1
|
Fakude M, Murithi A, Frei UK, Scott PM, Lübberstedt T. Genome-wide association study of haploid female fertility (HFF) and haploid male fertility (HMF) in BS39-derived doubled haploid maize lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:5. [PMID: 39663254 DOI: 10.1007/s00122-024-04789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
KEY MESSAGE Restoration of haploid female and haploid male fertility without colchicine is feasible. Three SNPs and eight gene models for HFF, and one SNP and a gene model for HMF were identified. Doubled haploid (DH) breeding accelerates the development of elite inbred lines and facilitates the incorporation of exotic germplasm, offering a powerful tool for maize improvement. Traditional DH breeding relies on colchicine to induce haploid genome doubling. Colchicine is toxic, and its application is labor-intensive, with most genotypes recording low genome doubling rates (10-30%). This study investigates spontaneous haploid genome doubling (SHGD) as a safer and more efficient alternative to colchicine. We evaluated the effectiveness of SHGD in restoring haploid female fertility (HFF) and haploid male fertility (HMF) without colchicine. Using genome-wide association studies (GWAS), we identified genomic regions influencing HFF and HMF. The plant materials included the BS39-haploid isogenic lines (HILs) and BS39-SHGD-haploid isogenic lines (HILs). Our results revealed significant SNP associations for both traits, with candidate genes involved in cell cycle regulation, cytoskeletal organization, and hormonal signaling. Analysis of variance (ANOVA) revealed significant variation in HFF across haploids and two environments. Similarly, HMF showed substantial differences across haploids and between the two environments. Spearman correlation between HFF and HMF showed no correlation (r = -0.03) between the two traits. HFF showed high heritability (0.8), indicating strong genetic control, whereas HMF displayed moderate heritability (0.5), suggesting additional environmental influences. The findings underscore the potential of SHGD to enhance DH breeding efficiency and support the development of new maize varieties tailored to diverse agricultural needs.
Collapse
Affiliation(s)
- Mercy Fakude
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Ann Murithi
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Paul M Scott
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA
| | | |
Collapse
|
2
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
3
|
Wang F, Li CH, Liu Y, He LF, Li P, Guo JX, Zhang N, Zhao B, Guo YD. Plant responses to abiotic stress regulated by histone acetylation. FRONTIERS IN PLANT SCIENCE 2024; 15:1404977. [PMID: 39081527 PMCID: PMC11286584 DOI: 10.3389/fpls.2024.1404977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
In eukaryotes, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are reversibly regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Increasing evidence highlights histone acetylation plays essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance of histone acetylation in the regulation of abiotic stress responses including temperature, light, salt and drought stress. This information will contribute to our understanding of how plants adapt to environmental changes. As the mechanisms of epigenetic regulation are conserved in many plants, research in this field has potential applications in improvement of agricultural productivity.
Collapse
Affiliation(s)
- Fei Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Chong-Hua Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ying Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ling-Feng He
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ping Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jun-Xin Guo
- College of Horticulture, China Agricultural University, Beijing, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
4
|
Huang K, Wang Y, Li Y, Zhang B, Zhang L, Duan P, Xu R, Wang D, Liu L, Zhang G, Zhang H, Wang C, Guo N, Hao J, Luo Y, Zhu X, Li Y. Modulation of histone acetylation enables fully mechanized hybrid rice breeding. NATURE PLANTS 2024; 10:954-970. [PMID: 38831046 DOI: 10.1038/s41477-024-01720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
Hybrid rice has achieved high grain yield and greatly contributes to food security, but the manual-labour-intensive hybrid seed production process limits fully mechanized hybrid rice breeding. For next-generation hybrid seed production, the use of small-grain male sterile lines to mechanically separate small hybrid seeds from mixed harvest is promising. However, it is difficult to find ideal grain-size genes for breeding ideal small-grain male sterile lines without penalties in the number of hybrid seeds and hybrid rice yield. Here we report that the use of small-grain alleles of the ideal grain-size gene GSE3 in male sterile lines enables fully mechanized hybrid seed production and dramatically increases hybrid seed number in three-line and two-line hybrid rice systems. The GSE3 gene encodes a histone acetyltransferase that binds histones and influences histone acetylation levels. GSE3 is recruited by the transcription factor GS2 to the promoters of their co-regulated grain-size genes and influences the histone acetylation status of their co-regulated genes. Field trials demonstrate that genome editing of GSE3 can be used to immediately improve current elite male sterile lines of hybrid rice for fully mechanized hybrid rice breeding, providing a new perspective for mechanized hybrid breeding in other crops.
Collapse
Affiliation(s)
- Ke Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Hainan Seed Industry Laboratory, Sanya, China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yingjie Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Hainan Seed Industry Laboratory, Sanya, China
| | - Baolan Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Limin Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Penggen Duan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ran Xu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dekai Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lijie Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - Guozheng Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - Chenjie Wang
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Nian Guo
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Jianqin Hao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuehua Luo
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Xudong Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| | - Yunhai Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Yan J, Cheng J, Xie D, Wang Y, Wang M, Yang S, Jiang B, Chen L, Cai J, Liu W. A nonsynonymous mutation in BhLS, encoding an acyl-CoA N-acyltransferase leads to fruit and seed size variation in wax gourd (Benincasa hispida). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:100. [PMID: 38602584 DOI: 10.1007/s00122-024-04604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Wax gourd (Benincasa hispida (Thunb.) Cogn., 2n = 2x = 24) is an economically important vegetable crop cultivated widely in many tropical and subtropical regions, including China, India, and Japan. Both fruit and seeds are prized agronomic attributes in wax gourd breeding and production. However, the genetic mechanisms underlying these traits remain largely unexplored. In this study, we observed a strong correlation between fruit size and seed size variation in our mapping population, indicating genetic control by a single gene, BhLS, with large size being dominant over small. Through bulk segregant analysis sequencing and fine mapping with a large F2 population, we precisely located the BhLS gene within a 47.098-kb physical interval on Chromosome 10. Within this interval, only one gene, Bhi10M000649, was identified, showing homology to Arabidopsis HOOKLESS1. A nonsynonymous mutation (G to C) in the second exon of Bhi10M000649 was found to be significantly associated with both fruit and seed size variation in wax gourd. These findings collectively highlight the pleiotropic effect of the BhLS gene in regulating fruit and seed size in wax gourd. Our results offer molecular insights into the variation of fruit and seed size in wax gourd and establish a fundamental framework for breeding wax gourd cultivars with desired traits.
Collapse
Affiliation(s)
- Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, People's Republic of China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Yi Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Jinsen Cai
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
6
|
Mori K, Murakoshi Y, Tamura M, Kunitake S, Nishimura K, Ariga H, Tanaka K, Iuchi S, Yotsui I, Sakata Y, Taji T. Mutations in nuclear pore complex promote osmotolerance in Arabidopsis by suppressing the nuclear translocation of ACQOS and its osmotically induced immunity. FRONTIERS IN PLANT SCIENCE 2024; 15:1304366. [PMID: 38318497 PMCID: PMC10839096 DOI: 10.3389/fpls.2024.1304366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
We have previously reported a wide variation in salt tolerance among Arabidopsis thaliana accessions and identified ACQOS, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, as the causal gene responsible for the disturbance of acquired osmotolerance induced after mild salt stress. ACQOS is conserved among Arabidopsis osmosensitive accessions, including Col-0. In response to osmotic stress, it induces detrimental autoimmunity, resulting in suppression of osmotolerance, but how ACQOS triggers autoimmunity remains unclear. Here, we screened acquired osmotolerance (aot) mutants from EMS-mutagenized Col-0 seeds and isolated the aot19 mutant. In comparison with the wild type (WT), this mutant had acquired osmotolerance and decreased expression levels of pathogenesis-related genes. It had a mutation in a splicing acceptor site in NUCLEOPORIN 85 (NUP85), which encodes a component of the nuclear pore complex. A mutant with a T-DNA insertion in NUP85 acquired osmotolerance similar to aot19. The WT gene complemented the osmotolerant phenotype of aot19. We evaluated the acquired osmotolerance of five nup mutants of outer-ring NUPs and found that nup96, nup107, and aot19/nup85, but not nup43 or nup133, showed acquired osmotolerance. We examined the subcellular localization of the GFP-ACQOS protein and found that its nuclear translocation in response to osmotic stress was suppressed in aot19. We suggest that NUP85 is essential for the nuclear translocation of ACQOS, and the loss-of-function mutation of NUP85 results in acquired osmotolerance by suppressing ACQOS-induced autoimmunity in response to osmotic stress.
Collapse
Affiliation(s)
- Kento Mori
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yusuke Murakoshi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Masashi Tamura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoru Kunitake
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kohji Nishimura
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Hirotaka Ariga
- Department of Plant Sciences, Institute of Agrobiological Science, NARO, Tsukuba, Ibaraki, Japan
| | - Keisuke Tanaka
- Nodai Genome Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoshi Iuchi
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
7
|
Ma L, Li X, Zhang J, Yi D, Li F, Wen H, Liu W, Wang X. MsWRKY33 increases alfalfa (Medicago sativa L.) salt stress tolerance through altering the ROS scavenger via activating MsERF5 transcription. PLANT, CELL & ENVIRONMENT 2023; 46:3887-3901. [PMID: 37656830 DOI: 10.1111/pce.14703] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Alfalfa (Medicago sativa L.) is considered to be the most important forage crop on a global scale. Nevertheless, soil salinity significantly decreases productivity, seriously threatening food security worldwide. One viable strategy is to explore salt stress-responsive factors and elucidate their underlying molecular mechanism, and utilize them in further alfalfa breeding. In the present study, we designated MsWRKY33 as a representative salt stress-responsive factor preferentially expressed in alfalfa roots and leaves. Subsequently, it was demonstrated that MsWRKY33 was localized in the cell nucleus, and functioned as a transcriptional activator of the W-box element. Transgenic alfalfa overexpressing MsWRKY33 displayed enhanced salt stress tolerance and antioxidant activities with no significant difference in other agronomic traits. Transcriptome profiling of MsWRKY33 transgenic alfalfa under control and salt treatment unveiled significantly altered expression of reactive oxygen species (ROS) scavenger genes in transgenic alfalfa. Subsequent examination revealed that MsWRKY33 binded to the promoter of MsERF5, activating its expression and consequently fine-tuning the ROS-scavenging enzyme activity. Furthermore, MsWRKY33 interacted with the functional fragment of MsCaMBP25, which participates in Ca2+ signaling transduction. Collectively, this research offers new insight into the molecular mechanism of alfalfa salt stress tolerance and highlights the potential utility of MsWRKY33 in alfalfa breeding.
Collapse
Affiliation(s)
- Lin Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjin Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengxia Yi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Li
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Beijing Cuihu Agricultural Technology Co., Ltd, Beijing, China
| | - Hongyu Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Xuemin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Yang W, Wang P, Liu T, Nong L, Cheng Z, Su L, Bai W, Deng Y, Chen Z, Liu Z. Fine mapping of the major gene BhHLS1 controlling seed size in wax gourd ( Benincasa hispida). FRONTIERS IN PLANT SCIENCE 2023; 14:1266796. [PMID: 37841615 PMCID: PMC10570438 DOI: 10.3389/fpls.2023.1266796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Introduction/Background The seed size of wax gourds is an important agronomic trait; however, the associated genes have not yet been reported. Methods In this study, we used a high-density genetic map constructed based on F8 recombinant inbred line populations derived from a cross between MY-1 (large seed) and GX-71 (small seed) strains to detect quantitative trait locis (QTLs) for seed-size-related traits in wax gourd over a two-year period. Results Two stable QTLs (qSL10 and qSW10) for seed length (SL) and seed width (SW) on chromosome 10 were repeatedly detected over two years (2021-2022). qSL10 had a phenotypic variation rate of 75.30% and 80.80% in 2021 and 2022, respectively. Whereas, qSW10 had a phenotypic variation rate of 66.60% and 73.80% in 2021 and 2022, respectively. Further, a single nucleotide polymorphism mutation was found to cause early termination of Bch10G006400 (BhHLS1) translation in GX-71 through sequencing analysis of candidate genes. Based on gene functional annotation and quantitative real-time PCR analyses, BhHLS1 encoded a probable N-acetyltransferase HLS1-like protein and its expression level was significantly different between parents. Therefore, BhHLS1 is a major candidate gene associated with a one-factor polymorphism regulating the SL and SW of wax gourds. Finally, based on variation in the BhHLS1 sequence, a cleaved amplified polymorphic sequence marker was developed for the molecular marker-assisted breeding of wax gourds. Discussion Overall, this study is of great significance for the genetic improvement of seed size, verification of gene functions, and cultivation of specific germplasm resources for wax gourds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhengguo Liu
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Fang S, Zhang C, Qiu S, Xiao Y, Chen K, Lv Z, Chen W. SbWRKY75- and SbWRKY41-mediated jasmonic acid signaling regulates baicalin biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1213662. [PMID: 37416887 PMCID: PMC10320291 DOI: 10.3389/fpls.2023.1213662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Introduction Scutellaria baicalensis Georgi is a traditional Chinese medicinal plant with broad pharmacological activities whose main active ingredient is the flavonoid baicalin. Given its medicinal value and increasing market demand, it is essential to improve the plant's baicalin content. Flavonoid biosynthesis is regulated by several phytohormones, primarily jasmonic acid (JA). Methods In this study, we conducted transcriptome deep sequencing analysis of S. baicalensis roots treated with methyl jasmonate for different durations (1, 3, or 7 hours). Leveraging weighted gene co-expression network analysis and transcriptome data, we identified candidate transcription factor genes involved in the regulation of baicalin biosynthesis. To validate the regulatory interactions, we performed functional assays such as yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays. Results Our findings demonstrated that SbWRKY75 directly regulates the expression of the flavonoid biosynthetic gene SbCLL-7, whereas SbWRKY41 directly regulates the expression of two other flavonoid biosynthetic genes, SbF6H and SbUGT, thus regulating baicalin biosynthesis. We also obtained transgenic S.baicalensis plants by somatic embryo induction and determined that overexpressing SbWRKY75 increased baicalin content by 14%, while RNAi reduced it by 22%. Notably, SbWRKY41 indirectly regulated baicalin biosynthesis by modulating the expression of SbMYC2.1, SbJAZ3 and SbWRKY75. Discussion This study provides valuable insights into the molecular mechanisms underlying JA-mediated baicalin biosynthesis in S. baicalensis. Our results highlight the specific roles of transcription factors, namely SbWRKY75 and SbWRKY41, in the regulation of key biosynthetic genes. Understanding these regulatory mechanisms holds significant potential for developing targeted strategies to enhance baicalin content in S. baicalensis through genetic interventions.
Collapse
Affiliation(s)
- Shiyuan Fang
- The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhang
- The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Qiu
- The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaixian Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongyou Lv
- The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wansheng Chen
- The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Wang Q, Sun J, Wang R, Zhang Z, Liu N, Jin H, Zhong B, Zhu Z. The origin, evolution and functional divergence of HOOKLESS1 in plants. Commun Biol 2023; 6:460. [PMID: 37101003 PMCID: PMC10133230 DOI: 10.1038/s42003-023-04849-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Apical hooks are functional innovations only observed in angiosperms, which effectively protect the apical meristems out of damage during plant seedlings penetrating soil covers. Acetyltransferase like protein HOOKLESS1 (HLS1) in Arabidopsis thaliana is required for hook formation. However, the origin and evolution of HLS1 in plants are still not solved. Here, we traced the evolution of HLS1 and found that HLS1 originated in embryophytes. Moreover, we found that Arabidopsis HLS1 delayed plant flowering time, in addition to their well-known functions in apical hook development and newly reported roles in thermomorphogenesis. We further revealed that HLS1 interacted with transcription factor CO and repressed the expression of FT to delay flowering. Lastly, we compared the functional divergence of HLS1 among eudicot (A. thaliana), bryophytes (Physcomitrium patens and Marchantia polymorpha) and lycophyte (Selaginella moellendorffii). Although HLS1 from these bryophytes and lycophyte partially rescued the thermomorphogenesis defects in hls1-1 mutants, the apical hook defects and early flowering phenotypes could not be reversed by either P. patens, M. polymorpha or S. moellendorffii orthologs. These results illustrate that HLS1 proteins from bryophytes or lycophyte are able to modulate thermomorphogenesis phenotypes in A. thaliana likely through a conserved gene regulatory network. Our findings shed new light on the understanding of the functional diversity and origin of HLS1, which controls the most attractive innovations in angiosperms.
Collapse
Affiliation(s)
- Qi Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jingyan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ran Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Nana Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Huanhuan Jin
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
11
|
Xiao K, Qiao K, Cui W, Xu X, Pan H, Wang F, Wang S, Yang F, Xuan Y, Li A, Han X, Song Z, Liu J. Comparative transcriptome profiling reveals the importance of GmSWEET15 in soybean susceptibility to Sclerotinia sclerotiorum. Front Microbiol 2023; 14:1119016. [PMID: 36778863 PMCID: PMC9909833 DOI: 10.3389/fmicb.2023.1119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Soybean sclerotinia stem rot (SSR) is a disease caused by Sclerotinia sclerotiorum that causes incalculable losses in soybean yield each year. Considering the lack of effective resistance resources and the elusive resistance mechanisms, we are urged to develop resistance genes and explore their molecular mechanisms. Here, we found that loss of GmSWEET15 enhanced the resistance to S. sclerotiorum, and we explored the molecular mechanisms by which gmsweet15 mutant exhibit enhanced resistance to S. sclerotiorum by comparing transcriptome. At the early stage of inoculation, the wild type (WT) showed moderate defense response, whereas gmsweet15 mutant exhibited more extensive and intense transcription reprogramming. The gmsweet15 mutant enriched more biological processes, including the secretory pathway and tetrapyrrole metabolism, and it showed stronger changes in defense response, protein ubiquitination, MAPK signaling pathway-plant, plant-pathogen interaction, phenylpropanoid biosynthesis, and photosynthesis. The more intense and abundant transcriptional reprogramming of gmsweet15 mutant may explain how it effectively delayed colonization by S. sclerotiorum. In addition, we identified common and specific differentially expressed genes between WT and gmsweet15 mutant after inoculation with S. sclerotiorum, and gene sets and genes related to gmsweet15_24 h were identified through Gene Set Enrichment Analysis. Moreover, we constructed the protein-protein interaction network and gene co-expression networks and identified several groups of regulatory networks of gmsweet15 mutant in response to S. sclerotiorum, which will be helpful for the discovery of candidate functional genes. Taken together, our results elucidate molecular mechanisms of delayed colonization by S. sclerotiorum after loss of GmSWEET15 in soybean, and we propose novel resources for improving resistance to SSR.
Collapse
Affiliation(s)
- Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Kaibin Qiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Wenjing Cui
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xun Xu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Fengting Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shoudong Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Feng Yang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Anmo Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xiao Han
- College of Plant Sciences, Jilin University, Changchun, China
| | - Zhuojian Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China,*Correspondence: Jinliang Liu,
| |
Collapse
|
12
|
Wang L, Calabria J, Chen HW, Somssich M. The Arabidopsis thaliana-Fusarium oxysporum strain 5176 pathosystem: an overview. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6052-6067. [PMID: 35709954 PMCID: PMC9578349 DOI: 10.1093/jxb/erac263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Fusarium oxysporum is a soil-borne fungal pathogen of several major food crops. Research on understanding the molecular details of fungal infection and the plant's defense mechanisms against this pathogen has long focused mainly on the tomato-infecting F. oxysporum strains and their specific host plant. However, in recent years, the Arabidopsis thaliana-Fusarium oxysporum strain 5176 (Fo5176) pathosystem has additionally been established to study this plant-pathogen interaction with all the molecular biology, genetic, and genomic tools available for the A. thaliana model system. Work on this system has since produced several new insights, especially with regards to the role of phytohormones involved in the plant's defense response, and the receptor proteins and peptide ligands involved in pathogen detection. Furthermore, work with the pathogenic strain Fo5176 and the related endophytic strain Fo47 has demonstrated the suitability of this system for comparative studies of the plant's specific responses to general microbe- or pathogen-associated molecular patterns. In this review, we highlight the advantages of this specific pathosystem, summarize the advances made in studying the molecular details of this plant-fungus interaction, and point out open questions that remain to be answered.
Collapse
Affiliation(s)
- Liu Wang
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jacob Calabria
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hsiang-Wen Chen
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | | |
Collapse
|
13
|
Chen J, Yang S, Fan B, Zhu C, Chen Z. The Mediator Complex: A Central Coordinator of Plant Adaptive Responses to Environmental Stresses. Int J Mol Sci 2022; 23:ijms23116170. [PMID: 35682844 PMCID: PMC9181133 DOI: 10.3390/ijms23116170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 01/25/2023] Open
Abstract
As sessile organisms, plants are constantly exposed to a variety of environmental stresses and have evolved adaptive mechanisms, including transcriptional reprogramming, in order to survive or acclimate under adverse conditions. Over the past several decades, a large number of gene-specific transcription factors have been identified in the transcriptional regulation of plant adaptive responses. The Mediator complex plays a key role in transducing signals from gene-specific transcription factors to the transcription machinery to activate or repress target gene expression. Since its first purification about 15 years ago, plant Mediator complex has been extensively analyzed for its composition and biological functions. Mutants of many plant Mediator subunits are not lethal but are compromised in growth, development and response to biotic and abiotic stress, underscoring a particularly important role in plant adaptive responses. Plant Mediator subunits also interact with partners other than transcription factors and components of the transcription machinery, indicating the complexity of the regulation of gene expression by plant Mediator complex. Here, we present a comprehensive discussion of recent analyses of the structure and function of plant Mediator complex, with a particular focus on its roles in plant adaptive responses to a wide spectrum of environmental stresses and associated biological processes.
Collapse
Affiliation(s)
- Jialuo Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
| | - Su Yang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| |
Collapse
|
14
|
Zhang H, Ye Z, Liu Z, Sun Y, Li X, Wu J, Zhou G, Wan Y. The Cassava NBS-LRR Genes Confer Resistance to Cassava Bacterial Blight. FRONTIERS IN PLANT SCIENCE 2022; 13:790140. [PMID: 35178059 PMCID: PMC8844379 DOI: 10.3389/fpls.2022.790140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/07/2022] [Indexed: 05/25/2023]
Abstract
Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) seriously affects cassava yield. Genes encoding nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains are among the most important disease resistance genes in plants that are specifically involved in the response to diverse pathogens. However, the in vivo roles of NBS-LRR remain unclear in cassava (Manihot esculenta). In this study, we isolated four MeLRR genes and assessed their expression under salicylic acid (SA) treatment and Xam inoculation. Four MeLRR genes positively regulate cassava disease general resistance against Xam via virus-induced gene silencing (VIGS) and transient overexpression. During cassava-Xam interaction, MeLRRs positively regulated endogenous SA and reactive oxygen species (ROS) accumulation and pathogenesis-related gene 1 (PR1) transcripts. Additionally, we revealed that MeLRRs positively regulated disease resistance in Arabidopsis. These pathogenic microorganisms include Pseudomonas syringae pv. tomato, Alternaria brassicicola, and Botrytis cinerea. Our findings shed light on the molecular mechanism underlying the regulation of cassava resistance against Xam inoculation.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zi Ye
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhixin Liu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yu Sun
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xinyu Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Jiao Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Guangzhen Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
15
|
ENAP1 retrains seed germination via H3K9 acetylation mediated positive feedback regulation of ABI5. PLoS Genet 2021; 17:e1009955. [PMID: 34910726 PMCID: PMC8673607 DOI: 10.1371/journal.pgen.1009955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/19/2021] [Indexed: 11/19/2022] Open
Abstract
Histone acetylation is involved in the regulation of seed germination. The transcription factor ABI5 plays an essential role in ABA- inhibited seed germination. However, the molecular mechanism of how ABI5 and histone acetylation coordinate to regulate gene expression during seed germination is still ambiguous. Here, we show that ENAP1 interacts with ABI5 and they co-bind to ABA responsive genes including ABI5 itself. The hypersensitivity to ABA of ENAP1ox seeds germination is recovered by the abi5 null mutation. ABA enhances H3K9Ac enrichment in the promoter regions as well as the transcription of target genes co-bound by ENAP1 and ABI5, which requires both ENAP1 and ABI5. ABI5 gene is directly regulated by ENAP1 and ABI5. In the enap1 deficient mutant, H3K9Ac enrichment and the binding activity of ABI5 in its own promoter region, along with ABI5 transcription and protein levels are all reduced; while in the abi5-1 mutant, the H3K9Ac enrichment and ENAP1 binding activity in ABI5 promoter are decreased, suggesting that ENAP1 and ABI5 function together to regulate ABI5- mediated positive feedback regulation. Overall, our research reveals a new molecular mechanism by which ENAP1 regulates H3K9 acetylation and mediates the positive feedback regulation of ABI5 to inhibit seed germination. To optimize the fitness in natural environment, flowering plants initiate seed germination in the favorable environment and maintain seed dormancy under stressful conditions. Precise mechanisms have been evolved to regulate germination timing to ensure plant adaptation to unfavorable environment. ABA, a major stress hormone in plants, induces seed dormancy and represses seed germination. Epigenetic regulation has been known involved in ABA signaling in which the transcription factor ABI5 acts as a regulatory hub. However, the epigenetic regulation such as histone acetylation on ABI5 transcription remains elusive. In this study, we revealed a new molecular mechanism by which histone binding protein ENAP1 regulates H3K9 acetylation, which mediates the positive feedback regulation of ABI5 in an ABI5 dependent manner to inhibit seed germination.
Collapse
|
16
|
Xu Y, Zhu Z. PIF4 and PIF4-Interacting Proteins: At the Nexus of Plant Light, Temperature and Hormone Signal Integrations. Int J Mol Sci 2021; 22:10304. [PMID: 34638641 PMCID: PMC8509071 DOI: 10.3390/ijms221910304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Basic helix-loop-helix (bHLH) family transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is necessary for plant adaption to light or high ambient temperature. PIF4 directly associates with plenty of its target genes and modulates the global transcriptome to induce or reduce gene expression levels. However, PIF4 activity is tightly controlled by its interacting proteins. Until now, twenty-five individual proteins have been reported to physically interact with PIF4. These PIF4-interacting proteins act together with PIF4 and form a unique nexus for plant adaption to light or temperature change. In this review, we will discuss the different categories of PIF4-interacting proteins, including photoreceptors, circadian clock regulators, hormone signaling components, and transcription factors. These distinct PIF4-interacting proteins either integrate light and/or temperature cues with endogenous hormone signaling, or control PIF4 abundances and transcriptional activities. Taken together, PIF4 and PIF4-interacting proteins play major roles for exogenous and endogenous signal integrations, and therefore establish a robust network for plants to cope with their surrounding environmental alterations.
Collapse
Affiliation(s)
- Yang Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Updates on the Role of ABSCISIC ACID INSENSITIVE 5 (ABI5) and ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTORs (ABFs) in ABA Signaling in Different Developmental Stages in Plants. Cells 2021; 10:cells10081996. [PMID: 34440762 PMCID: PMC8394461 DOI: 10.3390/cells10081996] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
The core abscisic acid (ABA) signaling pathway consists of receptors, phosphatases, kinases and transcription factors, among them ABA INSENSITIVE 5 (ABI5) and ABRE BINDING FACTORs/ABRE-BINDING PROTEINs (ABFs/AREBs), which belong to the BASIC LEUCINE ZIPPER (bZIP) family and control expression of stress-responsive genes. ABI5 is mostly active in seeds and prevents germination and post-germinative growth under unfavorable conditions. The activity of ABI5 is controlled at transcriptional and protein levels, depending on numerous regulators, including components of other phytohormonal pathways. ABFs/AREBs act redundantly in regulating genes that control physiological processes in response to stress during vegetative growth. In this review, we focus on recent reports regarding ABI5 and ABFs/AREBs functions during abiotic stress responses, which seem to be partially overlapping and not restricted to one developmental stage in Arabidopsis and other species. Moreover, we point out that ABI5 and ABFs/AREBs play a crucial role in the core ABA pathway’s feedback regulation. In this review, we also discuss increased stress tolerance of transgenic plants overexpressing genes encoding ABA-dependent bZIPs. Taken together, we show that ABI5 and ABFs/AREBs are crucial ABA-dependent transcription factors regulating processes essential for plant adaptation to stress at different developmental stages.
Collapse
|
18
|
Liu B, Jiang Y, Tang H, Tong S, Lou S, Shao C, Zhang J, Song Y, Chen N, Bi H, Zhang H, Li J, Liu J, Liu H. The ubiquitin E3 ligase SR1 modulates the submergence response by degrading phosphorylated WRKY33 in Arabidopsis. THE PLANT CELL 2021; 33:1771-1789. [PMID: 33616649 PMCID: PMC8254483 DOI: 10.1093/plcell/koab062] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/08/2021] [Indexed: 05/06/2023]
Abstract
Oxygen deprivation caused by flooding activates acclimation responses to stress and restricts plant growth. After experiencing flooding stress, plants must restore normal growth; however, which genes are dynamically and precisely controlled by flooding stress remains largely unknown. Here, we show that the Arabidopsis thaliana ubiquitin E3 ligase SUBMERGENCE RESISTANT1 (SR1) regulates the stability of the transcription factor WRKY33 to modulate the submergence response. SR1 physically interacts with WRKY33 in vivo and in vitro and controls its ubiquitination and proteasomal degradation. Both the sr1 mutant and WRKY33 overexpressors exhibited enhanced submergence tolerance and enhanced expression of hypoxia-responsive genes. Genetic experiments showed that WRKY33 functions downstream of SR1 during the submergence response. Submergence induced the phosphorylation of WRKY33, which enhanced the activation of RAP2.2, a positive regulator of hypoxia-response genes. Phosphorylated WRKY33 and RAP2.2 were degraded by SR1 and the N-degron pathway during reoxygenation, respectively. Taken together, our findings reveal that the on-and-off module SR1-WRKY33-RAP2.2 is connected to the well-known N-degron pathway to regulate acclimation to submergence in Arabidopsis. These two different but related modulation cascades precisely balance submergence acclimation with normal plant growth.
Collapse
Affiliation(s)
- Bao Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuanzhong Jiang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hu Tang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shaofei Tong
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shangling Lou
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chen Shao
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Junlin Zhang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yan Song
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ningning Chen
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hao Bi
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Han Zhang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Junhua Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Author for correspondence:
| |
Collapse
|
19
|
Vega-Vásquez P, Mosier NS, Irudayaraj J. Hormesis-Inducing Essential Oil Nanodelivery System Protects Plants against Broad Host-Range Necrotrophs. ACS NANO 2021; 15:8338-8349. [PMID: 33881823 DOI: 10.1021/acsnano.0c09759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Botrytis cinerea, a broad host-range necrotrophic (BHN) phytopathogen, establishes compatible interactions with hosts by deploying multigene infection strategies, rendering simply inherited resistance ineffective to fight off this pathogen. Since essential oils (EOs) serve as intermediators during phytobiome communication, we hypothesize that they have the potential to enhance the quantitative disease resistance against BHN by eliciting the adaptive stress response (hormesis) in plants. However, using EOs is challenging due to their poor solubility in water. Nanoemulsification of EOs enhances not only the solubility of EOs but also their potency and stability. Here, we demonstrate the potential use of essential oil nanoemulsions (EONEs) to control infections caused by BHN. Using basic engineering principles of nanocarrier design, we demonstrate the efficacy of a robust EONEs design for controlling B. cinerea infection in a model plant, Arabidopsis thaliana. Our nanoemulsion delivery system significantly enhanced the disease resistance of the host by reducing the necrotic area by up to 50% compared to untreated plants. RNA-seq analysis indicated that successful treatments upregulated autophagy, ROS scavenging, and activation of the jasmonic acid signaling pathway.
Collapse
Affiliation(s)
- Pablo Vega-Vásquez
- Laboratory of Renewable Resources Engineering (LORRE), Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nathan S Mosier
- Laboratory of Renewable Resources Engineering (LORRE), Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
AtWAKL10, a Cell Wall Associated Receptor-Like Kinase, Negatively Regulates Leaf Senescence in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22094885. [PMID: 34063046 PMCID: PMC8124439 DOI: 10.3390/ijms22094885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/22/2023] Open
Abstract
Receptor-like kinases (RLKs) constitute a large group of cell surface receptors that play crucial roles in multiple biological processes. However, the function of most RLKs in plants has not been extensively explored, and much less for the class of cell wall associated kinases (WAKs) and WAK-like kinases (WAKLs). In this study, analyses of developmental expression patterns uncovered a putative role of AtWAKL10 in modulating leaf senescence, which was further investigated at physiological and molecular levels. The expression level of AtWAKL10 increased with the developmental progression and was rapidly upregulated in senescing leaf tissues. The promoter of AtWAKL10 contains various defense and hormone responsive elements, and its expression could be significantly induced by exogenous ABA, JA and SA. Moreover, the loss-of-function atwakl10 mutant showed earlier senescence along the course of natural development and accelerated leaf senescence under darkness and hormonal stresses, while plants overexpressing AtWAKL10 showed an opposite trend. Additionally, some defense and senescence related WRKY transcription factors could bind to the promoter of AtWAKL10. In addition, deletion and overexpression of AtWAKL10 caused several specific transcriptional alterations, including genes involved in cell extension, cell wall modification, defense response and senescence related WRKYs, which may be implicated in regulatory mechanisms adopted by AtWAKL10 in controlling leaf senescence. Taken together, these results revealed that AtWAKL10 negatively regulated leaf senescence.
Collapse
|
21
|
Zhang Y, Shi C, Fu W, Gu X, Qi Z, Xu W, Xia G. Arabidopsis MED18 Interaction With RNA Pol IV and V Subunit NRPD2a in Transcriptional Regulation of Plant Immune Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:692036. [PMID: 34691090 PMCID: PMC8527527 DOI: 10.3389/fpls.2021.692036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/10/2021] [Indexed: 05/02/2023]
Abstract
Mediator is a conserved multiprotein complex important for transcription by RNA polymerase II (Pol II). Arabidopsis Mediator subunit MED18 regulates flowering, hormone signaling and plant immunity. Here we report that Arabidopsis MED18 interacted with NUCLEAR RNA POLYMERASE D2a (NRPD2a), the second largest subunit of the nuclear Pol IV and V, which function in RNA-directed DNA methylation and epigenetic regulation of gene expression. Mutants for both MED18 and NRPD2a were compromised in resistance to necrotrophic fungal pathogen Botrytis cinerea. Mutants for NRPD1a, the largest subunit of Pol IV, were also compromised in resistance to Botrytis, supporting a critical role of Pol IV and V in plant defense against Botrytis. Increased Botrytis susceptibility of both the med18 and nrpd2a mutants were associated with reduced accumulation of reactive oxygen species, which are known to promote resistance to Botrytis. Both the basal and pathogen-induced levels of salicylic acid and jasmonic acid were also significantly altered in the med18 and nrpd2a mutants. Transcriptome profiling found that MED18 and NRPD2a affected both unique and overlapping sets of genes in a broad spectrum of biological processes and pathways that influence plant-pathogen interaction. The genes altered in expression in the med18 and nrpd2a mutants include disease resistance proteins, salicylic acid and jasmonic acid signaling and responses, which are known to affect resistance to necrotrophic pathogens. The novel interaction between subunits of Mediator and plant-specific RNA polymerases provides a new mechanism for epigenetic regulation of resistance and expression of defense-related genes in plant immunity.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, China
- *Correspondence: Yan Zhang,
| | - Chengchen Shi
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, China
| | - Weihong Fu
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, China
| | - Xiaojing Gu
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, China
| | - Ziyang Qi
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, China
| | - Weizhong Xu
- Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Gengshou Xia
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, China
- Gengshou Xia,
| |
Collapse
|
22
|
Ostrowska-Mazurek A, Kasprzak P, Kubala S, Zaborowska M, Sobieszczuk-Nowicka E. Epigenetic Landmarks of Leaf Senescence and Crop Improvement. Int J Mol Sci 2020; 21:ijms21145125. [PMID: 32698545 PMCID: PMC7404090 DOI: 10.3390/ijms21145125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023] Open
Abstract
This review synthesizes knowledge on epigenetic regulation of leaf senescence and discusses the possibility of using this knowledge to improve crop quality. This control level is implemented by different but interacting epigenetic mechanisms, including DNA methylation, covalent histone modifications, and non-covalent chromatin remodeling. The genetic and epigenetic changes may act alone or together and regulate the gene expression, which may result in heritable (stress memory) changes and may lead to crop survival. In the review, the question also arises whether the mitotically stable epigenetic information can be used for crop improvement. The barley crop model for early and late events of dark-induced leaf senescence (DILS), where the point of no return was defined, revealed differences in DNA and RNA modifications active in DILS compared to developmental leaf senescence. This suggests the possibility of a yet-to-be-discovered epigenetic-based switch between cell survival and cell death. Conclusions from the analyzed research contributed to the hypothesis that chromatin-remodeling mechanisms play a role in the control of induced leaf senescence. Understanding this mechanism in crops might provide a tool for further exploitation toward sustainable agriculture: so-called epibreeding.
Collapse
Affiliation(s)
- Agnieszka Ostrowska-Mazurek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.O.-M.); (P.K.)
| | - Piotr Kasprzak
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.O.-M.); (P.K.)
| | - Szymon Kubala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland; (S.K.); (M.Z.)
| | - Magdalena Zaborowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland; (S.K.); (M.Z.)
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (A.O.-M.); (P.K.)
- Correspondence: ; Tel.: +48-61-829-5892
| |
Collapse
|
23
|
Müller LM. Timing Is Everything: MND1 Regulates Meristem Phase Change in Barley. PLANT PHYSIOLOGY 2020; 183:816-817. [PMID: 32611822 PMCID: PMC7333725 DOI: 10.1104/pp.20.00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
24
|
Walla A, Wilma van Esse G, Kirschner GK, Guo G, Brünje A, Finkemeier I, Simon R, von Korff M. An Acyl-CoA N-Acyltransferase Regulates Meristem Phase Change and Plant Architecture in Barley. PLANT PHYSIOLOGY 2020; 183:1088-1109. [PMID: 32376761 PMCID: PMC7333700 DOI: 10.1104/pp.20.00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/19/2020] [Indexed: 05/04/2023]
Abstract
The modification of shoot architecture and increased investment into reproductive structures is key for crop improvement and is achieved through coordinated changes in the development and determinacy of different shoot meristems. A fundamental question is how the development of different shoot meristems is genetically coordinated to optimize the balance between vegetative and reproductive organs. Here we identify the MANY NODED DWARF1 (HvMND1) gene as a major regulator of plant architecture in barley (Hordeum vulgare). The mnd1.a mutant displayed an extended vegetative program with increased phytomer, leaf, and tiller production but a reduction in the number and size of grains. The induction of vegetative structures continued even after the transition to reproductive growth, resulting in a marked increase in longevity. Using mapping by RNA sequencing, we found that the HvMND1 gene encodes an acyl-CoA N-acyltransferase that is predominately expressed in developing axillary meristems and young inflorescences. Exploration of the expression network modulated by HvMND1 revealed differential expression of the developmental microRNAs miR156 and miR172 and several key cell cycle and developmental genes. Our data suggest that HvMND1 plays a significant role in the coordinated regulation of reproductive phase transitions, thereby promoting reproductive growth and whole plant senescence in barley.
Collapse
Affiliation(s)
- Agatha Walla
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs", 40225 Düsseldorf, Germany
| | - G Wilma van Esse
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs", 40225 Düsseldorf, Germany
- Laboratory for Molecular Biology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Gwendolyn K Kirschner
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs", 40225 Düsseldorf, Germany
- Institute for Developmental Genetics, Heinrich-Heine-Universität Düsseldorf, 40255 Düsseldorf, Germany
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Rüdiger Simon
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs", 40225 Düsseldorf, Germany
- Institute for Developmental Genetics, Heinrich-Heine-Universität Düsseldorf, 40255 Düsseldorf, Germany
| | - Maria von Korff
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs", 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Genetic Network between Leaf Senescence and Plant Immunity: Crucial Regulatory Nodes and New Insights. PLANTS 2020; 9:plants9040495. [PMID: 32294898 PMCID: PMC7238237 DOI: 10.3390/plants9040495] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Leaf senescence is an essential physiological process that is accompanied by the remobilization of nutrients from senescent leaves to young leaves or other developing organs. Although leaf senescence is a genetically programmed process, it can be induced by a wide variety of biotic and abiotic factors. Accumulating studies demonstrate that senescence-associated transcription factors (Sen-TFs) play key regulatory roles in controlling the initiation and progression of leaf senescence process. Interestingly, recent functional studies also reveal that a number of Sen-TFs function as positive or negative regulators of plant immunity. Moreover, the plant hormone salicylic acid (SA) and reactive oxygen species (ROS) have been demonstrated to be key signaling molecules in regulating leaf senescence and plant immunity, suggesting that these two processes share similar or common regulatory networks. However, the interactions between leaf senescence and plant immunity did not attract sufficient attention to plant scientists. Here, we review the regulatory roles of SA and ROS in biotic and abiotic stresses, as well as the cross-talks between SA/ROS and other hormones in leaf senescence and plant immunity, summarize the transcriptional controls of Sen-TFs on SA and ROS signal pathways, and analyze the cross-regulation between senescence and immunity through a broad literature survey. In-depth understandings of the cross-regulatory mechanisms between leaf senescence and plant immunity will facilitate the cultivation of high-yield and disease-resistant crops through a molecular breeding strategy.
Collapse
|
26
|
Li X, Guo W, Li J, Yue P, Bu H, Jiang J, Liu W, Xu Y, Yuan H, Li T, Wang A. Histone Acetylation at the Promoter for the Transcription Factor PuWRKY31 Affects Sucrose Accumulation in Pear Fruit. PLANT PHYSIOLOGY 2020; 182:2035-2046. [PMID: 32047049 PMCID: PMC7140945 DOI: 10.1104/pp.20.00002] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/27/2020] [Indexed: 05/18/2023]
Abstract
Sugar content is an important trait of fleshy fruit, and elevating Suc levels is a major goal in horticultural crop breeding. Here, we examined the sugar content in two varieties of the Ussurian pear (Pyrus ussuriensis), 'Nanguo' (NG) and its bud sport (BNG), and we found that Suc content was higher in BNG fruit than in NG fruit. We compared the transcriptomes of the two varieties using RNA sequencing and identified a SWEET (Sugars Will Eventually be Exported Transporter) gene, PuSWEET15, expressed at higher levels in BNG fruit. Heterologous expression of PuSWEET15 in a SUSY7/ura yeast (Saccharomyces cerevisiae) strain showed that PuSWEET15 is an active Suc transporter. Overexpression of PuSWEET15 in NG pear fruit increased Suc content, while silencing of PuSWEET15 in BNG fruit decreased Suc content. The WRKY transcription factor PuWRKY31 was also expressed more highly in BNG fruit than in NG fruit, and we found that PuWRKY31 bound to the PuSWEET15 promoter and induced its transcription. The histone acetylation level of the PuWRKY31 promoter was higher in BNG fruit, suggesting a mechanism by which Suc levels can be elevated.
Collapse
Affiliation(s)
- Xinyue Li
- College of Horticulture, Shenyang Agricultural University, 110866 Shenyang, China
| | - Wei Guo
- College of Horticulture, Shenyang Agricultural University, 110866 Shenyang, China
| | - Juncai Li
- LiaoNing Institute of Pomology, 115009 Xiongyue, China
| | - Pengtao Yue
- College of Horticulture, Shenyang Agricultural University, 110866 Shenyang, China
| | - Haidong Bu
- College of Horticulture, Shenyang Agricultural University, 110866 Shenyang, China
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, 157000 Mudanjiang, China
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, 110866 Shenyang, China
| | - Weiting Liu
- College of Horticulture, Shenyang Agricultural University, 110866 Shenyang, China
| | - Yaxiu Xu
- College of Horticulture, Shenyang Agricultural University, 110866 Shenyang, China
| | - Hui Yuan
- College of Horticulture, Shenyang Agricultural University, 110866 Shenyang, China
| | - Tong Li
- College of Horticulture, Shenyang Agricultural University, 110866 Shenyang, China
| | - Aide Wang
- College of Horticulture, Shenyang Agricultural University, 110866 Shenyang, China
| |
Collapse
|
27
|
Gray SB, Rodriguez‐Medina J, Rusoff S, Toal TW, Kajala K, Runcie DE, Brady SM. Translational regulation contributes to the elevated CO 2 response in two Solanum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:383-397. [PMID: 31797460 PMCID: PMC7216843 DOI: 10.1111/tpj.14632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 05/12/2023]
Abstract
Understanding the impact of elevated CO2 (eCO2 ) in global agriculture is important given climate change projections. Breeding climate-resilient crops depends on genetic variation within naturally varying populations. The effect of genetic variation in response to eCO2 is poorly understood, especially in crop species. We describe the different ways in which Solanum lycopersicum and its wild relative S. pennellii respond to eCO2 , from cell anatomy, to the transcriptome, and metabolome. We further validate the importance of translational regulation as a potential mechanism for plants to adaptively respond to rising levels of atmospheric CO2 .
Collapse
Affiliation(s)
- Sharon B. Gray
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Joel Rodriguez‐Medina
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Samuel Rusoff
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Ted W. Toal
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Kaisa Kajala
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
- Present address:
Plant EcophysiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Daniel E. Runcie
- Department of Plant SciencesUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| | - Siobhan M. Brady
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| |
Collapse
|
28
|
Jin H, Lin J, Zhu Z. PIF4 and HOOKLESS1 Impinge on Common Transcriptome and Isoform Regulation in Thermomorphogenesis. PLANT COMMUNICATIONS 2020; 1:100034. [PMID: 33367235 PMCID: PMC7748007 DOI: 10.1016/j.xplc.2020.100034] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/12/2019] [Accepted: 02/14/2020] [Indexed: 05/04/2023]
Abstract
High temperature activates the transcription factor PHYTOCHROME-INTERACTING FACTOR4 (PIF4) to stimulate auxin signaling, which causes hypocotyl elongation and leaf hyponasty (thermomorphogenesis). HOOKLESS1 (HLS1) is a recently reported positive regulator of thermomorphogenesis, but the molecular mechanisms by which HLS1 regulates thermomorphogenesis remain unknown. In this study, we initially compared PIF4- and/or HLS1-dependent differential gene expression (DEG) upon high-temperature treatment. We found that a large number of genes are coregulated by PIF4 and HLS1, especially genes involved in plant growth or defense responses. Moreover, we found that HLS1 interacts with PIF4 to form a regulatory module and that, among the HLS1-PIF4-coregulated genes, 27.7% are direct targets of PIF4. We also identified 870 differentially alternatively spliced genes (DASGs) in wild-type plants under high temperature. Interestingly, more than half of these DASG events (52.4%) are dependent on both HLS1 and PIF4, and the spliceosome-defective mutant plantsexhibit a hyposensitive response to high temperature, indicating that DASGs are required for thermomorphogenesis. Further comparative analyses showed that the HLS1/PIF4-coregulated DEGs and DASGs exhibit almost no overlap, suggesting that high temperature triggers two distinct strategies to control plant responses and thermomorphogenesis. Taken together, these results demonstrate that the HLS1-PIF4 module precisely controls both transcriptional and posttranscriptional regulation during plant thermomorphogenesis.
Collapse
Affiliation(s)
- Huanhuan Jin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingya Lin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
- Corresponding author
| |
Collapse
|
29
|
Hussein NK, Sabr LJ, Lobo E, Booth J, Ariens E, Detchanamurthy S, Schenk PM. Suppression of Arabidopsis Mediator Subunit-Encoding MED18 Confers Broad Resistance Against DNA and RNA Viruses While MED25 Is Required for Virus Defense. FRONTIERS IN PLANT SCIENCE 2020; 11:162. [PMID: 32194589 PMCID: PMC7064720 DOI: 10.3389/fpls.2020.00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/03/2020] [Indexed: 05/06/2023]
Abstract
Mediator subunits play key roles in numerous physiological pathways and developmental processes in plants. Arabidopsis Mediator subunits, MED18 and MED25, have previously been shown to modulate disease resistance against fungal and bacterial pathogens through their role in jasmonic acid (JA) signaling. In this study, Arabidopsis mutant plants of the two Mediator subunits, med18 and med25, were tested against three ssRNA viruses and one dsDNA virus belonging to four different families: Turnip mosaic virus (TuMV), Cauliflower mosaic virus (CaMV), Alternanthera mosaic virus (AltMV), and Cucumber mosaic virus (CMV). Although both subunits are utilized in JA signaling, they occupy different positions (Head and Tail domain, respectively) in the Mediator complex and their absence affected virus infection differently. Arabidopsis med18 plants displayed increased resistance to RNA viral infection and a trend against the DNA virus, while med25 mutants displayed increased susceptibility to all viruses tested at 2 and 14 days post inoculations. Defense marker gene expression profiling of mock- and virus-inoculated plants showed that med18 and med25 mutants exhibited an upregulated SA pathway upon virus infection at 2 dpi for all viruses tested. JA signaling was also suppressed in med18 plants after virus infection, independent of which virus infected the plants. The upregulation of SA signaling and suppression of JA signaling in med18 may have led to more targeted oxidative burst and programmed cell death to control viruses. However, the susceptibility exhibited by med25 mutants suggests that other factors, such as a weakened RNAi pathway, might play a role in the observed susceptibility. We conclude that MED18 and MED25 have clear and opposite effects on accumulation of plant viruses. MED18 is required for normal virus infection, while MED25 is important for defense against virus infection. Results from this study provide a better understanding of the role of Mediator subunits during plant-virus interactions, viral disease progression and strategies to develop virus resistant plants.
Collapse
Affiliation(s)
- Nasser K. Hussein
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
- Plant Protection Department, College of Agriculture, University of Baghdad, Baghdad, Iraq
- *Correspondence: Nasser K. Hussein,
| | - Layla J. Sabr
- Plant Protection Department, College of Agriculture, University of Baghdad, Baghdad, Iraq
| | - Edina Lobo
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - James Booth
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - Emily Ariens
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - Swaminathan Detchanamurthy
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Cui F, Wu W, Wang K, Zhang Y, Hu Z, Brosché M, Liu S, Overmyer K. Cell death regulation but not abscisic acid signaling is required for enhanced immunity to Botrytis in Arabidopsis cuticle-permeable mutants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5971-5984. [PMID: 31328223 PMCID: PMC6812726 DOI: 10.1093/jxb/erz345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 05/21/2023]
Abstract
Prevailing evidence indicates that abscisic acid (ABA) negatively influences immunity to the fungal pathogen Botrytis cinerea in most but not all cases. ABA is required for cuticle biosynthesis, and cuticle permeability enhances immunity to Botrytis via unknown mechanisms. This complex web of responses obscures the role of ABA in Botrytis immunity. Here, we addressed the relationships between ABA sensitivity, cuticle permeability, and Botrytis immunity in the Arabidopsis thaliana ABA-hypersensitive mutants protein phosphatase2c quadruple mutant (pp2c-q) and enhanced response to aba1 (era1-2). Neither pp2c-q nor era1-2 exhibited phenotypes predicted by the known roles of ABA; conversely, era1-2 had a permeable cuticle and was Botrytis resistant. We employed RNA-seq analysis in cuticle-permeable mutants of differing ABA sensitivities and identified a core set of constitutively activated genes involved in Botrytis immunity and susceptibility to biotrophs, independent of ABA signaling. Furthermore, botrytis susceptible1 (bos1), a mutant with deregulated cell death and enhanced ABA sensitivity, suppressed the Botrytis immunity of cuticle permeable mutants, and this effect was linearly correlated with the extent of spread of wound-induced cell death in bos1. Overall, our data demonstrate that Botrytis immunity conferred by cuticle permeability can be genetically uncoupled from PP2C-regulated ABA sensitivity, but requires negative regulation of a parallel ABA-dependent cell-death pathway.
Collapse
Affiliation(s)
- Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Correspondence: or
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Kai Wang
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Yuan Zhang
- Library of Donghu Campus, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Correspondence: or
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Jin H, Zhu Z. Dark, Light, and Temperature: Key Players in Plant Morphogenesis. PLANT PHYSIOLOGY 2019; 180:1793-1802. [PMID: 31113832 PMCID: PMC6670080 DOI: 10.1104/pp.19.00331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/14/2019] [Indexed: 05/20/2023]
Abstract
Recent advances in plant thermomorphogenesis under different light conditions reveal the roles of plant photoreceptors in the control of thermomorphogenesis
Collapse
Affiliation(s)
- Huanhuan Jin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
32
|
Zhai Q, Li C. The plant Mediator complex and its role in jasmonate signaling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3415-3424. [PMID: 31089685 PMCID: PMC6609880 DOI: 10.1093/jxb/erz233] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 05/20/2023]
Abstract
The Mediator complex is an essential, multisubunit transcriptional coactivator that is highly conserved in eukaryotes. Mediator interacts with gene-specific transcription factors, the RNA polymerase II transcriptional machinery, as well as several other factors involved in transcription, and acts as an integral hub to regulate various aspects of transcription. Recent studies of the plant Mediator complex have established that it functions in diverse aspects of plant development and fitness. Jasmonate (JA) is an oxylipin-derived plant hormone that regulates plant immunity and development. The basic helix-loop-helix transcription factor MYC2, which is a master regulator of JA signaling, orchestrates genome-wide transcriptional reprogramming of plant cells to coordinate defense- and growth-related processes. Here, we review the function of the plant Mediator complex in regulating JA signaling. We focus on the multifunctional Mediator subunit MED25, which emerges as an integrative hub for the transcriptional regulation of jasmonate signaling.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Correspondence:
| |
Collapse
|
33
|
Chen X, Chen R, Wang Y, Wu C, Huang J. Genome-Wide Identification of WRKY Transcription Factors in Chinese jujube ( Ziziphus jujuba Mill.) and Their Involvement in Fruit Developing, Ripening, and Abiotic Stress. Genes (Basel) 2019; 10:genes10050360. [PMID: 31083435 PMCID: PMC6563138 DOI: 10.3390/genes10050360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/28/2022] Open
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is an economically important fruit crop in China and mainly cultivated on land with high salinity and drought conditions in northern China. WRKY transcription factors (TFs) are involved in plant development and in responses to multiple abiotic stresses. In this study, we identified 61 and 52 putative ZjWRKY TFs in ‘Junzao’ and ‘Dongzao’ at the genome-wide level. Tissue expression profiling showed that 7 genes were constitutively expressed at high level in all tissues of ‘Junzao’. Transcriptome analysis revealed that 39 ZjWRKY genes were expressed during ‘Junzao’ jujube fruit ripening. Among these genes, the transcript abundance of 19 genes were differentially expressed between ‘Junzao’ and ‘Qingjiansuanzao’ fruit. In addition, RT-qPCR analyses revealed that 30, 14, and 18 ZjWRKY genes responded to drought, NaCl, and ABA treatments, respectively. Taken together, ZjWRKY genes expression dynamics during jujube fruit development, ripening, and their differences between jujube and wild jujube would provide insights into their possible roles regulating fruit ripening. In addition, those ZjWRKY genes responded strongly to drought and salt stress, which provide candidate ZjWRKY genes for facilitating tolerance breeding.
Collapse
Affiliation(s)
- Xin Chen
- Key Comprehensive Laboratory of Forest for Shaanxi Province, College of Forestry, Northwest A&F University, Yangling 712100, China.
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Plant Science, Tarim University, Alaer 843300, China.
| | - Ruihong Chen
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yanan University, Yanan 716000, China.
| | - Yanfeng Wang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yanan University, Yanan 716000, China.
| | - Cuiyun Wu
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Plant Science, Tarim University, Alaer 843300, China.
| | - Jian Huang
- Key Comprehensive Laboratory of Forest for Shaanxi Province, College of Forestry, Northwest A&F University, Yangling 712100, China.
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
34
|
Mücke S, Reschke M, Erkes A, Schwietzer CA, Becker S, Streubel J, Morgan RD, Wilson GG, Grau J, Boch J. Transcriptional Reprogramming of Rice Cells by Xanthomonas oryzae TALEs. FRONTIERS IN PLANT SCIENCE 2019; 10:162. [PMID: 30858855 PMCID: PMC6397873 DOI: 10.3389/fpls.2019.00162] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/29/2019] [Indexed: 05/12/2023]
Abstract
Rice-pathogenic Xanthomonas oryzae bacteria cause severe harvest loss and challenge a stable food supply. The pathogen virulence relies strongly on bacterial TALE (transcription activator-like effector) proteins that function as transcriptional activators inside the plant cell. To understand the plant targets of TALEs, we determined the genome sequences of the Indian X. oryzae pv. oryzae (Xoo) type strain ICMP 3125T and the strain PXO142 from the Philippines. Their complete TALE repertoire was analyzed and genome-wide TALE targets in rice were characterized. Integrating computational target predictions and rice transcriptomics data, we were able to verify 12 specifically induced target rice genes. The TALEs of the Xoo strains were reconstructed and expressed in a TALE-free Xoo strain to attribute specific induced genes to individual TALEs. Using reporter assays, we could show that individual TALEs act directly on their target promoters. In particular, we show that TALE classes assigned by AnnoTALE reflect common target genes, and that TALE classes of Xoo and the related pathogen X. oryzae pv. oryzicola share more common target genes than previously believed. Taken together, we establish a detailed picture of TALE-induced plant processes that significantly expands our understanding of X. oryzae virulence strategies and will facilitate the development of novel resistances to overcome this important rice disease.
Collapse
Affiliation(s)
- Stefanie Mücke
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Maik Reschke
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Annett Erkes
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia-Alice Schwietzer
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Sebastian Becker
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Jana Streubel
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | | | | | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jens Boch
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
35
|
Wang Y, Schuck S, Wu J, Yang P, Döring AC, Zeier J, Tsuda K. A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance. THE PLANT CELL 2018; 30:2480-2494. [PMID: 30228125 PMCID: PMC6241261 DOI: 10.1105/tpc.18.00547] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/21/2018] [Accepted: 09/12/2018] [Indexed: 05/19/2023]
Abstract
Plants induce systemic acquired resistance (SAR) upon localized exposure to pathogens. Pipecolic acid (Pip) production via AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) is key for SAR establishment. Here, we report a positive feedback loop important for SAR induction in Arabidopsis thaliana We showed that local activation of the MAP kinases MPK3 and MPK6 is sufficient to trigger Pip production and mount SAR. Consistent with this, mutations in MPK3 or MPK6 led to compromised Pip accumulation upon inoculation with the bacterial pathogen Pseudomonas syringae pv tomato DC3000 (Pto) AvrRpt2, which triggers strong sustained MAPK activation. By contrast, P. syringae pv maculicola and Pto, which induce transient MAPK activation, trigger Pip biosynthesis and SAR independently of MPK3/6. ALD1 expression, Pip accumulation, and SAR were compromised in mutants defective in the MPK3/6-regulated transcription factor WRKY33. Chromatin immunoprecipitation showed that WRKY33 binds to the ALD1 promoter. We found that Pip triggers activation of MPK3 and MPK6 and that MAPK activation after Pto AvrRpt2 inoculation is compromised in wrky33 and ald1 mutants. Collectively, our results reveal a positive regulatory loop consisting of MPK3/MPK6, WRKY33, ALD1, and Pip in SAR induction and suggest the existence of distinct SAR activation pathways that converge at the level of Pip biosynthesis.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stefan Schuck
- Department of Molecular Ecophysiology of Plants, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jingni Wu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ping Yang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Anne-Christin Döring
- Department of Molecular Ecophysiology of Plants, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Department of Molecular Ecophysiology of Plants, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
36
|
The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA. PLoS One 2018. [PMID: 29513733 PMCID: PMC5841781 DOI: 10.1371/journal.pone.0193458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Mediator complex is at the core of transcriptional regulation and plays a central role in plant immunity. The MEDIATOR25 (MED25) subunit of Arabidopsis thaliana regulates jasmonate-dependent resistance to Botrytis cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor of jasmonate signaling, MYC2. Another Mediator subunit, MED8, acts independently or together with MED25 in plant immunity. However, unlike MED25, the underlying action mechanisms of MED8 in regulating B. cinerea resistance are still unknown. Here, we demonstrated that MED8 regulated plant immunity to B. cinerea through interacting with another bHLH transcription factor, FAMA, which was previously shown to control the final proliferation/differentiation switch during stomatal development. Our research demonstrates that FAMA is also an essential component of B. cinerea resistance. The fama loss-of-function mutants (fama-1 and fama-2) increased susceptibility to B. cinerea infection and reduced defense-gene expression. On the contrary, transgenic lines constitutively overexpressing FAMA showed opposite B. cinerea responses compared with the fama loss-of-function mutants. FAMA-overexpressed plants displayed enhanced resistance to B. cinerea infection and increased expression levels of defensin genes following B. cinerea treatment. Genetic analysis of MED8 and FAMA suggested that FAMA-regulated pathogen resistance was dependent on MED8. In addition, MED8 and FAMA were both associated with the G-box region in the promoter of ORA59. Our findings indicate that the MED8 subunit of the A. thaliana Mediator regulates plant immunity to B. cinerea through interacting with the transcription factor FAMA, which was discovered to be a key component in B. cinerea resistance.
Collapse
|
37
|
Wang Y, Hu Z, Zhang J, Yu X, Guo JE, Liang H, Liao C, Chen G. Silencing SlMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion. Sci Rep 2018; 8:3285. [PMID: 29459728 PMCID: PMC5818486 DOI: 10.1038/s41598-018-21679-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/05/2018] [Indexed: 01/04/2023] Open
Abstract
Mediator complex, a conserved multi-protein, is necessary for controlling RNA polymerase II (Pol II) transcription in eukaryotes. Given little is known about them in tomato, a tomato Mediator subunit 18 gene was isolated and named SlMED18. To further explore the function of SlMED18, the transgenic tomato plants targeting SlMED18 by RNAi-mediated gene silencing were generated. The SlMED18-RNAi lines exhibited multiple developmental defects, including smaller size and slower growth rate of plant and significantly smaller compound leaves. The contents of endogenous bioactive GA3 in SlMED18 silenced lines were slightly less than that in wild type. Furthermore, qRT-PCR analysis indicated that expression of gibberellins biosynthesis genes such as SlGACPS and SlGA20x2, auxin transport genes (PIN1, PIN4, LAX1 and LAX2) and several key regulators, KNOX1, KNOX2, PHAN and LANCEOLATE(LA), which involved in the leaf morphogenesis were significantly down-regulated in SlMED18-RNAi lines. These results illustrated that SlMED18 plays an essential role in regulating plant internode elongation and leaf expansion in tomato plants and it acts as a key positive regulator of gibberellins biosynthesis and signal transduction as well as auxin proper transport signalling. These findings are the basis for understanding the function of the individual Mediator subunits in tomato.
Collapse
Affiliation(s)
- Yunshu Wang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Jianling Zhang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - XiaoHui Yu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Jun-E Guo
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Honglian Liang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Changguang Liao
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
38
|
Abstract
Our understanding of the epigenetic mechanisms that regulate gene expression has been largely increased in recent years by the development and refinement of different techniques. This has revealed that gene transcription is highly influenced by epigenetic mechanisms, i.e., those that do not involve changes in the genome sequence, but rather in nuclear architecture, chromosome conformation and histone and DNA modifications. Our understanding of how these different levels of epigenetic regulation interact with each other and with classical transcription-factor based gene regulation to influence gene transcription has just started to emerge. This review discusses the latest advances in unraveling the complex interactions between different types of epigenetic regulation and transcription factor activity, with special attention to the approaches that can be used to study these interactions.
Collapse
Affiliation(s)
- Marian Bemer
- Department of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| |
Collapse
|
39
|
Zhu Y, Wang B, Tang K, Hsu CC, Xie S, Du H, Yang Y, Tao WA, Zhu JK. An Arabidopsis Nucleoporin NUP85 modulates plant responses to ABA and salt stress. PLoS Genet 2017; 13:e1007124. [PMID: 29232718 PMCID: PMC5741264 DOI: 10.1371/journal.pgen.1007124] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/22/2017] [Accepted: 11/23/2017] [Indexed: 01/07/2023] Open
Abstract
Several nucleoporins in the nuclear pore complex (NPC) have been reported to be involved in abiotic stress responses in plants. However, the molecular mechanism of how NPC regulates abiotic stress responses, especially the expression of stress responsive genes remains poorly understood. From a forward genetics screen using an abiotic stress-responsive luciferase reporter (RD29A-LUC) in the sickle-1 (sic-1) mutant background, we identified a suppressor caused by a mutation in NUCLEOPORIN 85 (NUP85), which exhibited reduced expression of RD29A-LUC in response to ABA and salt stress. Consistently, the ABA and salinity induced expression of several stress responsive genes such as RD29A, COR15A and COR47 was significantly compromised in nup85 mutants and other nucleoporin mutants such as nup160 and hos1. Subsequently, Immunoprecipitation and mass spectrometry analysis revealed that NUP85 is potentially associated with HOS1 and other nucleoporins within the nup107-160 complex, along with several mediator subunits. We further showed that there is a direct physical interaction between MED18 and NUP85. Similar to NUP85 mutations, MED18 mutation was also found to attenuate expression of stress responsive genes. Taken together, we not only revealed the involvement of NUP85 and other nucleoporins in regulating ABA and salt stress responses, but also uncovered a potential relation between NPC and mediator complex in modulating the gene expression in plants. Nuclear pore complex (NPC) mediates the traffic between nucleus and cytoplasm. This work identified NUCLEOPORIN 85 (NUP85) as an important factor for the expression of stress-responsive luciferase reporter gene RD29A-LUC in response to ABA and salt stress from a forward genetics screen. Mutation in NUP85 and other NPC components such as NUP160 and HOS1 resulted in decreased expression of several stress responsive genes such as RD29A, COR15A and COR47. Proteomics data uncovered a list of putative NUP85 associated proteins. Furthermore, NUP85 was demonstrated to interact with MED18, a master transcriptional regulator, to control the expression of stress responsive genes. The study has added a new layer of knowledge about the diverse functions of NPC in abiotic stress responses.
Collapse
Affiliation(s)
- Yingfang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (YZ); (JKZ)
| | - Bangshing Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
| | - Kai Tang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States of America
| | - Shaojun Xie
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
| | - Hai Du
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yuting Yang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
- Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University Fuzhou, Fuzhou, China
| | - Weiguo Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States of America
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (YZ); (JKZ)
| |
Collapse
|
40
|
Fallath T, Kidd BN, Stiller J, Davoine C, Björklund S, Manners JM, Kazan K, Schenk PM. MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana. PLoS One 2017; 12:e0176022. [PMID: 28441405 PMCID: PMC5404846 DOI: 10.1371/journal.pone.0176022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/29/2022] Open
Abstract
The conserved protein complex known as Mediator conveys transcriptional signals by acting as an intermediary between transcription factors and RNA polymerase II. As a result, Mediator subunits play multiple roles in regulating developmental as well as abiotic and biotic stress pathways. In this report we identify the head domain subunits MEDIATOR18 and MEDIATOR20 as important susceptibility factors for Fusarium oxysporum infection in Arabidopsis thaliana. Mutants of MED18 and MED20 display down-regulation of genes associated with jasmonate signaling and biosynthesis while up-regulation of salicylic acid associated pathogenesis related genes and reactive oxygen producing and scavenging genes. We propose that MED18 and MED20 form a sub-domain within Mediator that controls the balance of salicylic acid and jasmonate associated defense pathways.
Collapse
Affiliation(s)
- Thorya Fallath
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Australia
| | - Brendan N. Kidd
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Australia
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
| | - Jiri Stiller
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
| | - Celine Davoine
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Center, Umeå University Umeå Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Center, Umeå University Umeå Sweden
| | - John M. Manners
- CSIRO Agriculture and Food, Black Mountain, Canberra, Australia
| | - Kemal Kazan
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI), University of Queensland, St Lucia, Australia
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI), University of Queensland, St Lucia, Australia
- * E-mail:
| |
Collapse
|
41
|
Van Gijsegem F, Pédron J, Patrit O, Simond-Côte E, Maia-Grondard A, Pétriacq P, Gonzalez R, Blottière L, Kraepiel Y. Manipulation of ABA Content in Arabidopsis thaliana Modifies Sensitivity and Oxidative Stress Response to Dickeya dadantii and Influences Peroxidase Activity. FRONTIERS IN PLANT SCIENCE 2017; 8:456. [PMID: 28421092 PMCID: PMC5376553 DOI: 10.3389/fpls.2017.00456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/15/2017] [Indexed: 05/06/2023]
Abstract
The production of reactive oxygen species (ROS) is one of the first defense reactions induced in Arabidopsis in response to infection by the pectinolytic enterobacterium Dickeya dadantii. Previous results also suggest that abscisic acid (ABA) favors D. dadantii multiplication and spread into its hosts. Here, we confirm this hypothesis using ABA-deficient and ABA-overproducer Arabidopsis plants. We investigated the relationships between ABA status and ROS production in Arabidopsis after D. dadantii infection and showed that ABA status modulates the capacity of the plant to produce ROS in response to infection by decreasing the production of class III peroxidases. This mechanism takes place independently of the well-described oxidative stress related to the RBOHD NADPH oxidase. In addition to this weakening of plant defense, ABA content in the plant correlates positively with the production of some bacterial virulence factors during the first stages of infection. Both processes should enhance disease progression in presence of high ABA content. Given that infection increases transcript abundance for the ABA biosynthesis genes AAO3 and ABA3 and triggers ABA accumulation in leaves, we propose that D. dadantii manipulates ABA homeostasis as part of its virulence strategy.
Collapse
Affiliation(s)
- Frédérique Van Gijsegem
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
- Institut d’Ecologie et des Sciences de l’Environnement de Paris, Sorbonne Universités, Université Pierre et Marie Curie – Université Paris 06, Diderot Université Paris 07, Université Paris-Est Créteil – Université Paris 12, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut de Recherche pour le DéveloppementParis, France
| | - Jacques Pédron
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
- Institut d’Ecologie et des Sciences de l’Environnement de Paris, Sorbonne Universités, Université Pierre et Marie Curie – Université Paris 06, Diderot Université Paris 07, Université Paris-Est Créteil – Université Paris 12, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut de Recherche pour le DéveloppementParis, France
| | - Oriane Patrit
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
| | - Elizabeth Simond-Côte
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
| | - Alessandra Maia-Grondard
- Institut Jean-Pierre Bourgin, AgroParisTech, Institut National de la Recherche AgronomiqueVersailles, France
| | - Pierre Pétriacq
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
| | - Raphaël Gonzalez
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
| | - Lydie Blottière
- Institut d’Ecologie et des Sciences de l’Environnement de Paris, Sorbonne Universités, Université Pierre et Marie Curie – Université Paris 06, Diderot Université Paris 07, Université Paris-Est Créteil – Université Paris 12, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut de Recherche pour le DéveloppementParis, France
| | - Yvan Kraepiel
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
- Institut d’Ecologie et des Sciences de l’Environnement de Paris, Sorbonne Universités, Université Pierre et Marie Curie – Université Paris 06, Diderot Université Paris 07, Université Paris-Est Créteil – Université Paris 12, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut de Recherche pour le DéveloppementParis, France
- *Correspondence: Yvan Kraepiel,
| |
Collapse
|
42
|
Kazan K. The Multitalented MEDIATOR25. FRONTIERS IN PLANT SCIENCE 2017; 8:999. [PMID: 28659948 PMCID: PMC5467580 DOI: 10.3389/fpls.2017.00999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/26/2017] [Indexed: 05/19/2023]
Abstract
The multi-subunit Mediator complex, which links DNA-bound transcription factors to RNA Pol II during transcription, is an essential regulator of gene expression in all eukaryotes. Individual subunits of the Mediator complex integrate numerous endogenous and exogenous signals. In this paper, diverse regulatory functions performed by MEDIATOR25 (MED25), one of the subunits of the plant Mediator complex are reviewed. MED25 was first identified as a regulator of flowering time and named PHYTOCHROME AND FLOWERING TIME1 (PFT1). Since then, MED25 has been implicated in a range of other plant functions that vary from hormone signaling (JA, ABA, ethylene, and IAA) to biotic and abiotic stress tolerance and plant development. MED25 physically interacts with transcriptional activators (e.g., AP2/ERFs, MYCs, and ARFs), repressors (e.g., JAZs and Aux/IAAs), and other Mediator subunits (MED13 and MED16). In addition, various genetic and epigenetic interactions involving MED25 have been reported. These features make MED25 one of the most multifunctional Mediator subunits and provide new insights into the transcriptional control of gene expression in plants.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, BrisbaneQLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, The University of Queensland, BrisbaneQLD, Australia
- *Correspondence: Kemal Kazan,
| |
Collapse
|
43
|
Skubacz A, Daszkowska-Golec A, Szarejko I. The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk. FRONTIERS IN PLANT SCIENCE 2016; 7:1884. [PMID: 28018412 PMCID: PMC5159420 DOI: 10.3389/fpls.2016.01884] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/29/2016] [Indexed: 05/18/2023]
Abstract
ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that plays a key role in the regulation of seed germination and early seedling growth in the presence of ABA and abiotic stresses. ABI5 functions in the core ABA signaling, which is composed of PYR/PYL/RCAR receptors, PP2C phosphatases and SnRK2 kinases, through the regulation of the expression of genes that contain the ABSCISIC ACID RESPONSE ELEMENT (ABRE) motif within their promoter region. The regulated targets include stress adaptation genes, e.g., LEA proteins. However, the expression and activation of ABI5 is not only dependent on the core ABA signaling. Many transcription factors such as ABI3, ABI4, MYB7 and WRKYs play either a positive or a negative role in the regulation of ABI5 expression. Additionally, the stability and activity of ABI5 are also regulated by other proteins through post-translational modifications such as phosphorylation, ubiquitination, sumoylation and S-nitrosylation. Moreover, ABI5 also acts as an ABA and other phytohormone signaling integrator. Components of auxin, cytokinin, gibberellic acid, jasmonate and brassinosteroid signaling and metabolism pathways were shown to take part in ABI5 regulation and/or to be regulated by ABI5. Monocot orthologs of AtABI5 have been identified. Although their roles in the molecular and physiological adaptations during abiotic stress have been elucidated, knowledge about their detailed action still remains elusive. Here, we describe the recent advances in understanding the action of ABI5 in early developmental processes and the adaptation of plants to unfavorable environmental conditions. We also focus on ABI5 relation to other phytohormones in the abiotic stress response of plants.
Collapse
|