1
|
Yang C, Lai YM, Yao N. Plant sphingolipids: Subcellular distributions and functions. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102704. [PMID: 40121928 DOI: 10.1016/j.pbi.2025.102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Sphingolipids are common membrane components that maintain membrane structural integrity and function as signaling molecules. Different sphingolipids have specific functions and are unevenly distributed across the membranes of various organelles and subcellular compartments. In this review, we survey the sphingolipidomes of different subcellular structures in Arabidopsis (Arabidopsis thaliana) cells and provide a detailed account of the functions of specific sphingolipids at each location. For example, glycosphingolipids, including glucosylceramide and glycosyl inositol phosphoceramide, mainly function in membranes, whereas simple sphingolipids, including free long-chain bases and ceramide, may have important signaling roles in the plasma membrane, mitochondria, and nucleus during plant stress responses and cell death. This review thus offers a broad perspective of the multifaceted roles of plant sphingolipids in different locations in the plant cell.
Collapse
Affiliation(s)
- Chang Yang
- Guangdong Provincial Key Laboratory of Plant Stress Biology and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yin-Ming Lai
- Guangdong Provincial Key Laboratory of Plant Stress Biology and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Nan Yao
- Guangdong Provincial Key Laboratory of Plant Stress Biology and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
2
|
Yang M, Wei J, Xu Y, Zheng S, Yu B, Ming Y, Jin H, Xie L, Qi H, Xiao S, Huang W, Chen L. Autophagy Regulates Plant Tolerance to Submergence by Modulating Photosynthesis. PLANT, CELL & ENVIRONMENT 2025; 48:2267-2284. [PMID: 39575938 DOI: 10.1111/pce.15290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025]
Abstract
The increase in global climate variability has increased the frequency and severity of floods, profoundly affecting agricultural production and food security worldwide. Autophagy is an intracellular catabolic pathway that is dispensable for plant responses to submergence. However, the physiological role of autophagy in plant response to submergence remains unclear. In this study, a multi-omics approach was applied by combining transcriptomics, proteomics, and lipidomics to characterize molecular changes in the Arabidopsis autophagy-defective mutant (atg5-1) responding to submergence. Our results revealed that submergence resulted in remarkable changes in the transcriptome, proteome, and lipidome of Arabidopsis. Under submerged conditions, the levels of chloroplastidic lipids, including monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylglycerol (PG), were lower in atg5-1 than in wild-type, suggesting that autophagy may affect photosynthesis by regulating lipid metabolism. Consistently, photosynthesis-related proteins and photosynthetic efficiency decreased in atg5-1 under submergence conditions. Phenotypic analysis revealed that inhibition of photosynthesis resulted in a decreased tolerance to submergence. Compared to wild-type plants, atg5-1 plants showed a significant decrease in starch content after submergence. Collectively, our findings reveal a novel role for autophagy in plant response to submergence via the regulation of underwater photosynthesis and starch content.
Collapse
Affiliation(s)
- Mingkang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology & Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Jiaosheng Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yarou Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Baiyin Yu
- Henry Fok School of Biology & Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Yu Ming
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijuan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Cahoon EB, Kim P, Xie T, González Solis A, Han G, Gong X, Dunn TM. Sphingolipid homeostasis: How do cells know when enough is enough? Implications for plant pathogen responses. PLANT PHYSIOLOGY 2024; 197:kiae460. [PMID: 39222369 DOI: 10.1093/plphys/kiae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Sphingolipid homeostatic regulation is important for balancing plant life and death. Plant cells finely tune sphingolipid biosynthesis to ensure sufficient levels to support growth through their basal functions as major components of endomembranes and the plasma membrane. Conversely, accumulation of sphingolipid biosynthetic intermediates, long-chain bases (LCBs) and ceramides, is associated with programmed cell death. Limiting these apoptotic intermediates is important for cell viability, while overriding homeostatic regulation permits cells to generate elevated LCBs and ceramides to respond to pathogens to elicit the hypersensitive response in plant immunity. Key to sphingolipid homeostasis is serine palmitoyltransferase (SPT), an endoplasmic reticulum-associated, multi-subunit enzyme catalyzing the first step in the biosynthesis of LCBs, the defining feature of sphingolipids. Across eukaryotes, SPT interaction with its negative regulator Orosomucoid-like (ORM) is critical for sphingolipid biosynthetic homeostasis. The recent cryo-electron microscopy structure of the Arabidopsis SPT complex indicates that ceramides bind ORMs to competitively inhibit SPT activity. This system provides a sensor for intracellular ceramide concentrations for sphingolipid homeostatic regulation. Combining the newly elucidated Arabidopsis SPT structure and mutant characterization, we present a model for the role of the 2 functionally divergent Arabidopsis ceramide synthase classes to produce ceramides that form repressive (trihydroxy LCB-ceramides) or nonrepressive (dihydroxy LCB-ceramides) ORM interactions to influence SPT activity. We describe how sphingolipid biosynthesis is regulated by the interplay of ceramide synthases with ORM-SPT when "enough is enough" and override homeostatic suppression when "enough is not enough" to respond to environmental stimuli such as microbial pathogen attack.
Collapse
Affiliation(s)
- Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Panya Kim
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Tian Xie
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ariadna González Solis
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Xin Gong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Li J, Wang LY, Huang HC, Yang W, Dai GY, Fang ZQ, Zhao JL, Xia KF, Zeng X, He ML, Yao N, Zhang MY. Endoplasmic reticulum stress response modulator OsbZIP39 regulates cadmium accumulation via activating the expression of defensin-like gene OsCAL2 in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135007. [PMID: 38944994 DOI: 10.1016/j.jhazmat.2024.135007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Accumulation of cadmium (Cd) in rice is not only harmful to the growth of plants but also poses a threat to human health. Exposure to Cd triggers unfolded protein response (UPR) within cells, a process that is still not completely understood. The study demonstrated that the lack of OsbZIP39, an essential endoplasmic reticulum (ER)-resident regulator of the UPR, resulted in decreased Cd intake and reduced Cd levels in the roots, stems, and grains of rice. Upon exposure to Cd stress, GFP-OsbZIP39 translocated from ER to nucleus, initiating UPR. Further investigation revealed that Cd treatment caused changes in sphingolipid levels in the membrane, influencing the localization and activation of OsbZIP39. Yeast one-hybrid and dual-LUC assays were conducted to validate the interaction between activated OsbZIP39 and the promoter of the defensin-like gene OsCAL2, resulting in an increase in its expression. Different variations were identified in the coding region of OsbZIP39, which may explain the varying levels of Cd accumulation observed in the indica and japonica subspecies. Under Cd treatment, OsbZIP39ind exhibited a more significant enhancement in the transcription of OsCAL2 compared to OsbZIP39jap. Our data suggest that OsbZIP39 positively regulates Cd uptake in rice, offering an encouraging objective for the cultivation of low-Cd rice.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Ling-Yan Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Huan-Chao Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Guang-Yi Dai
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Zhi-Qiang Fang
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Jun-Liang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Kuai-Fei Xia
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Xuan Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Meng-Ling He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ming-Yong Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou 510650, China.
| |
Collapse
|
5
|
Thulasi Devendrakumar K, Herrfurth C, Yeap M, Peng TS, Feussner I, Li X. Balancing roles between phosphatidylinositols and sphingolipids in regulating immunity and ER stress responses in pi4kβ1,2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2816-2836. [PMID: 39074039 DOI: 10.1111/tpj.16952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/08/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Plant immune regulation is complex. In addition to proteins, lipid molecules play critical roles in modulating immune responses. The mutant pi4kβ1,2 is mutated in two phosphatidylinositol 4-kinases PI4Kβ1 and β2 involved in the biosynthesis of phosphatidylinositol 4-phosphate (PI4P). The mutant displays autoimmunity, short roots, aberrant root hairs, and a heightened sensitivity to ER stress. In a forward genetic screen designed to dissect pi4kβ1,2 autoimmunity, we found that Orosomucoid-like 1 (ORM1) is required for the phenotypes of pi4kβ1,2, including short root and ER stress sensitivity. The orm1 mutations lead to increased long-chain base and ceramide levels in the suppressors. We also found that the basic region/leucine Zipper motif (bZIP) 28 and 60 transcription factors, central regulators of ER stress response, are required for its autoimmunity and root defect. In comparison, the defense-related phytohormones salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are required for its autoimmunity but plays a minor role in its root phenotypes. Further, we found that wild-type plants overexpressing ORM1 are autoimmune, displaying short roots and increased ceramide levels. The autoimmunity of the ORM1 overexpression lines is dependent on SA, NHP, and bZIP60. As ORM1 is a known negative regulator of sphingolipid biosynthesis, our study uncovers a balancing role between PIs and sphingolipids in regulating immunity and ER stress responses in pi4kβ1,2.
Collapse
Affiliation(s)
- Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, D-37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, D-37077, Germany
| | - Mikaela Yeap
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Tony ShengZhe Peng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, D-37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, D-37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Goettingen, Goettingen, D-37077, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
6
|
Wang L, Jin C, Zhang W, Mei X, Yu H, Wu M, Pei W, Ma J, Zhang B, Luo M, Yu J. Sphingosine Promotes Fiber Early Elongation in Upland Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:1993. [PMID: 39065521 PMCID: PMC11280728 DOI: 10.3390/plants13141993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Sphingolipids play an important role in cotton fiber development, but the regulatory mechanism is largely unclear. We found that serine palmitoyltransferase (SPT) enzyme inhibitors, myriocin and sphingosine (dihydrosphingosine (DHS) and phytosphingosine (PHS)), affected early fiber elongation in cotton, and we performed a sphingolipidomic and transcriptomic analysis of control and PHS-treated fibers. Myriocin inhibited fiber elongation, while DHS and PHS promoted it in a dose-effect manner. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found that contents of 22 sphingolipids in the PHS-treated fibers for 10 days were changed, of which the contents of 4 sphingolipids increased and 18 sphingolipids decreased. The transcriptome analysis identified 432 differentially expressed genes (238 up-regulated and 194 down-regulated) in the PHS-treated fibers. Among them, the phenylpropanoid biosynthesis pathway is the most significant enrichment. The expression levels of transcription factors such as MYB, ERF, LBD, and bHLH in the fibers also changed, and most of MYB and ERF were up-regulated. Auxin-related genes IAA, GH3 and BIG GRAIN 1 were up-regulated, while ABPs were down-regulated, and the contents of 3 auxin metabolites were decreased. Our results provide important sphingolipid metabolites and regulatory pathways that influence fiber elongation.
Collapse
Affiliation(s)
- Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Changyin Jin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenqing Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xueting Mei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hang Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Man Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenfeng Pei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jianjiang Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Bingbing Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Ming Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing 400716, China
| | - Jiwen Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
7
|
Tolerico M, Merscher S, Fornoni A. Normal and Dysregulated Sphingolipid Metabolism: Contributions to Podocyte Injury and Beyond. Cells 2024; 13:890. [PMID: 38891023 PMCID: PMC11171506 DOI: 10.3390/cells13110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Podocyte health is vital for maintaining proper glomerular filtration in the kidney. Interdigitating foot processes from podocytes form slit diaphragms which regulate the filtration of molecules through size and charge selectivity. The abundance of lipid rafts, which are ordered membrane domains rich in cholesterol and sphingolipids, near the slit diaphragm highlights the importance of lipid metabolism in podocyte health. Emerging research shows the importance of sphingolipid metabolism to podocyte health through structural and signaling roles. Dysregulation in sphingolipid metabolism has been shown to cause podocyte injury and drive glomerular disease progression. In this review, we discuss the structure and metabolism of sphingolipids, as well as their role in proper podocyte function and how alterations in sphingolipid metabolism contributes to podocyte injury and drives glomerular disease progression.
Collapse
Affiliation(s)
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
8
|
Fougère L, Mongrand S, Boutté Y. The function of sphingolipids in membrane trafficking and cell signaling in plants, in comparison with yeast and animal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159463. [PMID: 38281556 DOI: 10.1016/j.bbalip.2024.159463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Sphingolipids are essential membrane components involved in a wide range of cellular, developmental and signaling processes. Sphingolipids are so essential that knock-out mutation often leads to lethality. In recent years, conditional or weak allele mutants as well as the broadening of the pharmacological catalog allowed to decipher sphingolipid function more precisely in a less invasive way. This review intends to provide a discussion and point of view on the function of sphingolipids with a main focus on endomembrane trafficking, Golgi-mediated protein sorting, cell polarity, cell-to-cell communication and cell signaling at the plasma membrane. While our main angle is the plant field research, we will constantly refer to and compare with the advances made in the yeast and animal field. In this review, we will emphasize the role of sphingolipids not only as a membrane component, but also as a key player at a center of homeostatic regulatory networks involving direct or indirect interaction with other lipids, proteins and ion fluxes.
Collapse
Affiliation(s)
- Louise Fougère
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France
| | - Sebastien Mongrand
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France.
| |
Collapse
|
9
|
Nouwen N, Pervent M, El M’Chirgui F, Tellier F, Rios M, Horta Araújo N, Klopp C, Gressent F, Arrighi JF. OROSOMUCOID PROTEIN 1 regulation of sphingolipid synthesis is required for nodulation in Aeschynomene evenia. PLANT PHYSIOLOGY 2024; 194:1611-1630. [PMID: 38039119 PMCID: PMC10904325 DOI: 10.1093/plphys/kiad642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
Legumes establish symbiotic interactions with nitrogen-fixing rhizobia that are accommodated in root-derived organs known as nodules. Rhizobial recognition triggers a plant symbiotic signaling pathway that activates 2 coordinated processes: infection and nodule organogenesis. How these processes are orchestrated in legume species utilizing intercellular infection and lateral root base nodulation remains elusive. Here, we show that Aeschynomene evenia OROSOMUCOID PROTEIN 1 (AeORM1), a key regulator of sphingolipid biosynthesis, is required for nodule formation. Using A. evenia orm1 mutants, we demonstrate that alterations in AeORM1 function trigger numerous early aborted nodules, defense-like reactions, and shorter lateral roots. Accordingly, AeORM1 is expressed during lateral root initiation and elongation, including at lateral root bases where nodule primordium form in the presence of symbiotic bradyrhizobia. Sphingolipidomics revealed that mutations in AeORM1 lead to sphingolipid overaccumulation in roots relative to the wild type, particularly for very long-chain fatty acid-containing ceramides. Taken together, our findings reveal that AeORM1-regulated sphingolipid homeostasis is essential for rhizobial infection and nodule organogenesis, as well as for lateral root development in A. evenia.
Collapse
Affiliation(s)
- Nico Nouwen
- Plant Health Institute of Montpellier (PHIM), IRD, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| | - Marjorie Pervent
- Plant Health Institute of Montpellier (PHIM), INRAE, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| | - Franck El M’Chirgui
- Plant Health Institute of Montpellier (PHIM), IRD, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Maëlle Rios
- Plant Health Institute of Montpellier (PHIM), IRD, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| | - Natasha Horta Araújo
- Plant Health Institute of Montpellier (PHIM), IRD, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| | - Christophe Klopp
- Plateforme Bioinformatique Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, 31326 Castanet-Tolosan, France
| | - Frédéric Gressent
- Plant Health Institute of Montpellier (PHIM), INRAE, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| | - Jean-François Arrighi
- Plant Health Institute of Montpellier (PHIM), IRD, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| |
Collapse
|
10
|
Xie T, Dong F, Han G, Wu X, Liu P, Zhang Z, Zhong J, Niranjanakumari S, Gable K, Gupta SD, Liu W, Harrison PJ, Campopiano DJ, Dunn TM, Gong X. Collaborative regulation of yeast SPT-Orm2 complex by phosphorylation and ceramide. Cell Rep 2024; 43:113717. [PMID: 38285738 DOI: 10.1016/j.celrep.2024.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
The homeostatic regulation of serine palmitoyltransferase (SPT) activity in yeast involves N-terminal phosphorylation of Orm proteins, while higher eukaryotes lack these phosphorylation sites. Although recent studies have indicated a conserved ceramide-mediated feedback inhibition of the SPT-ORM/ORMDL complex in higher eukaryotes, its conservation and relationship with phosphorylation regulation in yeast remain unclear. Here, we determine the structure of the yeast SPT-Orm2 complex in a dephosphomimetic state and identify an evolutionarily conserved ceramide-sensing site. Ceramide stabilizes the dephosphomimetic Orm2 in an inhibitory conformation, facilitated by an intramolecular β-sheet between the N- and C-terminal segments of Orm2. Moreover, we find that a phosphomimetic mutant of Orm2, positioned adjacent to its intramolecular β-sheet, destabilizes the inhibitory conformation of Orm2. Taken together, our findings suggest that both Orm dephosphorylation and ceramide binding are crucial for suppressing SPT activity in yeast. This highlights a distinctive regulatory mechanism in yeast involving the collaborative actions of phosphorylation and ceramide.
Collapse
Affiliation(s)
- Tian Xie
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feitong Dong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Xinyue Wu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peng Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zike Zhang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jianlong Zhong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Somashekarappa Niranjanakumari
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Wenchen Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peter J Harrison
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | | | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA.
| | - Xin Gong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
11
|
Li J, Huang HC, Zuo YQ, Zhang MY, He ML, Xia KF. PatWRKY71 transcription factor regulates patchoulol biosynthesis and plant defense response. BMC PLANT BIOLOGY 2024; 24:8. [PMID: 38163903 PMCID: PMC10759419 DOI: 10.1186/s12870-023-04660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Patchoulol, a valuable compound belonging to the sesquiterpenoid family, is the primary component of patchouli oil produced by Pogostemon cablin (P. cablin). It has a variety of pharmacological and biological activities and is widely used in the medical and cosmetic industries. However, despite its significance, there is a lack of research on the transcriptional modulation of patchoulol biosynthesis.Salicylic acid (SA), is a vital plant hormone that serves as a critical signal molecule and plays an essential role in plant growth and defense. However, to date, no studies have explored the modulation of patchoulol biosynthesis by SA. In our study, we discovered that the application of SA can enhance the production of patchoulol. Utilizing transcriptome analysis of SA-treated P. cablin, we identified a crucial downstream transcription factor, PatWRKY71. The transcription level of PatWRKY71 was significantly increased with the use of SA. Furthermore, our research has revealed that PatWRKY71 was capable of binding to the promoter of PatPTS, ultimately leading to an increase in its expression. When PatWRKY71 was silenced by a virus, the expression of both PatWRKY71 and PatPTS was reduced, resulting in the down-regulation of patchoulol production. Through our studies, we discovered that heterologous expression of PatWRKY71 leads to an increase in the sensitivity of Arabidopsis to salt and Cd, as well as an outbreak of reactive oxygen species (ROS). Additionally, we uncovered the regulatory role of PatWRKY71 in both patchoulol biosynthesis and plant defense response. This discovery provided a theoretical basis for the improvement of the content of patchoulol and the resistance of P. cablin through genetic engineering.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Huan-Chao Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yue-Qiu Zuo
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ming-Yong Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Meng-Ling He
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Kuai-Fei Xia
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
12
|
Wang LY, Li J, Gong B, Wang RH, Chen YL, Yin J, Yang C, Lin JT, Liu HZ, Yang Y, Li J, Li C, Yao N. Orosomucoid proteins limit endoplasmic reticulum stress in plants. THE NEW PHYTOLOGIST 2023; 240:1134-1148. [PMID: 37606093 DOI: 10.1111/nph.19200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana. Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER-associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS-O 12 (MLO-12). ORM1 and ORM2 bind to EMS-MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant-specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.
Collapse
Affiliation(s)
- Ling-Yan Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Benqiang Gong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rui-Hua Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chang Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jia-Ting Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao-Zhuo Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yubing Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianfeng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chunyu Li
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
13
|
Du J, Li Y, Lu X, Geng Z, Yuan Y, Liu Y, Li J, Wang M, Wang J. Metabolomics-based study on the changes of endogenous metabolites during adventitious bud formation from leaf margin of Bryophyllum pinnatum (Lam.) Oken. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107845. [PMID: 37364508 DOI: 10.1016/j.plaphy.2023.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Bryophyllum pinnatum (Lam.) Oken is an ornamental and ethno-medicine plant, which can grow a circle of adventitious bud around the leaf margin. The dynamic change of metabolites during the development of B. pinnatum remains poorly understood. Here, leaves from B. pinnatum at four developmental stages were sampled based on morphological characteristics. A non-targeted metabolomics approach was used to evaluate the changes of endogenous metabolites during adventitious bud formation in B. pinnatum. The results showed that differential metabolites were mainly enriched in sphingolipid metabolism, flavone and flavonol biosynthesis, phenylalanine metabolism, and tricarboxylic acid cycle pathway. The metabolites assigned to amino acids, flavonoids, sphingolipids, and the plant hormone jasmonic acid decreased from period Ⅰ to Ⅱ, and then increased from period Ⅲ to Ⅳ with the emergence of adventitious bud (period Ⅲ). While the metabolites related to the tricarboxylic acid cycle showed a trend of first increasing and then decreasing during the four observation periods. Depending on the metabolite changes, leaves may provide conditions similar to in vitro culture for adventitious bud to occur, thus enabling adventitious bud to grow at the leaf edge. Our results provide a basis for illustrating the regulatory mechanisms of adventitious bud in B. pinnatum.
Collapse
Affiliation(s)
- Jialin Du
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yi Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xu Lu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhaopeng Geng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yuanyuan Yuan
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yue Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Juanling Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Minjuan Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Junli Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
14
|
Liu P, Xie T, Wu X, Han G, Gupta SD, Zhang Z, Yue J, Dong F, Gable K, Niranjanakumari S, Li W, Wang L, Liu W, Yao R, Cahoon EB, Dunn TM, Gong X. Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT-ORM1 complex. SCIENCE ADVANCES 2023; 9:eadg0728. [PMID: 36989369 PMCID: PMC10058238 DOI: 10.1126/sciadv.adg0728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The serine palmitoyltransferase (SPT) complex catalyzes the first and rate-limiting step in sphingolipid biosynthesis in all eukaryotes. ORM/ORMDL proteins are negative regulators of SPT that respond to cellular sphingolipid levels. However, the molecular basis underlying ORM/ORMDL-dependent homeostatic regulation of SPT is not well understood. We determined the cryo-electron microscopy structure of Arabidopsis SPT-ORM1 complex, composed of LCB1, LCB2a, SPTssa, and ORM1, in an inhibited state. A ceramide molecule is sandwiched between ORM1 and LCB2a in the cytosolic membrane leaflet. Ceramide binding is critical for the ORM1-dependent SPT repression, and dihydroceramides and phytoceramides differentially affect this repression. A hybrid β sheet, formed by the amino termini of ORM1 and LCB2a and induced by ceramide binding, stabilizes the amino terminus of ORM1 in an inhibitory conformation. Our findings provide mechanistic insights into sphingolipid homeostatic regulation via the binding of ceramide to the SPT-ORM/ORMDL complex that may have implications for plant-specific processes such as the hypersensitive response for microbial pathogen resistance.
Collapse
Affiliation(s)
- Peng Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tian Xie
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xinyue Wu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sita D. Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zike Zhang
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jian Yue
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feitong Dong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Somashekarappa Niranjanakumari
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Wanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Lin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Wenchen Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xin Gong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
15
|
Li Y, Cao H, Dong T, Wang X, Ma L, Li K, Lou H, Song CP, Ren D. Phosphorylation of the LCB1 subunit of Arabidopsis serine palmitoyltransferase stimulates its activity and modulates sphingolipid biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36738228 DOI: 10.1111/jipb.13461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 06/18/2023]
Abstract
Sphingolipids are the structural components of membrane lipid bilayers and act as signaling molecules in many cellular processes. Serine palmitoyltransferase (SPT) is the first committed and rate-limiting enzyme in the de novo sphingolipids biosynthetic pathway. The core SPT enzyme is a heterodimer consisting of LONG-CHAIN BASE1 (LCB1) and LCB2 subunits. SPT activity is inhibited by orosomucoid proteins and stimulated by small subunits of SPT (ssSPTs). However, whether LCB1 is modified and how such modification might regulate SPT activity have to date been unclear. Here, we show that activation of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6 by upstream MKK9 and treatment with Flg22 (a pathogen-associated molecular pattern) increases SPT activity and induces the accumulation of sphingosine long-chain base t18:0 in Arabidopsis thaliana, with activated MPK3 and MPK6 phosphorylating AtLCB1. Phosphorylation of AtLCB1 strengthened its binding with AtLCB2b, promoted its binding with ssSPTs, and stimulated the formation of higher order oligomeric and active SPT complexes. Our findings therefore suggest a novel regulatory mechanism for SPT activity.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hanwei Cao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tingting Dong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoke Wang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kun Li
- Collaborative Innovation Center of Crop Stress Biology, Henan Province. Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chun-Peng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province. Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Dongtao Ren
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
17
|
Huang LQ, Li PP, Yin J, Li YK, Chen DK, Bao HN, Fan RY, Liu HZ, Yao N. Arabidopsis alkaline ceramidase ACER functions in defense against insect herbivory. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4954-4967. [PMID: 35436324 DOI: 10.1093/jxb/erac166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Plant sphingolipids are important membrane components and bioactive molecules in development and defense responses. However, the function of sphingolipids in plant defense, especially against herbivores, is not fully understood. Here, we report that Spodoptera exigua feeding affects sphingolipid metabolism in Arabidopsis, resulting in increased levels of sphingoid long-chain bases, ceramides, and hydroxyceramides. Insect-induced ceramide and hydroxyceramide accumulation is dependent on the jasmonate signaling pathway. Loss of the Arabidopsis alkaline ceramidase ACER increases ceramides and decreases long-chain base levels in plants; in this work, we found that loss of ACER enhances plant resistance to S. exigua and improves response to mechanical wounding. Moreover, acer-1 mutants exhibited more severe root-growth inhibition and higher anthocyanin accumulation than wild-type plants in response to methyl jasmonate treatment, indicating that loss of ACER increases sensitivity to jasmonate and that ACER functions in jasmonate-mediated root growth and secondary metabolism. Transcript levels of ACER were also negatively regulated by jasmonates, and this process involves the transcription factor MYC2. Thus, our findings reveal that ACER is involved in mediating jasmonate-related plant growth and defense and that jasmonates function in regulating the expression of ACER.
Collapse
Affiliation(s)
- Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ping-Ping Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - He-Nan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Rui-Yuan Fan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hao-Zhuo Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
18
|
Melkonian K, Stolze SC, Harzen A, Nakagami H. miniTurbo-based interactomics of two plasma membrane-localized SNARE proteins in Marchantia polymorpha. THE NEW PHYTOLOGIST 2022; 235:786-800. [PMID: 35396742 DOI: 10.1111/nph.18151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Marchantia polymorpha is a model liverwort and its overall low genetic redundancy is advantageous for dissecting complex pathways. Proximity-dependent in vivo biotin-labelling methods have emerged as powerful interactomics tools in recent years. However, interactomics studies applying proximity labelling are currently limited to angiosperm species in plants. Here, we established and evaluated a miniTurbo-based interactomics method in M. polymorpha using MpSYP12A and MpSYP13B, two plasma membrane-localized SNARE proteins, as baits. We show that our method yields a manifold of potential interactors of MpSYP12A and MpSYP13B compared to a coimmunoprecipitation approach. Our method could capture specific candidates for each SNARE. We conclude that a miniTurbo-based method is a feasible tool for interactomics in M. polymorpha and potentially applicable to other model bryophytes. Our interactome dataset on MpSYP12A and MpSYP13B will be a useful resource to elucidate the evolution of SNARE functions.
Collapse
Affiliation(s)
- Katharina Melkonian
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Sara Christina Stolze
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Anne Harzen
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
19
|
Qian Z, Li Y, Yang J, Shi T, Li Z, Chen J. The chromosome-level genome of a free-floating aquatic weed Pistia stratiotes provides insights into its rapid invasion. Mol Ecol Resour 2022; 22:2732-2743. [PMID: 35620935 DOI: 10.1111/1755-0998.13653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Pistia stratiotes (Araceae), commonly referred to as water lettuce, is one of the most notorious weeds that cause severe damage to the economy and natural ecosystems of infested areas. In order to explore the mechanism of its rapid invasion, here, we assembled a high-quality chromosome-level genome for P. stratiotes based on the Illumina sequencing, PacBio sequencing, and Hi-C scaffolding technology. The assembled genome is 311.87 Mb in size with a contig N50 of 1.08 Mb. The contigs were further anchored on 14 pseudochromosomes with a scaffold N50 of 21.21 Mb. A total of 20,356 protein-coding genes were predicted, of which 79.35% were functionally annotated here. Evolutionary analysis showed that P. stratiotes and Colocasia esculenta were clustered together as sister lineages that diverged approximately 61 Mya. The synteny analyses indicated that two whole-genome duplication (WGD) events occurred within a short period in P. stratiotes. Moreover, comparative genome analysis indicated that the expansion of gene families corresponding to disease resistance might contribute to rapid invasion in P. stratiotes. Also, we analyzed the disease-resistance gene family (NBS-LRR) involved in plant defense. A genome-wide search in P. stratiotes genome identified 85 NBS-LRR genes in this study. In conclusion, our present study provides some new insights into the evolution of the invasive aquatic plant P. stratiotes. Our reference genome will also provide valuable resources for future invasion genomics research programs.
Collapse
Affiliation(s)
- Zhihao Qian
- Key Laboratory of Aquatic Botany and Watershed Ecology, Botanical Garden, Chinese Academy of Sciences, Wuhan, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Botanical Garden, Chinese Academy of Sciences, Wuhan, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingshan Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Botanical Garden, Chinese Academy of Sciences, Wuhan, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Botanical Garden, Chinese Academy of Sciences, Wuhan, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Zhizhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Botanical Garden, Chinese Academy of Sciences, Wuhan, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Botanical Garden, Chinese Academy of Sciences, Wuhan, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
20
|
Haslam TM, Feussner I. Diversity in sphingolipid metabolism across land plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2785-2798. [PMID: 35560193 PMCID: PMC9113257 DOI: 10.1093/jxb/erab558] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 05/08/2023]
Abstract
Sphingolipids are essential metabolites found in all plant species. They are required for plasma membrane integrity, tolerance of and responses to biotic and abiotic stresses, and intracellular signalling. There is extensive diversity in the sphingolipid content of different plant species, and in the identities and roles of enzymes required for their processing. In this review, we survey results obtained from investigations of the classical genetic model Arabidopsis thaliana, from assorted dicots with less extensive genetic toolkits, from the model monocot Oryza sativa, and finally from the model bryophyte Physcomitrium patens. For each species or group, we first broadly summarize what is known about sphingolipid content. We then discuss the most insightful and puzzling features of modifications to the hydrophobic ceramides, and to the polar headgroups of complex sphingolipids. Altogether, these data can serve as a framework for our knowledge of sphingolipid metabolism across the plant kingdom. This chemical and metabolic heterogeneity underpins equally diverse functions. With greater availability of different tools for analytical measurements and genetic manipulation, our field is entering an exciting phase of expanding our knowledge of the biological functions of this persistently cryptic class of lipids.
Collapse
Affiliation(s)
- Tegan M Haslam
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, D-37077, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, D-37077, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany
| |
Collapse
|
21
|
Hou N, Li C, He J, Liu Y, Yu S, Malnoy M, Mobeen Tahir M, Xu L, Ma F, Guan Q. MdMTA-mediated m 6 A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress. THE NEW PHYTOLOGIST 2022; 234:1294-1314. [PMID: 35246985 DOI: 10.1111/nph.18069] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Although the N6 -methyladenosine (m6 A) modification is the most prevalent RNA modification in eukaryotes, the global m6 A modification landscape and its molecular regulatory mechanism in response to drought stress remain unclear. Transcriptome-wide m6 A methylome profiling revealed that m6 A is mainly enriched in the coding sequence and 3' untranslated region in response to drought stress in apple, by recognizing the plant-specific sequence motif UGUAH (H=A, U or C). We identified a catalytically active component of the m6 A methyltransferase complex, MdMTA. An in vitro methyl transfer assay, dot blot, LC-MS/MS and m6 A-sequencing (m6 A-seq) suggested that MdMTA is an m6 A writer and essential for m6 A mRNA modification. Further studies revealed that MdMTA is required for apple drought tolerance. m6 A-seq and RNA-seq analyses under drought conditions showed that MdMTA mediates m6 A modification and transcripts of mRNAs involved in oxidative stress and lignin deposition. Moreover, m6 A modification promotes mRNA stability and the translation efficiency of these genes in response to drought stress. Consistently, MdMTA enhances lignin deposition and scavenging of reactive oxygen species under drought conditions. Our results reveal the global involvement of m6 A modification in the drought response of perennial apple trees and illustrate its molecular mechanisms, thereby providing candidate genes for the breeding of stress-tolerant apple cultivars.
Collapse
Affiliation(s)
- Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Chaoshuo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Yu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Sisi Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, San Michele all'Adige, 38010, Italy
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Lingfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| |
Collapse
|
22
|
König S, Gömann J, Zienkiewicz A, Zienkiewicz K, Meldau D, Herrfurth C, Feussner I. Sphingolipid-Induced Programmed Cell Death is a Salicylic Acid and EDS1-Dependent Phenotype in Arabidopsis Fatty Acid Hydroxylase (Fah1, Fah2) and Ceramide Synthase (Loh2) Triple Mutants. PLANT & CELL PHYSIOLOGY 2022; 63:317-325. [PMID: 34910213 PMCID: PMC8917834 DOI: 10.1093/pcp/pcab174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Ceramides (Cers) and long-chain bases (LCBs) are plant sphingolipids involved in the induction of plant programmed cell death (PCD). The fatty acid hydroxylase mutant fah1 fah2 exhibits high Cer levels and moderately elevated LCB levels. Salicylic acid glucoside level is increased in this mutant, but no cell death can be detected by trypan blue staining. To determine the effect of Cers with different chain lengths, fah1 fah2 was crossed with ceramide synthase mutants longevity assurance gene one homologue1-3 (loh1, loh2 and loh3). Surprisingly, only triple mutants with loh2 show cell death detected by trypan blue staining under the selected conditions. Sphingolipid profiling revealed that the greatest differences between the triple mutant plants are in the LCB and LCB-phosphate (LCB-P) fraction. fah1 fah2 loh2 plants accumulate LCB d18:0, LCB t18:0 and LCB-P d18:0. Crossing fah1 fah2 loh2 with the salicylic acid (SA) synthesis mutant sid2-2 and with the SA signaling mutants enhanced disease susceptibility 1-2 (eds1-2) and phytoalexin deficient 4-1 (pad4-1) revealed that lesions are SA- and EDS1-dependent. These quadruple mutants also confirm that there may be a feedback loop between SA and sphingolipid metabolism as they accumulated less Cers and LCBs. In conclusion, PCD in fah1 fah2 loh2 is a SA- and EDS1-dependent phenotype, which is likely due to accumulation of LCBs.
Collapse
Affiliation(s)
- Stefanie König
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| | - Jasmin Gömann
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| | | | | | - Dorothea Meldau
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| | - Cornelia Herrfurth
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| | | |
Collapse
|
23
|
Li J, Yin J, Wu JX, Wang LY, Liu Y, Huang LQ, Wang RH, Yao N. Ceramides regulate defense response by binding to RbohD in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1427-1440. [PMID: 34919775 DOI: 10.1111/tpj.15639] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Sphingolipids, a class of bioactive lipids, play a critical role in signal transduction. Ceramides, which are central components of sphingolipid metabolism, are involved in plant development and defense. However, the mechanistic link between ceramides and downstream signaling remains unclear. Here, the mutation of alkaline ceramidase in a ceramide kinase mutant acd5 resulted in spontaneous programmed cell death early in development and was accompanied by ceramide accumulation, while other types of sphingolipids, such as long chain base, glucosylceramide, and glycosyl inositol phosphorylceramide, remained at the same level as the wild-type plants. Analysis of the transcriptome indicated that genes related to the salicylic acid (SA) pathway and oxidative stress pathway were induced dramatically in acer acd5 plants. Comparison of the level of reactive oxygen species (ROS), SA, and ceramides in the wild-type and acer acd5 plants at different developmental stages indicated that the acer acd5 mutant exhibited constitutive activation of SA and ROS signaling, which occurred simultaneously with the alteration of ceramides. Overexpressing NahG in the acer acd5 mutant could completely suppress its cell death and ceramide accumulation, while benzo-(1,2,3)-thiadiazole-7-carbothioc acid S-methyl ester treatment restored its phenotype again. Moreover, we found that the plasma membrane of acer acd5 mutant was the main site of ROS production. Ceramides accumulated in the plasma membrane of acer acd5, directly binding and activating the NADPH oxidase RbohD and promoting hydrogen peroxide generation and SA- or defense-related gene activation. Our data illustrated that ceramides play an essential role in plant defense.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian-Xin Wu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ling-Yan Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Rui-Hua Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
24
|
Huang LQ, Chen DK, Li PP, Bao HN, Liu HZ, Yin J, Zeng HY, Yang YB, Li YK, Xiao S, Yao N. Jasmonates modulate sphingolipid metabolism and accelerate cell death in the ceramide kinase mutant acd5. PLANT PHYSIOLOGY 2021; 187:1713-1727. [PMID: 34618068 PMCID: PMC8566286 DOI: 10.1093/plphys/kiab362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Sphingolipids are structural components of the lipid bilayer that acts as signaling molecules in many cellular processes, including cell death. Ceramides, key intermediates in sphingolipid metabolism, are phosphorylated by the ceramide kinase ACCELERATED CELL DEATH5 (ACD5). The loss of ACD5 function leads to ceramide accumulation and spontaneous cell death. Here, we report that the jasmonate (JA) pathway is activated in the Arabidopsis (Arabidopsis thaliana) acd5 mutant and that methyl JA treatment accelerates ceramide accumulation and cell death in acd5. Moreover, the double mutants of acd5 with jasmonate resistant1-1 and coronatine insensitive1-2 exhibited delayed cell death, suggesting that the JA pathway is involved in acd5-mediated cell death. Quantitative sphingolipid profiling of plants treated with methyl JA indicated that JAs influence sphingolipid metabolism by increasing the levels of ceramides and hydroxyceramides, but this pathway is dramatically attenuated by mutations affecting JA pathway proteins. Furthermore, we showed that JAs regulate the expression of genes encoding enzymes in ceramide metabolism. Together, our findings show that JAs accelerate cell death in acd5 mutants, possibly by modulating sphingolipid metabolism and increasing ceramide levels.
Collapse
Affiliation(s)
- Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ping-Ping Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - He-Nan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Hao-Zhuo Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Hong-Yun Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yu-Bing Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
25
|
Wang J, Chen YL, Li YK, Chen DK, He JF, Yao N. Functions of Sphingolipids in Pathogenesis During Host-Pathogen Interactions. Front Microbiol 2021; 12:701041. [PMID: 34408731 PMCID: PMC8366399 DOI: 10.3389/fmicb.2021.701041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids are a class of membrane lipids that serve as vital structural and signaling bioactive molecules in organisms ranging from yeast to animals. Recent studies have emphasized the importance of sphingolipids as signaling molecules in the development and pathogenicity of microbial pathogens including bacteria, fungi, and viruses. In particular, sphingolipids play key roles in regulating the delicate balance between microbes and hosts during microbial pathogenesis. Some pathogens, such as bacteria and viruses, harness host sphingolipids to promote development and infection, whereas sphingolipids from both the host and pathogen are involved in fungus-host interactions. Moreover, a regulatory role for sphingolipids has been described, but their effects on host physiology and metabolism remain to be elucidated. Here, we summarize the current state of knowledge about the roles of sphingolipids in pathogenesis and interactions with host factors, including how sphingolipids modify pathogen and host metabolism with a focus on pathogenesis regulators and relevant metabolic enzymes. In addition, we discuss emerging perspectives on targeting sphingolipids that function in host-microbe interactions as new therapeutic strategies for infectious diseases.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Fan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Mass Spectrometry-Based Profiling of Plant Sphingolipids from Typical and Aberrant Metabolism. Methods Mol Biol 2021. [PMID: 34047977 DOI: 10.1007/978-1-0716-1362-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Mass spectrometry has increasingly been used as a tool to complement studies of sphingolipid metabolism and biological functions in plants and other eukaryotes. Mass spectrometry is now essential for comprehensive sphingolipid analytical profiling because of the huge diversity of sphingolipid classes and molecular species in eukaryotes, particularly in plants. This structural diversity arises from large differences in polar head group glycosylation as well as carbon-chain lengths of fatty acids and desaturation and hydroxylation patterns of fatty acids and long-chain bases that together comprise the ceramide hydrophobic backbone of glycosphingolipids. The standard methods for liquid chromatography-mass spectrometry (LC-MS)-based analyses of Arabidopsis thaliana leaf sphingolipids profile >200 molecular species of four sphingolipid classes and free long-chain bases and their phosphorylated forms. While these methods have proven valuable for A. thaliana based sphingolipid research, we have recently adapted them for use with ultraperformance liquid chromatography separations of molecular species and to profile aberrant sphingolipid forms in pollen, transgenic lines, and mutants. This chapter provides updates to standard methods for LC-MS profiling of A. thaliana sphingolipids to expand the utility of mass spectrometry for plant sphingolipid research.
Collapse
|
27
|
Li Y, Zhang J, Wang S, Zhang Y, Yang M. The Distribution and Origins of Pyrus hopeiensis-"Wild Plant With Tiny Population" Using Whole Genome Resequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:668796. [PMID: 34220890 PMCID: PMC8250157 DOI: 10.3389/fpls.2021.668796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/28/2021] [Indexed: 06/13/2023]
Abstract
Pyrus hopeiensis is a valuable but endangered wild resource in the genus Pyrus. It has been listed as one of the 120 wild species with tiny population in China. The specie has been little studied. A preliminary study of propagation modes in P. hopeiensis was performed through seed propagation, hybridization, self-crossing trials, bud grafting, branch grafting, and investigations of natural growth. The results showed that the population size of P. hopeiensis was very small, the distribution range was limited, and the habitat was extremely degraded. In the wild population, natural hybridization and root tiller production were the major modes of propagation. Whole genome re-sequencing of the 23 wild and cultivated accessions from Pyrus species collected was performed using an Illumina HiSeq sequencing platform. The sequencing depth range was 26.56x-44.85x and the average sequencing depth was 32x. Phylogenetic tree and principal component analyses (PCA) based on SNPs showed that the wild Pyrus species, such as PWH06, PWH07, PWH09, PWH10, PWH13, and PWH17, were closely related to both P. hopeiensis HB-1 and P. hopeiensis HB-2. Using these results in combination with morphological characteristics, it speculated that P. hopeiensis populations may form a natural hybrid group with frequent gene exchanges between and within groups. A selective elimination analysis on the P. hopeiensis population were performed using Fst and π radio and a total of 381 overlapping genes including SAUR72, IAA20, HSFA2, and RKP genes were obtained. These genes were analyzed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) function enrichment. And four KEGG pathways, including lysine degradation, sphingolipid metabolism, other glycan degradation, and betaine biosynthesis were significantly enriched in the P. hopeiensis population. Our study provided information on genetic variation, evolutionary relationships, and gene enrichment in P. hopeiensis population. These data will help reveal the evolutionary history and origin of P. hopeiensis and provide guidelines for subsequent research on the locations of functional genes.
Collapse
Affiliation(s)
- Yongtan Li
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Jun Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Shijie Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Yiwen Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| |
Collapse
|
28
|
Alsiyabi A, Solis AG, Cahoon EB, Saha R. Dissecting the regulatory roles of ORM proteins in the sphingolipid pathway of plants. PLoS Comput Biol 2021; 17:e1008284. [PMID: 33507896 PMCID: PMC7872301 DOI: 10.1371/journal.pcbi.1008284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/09/2021] [Accepted: 12/14/2020] [Indexed: 01/05/2023] Open
Abstract
Sphingolipids are a vital component of plant cellular endomembranes and carry out multiple functional and regulatory roles. Different sphingolipid species confer rigidity to the membrane structure, facilitate trafficking of secretory proteins, and initiate programmed cell death. Although the regulation of the sphingolipid pathway is yet to be uncovered, increasing evidence has pointed to orosomucoid proteins (ORMs) playing a major regulatory role and potentially interacting with a number of components in the pathway, including both enzymes and sphingolipids. However, experimental exploration of new regulatory interactions is time consuming and often infeasible. In this work, a computational approach was taken to address this challenge. A metabolic network of the sphingolipid pathway in plants was reconstructed. The steady-state rates of reactions in the network were then determined through measurements of growth and cellular composition of the different sphingolipids in Arabidopsis seedlings. The Ensemble modeling framework was modified to accurately account for activation mechanisms and subsequently used to generate sets of kinetic parameters that converge to the measured steady-state fluxes in a thermodynamically consistent manner. In addition, the framework was appended with an additional module to automate screening the parameters and to output models consistent with previously reported network responses to different perturbations. By analyzing the network's response in the presence of different combinations of regulatory mechanisms, the model captured the experimentally observed repressive effect of ORMs on serine palmitoyltransferase (SPT). Furthermore, predictions point to a second regulatory role of ORM proteins, namely as an activator of class II (or LOH1 and LOH3) ceramide synthases. This activating role was found to be modulated by the concentration of free ceramides, where an accumulation of these sphingolipid species dampened the activating effect of ORMs on ceramide synthase. The predictions pave the way for future guided experiments and have implications in engineering crops with higher biotic stress tolerance.
Collapse
Affiliation(s)
- Adil Alsiyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ariadna Gonzalez Solis
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Edgar B. Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
29
|
Zeng HY, Li CY, Yao N. Fumonisin B1: A Tool for Exploring the Multiple Functions of Sphingolipids in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:600458. [PMID: 33193556 PMCID: PMC7652989 DOI: 10.3389/fpls.2020.600458] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/05/2020] [Indexed: 05/25/2023]
Abstract
Fumonisin toxins are produced by Fusarium fungal pathogens. Fumonisins are structural analogs of sphingosine and potent inhibitors of ceramide synthases (CerSs); they disrupt sphingolipid metabolism and cause disease in plants and animals. Over the past three decades, researchers have used fumonisin B1 (FB1), the most common fumonisin, as a probe to investigate sphingolipid metabolism in yeast and animals. Although the physiological effects of FB1 in plants have yet to be investigated in detail, forward and reverse genetic approaches have revealed many genes involved in these processes. In this review, we discuss the intricate network of signaling pathways affected by FB1, including changes in sphingolipid metabolism and the effects of these changes, with a focus on our current understanding of the multiple effects of FB1 on plant cell death and plant growth. We analyze the major findings that highlight the connections between sphingolipid metabolism and FB1-induced signaling, and we point out where additional research is needed to fill the gaps in our understanding of FB1-induced signaling pathways in plants.
Collapse
Affiliation(s)
- Hong-Yun Zeng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Yu Li
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Gonzalez-Solis A, Han G, Gan L, Li Y, Markham JE, Cahoon RE, Dunn TM, Cahoon EB. Unregulated Sphingolipid Biosynthesis in Gene-Edited Arabidopsis ORM Mutants Results in Nonviable Seeds with Strongly Reduced Oil Content. THE PLANT CELL 2020; 32:2474-2490. [PMID: 32527862 PMCID: PMC7401009 DOI: 10.1105/tpc.20.00015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 05/03/2023]
Abstract
Orosomucoid-like proteins (ORMs) interact with serine palmitoyltransferase (SPT) to negatively regulate sphingolipid biosynthesis, a reversible process critical for balancing the intracellular sphingolipid levels needed for growth and programmed cell death. Here, we show that ORM1 and ORM2 are essential for life cycle completion in Arabidopsis (Arabidopsis thaliana). Seeds from orm1 -/- orm2 -/- mutants, generated by crossing CRISPR/Cas9 knockout mutants for each gene, accumulated high levels of ceramide, indicative of unregulated sphingolipid biosynthesis. orm1 -/- orm2 -/- seeds were nonviable, displayed aberrant embryo development, and had >80% reduced oil content versus wild-type seeds. This phenotype was mimicked in Arabidopsis seeds expressing the SPT subunit LCB1 lacking its first transmembrane domain, which is critical for ORM-mediated regulation of SPT. We identified a mutant for ORM1 lacking one amino acid (Met-51) near its second transmembrane domain that retained its membrane topology. Expressing this allele in the orm2 background yielded plants that did not advance beyond the seedling stage, hyperaccumulated ceramides, and showed altered organellar structures and increased senescence- and pathogenesis-related gene expression. These seedlings also showed upregulated expression of genes for sphingolipid catabolic enzymes, pointing to additional mechanisms for maintaining sphingolipid homeostasis. ORM1 lacking Met-51 had strongly impaired interactions with LCB1 in a yeast (Saccharomyces cerevisiae) model, providing structural clues about regulatory interactions between ORM and SPT.
Collapse
Affiliation(s)
- Ariadna Gonzalez-Solis
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Gongshe Han
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Lu Gan
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Yunfeng Li
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Jennifer E Markham
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Rebecca E Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Teresa M Dunn
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| |
Collapse
|
31
|
Bu F, Yang M, Guo X, Huang W, Chen L. Multiple Functions of ATG8 Family Proteins in Plant Autophagy. Front Cell Dev Biol 2020; 8:466. [PMID: 32596242 PMCID: PMC7301642 DOI: 10.3389/fcell.2020.00466] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a major degradation process of cytoplasmic components in eukaryotes, and executes both bulk and selective degradation of targeted cargos. A set of autophagy-related (ATG) proteins participate in various stages of the autophagic process. Among ATGs, ubiquitin-like protein ATG8 plays a central role in autophagy. The ATG8 protein is conjugated to the membrane lipid phosphatidylethanolamine in a ubiquitin-like conjugation reaction that is essential for autophagosome formation. In addition, ATG8 interacts with various adaptor/receptor proteins to recruit specific cargos for degradation by selective autophagy. The ATG8-interacting proteins usually contain the ATG8-interacting motif (AIM) or the ubiquitin-interacting motif (UIM) for ATG8 binding. Unlike a single ATG8 gene in yeast, multiple ATG8 orthologs have been identified in the plant kingdom. The large diversity within the ATG8 family may explain the various functions of selective autophagy in plants. Here, we discuss and summarize the current view of the structure and function of ATG8 proteins in plants.
Collapse
Affiliation(s)
- Fan Bu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Mingkang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xu Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
A Pyrimidin-Like Plant Activator Stimulates Plant Disease Resistance and Promotes the Synthesis of Primary Metabolites. Int J Mol Sci 2020; 21:ijms21082705. [PMID: 32295118 PMCID: PMC7215783 DOI: 10.3390/ijms21082705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
Plant activators are chemicals that induce plant defense responses to various pathogens. Here, we reported a new potential plant activator, 6-(methoxymethyl)-2-[5-(trifluoromethyl)-2-pyridyl] pyrimidin-4-ol, named PPA2 (pyrimidin-type plant activator 2). Unlike the traditional commercial plant activator benzothiadiazole S-methyl ester (BTH), PPA2 was fully soluble in water, and it did not inhibit plant growth or root system development in rice (Oryza sativa). PPA2 pretreatment significantly increased plant resistance against bacterial infection in both Arabidopsis and rice, in conjunction with increases in the level of jasmonoyl-isoleucine and 12-oxo-phytodienoic acid. In addition, metabolite profiling indicated that BTH significantly reduced the abundance of various primary metabolites in rice seedlings, including most amino acids, sugars, and organic acids; by contrast, PPA2 promoted their synthesis. Our results thus indicate that PPA2 enhances plant defenses against bacterial infection through the jasmonic acid pathway, and that as a water-soluble compound that can promote the synthesis of primary metabolites it has broad potential applications in agriculture.
Collapse
|
33
|
Zienkiewicz A, Gömann J, König S, Herrfurth C, Liu YT, Meldau D, Feussner I. Disruption of Arabidopsis neutral ceramidases 1 and 2 results in specific sphingolipid imbalances triggering different phytohormone-dependent plant cell death programmes. THE NEW PHYTOLOGIST 2020; 226:170-188. [PMID: 31758808 DOI: 10.1111/nph.16336] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/18/2019] [Indexed: 05/05/2023]
Abstract
Sphingolipids act as regulators of programmed cell death (PCD) and the plant defence response. The homeostasis between long-chain base (LCB) and ceramide (Cer) seems to play an important role in executions of PCD. Therefore, deciphering the role of neutral ceramidases (NCER) is crucial to identify the sphingolipid compounds that trigger and execute PCD. We performed comprehensive sphingolipid and phytohormone analyses of Arabidopsis ncer mutants, combined with gene expression profiling and microscopic analyses. While ncer1 exhibited early leaf senescence (developmentally controlled PCD - dPCD) and an increase in hydroxyceramides, ncer2 showed spontaneous cell death (pathogen-triggered PCD-like - pPCD) accompanied by an increase in LCB t18:0 at 35 d, respectively. Loss of NCER1 function resulted in accumulation of jasmonoyl-isoleucine (JA-Ile) in the leaves, whereas disruption of NCER2 was accompanied by higher levels of salicylic acid (SA) and increased sensitivity to Fumonisin B1 (FB1 ). All mutants were also found to activate plant defence pathways. These data strongly suggest that NCER1 hydrolyses ceramides whereas NCER2 functions as a ceramide synthase. Our results reveal an important role of NCER in the regulation of both dPCD and pPCD via a tight connection between the phytohormone and sphingolipid levels in these two processes.
Collapse
Affiliation(s)
- Agnieszka Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Centre of Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - Jasmin Gömann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
| | - Stefanie König
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077, Goettingen, Germany
| | - Yi-Tse Liu
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
| | - Dorothea Meldau
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077, Goettingen, Germany
| |
Collapse
|
34
|
Zhang QF, Li J, Bi FC, Liu Z, Chang ZY, Wang LY, Huang LQ, Yao N. Ceramide-Induced Cell Death Depends on Calcium and Caspase-Like Activity in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:145. [PMID: 32161611 PMCID: PMC7054224 DOI: 10.3389/fpls.2020.00145] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/30/2020] [Indexed: 05/12/2023]
Abstract
Ceramide sphingolipids are major components of membranes. C2 and C6 ceramides induce programmed cell death (PCD) in animals and plants, and we previously showed that C2 and C6 ceramides induce PCD in rice (Oryza sativa) protoplasts. However, the mechanistic link between sphingolipids and PCD in rice remains unclear. Here, we observed that calcium levels increased rapidly after ceramide treatment. Moreover, the calcium channel inhibitor LaCl3 and the intracellular calcium chelator acetoxymethyl-1, 2-bis (2-aminophenoxy) ethic acid (BAPTA-AM) inhibited this calcium increase and prevented ceramide-induced PCD. Moreover, caspase-3-like protease activity increased significantly in C6 ceramide-treated protoplasts, and a caspase-specific inhibitor prevented C6 ceramide-induced cell death. We also detected the other typical PCD events including ATP loss. DIDS (4, 49-diisothiocyanatostilbene- 2, 29-disulfonic acid), an inhibitor of voltage-dependent anion channels (VDACs), decreased C6 ceramide-induced cell death. Together, this evidence suggests that mitochondria played an important role in C6 ceramide-induced PCD.
Collapse
Affiliation(s)
| | - Jian Li
- *Correspondence: Jian Li, ; Nan Yao,
| | | | | | | | | | | | - Nan Yao
- *Correspondence: Jian Li, ; Nan Yao,
| |
Collapse
|
35
|
Huby E, Napier JA, Baillieul F, Michaelson LV, Dhondt‐Cordelier S. Sphingolipids: towards an integrated view of metabolism during the plant stress response. THE NEW PHYTOLOGIST 2020; 225:659-670. [PMID: 31211869 PMCID: PMC6973233 DOI: 10.1111/nph.15997] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/07/2019] [Indexed: 05/18/2023]
Abstract
Plants exist in an environment of changing abiotic and biotic stresses. They have developed a complex set of strategies to respond to these stresses and over recent years it has become clear that sphingolipids are a key player in these responses. Sphingolipids are not universally present in all three domains of life. Many bacteria and archaea do not produce sphingolipids but they are ubiquitous in eukaryotes and have been intensively studied in yeast and mammals. During the last decade there has been a steadily increasing interest in plant sphingolipids. Plant sphingolipids exhibit structural differences when compared with their mammalian counterparts and it is now clear that they perform some unique functions. Sphingolipids are recognised as critical components of the plant plasma membrane and endomembrane system. Besides being important structural elements of plant membranes, their particular structure contributes to the fluidity and biophysical order. Sphingolipids are also involved in multiple cellular and regulatory processes including vesicle trafficking, plant development and defence. This review will focus on our current knowledge as to the function of sphingolipids during plant stress responses, not only as structural components of biological membranes, but also as signalling mediators.
Collapse
Affiliation(s)
- Eloïse Huby
- Résistance Induite et Bioprotection des Plantes EA 4707SFR Condorcet FR CNRS 3417University of Reims Champagne‐ArdenneBP 1039F‐51687Reims Cedex 2France
- Laboratoire de Biophysique Moléculaire aux InterfacesGembloux Agro‐Bio TechUniversité de Liège2 Passage des DéportésB‐5030GemblouxBelgique
| | | | - Fabienne Baillieul
- Résistance Induite et Bioprotection des Plantes EA 4707SFR Condorcet FR CNRS 3417University of Reims Champagne‐ArdenneBP 1039F‐51687Reims Cedex 2France
| | | | - Sandrine Dhondt‐Cordelier
- Résistance Induite et Bioprotection des Plantes EA 4707SFR Condorcet FR CNRS 3417University of Reims Champagne‐ArdenneBP 1039F‐51687Reims Cedex 2France
| |
Collapse
|
36
|
Zhao H, Liu S, Chen M, Li J, Huang D, Zhu S. Synergistic effects of ascorbic acid and plant-derived ceramide to enhance storability and boost antioxidant systems of postharvest strawberries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6562-6571. [PMID: 31321778 DOI: 10.1002/jsfa.9937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Excessive reactive oxygen species (ROS) may attack biological macromolecules and induce oxidative stress. The inhibition by ascorbic acid (AsA) on oxidative damage has been reported in fruits, while the barrier effect of ceramide has also been proven. However, there are few reports about the effects of ceramide-AsA interactions to enhance storability and boost antioxidant systems in fruits during storage. This study was conducted to study the synergistic effects of AsA in combination with ceramide on the quality of postharvest strawberry (Fragaria anannasa cv. Tianbao). RESULTS Treatment with 100 mg L-1 AsA plus 1.2 mmol L-1 ceramide significantly delayed the rot of strawberries, reduced the water loss and the contents of ROS, malonaldehyde (MDA), and proline, however, increased the contents of total flavonoids, total phenols, and anthocyanins compared with other treatments. Also, treatment with 100 mg L-1 AsA plus 1.2 mmol L-1 ceramide significantly increased the activities of peroxidase (POD) and superoxide dismutase (SOD) but inhibited the activity of polyphenol oxidase (PPO). CONCLUSION It is suggested that treatment with 100 mg L-1 AsA plus 1.2 mmol L-1 ceramide could significantly reduce the oxidative damage and maintain the storage quality of strawberries during storage by enhancing the antioxidant systems. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haonuan Zhao
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, China
| | - Shiwen Liu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, China
| | - Maogang Chen
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, China
| | - Jing Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, China
| | - Dandan Huang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, China
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
37
|
Yang YB, Yin J, Huang LQ, Li J, Chen DK, Yao N. Salt Enhances Disease Resistance and Suppresses Cell Death in Ceramide Kinase Mutants. PLANT PHYSIOLOGY 2019; 181:319-331. [PMID: 31243063 PMCID: PMC6716259 DOI: 10.1104/pp.19.00613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/14/2019] [Indexed: 05/26/2023]
Abstract
Sphingolipids act as structural components of cellular membranes and as signals in a variety of plant developmental processes and defense responses, including programmed cell death. Recent studies have uncovered an interplay between abiotic or biotic stress and programmed cell death. In a previous study, we characterized an Arabidopsis (Arabidopsis thaliana) cell-death mutant, accelerated cell death5 (acd5), which accumulates ceramides and exhibits spontaneous cell death late in development. In this work, we report that salt (NaCl) treatment inhibits cell death in the acd5 mutant and prevents the accumulation of sphingolipids. Exogenous application of abscisic acid (ABA) and the salicylic acid (SA) analog benzothiadiazole demonstrated that the effect of NaCl was partly dependent on the antagonistic interaction between endogenous SA and ABA. However, the use of mutants deficient in the ABA pathway suggested that the intact ABA pathway may not be required for this effect. Furthermore, pretreatment with salt enhanced the resistance response to biotic stress, and this enhanced resistance did not involve the pathogen-associated molecular pattern-triggered immune response. Taken together, our findings indicate that salt inhibits sphingolipid accumulation and cell death in acd5 mutants partly via a mechanism that depends on SA and ABA antagonistic interaction, and enhances disease resistance independent of pattern-triggered immune responses.
Collapse
Affiliation(s)
- Yu-Bing Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
38
|
Zhai P, Song J, Gao L, Lu L. A sphingolipid synthesis-related protein OrmA in Aspergillus fumigatus is responsible for azole susceptibility and virulence. Cell Microbiol 2019; 21:e13092. [PMID: 31376233 DOI: 10.1111/cmi.13092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 01/24/2023]
Abstract
Previous studies identified that the budding yeast Saccharomyces cerevisiae have two sphingolipid synthesis-related proteins, Orm1p and Orm2p, that negatively regulate the activities of SPT, which is a key rate-limiting enzyme in sphingolipid synthesis. However, little is known about whether sphingolipids in the cell membrane, which are closely related to ergosterols, could affect the efficacy of azole drugs, which target to the ergosterol biosynthesis. In this study, through genome-wide homologue search analysis, we found that the Aspergillus fumigatus genome only contains one Orm homologue, referred to as OrmA for which the protein expression could be induced by azole antifungals in a dose-dependent manner. Deletion of ormA caused hypersensitivity to azoles, and adding the sphingolipid synthesis inhibitor myriocin rescued the azole susceptibility induced by lack of ormA. In contrast, overexpression of OrmA resulted in azole resistance, indicating that OrmA is a positive azole-response regulator. Further mechanism analysis verified that OrmA is related to drug susceptibility by affecting endoplasmic reticulum stress responses in an unfolded protein response pathway-HacA-dependent manner. Lack of ormA led to an abnormal profile of sphingolipid ceramide components accompanied by hypersensitivity to low temperatures. Furthermore, deletion of OrmA significantly reduced virulence in an immunosuppressed mouse model. The findings in this study collectively suggest that the sphingolipid metabolism pathway in A. fumigatus plays a critical role in azole susceptibility and fungal virulence.
Collapse
Affiliation(s)
- Pengfei Zhai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Lu Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|
39
|
Umair M, Sun N, Du H, Yuan J, Abbasi AM, Wen J, Yu W, Zhou J, Liu C. Differential metabolic responses of shrubs and grasses to water additions in arid karst region, southwestern China. Sci Rep 2019; 9:9613. [PMID: 31270427 PMCID: PMC6610130 DOI: 10.1038/s41598-019-46083-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023] Open
Abstract
Increasing precipitation has been predicted to occur in the karst areas in southwestern regions of China. However, it is little known how various plants respond to increasing precipitation in this region. Here we determined the impacts of water addition on leaf metabolites of grasses (Cymbopogon distans and Arundinella sitosa) and shrubs (Carissa spinarum and Bauhinia brachycarpa) in this area. Four levels of water additions (CK, T1, T2 and T3 indicating 0%, +20%, +40% and +60% relative to the current monthly precipitation, respectively) were designed. Sphingolipids substantially increased in the leaves of all four species with increasing water supply which suggests that these plants adopted biochemical strategy to tolerate the wet stress. However, both shrubs showed decreases in valine and threonine (amino acids), threonate, succinate and ascorbic acid (organic acids), galactose and rhamnose (sugars) and epicatchin and oleamides (secondary metabolites) with increasing water supply. Both grasses increased in the total metabolites at T1, but the total metabolites in A. sitosa significantly decreased at T2 and T3 while remains unchanged in C. distans. Tri-carboxylic acid cycle and amino acid metabolism in shrubs and shikimate pathway in grasses were strongly affected with water supply. Overall, shrubs and grasses respond differentially to variation in water addition in terms of metabolomics, which is helpful in understanding how plants respond to climate change.
Collapse
Affiliation(s)
- Muhammad Umair
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ningxiao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongmei Du
- Design School, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arshad Mehmood Abbasi
- Department of Environment Sciences, COMSATS University, Islamabad, Abbottabad Campus, Pakistan
| | - Jiahao Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjuan Yu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinxing Zhou
- Yunnan Karst Ecosystem Research Station, School of Water and Soil Conservation, Beijing Forestry University, Beijing, China
| | - Chunjiang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Shanghai Urban Forest Research Station, State Forestry Administration, Shanghai, China. .,Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, 22060, China.
| |
Collapse
|
40
|
Hu LJ, Wu XQ, Li HY, Zhao Q, Wang YC, Ye JR. An Effector, BxSapB1, Induces Cell Death and Contributes to Virulence in the Pine Wood Nematode Bursaphelenchus xylophilus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:452-463. [PMID: 30351223 DOI: 10.1094/mpmi-10-18-0275-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The pine wood nematode (PWN) Bursaphelenchus xylophilus has caused serious damage to pine forests in China. Effectors secreted by phytonematodes play a role in host infection. We identified and characterized an effector, BxSapB1, based on the B. xylophilus transcriptome at the early stages of infection and the transient expression of proteins in Nicotiana benthamiana. BxSapB1 triggered cell death in N. benthamiana when secreted into the apoplast, and this effect was independent of N. benthamiana brassinosteroid-insensitive 1-associated kinase 1 (NbBAK1) and suppressor of BIR1-1 (NbSOBIR1). The signal peptide of BxSapB1 was proven to be functional in yeast using the yeast signal sequence trap system and BxSapB1 was strongly expressed in the subventral gland cells of B. xylophilus, as revealed by in-situ hybridization. In addition, based on local BLAST analysis, the BxSapB1 showed 100% identity to BUX.s00139.62, which was identified from the B. xylophilus secretome during Pinus thunbergii infection. BxSapB1 was upregulated in a highly virulent strain and downregulated in a weakly virulent strain of PWN at the early stages of infection. RNA interference assays showed that silencing BxSapB1 resulted in decreased expression of pathogenesis-related genes (PtPR-1b, PtPR-3, and PtPR-5) as well as delayed onset of symptoms in P. thunbergii infected by B. xylophilus. The combined data suggest that BxSapB1 can trigger cell death in N. benthamiana and that it contributes to the virulence in B. xylophilus during parasitic interaction.
Collapse
Affiliation(s)
- Long-Jiao Hu
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| | - Xiao-Qin Wu
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| | - Hai-Yang Li
- 3 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Zhao
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| | - Yuan-Chao Wang
- 3 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Ren Ye
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| |
Collapse
|
41
|
Emergence of membrane sphingolipids as a potential therapeutic target. Biochimie 2019; 158:257-264. [PMID: 30703477 DOI: 10.1016/j.biochi.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/23/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Though sphingolipids are ubiquitously present in eukaryotic cells, but until the last decade, they were merely considered as a structural component of the plasma membrane with limited function. However, over the last decade, numerous functions have been ascribed to sphingolipids after the seminal discoveries on the bioactivities of several sphingolipids. SCOPE OF REVIEW Sphingolipids are now well-recognized signals for fundamental cellular processes. Here we discussed about the advent of several sphingolipids components as potential therapeutic target for both human and plants. MAJOR CONCLUSIONS Sphingolipid contents and/or sphingolipid-metabolizing enzyme expression/activity often get impaired during pathophysiological conditions, and hence manipulation of this signaling pathway may be beneficial in disease diagnosis, and the plasma concentrations can serve as an important prognostic and diagnostic marker for the disease. GENERAL SIGNIFICANCE Sphingolipids are emerging as a goldmine for new therapeutic drug targets with promising new applications (cosmeceutical and nutraceutical), thereby opening new avenues for pharmaceuticals and nutraceutical industries.
Collapse
|
42
|
Transmembrane topology of mammalian ORMDL proteins in the endoplasmic reticulum as revealed by the substituted cysteine accessibility method (SCAM™). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:382-395. [PMID: 30639427 DOI: 10.1016/j.bbapap.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/19/2018] [Accepted: 01/06/2019] [Indexed: 01/05/2023]
Abstract
Sphingolipids are diverse lipids with essential, and occasionally opposing, functions in the cell and therefore tight control over biosynthesis is vital. Mechanisms governing this regulation are not understood. Initial steps in sphingolipid biosynthesis take place on the cytosolic face of the endoplasmic reticulum (ER). Serine palmitoyltransferase (SPT) is an ER-resident enzyme catalyzing the first-committed step in sphingolipid biosynthesis. Not surprisingly, SPT activity is tightly regulated. ORMDLs are ER-resident proteins recently identified as regulators of SPT activity. ORMDL proteins interact directly with SPT but the nature of this interaction is unknown. ORMDL protein sequences contain hydrophobic regions, yet algorithm-based predictions of transmembrane segments are highly ambiguous, making topology of this key regulator unclear. Here we report use of substituted cysteine accessibility to analyze topology of mammalian ORMDLs. We constructed multiple mutant ORMDLs, each containing a single cysteine strategically placed along the protein length. Combined use of selective membrane permeabilization with an impermeant cysteine modification reagent allowed us to assign transmembrane and cytosolic segments of ORMDL. We confirmed that mammalian ORMDL proteins transit the membrane four times, with amino- and carboxy termini facing the cytosol along with a large cytosolic loop. This model will allow us to determine details of the ORMDL-SPT interaction and identify regions acting as the "lipid sensor" to detect changes in cellular sphingolipid levels. We also observe that SPT and ORMDL are substantially resistant to extraction from membranes with non-ionic detergent, indirectly suggesting that both proteins reside in a specialized subdomain of the ER.
Collapse
|
43
|
Yang F, Kimberlin AN, Elowsky CG, Liu Y, Gonzalez-Solis A, Cahoon EB, Alfano JR. A Plant Immune Receptor Degraded by Selective Autophagy. MOLECULAR PLANT 2019; 12:113-123. [PMID: 30508598 DOI: 10.1016/j.molp.2018.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/16/2018] [Accepted: 11/22/2018] [Indexed: 05/21/2023]
Abstract
Plants recycle non-activated immune receptors to maintain a functional immune system. The Arabidopsis immune receptor kinase FLAGELLIN-SENSING 2 (FLS2) recognizes bacterial flagellin. However, the molecular mechanisms by which non-activated FLS2 and other non-activated plant PRRs are recycled remain not well understood. Here, we provide evidence showing that Arabidopsis orosomucoid (ORM) proteins, which have been known to be negative regulators of sphingolipid biosynthesis, act as selective autophagy receptors to mediate the degradation of FLS2. Arabidopsis plants overexpressing ORM1 or ORM2 have undetectable or greatly diminished FLS2 accumulation, nearly lack FLS2 signaling, and are more susceptible to the bacterial pathogen Pseudomonas syringae. On the other hand, ORM1/2 RNAi plants and orm1 or orm2 mutants generated by the CRISPR/Cas9-mediated gene editing have increased FLS2 accumulation and enhanced FLS2 signaling, and are more resistant to P. syringae. ORM proteins interact with FLS2 and the autophagy-related protein ATG8. Interestingly, overexpression of ORM1 or ORM2 in autophagy-defective mutants showed FLS2 abundance that is comparable to that in wild-type plants. Moreover, FLS2 levels were not decreased in Arabidopsis plants overexpressing ORM1/2 derivatives that do not interact with ATG8. Taken together, these results suggest that selective autophagy functions in maintaining the homeostasis of a plant immune receptor and that beyond sphingolipid metabolic regulation ORM proteins can also act as selective autophagy receptors.
Collapse
Affiliation(s)
- Fan Yang
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0722, USA; Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588-0660, USA
| | - Athen N Kimberlin
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588-0660, USA; Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | - Christian G Elowsky
- Center for Biotechnology, University of Nebraska, Lincoln, NE 68588-0665, USA
| | - Yunfeng Liu
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588-0660, USA
| | - Ariadna Gonzalez-Solis
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588-0660, USA; Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588-0660, USA; Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA.
| | - James R Alfano
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0722, USA; Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588-0660, USA.
| |
Collapse
|
44
|
Ali U, Li H, Wang X, Guo L. Emerging Roles of Sphingolipid Signaling in Plant Response to Biotic and Abiotic Stresses. MOLECULAR PLANT 2018; 11:1328-1343. [PMID: 30336328 DOI: 10.1016/j.molp.2018.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 05/12/2023]
Abstract
Plant sphingolipids are not only structural components of the plasma membrane and other endomembrane systems but also act as signaling molecules during biotic and abiotic stresses. However, the roles of sphingolipids in plant signal transduction in response to environmental cues are yet to be investigated in detail. In this review, we discuss the signaling roles of sphingolipid metabolites with a focus on plant sphingolipids. We also mention some microbial sphingolipids that initiate signals during their interaction with plants, because of the limited literatures on their plant analogs. The equilibrium of nonphosphorylated and phosphorylated sphingolipid species determine the destiny of plant cells, whereas molecular connections among the enzymes responsible for this equilibrium in a coordinated signaling network are poorly understood. A mechanistic link between the phytohormone-sphingolipid interplay has also not yet been fully understood and many key participants involved in this complex interaction operating under stress conditions await to be identified. Future research is needed to fill these gaps and to better understand the signal pathways of plant sphingolipids and their interplay with other signals in response to environmental stresses.
Collapse
Affiliation(s)
- Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hehuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
45
|
Davis D, Kannan M, Wattenberg B. Orm/ORMDL proteins: Gate guardians and master regulators. Adv Biol Regul 2018; 70:3-18. [PMID: 30193828 DOI: 10.1016/j.jbior.2018.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
Abstract
Sphingolipids comprise a diverse family of lipids that perform multiple functions in both structure of cellular membranes and intra- and inter-cellular signaling. The diversity of this family is generated by an array of enzymes that produce individual classes and molecular species of family members and enzymes which catabolize those lipids for recycling pathways. However, all of these lipids begin their lives with a single step, the condensation of an amino acid, almost always serine, and a fatty acyl-CoA, almost always the 16-carbon, saturated fatty acid, palmitate. The enzyme complex that accomplishes this condensation is serine palmitoyltransferase (SPT), a membrane-bound component of the endoplasmic reticulum. This places SPT in the unique position of regulating the production of the entire sphingolipid pool. Understanding how SPT activity is regulated is currently a central focus in the field of sphingolipid biology. In this review we examine the regulation of SPT activity by a set of small, membrane-bound proteins of the endoplasmic reticulum, the Orms (in yeast) and ORMDLs (in vertebrates). We discuss what is known about how these proteins act as homeostatic regulators by monitoring cellular levels of sphingolipid, but also how the Orms/ORMDLs regulate SPT in response to other stimuli. Finally, we discuss the intriguing connection between one of the mammalian ORMDL isoforms, ORMDL3, and the pervasive pulmonary disease, asthma, in humans.
Collapse
Affiliation(s)
- Deanna Davis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Muthukumar Kannan
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Binks Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
46
|
Marquês JT, Marinho HS, de Almeida RF. Sphingolipid hydroxylation in mammals, yeast and plants – An integrated view. Prog Lipid Res 2018; 71:18-42. [DOI: 10.1016/j.plipres.2018.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/11/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
|
47
|
Zheng P, Wu JX, Sahu SK, Zeng HY, Huang LQ, Liu Z, Xiao S, Yao N. Loss of alkaline ceramidase inhibits autophagy in Arabidopsis and plays an important role during environmental stress response. PLANT, CELL & ENVIRONMENT 2018; 41:837-849. [PMID: 29341143 DOI: 10.1111/pce.13148] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 05/02/2023]
Abstract
Sphingolipids, a class of bioactive lipids found in cell membranes, can modulate the biophysical properties of the membranes and play a critical role in signal transduction. Sphingolipids are involved in autophagy in humans and yeast, but their role in autophagy in plants is not well understood. In this study, we reported that the AtACER, an alkaline ceramidase that hydrolyses ceramide to long-chain base (LCB), functions in autophagy process in Arabidopsis. Our empirical data showed that the loss of AtACER inhibited autophagy, and its overexpression promoted autophagy under nutrient, salinity, and oxidative stresses. Interestingly, nitrogen deprivation significantly affected the sphingolipid's profile in Arabidopsis thaliana, especially the LCBs. Furthermore, the exogenous application of LCBs also induced autophagy. Our findings revealed a novel function of AtACER, where it was found to involve in the autophagy process, thus, playing a crucial role in the maintenance of a dynamic loop between sphingolipids and autophagy for cellular homeostasis under various environmental stresses.
Collapse
Affiliation(s)
- Ping Zheng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jian-Xin Wu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou, 510631, P. R. China
| | - Sunil Kumar Sahu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Hong-Yun Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhe Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
48
|
Piya S, Bennett M, Rambani A, Hewezi T. Transcriptional activity of transposable elements may contribute to gene expression changes in the syncytium formed by cyst nematode in arabidopsis roots. PLANT SIGNALING & BEHAVIOR 2017; 12:e1362521. [PMID: 28805485 PMCID: PMC5640194 DOI: 10.1080/15592324.2017.1362521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 05/24/2023]
Abstract
Transposable elements (TEs) are mobile genetic materials that constitute a large fraction of plant genomes. Recent experimental evidences indicate that TEs can play key regulatory roles in controlling the expression of adjacent genes during plant development and stress responses. Nevertheless, information about the transcriptional activity of TEs and their impact on proximal genes during plant-nematode interaction remains largely unknown. Here, we identify of differentially expressed TEs and report their possible influence on the expression of nearby genes during the susceptible interaction between the beet cyst nematode Heterodera schachtii and Arabidopsis thaliana. Analysis of our RNA-seq data of H. schachtii-infected roots, and the corresponding non-infected controls, resulted in the identification of 99 and 93 differentially expressed TEs at 5 and 10 d post infection, respectively. More than 2-thirds of these TEs were activated, suggesting that H. schachtii infection induces TE activation to a much greater degree than repression. Remarkably, the majority of these TEs were located within 2 kb of protein-coding genes, many of these genes were previously found to change expression in the H. schachtii-induced feeding sites. Taken together, our analysis provides novel insight into a possible role of actively transcribed TEs in the regulation of gene transcription in the nematode feeding sites during H. schachtii parasitism of Arabidopsis.
Collapse
Affiliation(s)
- Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Morgan Bennett
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Aditi Rambani
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|