factor receptor 1 (NFR1) interacts with and phosphorylates RGS proteins to regulate the G-protein cycle. Symbiosis receptor-like kinases (SymRK) phosphorylate Gα to make it inactive and unavailable for Gβγ. We now show that like NFR1, SymRK also interacts with the RGS proteins to phosphorylate them. Phosphorylated RGS has higher activity for accelerating guanosine triphosphate (GTP) hydrolysis by Gα, which favors conversion of active Gα to its inactive form. Phosphorylation of RGS proteins is physiologically relevant, as overexpression of a phospho-mimic version of the RGS protein enhances nodule formation in soybean. These results reveal an intricate fine-tuning of the G-protein signaling during nodulation, where a negative regulator (Gα) is effectively deactivated by RGS due to the concerted efforts of several receptor proteins to ensure adequate nodulation. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
- Department of Biology, Indian Institute of Science Education and Research, Tirupati 517619, India
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| |
Collapse
|
4
|
Ma M, Zhou JM, Liang X. Phosphorylation-dependent regulation of plant heterotrimeric G proteins: From activation to downstream signaling. Sci Bull (Beijing) 2024; 69:2967-2970. [PMID: 38760249 DOI: 10.1016/j.scib.2024.04.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Affiliation(s)
- Miaomiao Ma
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jian-Min Zhou
- Hainan Yazhouwan National Laboratory, Sanya 572025, China.
| | - Xiangxiu Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Torres-Rodriguez MD, Lee SG, Roy Choudhury S, Paul R, Selvam B, Shukla D, Jez JM, Pandey S. Structure-function analysis of plant G-protein regulatory mechanisms identifies key Gα-RGS protein interactions. J Biol Chem 2024; 300:107252. [PMID: 38569936 PMCID: PMC11061236 DOI: 10.1016/j.jbc.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Heterotrimeric GTP-binding protein alpha subunit (Gα) and its cognate regulator of G-protein signaling (RGS) protein transduce signals in eukaryotes spanning protists, amoeba, animals, fungi, and plants. The core catalytic mechanisms of the GTPase activity of Gα and the interaction interface with RGS for the acceleration of GTP hydrolysis seem to be conserved across these groups; however, the RGS gene is under low selective pressure in plants, resulting in its frequent loss. Our current understanding of the structural basis of Gα:RGS regulation in plants has been shaped by Arabidopsis Gα, (AtGPA1), which has a cognate RGS protein. To gain a comprehensive understanding of this regulation beyond Arabidopsis, we obtained the x-ray crystal structures of Oryza sativa Gα, which has no RGS, and Selaginella moellendorffi (a lycophyte) Gα that has low sequence similarity with AtGPA1 but has an RGS. We show that the three-dimensional structure, protein-protein interaction with RGS, and the dynamic features of these Gα are similar to AtGPA1 and metazoan Gα. Molecular dynamic simulation of the Gα-RGS interaction identifies the contacts established by specific residues of the switch regions of GTP-bound Gα, crucial for this interaction, but finds no significant difference due to specific amino acid substitutions. Together, our data provide valuable insights into the regulatory mechanisms of plant G-proteins but do not support the hypothesis of adaptive co-evolution of Gα:RGS proteins in plants.
Collapse
Affiliation(s)
| | - Soon Goo Lee
- Department of Molecular & Cellular Biology, Kennesaw State University, Kennesaw, Georgia, USA
| | - Swarup Roy Choudhury
- Donald Danforth Plant Science Center, St Louis, Missouri, USA; Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Rabindranath Paul
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, St Louis, Missouri, USA.
| |
Collapse
|
6
|
Fang C, Du H, Wang L, Liu B, Kong F. Mechanisms underlying key agronomic traits and implications for molecular breeding in soybean. J Genet Genomics 2024; 51:379-393. [PMID: 37717820 DOI: 10.1016/j.jgg.2023.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is an important crop that provides protein and vegetable oil for human consumption. As soybean is a photoperiod-sensitive crop, its cultivation and yield are limited by the photoperiodic conditions in the field. In contrast to other major crops, soybean has a special plant architecture and a special symbiotic nitrogen fixation system, representing two unique breeding directions. Thus, flowering time, plant architecture, and symbiotic nitrogen fixation are three critical or unique yield-determining factors. This review summarizes the progress made in our understanding of these three critical yield-determining factors in soybean. Meanwhile, we propose potential research directions to increase soybean production, discuss the application of genomics and genomic-assisted breeding, and explore research directions to address future challenges, particularly those posed by global climate changes.
Collapse
Affiliation(s)
- Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Lingshuang Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
7
|
Mohanasundaram B, Pandey S. Moving beyond the arabidopsis-centric view of G-protein signaling in plants. TRENDS IN PLANT SCIENCE 2023; 28:1406-1421. [PMID: 37625950 DOI: 10.1016/j.tplants.2023.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Heterotrimeric G-protein-mediated signaling is a key mechanism to transduce a multitude of endogenous and environmental signals in diverse organisms. The scope and expectations of plant G-protein research were set by pioneering work in metazoans. Given the similarity of the core constituents, G-protein-signaling mechanisms were presumed to be universally conserved. However, because of the enormous diversity of survival strategies and endless forms among eukaryotes, the signal, its interpretation, and responses vary even among different plant groups. Earlier G-protein research in arabidopsis (Arabidopsis thaliana) has emphasized its divergence from Metazoa. Here, we compare recent evidence from diverse plant lineages with the available arabidopsis G-protein model and discuss the conserved and novel protein components, signaling mechanisms, and response regulation.
Collapse
Affiliation(s)
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St Louis, MO 63132, USA.
| |
Collapse
|
8
|
Sharma S, Ganotra J, Samantaray J, Sahoo RK, Bhardwaj D, Tuteja N. An emerging role of heterotrimeric G-proteins in nodulation and nitrogen sensing. PLANTA 2023; 258:101. [PMID: 37847414 DOI: 10.1007/s00425-023-04251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
MAIN CONCLUSION A comprehensive understanding of nitrogen signaling cascades involving heterotrimeric G-proteins and their putative receptors can assist in the production of nitrogen-efficient plants. Plants are immobile in nature, so they must endure abiotic stresses including nutrient stress. Plant development and agricultural productivity are frequently constrained by the restricted availability of nitrogen in the soil. Non-legume plants acquire nitrogen from the soil through root membrane-bound transporters. In depleted soil nitrogen conditions, legumes are naturally conditioned to fix atmospheric nitrogen with the aid of nodulation elicited by nitrogen-fixing bacteria. Moreover, apart from the symbiotic nitrogen fixation process, nitrogen uptake from the soil can also be a significant secondary source to satisfy the nitrogen requirements of legumes. Heterotrimeric G-proteins function as molecular switches to help plant cells relay diverse stimuli emanating from external stress conditions. They are comprised of Gα, Gβ and Gγ subunits, which cooperate with several downstream effectors to regulate multiple plant signaling events. In the present review, we concentrate on signaling mechanisms that regulate plant nitrogen nutrition. Our review highlights the potential of heterotrimeric G-proteins, together with their putative receptors, to assist the legume root nodule symbiosis (RNS) cascade, particularly during calcium spiking and nodulation. Additionally, the functions of heterotrimeric G-proteins in nitrogen acquisition by plant roots as well as in improving nitrogen use efficiency (NUE) have also been discussed. Future research oriented towards heterotrimeric G-proteins through genome editing tools can be a game changer in the enhancement of the nitrogen fixation process. This will foster the precise manipulation and production of plants to ensure global food security in an era of climate change by enhancing crop productivity and minimizing reliance on external inputs.
Collapse
Affiliation(s)
- Suvriti Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jyotipriya Samantaray
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
9
|
Yuan S, Ke D, Liu B, Zhang M, Li X, Chen H, Zhang C, Huang Y, Sun S, Shen J, Yang S, Zhou S, Leng P, Guan Y, Zhou X. The Bax inhibitor GmBI-1α interacts with a Nod factor receptor and plays a dual role in the legume-rhizobia symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5820-5839. [PMID: 37470327 DOI: 10.1093/jxb/erad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
The gene networks surrounding Nod factor receptors that govern the symbiotic process between legumes and rhizobia remain largely unexplored. Here, we identify 13 novel GmNFR1α-associated proteins by yeast two-hybrid screening, and describe a potential interacting protein, GmBI-1α. GmBI-1α had the highest positive correlation with GmNFR1α in a co-expression network analysis, and its expression at the mRNA level in roots was enhanced by rhizobial infection. Moreover, GmBI-1α-GmNFR1α interaction was shown to occur in vitro and in vivo. The GmBI-1α protein was localized to multiple subcellular locations, including the endoplasmic reticulum and plasma membrane. Overexpression of GmBI-1α increased the nodule number in transgenic hairy roots or transgenic soybean, whereas down-regulation of GmBI-1α transcripts by RNA interference reduced the nodule number. In addition, the nodules in GmBI-1α-overexpressing plants became smaller in size and infected area with reduced nitrogenase activity. In GmBI-1α-overexpressing transgenic soybean, the elevated GmBI-1α also promoted plant growth and suppressed the expression of defense signaling-related genes. Infection thread analysis of GmBI-1α-overexpressing plants showed that GmBI-1α promoted rhizobial infection. Collectively, our findings support a GmNFR1α-associated protein in the Nod factor signaling pathway and shed new light on the regulatory mechanism of GmNFR1α in rhizobial symbiosis.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Danxia Ke
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Bo Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Mengke Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Xiangyong Li
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jiafang Shen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shuqi Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shunxin Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Piao Leng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuefeng Guan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
10
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
11
|
Ghantasala S, Roy Choudhury S. Nod factor perception: an integrative view of molecular communication during legume symbiosis. PLANT MOLECULAR BIOLOGY 2022; 110:485-509. [PMID: 36040570 DOI: 10.1007/s11103-022-01307-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Compatible interaction between rhizobial Nod factors and host receptors enables initial recognition and signaling events during legume-rhizobia symbiosis. Molecular communication is a new paradigm of information relay, which uses chemical signals or molecules as dialogues for communication and has been witnessed in prokaryotes, plants as well as in animal kingdom. Understanding this fascinating relay of signals between plants and rhizobia during the establishment of a synergistic relationship for biological nitrogen fixation represents one of the hotspots in plant biology research. Predominantly, their interaction is initiated by flavonoids exuding from plant roots, which provokes changes in the expression profile of rhizobial genes. Compatible interactions promote the secretion of Nod factors (NFs) from rhizobia, which are recognised by cognate host receptors. Perception of NFs by host receptors initiates the symbiosis and ultimately leads to the accommodation of rhizobia within root nodules via a series of mutual exchange of signals. This review elucidates the bacterial and plant perspectives during the early stages of symbiosis, explicitly emphasizing the significance of NFs and their cognate NF receptors.
Collapse
Affiliation(s)
- Swathi Ghantasala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
12
|
Yuan P, Luo F, Gleason C, Poovaiah BW. Calcium/calmodulin-mediated microbial symbiotic interactions in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:984909. [PMID: 36330252 PMCID: PMC9623113 DOI: 10.3389/fpls.2022.984909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cytoplasmic calcium (Ca2+) transients and nuclear Ca2+ oscillations act as hubs during root nodulation and arbuscular mycorrhizal symbioses. Plants perceive bacterial Nod factors or fungal signals to induce the Ca2+ oscillation in the nucleus of root hair cells, and subsequently activate calmodulin (CaM) and Ca2+/CaM-dependent protein kinase (CCaMK). Ca2+ and CaM-bound CCaMK phosphorylate transcription factors then initiate down-stream signaling events. In addition, distinct Ca2+ signatures are activated at different symbiotic stages: microbial colonization and infection; nodule formation; and mycorrhizal development. Ca2+ acts as a key signal that regulates a complex interplay of downstream responses in many biological processes. This short review focuses on advances in Ca2+ signaling-regulated symbiotic events. It is meant to be an introduction to readers in and outside the field of bacterial and fungal symbioses. We summarize the molecular mechanisms underlying Ca2+/CaM-mediated signaling in fine-tuning both local and systemic symbiotic events.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Feixiong Luo
- Department of Pomology, Hunan Agricultural University, Changsha, China
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - B. W. Poovaiah
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
13
|
Interacting partners of Brassica juncea Regulator of G-protein Signaling protein suggest its role in cell wall metabolism and cellular signaling. Biosci Rep 2022; 42:231472. [PMID: 35737296 PMCID: PMC9284343 DOI: 10.1042/bsr20220302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Heterotrimeric G-proteins interact with various upstream and downstream effectors to regulate various aspects of plant growth and development. G-protein effectors have been recently reported in Arabidopsis thaliana; however, less information is available from polyploid crop species having complex networks of G-protein components. Regulator of G-protein signaling (RGS) is a well-characterized GTPase accelerating protein, which plays an important role in the regulation of the G-protein cycle in plants. In the present study, four homologs encoding RGS proteins were isolated from the allotetraploid Brassica juncea, a globally important oilseed, vegetable, and condiment crop. The B. juncea RGS proteins were grouped into distinct BjuRGS1 and BjuRGS2 orthologous clades, and the expression of BjuRGS1 homologs was predominantly higher than BjuRGS2 homologs across the tested tissue types of B. juncea. Utilizing B. juncea Y2H library screening, a total of 30 nonredundant interacting proteins with the RGS-domain of the highly expressed BjuA.RGS1 was identified. Gene ontology analysis indicated that these effectors exerted various molecular, cellular, and physiological functions. Many of them were known to regulate cell wall metabolism (BjuEXP6, Bju-α-MAN, BjuPGU4, BjuRMS3) and phosphorylation-mediated cell signaling (BjuMEK4, BjuDGK3, and BjuKinase). Furthermore, transcript analysis indicated that the identified interacting proteins have a coexpression pattern with the BjuRGS homologs. These findings increase our knowledge about the novel targets of G-protein components from a globally cultivated Brassica crop and provide an important resource for developing a plant G-protein interactome network.
Collapse
|
14
|
G-Protein Phosphorylation: Aspects of Binding Specificity and Function in the Plant Kingdom. Int J Mol Sci 2022; 23:ijms23126544. [PMID: 35742988 PMCID: PMC9224535 DOI: 10.3390/ijms23126544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Plant survival depends on adaptive mechanisms that constantly rely on signal recognition and transduction. The predominant class of signal discriminators is receptor kinases, with a vast member composition in plants. The transduction of signals occurs in part by a simple repertoire of heterotrimeric G proteins, with a core composed of α-, β-, and γ-subunits, together with a 7-transmembrane Regulator G Signaling (RGS) protein. With a small repertoire of G proteins in plants, phosphorylation by receptor kinases is critical in regulating the active state of the G-protein complex. This review describes the in vivo detected phosphosites in plant G proteins and conservation scores, and their in vitro corresponding kinases. Furthermore, recently described outcomes, including novel arrestin-like internalization of RGS and a non-canonical phosphorylation switching mechanism that drives G-protein plasticity, are discussed.
Collapse
|
15
|
Roy Choudhury S, Pandey S. SymRK-dependent phosphorylation of Gα protein and its role in signaling during soybean (Glycine max) nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:277-291. [PMID: 35048428 DOI: 10.1111/tpj.15672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Heterotrimeric G proteins, comprised of Gα, Gβ and Gγ subunits, influence signaling in most eukaryotes. In metazoans, G proteins are activated by G protein-coupled receptor (GPCR)-mediated GDP to GTP exchange on Gα; however, the role(s) of GPCRs in regulating plant G-protein signaling remains equivocal. Mounting evidence suggests the involvement of receptor-like kinases (RLKs) in regulating plant G-protein signaling, but their mechanistic details remain scarce. We have previously shown that during Glycine max (soybean) nodulation, the nod factor receptor 1 (NFR1) interacts with G-protein components and indirectly affects signaling. We explored the direct regulation of G-protein signaling by RLKs using protein-protein interactions, receptor-mediated in vitro phosphorylations and the effects of such phosphorylations on soybean nodule formation. Results presented in this study demonstrate a direct, phosphorylation-based regulation of Gα by symbiosis receptor kinase (SymRK). SymRKs interact with and phosphorylate Gα at multiple residues in vitro, including two in its active site, which abolishes GTP binding. Additionally, phospho-mimetic Gα fails to interact with Gβγ, potentially allowing for constitutive signaling by the freed Gβγ. These results uncover an unusual mechanism of G-protein cycle regulation in plants where the receptor-mediated phosphorylation of Gα not only affects its activity but also influences the availability of its signaling partners, thereby exerting a two-pronged check on signaling.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| |
Collapse
|
16
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
17
|
Pacheco R, Quinto C. Phospholipase Ds in plants: Their role in pathogenic and symbiotic interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:76-86. [PMID: 35101797 DOI: 10.1016/j.plaphy.2022.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 06/05/2023]
Abstract
Phospholipase Ds (PLDs) are a heterogeneous group of enzymes that are widely distributed in organisms. These enzymes hydrolyze the structural phospholipids of the plasma membrane, releasing phosphatidic acid (PA), an important secondary messenger. Plant PLDs play essential roles in several biological processes, including growth and development, abiotic stress responses, and plant-microbe interactions. Although the roles of PLDs in plant-pathogen interactions have been extensively studied, their roles in symbiotic relationships are not well understood. The establishment of the best-studied symbiotic interactions, those between legumes and rhizobia and between most plants and mycorrhizae, requires the regulation of several physiological, cellular, and molecular processes. The roles of PLDs in hormonal signaling, lipid metabolism, and cytoskeletal dynamics during rhizobial symbiosis were recently explored. However, to date, the roles of PLDs in mycorrhizal symbiosis have not been reported. Here, we present a critical review of the participation of PLDs in the interactions of plants with pathogens, nitrogen-fixing bacteria, and arbuscular mycorrhizal fungi. We describe how PLDs regulate rhizobial and mycorrhizal symbiosis by modulating reactive oxygen species levels, hormonal signaling, cytoskeletal rearrangements, and G-protein activity.
Collapse
Affiliation(s)
- Ronal Pacheco
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
18
|
Bovin AD, Pavlova OA, Dolgikh AV, Leppyanen IV, Dolgikh EA. The Role of Heterotrimeric G-Protein Beta Subunits During Nodulation in Medicago truncatula Gaertn and Pisum sativum L. FRONTIERS IN PLANT SCIENCE 2022; 12:808573. [PMID: 35095980 PMCID: PMC8790031 DOI: 10.3389/fpls.2021.808573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Heterotrimeric G-proteins regulate plant growth and development as master regulators of signaling pathways. In legumes with indeterminate nodules (e.g., Medicago truncatula and Pisum sativum), the role of heterotrimeric G-proteins in symbiosis development has not been investigated extensively. Here, the involvement of heterotrimeric G-proteins in M. truncatula and P. sativum nodulation was evaluated. A genome-based search for G-protein subunit-coding genes revealed that M. truncatula and P. sativum harbored only one gene each for encoding the canonical heterotrimeric G-protein beta subunits, MtG beta 1 and PsG beta 1, respectively. RNAi-based suppression of MtGbeta1 and PsGbeta1 significantly decreased the number of nodules formed, suggesting the involvement of G-protein beta subunits in symbiosis in both legumes. Analysis of composite M. truncatula plants carrying the pMtGbeta1:GUS construct showed β-glucuronidase (GUS) staining in developing nodule primordia and young nodules, consistent with data on the role of G-proteins in controlling organ development and cell proliferation. In mature nodules, GUS staining was the most intense in the meristem and invasion zone (II), while it was less prominent in the apical part of the nitrogen-fixing zone (III). Thus, MtG beta 1 may be involved in the maintenance of meristem development and regulation of the infection process during symbiosis. Protein-protein interaction studies using co-immunoprecipitation revealed the possible composition of G-protein complexes and interaction of G-protein subunits with phospholipase C (PLC), suggesting a cross-talk between G-protein- and PLC-mediated signaling pathways in these legumes. Our findings provide direct evidence regarding the role of MtG beta 1 and PsG beta 1 in symbiosis development regulation.
Collapse
Affiliation(s)
- Andrey D. Bovin
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Olga A. Pavlova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Aleksandra V. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Irina V. Leppyanen
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Elena A. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| |
Collapse
|
19
|
Pandey S, Harline K, Choudhury SR. Modification of G-protein biochemistry and its effect on plant/environment interaction. Methods Enzymol 2022; 676:307-324. [DOI: 10.1016/bs.mie.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Maruta N, Trusov Y, Jones AM, Botella JR. Heterotrimeric G Proteins in Plants: Canonical and Atypical Gα Subunits. Int J Mol Sci 2021; 22:11841. [PMID: 34769272 PMCID: PMC8584482 DOI: 10.3390/ijms222111841] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Heterotrimeric GTP-binding proteins (G proteins), consisting of Gα, Gβ and Gγ subunits, transduce signals from a diverse range of extracellular stimuli, resulting in the regulation of numerous cellular and physiological functions in Eukaryotes. According to the classic G protein paradigm established in animal models, the bound guanine nucleotide on a Gα subunit, either guanosine diphosphate (GDP) or guanosine triphosphate (GTP) determines the inactive or active mode, respectively. In plants, there are two types of Gα subunits: canonical Gα subunits structurally similar to their animal counterparts and unconventional extra-large Gα subunits (XLGs) containing a C-terminal domain homologous to the canonical Gα along with an extended N-terminal domain. Both Gα and XLG subunits interact with Gβγ dimers and regulator of G protein signalling (RGS) protein. Plant G proteins are implicated directly or indirectly in developmental processes, stress responses, and innate immunity. It is established that despite the substantial overall similarity between plant and animal Gα subunits, they convey signalling differently including the mechanism by which they are activated. This review emphasizes the unique characteristics of plant Gα subunits and speculates on their unique signalling mechanisms.
Collapse
Affiliation(s)
- Natsumi Maruta
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| | - Yuri Trusov
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| | - Alan M. Jones
- Departments of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Departments of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jose R. Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| |
Collapse
|
21
|
Gao JP, Xu P, Wang M, Zhang X, Yang J, Zhou Y, Murray JD, Song CP, Wang E. Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation. Curr Biol 2021; 31:3538-3550.e5. [PMID: 34216556 DOI: 10.1016/j.cub.2021.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022]
Abstract
The establishment of the symbiotic interaction between rhizobia and legumes involves the Nod factor signaling pathway. Nod factor recognition occurs through two plant receptors, NFR1 and NFR5. However, the signal transduction mechanisms downstream of NFR1-NFR5-mediated Nod factor perception remain largely unknown. Here, we report that a small guanosine triphosphatase (GTPase), GmROP9, and a guanine nucleotide exchange factor, GmGEF2, are involved in the soybean-rhizobium symbiosis. We show that GmNFR1α phosphorylates GmGEF2a at its N-terminal S86, which stimulates guanosine diphosphate (GDP)-to-GTP exchange to activate GmROP9 and that the active form of GmROP9 can associate with both GmNFR1α and GmNFR5α. We further show that a scaffold protein, GmRACK1, interacts with active GmROP9 and contributes to root nodule symbiosis. Collectively, our results highlight the symbiotic role of GmROP9-GmRACK1 and support the hypothesis that rhizobial signals promote the formation of a protein complex comprising GmNFR1, GmNFR5, GmROP9, and GmRACK1 for symbiotic signal transduction in soybean.
Collapse
Affiliation(s)
- Jin-Peng Gao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mingxing Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chun-Peng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
22
|
Research Advances in Heterotrimeric G-Protein α Subunits and Uncanonical G-Protein Coupled Receptors in Plants. Int J Mol Sci 2021; 22:ijms22168678. [PMID: 34445383 PMCID: PMC8395518 DOI: 10.3390/ijms22168678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
As crucial signal transducers, G-proteins and G-protein-coupled receptors (GPCRs) have attracted increasing attention in the field of signal transduction. Research on G-proteins and GPCRs has mainly focused on animals, while research on plants is relatively rare. The mode of action of G-proteins is quite different from that in animals. The G-protein α (Gα) subunit is the most essential member of the G-protein signal cycle in animals and plants. The G-protein is activated when Gα releases GDP and binds to GTP, and the relationships with the GPCR and the downstream signal are also achieved by Gα coupling. It is important to study the role of Gα in the signaling pathway to explore the regulatory mechanism of G-proteins. The existence of a self-activated Gα in plants makes it unnecessary for the canonical GPCR to activate the G-protein by exchanging GDP with GTP. However, putative GPCRs have been found and proven to play important roles in G-protein signal transduction. The unique mode of action of G-proteins and the function of putative GPCRs in plants suggest that the same definition used in animal research cannot be used to study uncanonical GPCRs in plants. This review focuses on the different functions of the Gα and the mode of action between plants and animals as well as the functions of the uncanonical GPCR. This review employs a new perspective to define uncanonical GPCRs in plants and emphasizes the role of uncanonical GPCRs and Gα subunits in plant stress resistance and agricultural production.
Collapse
|
23
|
Zhao B, Zhang S, Yang W, Li B, Lan C, Zhang J, Yuan L, Wang Y, Xie Q, Han J, Mur LAJ, Hao X, Roberts JA, Miao Y, Yu K, Zhang X. Multi-omic dissection of the drought resistance traits of soybean landrace LX. PLANT, CELL & ENVIRONMENT 2021; 44:1379-1398. [PMID: 33554357 DOI: 10.1111/pce.14025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
With diverse genetic backgrounds, soybean landraces are valuable resource for breeding programs. Herein, we apply multi-omic approaches to extensively characterize the molecular basis of drought tolerance in the soybean landrace LX. Initial screens established that LX performed better with PEG6000 treatment than control cultivars. LX germinated better than William 82 under drought conditions and accumulated more anthocyanin and flavonoids. Untargeted mass spectrometry in combination with transcriptomic analyses revealed the chemical diversity and genetic basis underlying the overall performance of LX landrace. Under control and drought conditions, significant differences in the expression of a suite of secondary metabolism genes, particularly those involved in the general phenylpropanoid pathway and flavonoid but not lignin biosynthesis, were seen in LX and William 82. The expression of these genes correlated with the corresponding metabolites in LX plants. Further correlation analysis between metabolites and transcripts identified pathway structural genes and transcription factors likely are responsible for the LX agronomic traits. The activities of some key biosynthetic genes or regulators were confirmed through heterologous expression in transgenic Arabidopsis and hairy root transformation in soybean. We propose a regulatory mechanism based on flavonoid secondary metabolism and adaptive traits of this landrace which could be of relevance to cultivated soybean.
Collapse
Affiliation(s)
- Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Shulin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Bingyan Li
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiwan Han
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Xingyu Hao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Devon, UK
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
24
|
Zhang G, Yang J, Chen X, Zhao D, Zhou X, Zhang Y, Wang X, Zhao J. Phospholipase D- and phosphatidic acid-mediated phospholipid metabolism and signaling modulate symbiotic interaction and nodulation in soybean (Glycine max). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:142-158. [PMID: 33377234 DOI: 10.1111/tpj.15152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/22/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Symbiotic rhizobium-legume interactions, such as root hair curling, rhizobial invasion, infection thread expansion, cell division and proliferation of nitrogen-fixing bacteroids, and nodule formation, involve extensive membrane synthesis, lipid remodeling and cytoskeleton dynamics. However, little is known about these membrane-cytoskeleton interfaces and related genes. Here, we report the roles of a major root phospholipase D (PLD), PLDα1, and its enzymatic product, phosphatidic acid (PA), in rhizobium-root interaction and nodulation. PLDα1 was activated and the PA content transiently increased in roots after rhizobial infection. Levels of PLDα1 transcript and PA, as well as actin and tubulin cytoskeleton-related gene expression, changed markedly during root-rhizobium interactions and nodule development. Pre-treatment of the roots of soybean seedlings with n-butanol suppressed the generation of PLD-derived PA, the expression of early nodulation genes and nodule numbers. Overexpression or knockdown of GmPLDα1 resulted in changes in PA levels, glycerolipid profiles, nodule numbers, actin cytoskeleton dynamics, early nodulation gene expression and hormone levels upon rhizobial infection compared with GUS roots. The transcript levels of cytoskeleton-related genes, such as GmACTIN, GmTUBULIN, actin capping protein 1 (GmCP1) and microtubule-associating protein (GmMAP1), were modified in GmPLDα1-altered hairy roots compared with those of GUS roots. Phosphatidic acid physically bound to GmCP1 and GmMAP1, which could be related to cytoskeletal changes in rhizobium-infected GmPLDα1 mutant roots. These data suggest that PLDα1 and PA play important roles in soybean-rhizobium interaction and nodulation. The possible underlying mechanisms, including PLDα1- and PA-mediated lipid signaling, membrane remodeling, cytoskeleton dynamics and related hormone signaling, are discussed herein.
Collapse
Affiliation(s)
- Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiangli Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dandan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiuhong Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yuliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St Louis, St Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
25
|
Shin J, Marx H, Richards A, Vaneechoutte D, Jayaraman D, Maeda J, Chakraborty S, Sussman M, Vandepoele K, Ané JM, Coon J, Roy S. A network-based comparative framework to study conservation and divergence of proteomes in plant phylogenies. Nucleic Acids Res 2021; 49:e3. [PMID: 33219668 PMCID: PMC7797074 DOI: 10.1093/nar/gkaa1041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/19/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Comparative functional genomics offers a powerful approach to study species evolution. To date, the majority of these studies have focused on the transcriptome in mammalian and yeast phylogenies. Here, we present a novel multi-species proteomic dataset and a computational pipeline to systematically compare the protein levels across multiple plant species. Globally we find that protein levels diverge according to phylogenetic distance but is more constrained than the mRNA level. Module-level comparative analysis of groups of proteins shows that proteins that are more highly expressed tend to be more conserved. To interpret the evolutionary patterns of conservation and divergence, we develop a novel network-based integrative analysis pipeline that combines publicly available transcriptomic datasets to define co-expression modules. Our analysis pipeline can be used to relate the changes in protein levels to different species-specific phenotypic traits. We present a case study with the rhizobia-legume symbiosis process that supports the role of autophagy in this symbiotic association.
Collapse
Affiliation(s)
- Junha Shin
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Harald Marx
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alicia Richards
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dries Vaneechoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Ghent, Belgium
| | - Dhileepkumar Jayaraman
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junko Maeda
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sanhita Chakraborty
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Sussman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Ghent, Belgium
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
26
|
Liu C, Ye X, Zou L, Xiang D, Wu Q, Wan Y, Wu X, Zhao G. Genome-wide identification of genes involved in heterotrimeric G-protein signaling in Tartary buckwheat (Fagopyrum tataricum) and their potential roles in regulating fruit development. Int J Biol Macromol 2021; 171:435-447. [PMID: 33434548 DOI: 10.1016/j.ijbiomac.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is an economical crop with excellent edible, nutritional, and medicinal values. However, the production of Tartary buckwheat is very low and it is urgent to breed high-yield varieties for satisfying the increasing market demand. Heterotrimeric G-protein signaling involves in the regulation of agronomical traits and fruit development in several plant species. In this study, fifteen genes involved in G-protein signaling were characterized in Tartary buckwheat and their potential roles in fruit development were revealed by expression analysis. The exon-intron organization and conserved motif of Tartary buckwheat G-protein signaling genes were similar to those in other dicot plants. All these genes were ubiquitously and differently expressed in five tissues. The expression patterns of Tartary buckwheat G-protein signaling genes in fruit suggested they may play important roles in the fruit at early development stage, which was supported by meta-analysis of G-protein signaling genes' expression in the fruits from different species. Furthermore, we found the expression of G-protein signaling genes in fruit showed high correlation with 178 transcription factors, which indicated a transcriptional regulatory loop moderating G-protein signaling genes' expression during fruit development. This paper provides new insights into the physiological functions of G-protein signaling in fruit.
Collapse
Affiliation(s)
- Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
27
|
Bhatnagar N, Pandey S. Heterotrimeric G-Protein Interactions Are Conserved Despite Regulatory Element Loss in Some Plants. PLANT PHYSIOLOGY 2020; 184:1941-1954. [PMID: 33082269 PMCID: PMC7723102 DOI: 10.1104/pp.20.01309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 05/31/2023]
Abstract
Heterotrimeric G-proteins are key modulators of multiple signaling and development pathways in plants and regulate many agronomic traits, including architecture and grain yield. Regulator of G-protein signaling (RGS) proteins are an integral part of the G-protein networks; however, these are lost in many monocots. To assess if the loss of RGS in specific plants has resulted in altered G-protein networks and the extent to which RGS function is conserved across contrasting monocots, we explored G-protein-dependent developmental pathways in Brachypodium distachyon and Setaria viridis, representing species without or with a native RGS, respectively. Artificial microRNA-based suppression of Gα in both species resulted in similar phenotypes. Moreover, overexpression of Setaria italica RGS in B. distachyon resulted in phenotypes similar to the suppression of BdGα This effect of RGS overexpression depended on its ability to deactivate Gα, as overexpression of a biochemically inactive variant protein resulted in plants indistinguishable from the wild type. Comparative transcriptome analysis of B. distachyon plants with suppressed levels of Gα or overexpression of RGS showed significant overlap of differentially regulated genes, corroborating the phenotypic data. These results suggest that despite the loss of RGS in many monocots, the G-protein functional networks are maintained, and Gα proteins have retained their ability to be deactivated by RGS.
Collapse
Affiliation(s)
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
28
|
Yuan S, Ke D, Li R, Li X, Wang L, Chen H, Zhang C, Huang Y, Chen L, Hao Q, Yang H, Cao D, Chen S, Guo W, Shan Z, Yang Z, Zhang X, Qiu D, Guan Y, Zhou X. Genome-wide survey of soybean papain-like cysteine proteases and their expression analysis in root nodule symbiosis. BMC PLANT BIOLOGY 2020; 20:517. [PMID: 33183238 PMCID: PMC7659060 DOI: 10.1186/s12870-020-02725-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/26/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Plant papain-like cysteine proteases (PLCPs) are a large class of proteolytic enzymes and play important roles in root nodule symbiosis (RNS), while the whole-genome studies of PLCP family genes in legume are quite limited, and the roles of Glycine max PLCPs (GmPLCPs) in nodulation, nodule development and senescence are not fully understood. RESULTS In the present study, we identified 97 GmPLCPs and performed a genome-wide survey to explore the expansion of soybean PLCP family genes and their relationships to RNS. Nineteen paralogous pairs of genomic segments, consisting of 77 GmPLCPs, formed by whole-genome duplication (WGD) events were identified, showing a high degree of complexity in duplication. Phylogenetic analysis among different species showed that the lineage differentiation of GmPLCPs occurred after family expansion, and large tandem repeat segment were specifically in soybean. The expression patterns of GmPLCPs in symbiosis-related tissues and nodules identified RNS-related GmPLCPs and provided insights into their putative symbiotic functions in soybean. The symbiotic function analyses showed that a RNS-related GmPLCP gene (Glyma.04G190700) really participate in nodulation and nodule development. CONCLUSIONS Our findings improved our understanding of the functional diversity of legume PLCP family genes, and provided insights into the putative roles of the legume PLCPs in nodulation, nodule development and senescence.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Danxia Ke
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Sciences & Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Rong Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiangyong Li
- College of Life Sciences & Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lei Wang
- College of Life Sciences & Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dezhen Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuefeng Guan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
29
|
Jose J, Roy Choudhury S. Heterotrimeric G-proteins mediated hormonal responses in plants. Cell Signal 2020; 76:109799. [PMID: 33011291 DOI: 10.1016/j.cellsig.2020.109799] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/27/2023]
Abstract
Phytohormones not only orchestrate intrinsic developmental programs from germination to senescence but also regulate environmental inputs through complex signalling pathways. Despite building an own signalling network, hormones mutually contribute several signalling systems, which are also essential for plant growth and development, defense, and responses to abiotic stresses. One of such important signalling cascades is G-proteins, which act as critical regulators of a wide range of fundamental cellular processes by transducing receptor signals to the intracellular environment. G proteins are composed of α, β, and γ subunits, and the molecular switching between active and inactive conformation of Gα controls the signalling cycle. The active GTP bound Gα and freed Gβγ have both independent and tightly coordinated roles in the regulation of effector molecules, thereby modulating multiple responses, including hormonal responses. Therefore, an interplay of hormones with G-proteins fine-tunes multiple biological processes of plants; however, their molecular mechanisms are largely unknown. Functional characterization of hormone biosynthesis, perception, and signalling components, as well as identification of few effector molecules of G-proteins and their interaction networks, reduces the complexity of the hormonal signalling networks related to G-proteins. In this review, we highlight a valuable insight into the mechanisms of how the G-protein signalling cascades connect with hormonal responses to regulate increased developmental flexibility as well as remarkable plasticity of plants.
Collapse
Affiliation(s)
- Jismon Jose
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India.
| |
Collapse
|
30
|
Arabidopsis Transmembrane Receptor-Like Kinases (RLKs): A Bridge between Extracellular Signal and Intracellular Regulatory Machinery. Int J Mol Sci 2020; 21:ijms21114000. [PMID: 32503273 PMCID: PMC7313013 DOI: 10.3390/ijms21114000] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Receptors form the crux for any biochemical signaling. Receptor-like kinases (RLKs) are conserved protein kinases in eukaryotes that establish signaling circuits to transduce information from outer plant cell membrane to the nucleus of plant cells, eventually activating processes directing growth, development, stress responses, and disease resistance. Plant RLKs share considerable homology with the receptor tyrosine kinases (RTKs) of the animal system, differing at the site of phosphorylation. Typically, RLKs have a membrane-localization signal in the amino-terminal, followed by an extracellular ligand-binding domain, a solitary membrane-spanning domain, and a cytoplasmic kinase domain. The functional characterization of ligand-binding domains of the various RLKs has demonstrated their essential role in the perception of extracellular stimuli, while its cytosolic kinase domain is usually confined to the phosphorylation of their substrates to control downstream regulatory machinery. Identification of the several ligands of RLKs, as well as a few of its immediate substrates have predominantly contributed to a better understanding of the fundamental signaling mechanisms. In the model plant Arabidopsis, several studies have indicated that multiple RLKs are involved in modulating various types of physiological roles via diverse signaling routes. Here, we summarize recent advances and provide an updated overview of transmembrane RLKs in Arabidopsis.
Collapse
|
31
|
Pandey S. Plant receptor-like kinase signaling through heterotrimeric G-proteins. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1742-1751. [PMID: 31930311 PMCID: PMC7242010 DOI: 10.1093/jxb/eraa016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/10/2020] [Indexed: 05/06/2023]
Abstract
Heterotrimeric G-proteins regulate multiple aspects of plant growth, development, and response to biotic and abiotic stresses. While the core components of heterotrimeric G-proteins and their basic biochemistry are similar in plants and metazoans, key differences exist in their regulatory mechanisms. In particular, the activation mechanisms of plant G-proteins appear diverse and may include both canonical and novel modes. Classical G-protein-coupled receptor-like proteins exist in plants and interact with Gα proteins, but their ability to activate Gα by facilitating GDP to GTP exchange has not been demonstrated. Conversely, there is genetic and functional evidence that plant G-proteins interact with the highly prevalent receptor-like kinases (RLKs) and are phosphorylated by them. This suggests the exciting scenario that in plants the G-proteins integrate RLK-dependent signal perception at the plasma membrane with downstream effectors. Because RLKs are active kinases, it is also likely that the activity of plant G-proteins is regulated via phosphorylation/dephosphorylation rather than GTP-GDP exchange as in metazoans. This review discusses our current knowledge of the possible RLK-dependent regulatory mechanisms of plant G-protein signaling in the context of several biological systems and outlines the diversity that might exist in such regulation.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Correspondence:
| |
Collapse
|
32
|
Zhou Z, Zhao Y, Bi G, Liang X, Zhou JM. Early signalling mechanisms underlying receptor kinase-mediated immunity in plants. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180310. [PMID: 30967025 DOI: 10.1098/rstb.2018.0310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pattern-recognition receptors (PRRs), which are single transmembrane proteins belonging to the receptor-like kinase (RLK) and receptor-like protein (RLP) super families, sense microbe- and host-derived molecular patterns to activate immune responses in plants. PRRs associate with co-receptors, scaffold proteins and receptor-like cytoplasmic kinases (RLCKs) to form immune receptor complexes at the cell surface, allowing activation of cellular responses upon perception of extracellular ligands. Recent advances have uncovered new mechanisms by which these immune receptor complexes are regulated at the levels of composition, stability and activity. It has become clear that RLCKs are central components directly linking PRRs to multiple downstream signalling modules. Furthermore, new studies have provided important insights into the regulation of reactive oxygen species, mitogen-activated protein (MAP) kinase cascades and heterotrimeric G proteins, which has not only deepened our understanding of immunity, but also expanded our view of transmembrane signalling in general. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Zhaoyang Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , No. 1 West Beichen Road, Chaoyang District, Beijing 100101 , People's Republic of China
| | - Yan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , No. 1 West Beichen Road, Chaoyang District, Beijing 100101 , People's Republic of China
| | - Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , No. 1 West Beichen Road, Chaoyang District, Beijing 100101 , People's Republic of China
| | - Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , No. 1 West Beichen Road, Chaoyang District, Beijing 100101 , People's Republic of China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , No. 1 West Beichen Road, Chaoyang District, Beijing 100101 , People's Republic of China
| |
Collapse
|
33
|
Qiu M, Li Y, Zhang X, Xuan M, Zhang B, Ye W, Zheng X, Govers F, Wang Y. G protein α subunit suppresses sporangium formation through a serine/threonine protein kinase in Phytophthora sojae. PLoS Pathog 2020; 16:e1008138. [PMID: 31961913 PMCID: PMC7010300 DOI: 10.1371/journal.ppat.1008138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 02/10/2020] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic heterotrimeric guanine nucleotide-binding proteins consist of α, β, and γ subunits, which act as molecular switches to regulate a number of fundamental cellular processes. In the oomycete pathogen Phytophthora sojae, the sole G protein α subunit (Gα; encoded by PsGPA1) has been found to be involved in zoospore mobility and virulence, but how it functions remains unclear. In this study, we show that the Gα subunit PsGPA1 directly interacts with PsYPK1, a serine/threonine protein kinase that consists of an N-terminal region with unknown function and a C-terminal region with a conserved catalytic kinase domain. We generated knockout and knockout-complemented strains of PsYPK1 and found that deletion of PsYPK1 resulted in a pronounced reduction in the production of sporangia and oospores, in mycelial growth on nutrient poor medium, and in virulence. PsYPK1 exhibits a cytoplasmic-nuclear localization pattern that is essential for sporangium formation and virulence of P. sojae. Interestingly, PsGPA1 overexpression was found to prevent nuclear localization of PsYPK1 by exclusively binding to the N-terminal region of PsYPK1, therefore accounting for its negative role in sporangium formation. Our data demonstrate that PsGPA1 negatively regulates sporangium formation by repressing the nuclear localization of its downstream kinase PsYPK1.
Collapse
Affiliation(s)
- Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Yaning Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Xin Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Mingrun Xuan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Baiyu Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Maruta N, Trusov Y, Chakravorty D, Urano D, Assmann SM, Botella JR. Nucleotide exchange-dependent and nucleotide exchange-independent functions of plant heterotrimeric GTP-binding proteins. Sci Signal 2019; 12:12/606/eaav9526. [PMID: 31690635 DOI: 10.1126/scisignal.aav9526] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins), which are composed of α, β, and γ subunits, are versatile, guanine nucleotide-dependent, molecular on-off switches. In animals and fungi, the exchange of GDP for GTP on Gα controls G protein activation and is crucial for normal cellular responses to diverse extracellular signals. The model plant Arabidopsis thaliana has a single canonical Gα subunit, AtGPA1. We found that, in planta, the constitutively active, GTP-bound AtGPA1(Q222L) mutant and the nucleotide-free AtGPA1(S52C) mutant interacted with Gβγ1 and Gβγ2 dimers with similar affinities, suggesting that G protein heterotrimer formation occurred independently of nucleotide exchange. In contrast, AtGPA1(Q222L) had a greater affinity than that of AtGPA1(S52C) for Gβγ3, suggesting that the GTP-bound conformation of AtGPA1(Q222L) is distinct and tightly associated with Gβγ3. Functional analysis of transgenic lines expressing either AtGPA1(S52C) or AtGPA1(Q222L) in the gpa1-null mutant background revealed various mutant phenotypes that were complemented by either AtGPA1(S52C) or AtGPA1(Q222L). We conclude that, in addition to the canonical GDP-GTP exchange-dependent mechanism, plant G proteins can function independently of nucleotide exchange.
Collapse
Affiliation(s)
- Natsumi Maruta
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - David Chakravorty
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jose R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia. .,State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| |
Collapse
|
35
|
Liu C, Fan W, Zhu P, Xia Z, Hu J, Zhao A. Mulberry RGS negatively regulates salt stress response and tolerance. PLANT SIGNALING & BEHAVIOR 2019; 14:1672512. [PMID: 31559897 PMCID: PMC6866688 DOI: 10.1080/15592324.2019.1672512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Regulator of G-protein signaling (RGS) protein, the best-characterized accelerating GTPase protein in plants, regulates G-protein signaling and plays important role in abiotic stress tolerance. However, the detailed molecular mechanism of RGS involved in G-protein signaling mediated abiotic stress responses remains unclear. In this study, a mulberry (Morus alba L.) RGS gene (MaRGS) was transformed into tobacco, and the ectopic expression of MaRGS in tobacco decreased the tolerance to salt stress. The transgenic tobacco plants had lower proline content, higher malonaldehyde and H2O2 contents than wild type plants under salt stress condition. Meanwhile, MaRGS overexpression in mulberry seedlings enhances the sensitivity to salt stress and RNAi-silenced expression of MaRGS improves the salt stress response and tolerance. These results suggested that MaRGS negatively regulates salt stress tolerance. Further analysis suggested that D-glucose and autophagy may involve in the response of RGS to salt stress. This study revealed the role of MaRGS in salt stress tolerance and provides a proposed model for RGS regulates G-protein signaling in response to salt stress.
Collapse
Affiliation(s)
- Changying Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Panpan Zhu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Zhongqiang Xia
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Jie Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Xu R, Li N, Li Y. Control of grain size by G protein signaling in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:533-540. [PMID: 30597738 DOI: 10.1111/jipb.12769] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Heterotrimeric G proteins are involved in multiple cellular processes in eukaryotes by sensing and transducing various signals. G protein signaling in plants is quite different from that in animals, and the mechanisms of plant G protein signaling are still largely unknown. Several recent studies have provided new insights into the mechanisms of G protein signaling in rice grain size and yield control. In this review, we summarize recent advances on the function of G proteins in rice grain size control and discuss the potential genetic and molecular mechanisms of plant G protein signaling.
Collapse
Affiliation(s)
- Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
37
|
Pandey S. Heterotrimeric G-Protein Signaling in Plants: Conserved and Novel Mechanisms. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:213-238. [PMID: 31035831 DOI: 10.1146/annurev-arplant-050718-100231] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heterotrimeric GTP-binding proteins are key regulators of a multitude of signaling pathways in all eukaryotes. Although the core G-protein components and their basic biochemistries are broadly conserved throughout evolution, the regulatory mechanisms of G proteins seem to have been rewired in plants to meet specific needs. These proteins are currently the focus of intense research in plants due to their involvement in many agronomically important traits, such as seed yield, organ size regulation, biotic and abiotic stress responses, symbiosis, and nitrogen use efficiency. The availability of massive sequence information from a variety of plant species, extensive biochemical data generated over decades, and impressive genetic resources for plant G proteins have made it possible to examine their role, unique properties, and novel regulation. This review focuses on some recent advances in our understanding of the mechanistic details of this critical signaling pathway to enable the precise manipulation and generation of plants to meet future needs.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| |
Collapse
|
38
|
Roy Choudhury S, Marlin MA, Pandey S. The Role of Gβ Protein in Controlling Cell Expansion via Potential Interaction with Lipid Metabolic Pathways. PLANT PHYSIOLOGY 2019; 179:1159-1175. [PMID: 30622152 PMCID: PMC6393804 DOI: 10.1104/pp.18.01312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 05/23/2023]
Abstract
Heterotrimeric G-proteins influence almost all aspects of plant growth, development, and responses to biotic and abiotic stresses in plants, likely via their interaction with specific effectors. However, the identity of such effectors and their mechanism of action are mostly unknown. While investigating the roles of different G-protein subunits in modulating the oil content in Camelina (Camelina sativa), an oil seed crop, we uncovered a role of Gβ proteins in controlling anisotropic cell expansion. Knockdown of Gβ genes causes reduced longitudinal and enhanced transverse expansion, resulting in altered cell, tissue, and organ shapes in transgenic plants during vegetative and reproductive development. These plants also exhibited substantial changes in their fatty acid and phospholipid profiles, which possibly leads to the increased oil content of the transgenic seeds. This increase is potentially caused by the direct interaction of Gβ proteins with a specific patatin-like phospholipase, pPLAIIIδ. Camelina plants with suppressed Gβ expression exhibit higher lipase activity, and show phenotypes similar to plants overexpressing pPLAIIIδ, suggesting that the Gβ proteins are negative regulators of pPLAIIIδ. These results reveal interactions between the G-protein-mediated and lipid signaling/metabolic pathways, where specific phospholipases may act as effectors that control key developmental and environmental responses of plants.
Collapse
Affiliation(s)
| | - Maria A Marlin
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
39
|
Zhong CL, Zhang C, Liu JZ. Heterotrimeric G protein signaling in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1109-1118. [PMID: 30481338 DOI: 10.1093/jxb/ery426] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/22/2018] [Indexed: 05/26/2023]
Abstract
In animals, heterotrimeric guanine nucleotide-binding proteins (G proteins) transduce signals perceived by numerous G protein-coupled receptors (GPCRs). However, no canonical GPCRs with guanine nucleotide exchange factor (GEF) activity are present in plant genomes. Accumulated evidence indicates that, instead of GPCRs, the receptor-like kinases (RLKs) function upstream of G proteins in plants. Regulator of G protein signaling 1 (RGS1) functions to convert the GTP-bound Gα to the GDP-bound form through its GTPase-accelerating protein (GAP) activity. Because of the intrinsic differences in the biochemical properties between Arabidopsis and animal Gα, the actions of animal and Arabidopsis RGS1 result in contrasting outcomes in G signaling activation/deactivation. Animal RGSs accelerate the deactivation of the activated G signaling, whereas Arabidopsis RGS1 prevents the activation of G signaling in the resting state. Phosphorylation of Arabidopsis RGS1 triggered by ligand-RLK recognition results in the endocytosis or degradation of RGS1, leading to the separation of RGS1 from Gα and thus the derepression of G signaling. Here, we summarize the involvement of the G proteins in plant immunity, with a special focus on the molecular mechanism of G signaling activation/deactivation regulated by RLKs and RGS1. We also provide a brief perspective on the outstanding questions that need to be addressed to fully understand G signaling in plant immunity.
Collapse
Affiliation(s)
- Chen-Li Zhong
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Chi Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
40
|
G protein subunit phosphorylation as a regulatory mechanism in heterotrimeric G protein signaling in mammals, yeast, and plants. Biochem J 2018; 475:3331-3357. [PMID: 30413679 DOI: 10.1042/bcj20160819] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are vital eukaryotic signaling elements that convey information from ligand-regulated G protein-coupled receptors (GPCRs) to cellular effectors. Heterotrimeric G protein-based signaling pathways are fundamental to human health [Biochimica et Biophysica Acta (2007) 1768, 994-1005] and are the target of >30% of pharmaceuticals in clinical use [Biotechnology Advances (2013) 31, 1676-1694; Nature Reviews Drug Discovery (2017) 16, 829-842]. This review focuses on phosphorylation of G protein subunits as a regulatory mechanism in mammals, budding yeast, and plants. This is a re-emerging field, as evidence for phosphoregulation of mammalian G protein subunits from biochemical studies in the early 1990s can now be complemented with contemporary phosphoproteomics and genetic approaches applied to a diversity of model systems. In addition, new evidence implicates a family of plant kinases, the receptor-like kinases, which are monophyletic with the interleukin-1 receptor-associated kinase/Pelle kinases of metazoans, as possible GPCRs that signal via subunit phosphorylation. We describe early and modern observations on G protein subunit phosphorylation and its functional consequences in these three classes of organisms, and suggest future research directions.
Collapse
|
41
|
Yu Y, Assmann SM. Inter-relationships between the heterotrimeric Gβ subunit AGB1, the receptor-like kinase FERONIA, and RALF1 in salinity response. PLANT, CELL & ENVIRONMENT 2018; 41:2475-2489. [PMID: 29907954 PMCID: PMC6150805 DOI: 10.1111/pce.13370] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 05/06/2023]
Abstract
Plant heterotrimeric G proteins modulate numerous developmental stress responses. Recently, receptor-like kinases (RLKs) have been implicated as functioning with G proteins and may serve as plant G-protein-coupled-receptors. The RLK FERONIA (FER), in the Catharantus roseus RLK1-like subfamily, is activated by a family of polypeptides called rapid alkalinization factors (RALFs). We previously showed that the Arabidopsis G protein β subunit, AGB1, physically interacts with FER, and that RALF1 regulation of stomatal movement through FER requires AGB1. Here, we investigated genetic interactions of AGB1 and FER in plant salinity response by comparing salt responses in the single and double mutants of agb1 and fer. We show that AGB1 and FER act additively or synergistically depending on the conditions of the NaCl treatments. We further show that the synergism likely occurs through salt-induced ROS production. In addition, we show that RALF1 enhances salt toxicity through increasing Na+ accumulation and decreasing K+ accumulation rather than by inducing ROS production, and that the RALF1 effect on salt response occurs in an AGB1-independent manner. Our results indicate that RLK epistatic relationships are not fixed, as AGB1 and FER display different genetic relationships to RALF1 in stomatal versus salinity responses.
Collapse
Affiliation(s)
| | - Sarah M. Assmann
- To whom correspondence should be addressed: , tel. 814-863-9579, fax. 814-865-9131
| |
Collapse
|
42
|
Zhang L, Liu JY, Gu H, Du Y, Zuo JF, Zhang Z, Zhang M, Li P, Dunwell JM, Cao Y, Zhang Z, Zhang YM. Bradyrhizobium diazoefficiens USDA 110- Glycine max Interactome Provides Candidate Proteins Associated with Symbiosis. J Proteome Res 2018; 17:3061-3074. [PMID: 30091610 DOI: 10.1021/acs.jproteome.8b00209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the legume-rhizobium symbiosis is a most-important biological process, there is a limited knowledge about the protein interaction network between host and symbiont. Using interolog- and domain-based approaches, we constructed an interspecies protein interactome containing 5115 protein-protein interactions between 2291 Glycine max and 290 Bradyrhizobium diazoefficiens USDA 110 proteins. The interactome was further validated by the expression pattern analysis in nodules, gene ontology term semantic similarity, co-expression analysis, and luciferase complementation image assay. In the G. max-B. diazoefficiens interactome, bacterial proteins are mainly ion channel and transporters of carbohydrates and cations, while G. max proteins are mainly involved in the processes of metabolism, signal transduction, and transport. We also identified the top 10 highly interacting proteins (hubs) for each species. Kyoto Encyclopedia of Genes and Genomes pathway analysis for each hub showed that a pair of 14-3-3 proteins (SGF14g and SGF14k) and 5 heat shock proteins in G. max are possibly involved in symbiosis, and 10 hubs in B. diazoefficiens may be important symbiotic effectors. Subnetwork analysis showed that 18 symbiosis-related soluble N-ethylmaleimide sensitive factor attachment protein receptor proteins may play roles in regulating bacterial ion channels, and SGF14g and SGF14k possibly regulate the rhizobium dicarboxylate transport protein DctA. The predicted interactome provide a valuable basis for understanding the molecular mechanism of nodulation in soybean.
Collapse
Affiliation(s)
- Li Zhang
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
- School of Public Health , Xinxiang Medical University , Xinxiang 453003 , China
| | - Jin-Yang Liu
- College of Agriculture, Nanjing Agricultural University , Nanjing 210095 , China
| | - Huan Gu
- College of Agriculture, Nanjing Agricultural University , Nanjing 210095 , China
| | - Yanfang Du
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
| | - Jian-Fang Zuo
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
| | - Zhibin Zhang
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
| | - Menglin Zhang
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
| | - Pan Li
- School of Public Health , Xinxiang Medical University , Xinxiang 453003 , China
| | - Jim M Dunwell
- School of Agriculture, Policy and Development , University of Reading , Reading RG6 6AR , United Kingdom
| | - Yangrong Cao
- College of Life Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Zuxin Zhang
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
| | - Yuan-Ming Zhang
- Crop Information Center , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan 430070 , China
| |
Collapse
|
43
|
Charpentier M. Calcium Signals in the Plant Nucleus: Origin and Function. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4986421. [PMID: 29718301 DOI: 10.1093/jxb/ery160] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 06/08/2023]
Abstract
The universality of calcium as an intracellular messenger depends on the dynamics of its spatial and temporal release from calcium stores. Accumulating evidence over the past two decades supports an essential role for nuclear calcium signalling in the transduction of specific stimuli into cellular responses. This review focusses on mechanisms underpinning changes in nuclear calcium concentrations and discusses what is known so far, about the origin of the nuclear calcium signals identified, primarily in the context of microbial symbioses and abiotic stresses.
Collapse
Affiliation(s)
- Myriam Charpentier
- John Innes Centre, Department of Cell and developmental Biology, Colney Lane, Norwich, UK
| |
Collapse
|
44
|
Leppyanen IV, Kirienko AN, Lobov AA, Dolgikh EA. Differential proteome analysis of pea roots at the early stages of symbiosis with nodule bacteria. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this paper, we have analyzed changes in the proteomic spectrum of pea Pisum sativum L. roots during inoculation with rhizobial bacteria with the aim of revealing new regulators of symbiosis development. To study the changes in the proteome spectrum of pea roots, a differential twodimensional (2-D) electrophoresis was performed using fluorescent labels Cy2 and Cy5. The images obtained made it possible to identify differences between the control variant (uninoculated roots) and the root variant after inoculation with Rhizobium leguminosarum bv. viciae RCAM 1026 (24 hours after treatment). 20 proteins were revealed and identified, the synthesis of which was enhanced during the inoculation of pea roots by nodule bacteria. To identify the proteins, a mass spectrometric analysis of tryptic peptides was performed on a quadrupole-time-of-flight mass spectrometer combined with a high-performance liquid chromatograph. Among such proteins, the beta-subunit of the G protein and the disulfide isomerase/phospholipase C were first found, whose function can be related to the signal regulation of symbiosis. This indicates that G-proteins and phospholipases can play a key role in the development of early stages of symbiosis in peas. Further experiments are expected to show whether the beta-subunit of the G protein interacts with the receptors to Nod factors, and how this affects the further signaling. Other proteins that might be interesting were annexin D8 and D1, protein kinase interacting with calcinerin B, actin-binding protein profilin, GTP-binding protein Ran1. They may be involved in the regulation of reactions with calcium, the reorganization of the actin cytoskeleton and other important processes in plants. The study of the role of such regulatory proteins will later become the basis for understanding the complex system of signal regulation, which is activated in pea plants by interaction with nodule bacteria.
Collapse
Affiliation(s)
- I. V. Leppyanen
- All-Russian Scientific Research Institute of Agricultural Microbiology
| | - A. N. Kirienko
- All-Russian Scientific Research Institute of Agricultural Microbiology
| | - A. A. Lobov
- Resource Center “Development of Molecular and Cellular Technologies”, Science Park, St. Petersburg State University
| | - E. A. Dolgikh
- All-Russian Scientific Research Institute of Agricultural Microbiology
| |
Collapse
|
45
|
Liang X, Ma M, Zhou Z, Wang J, Yang X, Rao S, Bi G, Li L, Zhang X, Chai J, Chen S, Zhou JM. Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases. Cell Res 2018; 28:529-543. [PMID: 29545645 PMCID: PMC5951851 DOI: 10.1038/s41422-018-0027-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/11/2018] [Accepted: 02/22/2018] [Indexed: 02/01/2023] Open
Abstract
Arabidopsis heterotrimeric G proteins regulate diverse processes by coupling to single-transmembrane receptors. One such receptor is the FLS2 receptor kinase, which perceives bacterial flagellin epitope flg22 to activate immunity through a class of cytoplasmic kinases called BIK1/PBLs. Unlike animal and fungal heterotrimeric G proteins that are activated by a ligand-induced guanine nucleotide exchange activity of seven-transmembrane G protein-coupled receptors (GPCRs), plant heterotrimeric G proteins are self-activating. How plant receptors regulate heterotrimeric G proteins in response to external ligands remains unknown. Here we show that RGS1, a GTPase accelerating protein, maintains Arabidopsis G proteins in an inactive state in complex with FLS2. Activation of FLS2 by flg22 induces a BIK1/PBL-mediated phosphorylation of RGS1 at Ser428 and Ser431 and that promotes RGS1 dissociation from the FLS2-G protein complex. This relieves G proteins from the RGS1-mediated repression and enables positive regulation of immune signaling. We additionally show that RGS1 is similarly regulated by multiple immune receptors. Our results uncover ligand-induced de-repression as a mechanism for G protein signaling in plants that is distinct from previously reported mechanism underlying the activation of heterotrimeric G proteins in other systems.
Collapse
Affiliation(s)
- Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhaoyang Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinlong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xinru Yang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Shaofei Rao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jijie Chai
- Center for Plant Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
46
|
Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun 2018; 9:852. [PMID: 29487282 PMCID: PMC5829230 DOI: 10.1038/s41467-018-03047-9] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 01/12/2018] [Indexed: 01/16/2023] Open
Abstract
The simultaneous improvement of grain quality and yield of cereal crops is a major challenge for modern agriculture. Here we show that a rice grain yield quantitative trait locus qLGY3 encodes a MADS-domain transcription factor OsMADS1, which acts as a key downstream effector of G-protein βγ dimers. The presence of an alternatively spliced protein OsMADS1lgy3 is shown to be associated with formation of long and slender grains, resulting in increases in both grain quality and yield potential of rice. The Gγ subunits GS3 and DEP1 interact directly with the conserved keratin-like domain of MADS transcription factors, function as cofactors to enhance OsMADS1 transcriptional activity and promote the co-operative transactivation of common target genes, thereby regulating grain size and shape. We also demonstrate that combining OsMADS1 lgy3 allele with high-yield-associated dep1-1 and gs3 alleles represents an effective strategy for simultaneously improving both the productivity and end-use quality of rice.
Collapse
Affiliation(s)
- Qian Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ruixi Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.,Development Center for Science and Technology, Ministry of Agriculture, 100122, Beijing, China
| | - Kun Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
| | - Jianqing Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yafeng Ye
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shuansuo Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jianfeng Chen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yajun Pan
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qi Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaopeng Xu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,Root Biology Center, South China Agricultural University, 510642, Guangzhou, China
| | - Jiawu Zhou
- Food Crops Research, Institute Yunnan Academy of Agricultural Sciences, 650200, Kunming, China
| | - Dayun Tao
- Food Crops Research, Institute Yunnan Academy of Agricultural Sciences, 650200, Kunming, China
| | - Yuejin Wu
- Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China. .,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
47
|
Hackenberg D, McKain MR, Lee SG, Roy Choudhury S, McCann T, Schreier S, Harkess A, Pires JC, Wong GKS, Jez JM, Kellogg EA, Pandey S. Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants. THE NEW PHYTOLOGIST 2017; 216:562-575. [PMID: 27634188 DOI: 10.1111/nph.14180] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/03/2016] [Indexed: 05/05/2023]
Abstract
Signaling pathways regulated by heterotrimeric G-proteins exist in all eukaryotes. The regulator of G-protein signaling (RGS) proteins are key interactors and critical modulators of the Gα protein of the heterotrimer. However, while G-proteins are widespread in plants, RGS proteins have been reported to be missing from the entire monocot lineage, with two exceptions. A single amino acid substitution-based adaptive coevolution of the Gα:RGS proteins was proposed to enable the loss of RGS in monocots. We used a combination of evolutionary and biochemical analyses and homology modeling of the Gα and RGS proteins to address their expansion and its potential effects on the G-protein cycle in plants. Our results show that RGS proteins are widely distributed in the monocot lineage, despite their frequent loss. There is no support for the adaptive coevolution of the Gα:RGS protein pair based on single amino acid substitutions. RGS proteins interact with, and affect the activity of, Gα proteins from species with or without endogenous RGS. This cross-functional compatibility expands between the metazoan and plant kingdoms, illustrating striking conservation of their interaction interface. We propose that additional proteins or alternative mechanisms may exist which compensate for the loss of RGS in certain plant species.
Collapse
Affiliation(s)
- Dieter Hackenberg
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Michael R McKain
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Soon Goo Lee
- Department of Biology, Washington University, One Brookings Drive, Campus Box 1137, St Louis, MO, 63130, USA
| | - Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Tyler McCann
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Spencer Schreier
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Alex Harkess
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - J Chris Pires
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Joseph M Jez
- Department of Biology, Washington University, One Brookings Drive, Campus Box 1137, St Louis, MO, 63130, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| |
Collapse
|
48
|
Roy Choudhury S, Pandey S. Recently duplicated plant heterotrimeric Gα proteins with subtle biochemical differences influence specific outcomes of signal-response coupling. J Biol Chem 2017; 292:16188-16198. [PMID: 28827312 PMCID: PMC5625049 DOI: 10.1074/jbc.m117.793380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/10/2017] [Indexed: 12/31/2022] Open
Abstract
Heterotrimeric G-proteins, comprising Gα, Gβ, and Gγ subunits, regulate key signaling processes in eukaryotes. The Gα subunit determines the status of signaling by switching between inactive GDP-bound and active GTP-bound forms. Unlike animal systems, in which multiple Gα proteins with variable biochemical properties exist, plants have fewer, highly similar Gα subunits that have resulted from recent genome duplications. These proteins exhibit subtle differences in their GTP-binding, GDP/GTP-exchange, and GTP-hydrolysis activities, but the extent to which these differences contribute to affect plant signaling and development remains unknown. To evaluate this, we expressed native and engineered Gα proteins from soybean in an Arabidopsis Gα-null background and studied their effects on modulating a range of developmental and hormonal signaling phenotypes. Our results indicated that inherent biochemical differences in these highly similar Gα proteins are biologically relevant, and some proteins are more flexible than others in influencing the outcomes of specific signals. These observations suggest that alterations in the rate of the G-protein cycle itself may contribute to the specificity of response regulation in plants by affecting the duration of active signaling and/or by the formation of distinct protein-protein complexes. In species such as Arabidopsis having a single canonical Gα, this rate could be affected by regulatory proteins in the presence of specific signals, whereas in plants with multiple Gα proteins, an even more complex regulation may exist, which likely contributes to the specificity of signal-response coupling.
Collapse
Affiliation(s)
| | - Sona Pandey
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
49
|
Tunc-Ozdemir M, Jones AM. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes. PLoS One 2017; 12:e0171854. [PMID: 28187200 PMCID: PMC5302818 DOI: 10.1371/journal.pone.0171854] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/26/2017] [Indexed: 02/08/2023] Open
Abstract
Background Arabidopsis, 7-transmembrane Regulator of G signaling protein 1 (AtRGS1) modulates canonical G protein signaling by promoting the inactive state of heterotrimeric G protein complex on the plasma membrane. It is known that plant leucine-rich repeat receptor–like kinases (LRR RLKs) phosphorylate AtRGS1 in vitro but little is known about the in vivo interaction, molecular dynamics, or the cellular consequences of this interaction. Methods Therefore, a subset of the known RLKs that phosphorylate AtRGS1 were selected for elucidation, namely, BAK1, BIR1, FLS2. Several microscopies for both static and dynamic protein-protein interactions were used to follow in vivo interactions between the RLKs and AtRGS1 after the presentation of the Pathogen-associated Molecular Pattern, Flagellin 22 (Flg22). These microscopies included Förster Resonance Energy Transfer, Bimolecular Fluoresence Complementation, and Cross Number and Brightness Fluorescence Correlation Spectroscopy. In addition, reactive oxygen species and calcium changes in living cells were quantitated using luminometry and R-GECO1 microscopy. Results The LRR RLKs BAK1 and BIR1, interact with AtRGS1 at the plasma membrane. The RLK ligand flg22 sets BAK1 in motion toward AtRGS1 and BIR1 away, both returning to the baseline orientations by 10 minutes. The C-terminal tail of AtRGS1 is important for the interaction with BAK1 and for the tempo of the AtRGS1/BIR1 dynamics. This window of time corresponds to the flg22-induced transient production of reactive oxygen species and calcium release which are both attenuated in the rgs1 and the bak1 null mutants. Conclusions A temporal model of these interactions is proposed. flg22 binding induces nearly instantaneous dimerization between FLS2 and BAK1. Phosphorylated BAK1 interacts with and enables AtRGS1 to move away from BIR1 and AtRGS1 becomes phosphorylated leading to its endocytosis thus leading to de-repression by permitting AtGPA1 to exchange GDP for GTP. Finally, the G protein complex becomes dissociated thus AGB1 interacts with its effector proteins leading to changes in reactive oxygen species and calcium.
Collapse
Affiliation(s)
- Meral Tunc-Ozdemir
- Department of Biology University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alan M. Jones
- Department of Biology University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
50
|
Yuan SL, Li R, Chen HF, Zhang CJ, Chen LM, Hao QN, Chen SL, Shan ZH, Yang ZL, Zhang XJ, Qiu DZ, Zhou XA. RNA-Seq analysis of nodule development at five different developmental stages of soybean (Glycine max) inoculated with Bradyrhizobium japonicum strain 113-2. Sci Rep 2017; 7:42248. [PMID: 28169364 PMCID: PMC5294573 DOI: 10.1038/srep42248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/08/2017] [Indexed: 12/15/2022] Open
Abstract
Nodule development directly affects nitrogen fixation efficiency during soybean growth. Although abundant genome-based information related to nodule development has been released and some studies have reported the molecular mechanisms that regulate nodule development, information on the way nodule genes operate in nodule development at different developmental stages of soybean is limited. In this report, notably different nodulation phenotypes in soybean roots inoculated with Bradyrhizobium japonicum strain 113-2 at five developmental stages (branching stage, flowering stage, fruiting stage, pod stage and harvest stage) were shown, and the expression of nodule genes at these five stages was assessed quantitatively using RNA-Seq. Ten comparisons were made between these developmental periods, and their differentially expressed genes were analysed. Some important genes were identified, primarily encoding symbiotic nitrogen fixation-related proteins, cysteine proteases, cystatins and cysteine-rich proteins, as well as proteins involving plant-pathogen interactions. There were no significant shifts in the distribution of most GO functional annotation terms and KEGG pathway enrichment terms between these five development stages. A cystatin Glyma18g12240 was firstly identified from our RNA-seq, and was likely to promote nodulation and delay nodule senescence. This study provides molecular material for further investigations into the mechanisms of nitrogen fixation at different soybean developmental stages.
Collapse
Affiliation(s)
- Song L. Yuan
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Rong Li
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Hai F. Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Chan J. Zhang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Li M. Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Qing N. Hao
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Shui L. Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Zhi H. Shan
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Zhong L. Yang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Xiao J. Zhang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - De Z. Qiu
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Xin A. Zhou
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| |
Collapse
|