1
|
Wang S, Liu M, Hu D, Dong Z, Zhao Z. Control of DNA demethylation by superoxide anion in plant stem cells. Nat Chem Biol 2025; 21:567-576. [PMID: 39266722 DOI: 10.1038/s41589-024-01737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
Superoxide anion is thought to be a natural by-product with strong oxidizing ability in all living organisms and was recently found to accumulate in plant meristems to maintain stem cells in the shoot and undifferentiated meristematic cells in the root. Here we show that the DNA demethylase repressor of silencing 1 (ROS1) is one of the direct targets of superoxide in stem cells. The Fe-S clusters in ROS1 are oxidized by superoxide to activate its DNA glycosylase/lyase activity. We demonstrate that superoxide extensively participates in the establishment of active DNA demethylation in the Arabidopsis genome and that ARABIDOPSIS RESPONSE REGULATOR 12 acts downstream of ROS1-mediated superoxide signaling to maintain stem cell fate. Our results provide a mechanistic framework for superoxide control of the stem cell niche and demonstrate how redox and DNA demethylation interact to define stem cell fate in plants.
Collapse
Affiliation(s)
- Shiwen Wang
- Ministry of Education Key Laboratory for Cellular Dynamics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Min Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Dongping Hu
- Ministry of Education Key Laboratory for Cellular Dynamics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhong Zhao
- Ministry of Education Key Laboratory for Cellular Dynamics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Xiong S, Wu L, Chen Y, Shi X, Wang Y. Multi-omics analysis reveals the regulatory mechanism of branching development in Quercus fabri. J Proteomics 2025; 313:105373. [PMID: 39778766 DOI: 10.1016/j.jprot.2024.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
The ability of axillary meristems to form axillary buds and subsequently develop into branches is influenced by phytohormones, environmental conditions, and genetic factors. The main trunk of Quercus fabri is prone to branching, which not only impacts the appearance and density of the wood and significantly reduces the yield rate. This study conducted transcriptomic, proteomic, and metabolomic analyses on three stages of axillary bud development in Q. fabri. A total of 12,888 differentially expressed genes (DEGs), 8193 differentially accumulated proteins (DAPs), and 1788 differentially accumulated metabolites (DAMs) were identified through comparisons among the stages and subjected to multi-omics joint analysis. Conduct interaction network analysis on DEGs and DAPs to identify the significant transcription factor family (AP2/ERF) involved in the regulation of axillary bud development. Furthermore, KEGG enrichment analysis of DEGs, DAPs and DAMs indicated significant enrichment in plant hormone signaling pathways. The analysis of endogenous hormone levels and qRT-PCR results for pathway genes demonstrated that the expression levels of IAA and tZ significantly increased during late developmental stages, whereas the expression levels of ABA, ACC and JA significantly decreased. In summary, these findings contribute to a comprehensive understanding of the regulatory networks underlying the branching development of Q. fabri. SIGNIFICANCE: Q. fabri exhibits robust vegetative growth, and its primary trunk is prone to branching, significantly influencing the wood yield rate. Through a joint analysis of transcriptomics, proteomics, and metabolomics, we comprehensively examined the regulatory network governing the axillary bud development of Q. fabri. Our findings revealed the crucial roles of the AP2/ERF transcription factor family and plant hormone signal transduction pathways in branch development. These insights contribute to a deeper understanding of the mechanisms regulating branch development.
Collapse
Affiliation(s)
- Shifa Xiong
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiang Shi
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
3
|
Xu J, Hu Z, Chen S, Tang J, Chen L, Chen P, Cai N, Xu Y. Transcriptome-wide identification and characterization of WUSCHEL-related homeobox (WOX) gene family in Pinus yunnanensis. BMC Genomics 2025; 26:99. [PMID: 39901066 PMCID: PMC11789396 DOI: 10.1186/s12864-025-11271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
WUSCHEL-related homeobox (WOX), a specific gene family in plants, plays a critical role during stem cell regulation, plant regeneration and upgrowth. However, our understanding of WOX functions in conifers is limited compared to angiosperms. To address this gap, we investigated the presence, expression profiles and protein characteristics of WOX gene in P. yunnanensis. Our findings revealed that 10 PyWOX genes were dispersed across three existing clades, and their expression profiles were presented in specific developmental stages and tissues. The ancient-clade members (PyWOX13, PyWOXG, PyWOXA) exhibited constitutive expressions in most tissues and developmental stages, indicating that they are the oldest and conserved WOX genes. Members of the intermediate-clade (PyWOXB, PyWOXE) were primarily expressed during callus formation and seed germination, suggesting a role in promoting embryogenesis and plant regeneration. Most members of WUS-clade (PyWUS, PyWOX3, PyWOX4, PyWOX5, PyWOXX) showed high transcripts level in cluster buds, which may be related to meristematic development and the formation of axillary meristems. The self-activation assay demonstrated that PyWOX4 has transcriptional activation activity. Our study also suggested that there were highly conserved and clear orthologs of WOX genes present in Pinus. Together, these findings provide a foundation for further clarifying the function and regulatory mechanism of WOX genes in P. yunnanensis growth and development.
Collapse
Affiliation(s)
- Junfei Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Zhaoliu Hu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Sili Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Junrong Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Lin Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Peizhen Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Nianhui Cai
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yulan Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China.
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China.
| |
Collapse
|
4
|
Joshi PS, Singla Pareek SL, Pareek A. Shaping resilience: The critical role of plant response regulators in salinity stress. Biochim Biophys Acta Gen Subj 2025; 1869:130749. [PMID: 39719184 DOI: 10.1016/j.bbagen.2024.130749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Salinity stress affects plant growth, development, biomass, yield, as well as their survival. A series of signaling cascade is activated to cope the deleterious effect of salinity stress. Cytokinins are known for their regulatory roles from cell growth and expansion to abiotic stress signaling. Two component system (TCS) are important multistep phosphorelay signal transduction machinery converging cytokinin, ethylene and light signal transduction pathways together. Plant TCS comprises of histidine kinases, phosho-transfer proteins and response regulators. Histidine kinases perceive the signal and relay it to response regulator via histidine containing phosphor-transfer proteins. SCOPE OF REVIEW Response regulators are one of the major and diverse component of TCS system which have been extensively studied for their role in plant growth, development and circadian rhythm. However, knowledge of their regulatory role in abiotic stress signaling is limited. This mini-review specifically focus on role of response regulators in salinity stress signaling. MAJOR CONCLUSION Response regulators is the divergent node of TCS machinery, where cross-talks with other stress-mediated, phytohormone-mediated, as well as, light-mediated signaling pathways ensues. Studies from past few years have established central role of response regulators in salinity stress, however, the detailed mechanism of their actions need to be studied further. GENERAL SIGNIFICANCE Response regulators act as both negative as well as positive regulator of salinity and cytokinin signaling, making it an excellent target to increase crop yield as well as stress tolerance capabilities.
Collapse
Affiliation(s)
- Priyanka S Joshi
- National Agri-Food and Biomanufacturing Institute, Mohali, Punjab 140306, India
| | - Sneh L Singla Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- National Agri-Food and Biomanufacturing Institute, Mohali, Punjab 140306, India; Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
6
|
Park SH, Jeong YJ, Kim S, Lee J, Kim CY, Jeong JC. Trichostatin A promotes de novo shoot regeneration from Arabidopsis root explants via a cytokinin related pathway. Sci Rep 2025; 15:978. [PMID: 39762325 PMCID: PMC11704266 DOI: 10.1038/s41598-024-84860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
De novo shoot regeneration, characterized by the emergence of adventitious shoots from excised or damaged tissues or organs in vitro, is regulated by the complex interplay between genetic and epigenetic regulatory mechanisms. However, the specific effect of histone deacetylation on shoot regeneration remains poorly understood. This study investigated the effects of trichostatin A (TSA), a histone deacetylase inhibitor, on shoot regeneration in callus derived from root explants. TSA-treated root explants exhibited pronounced callus greening and substantially increasing in multiple shoot formations per callus compared with the control group. Additionally, TSA treatment upregulated shoot apical meristem-specific genes, including WUSCHELL (WUS), RELATED TO AP2.6 L (Rap2.6 L), SHOOT MERISTEMLESS (STM), CUP SHAPED COTYLEDON 2 (CUC2). Notably, TSA treatment enhanced the sensitivity to cytokinins, leading to increase expression of the cytokinin signaling reporter TCS::GFP in the callus. Concomitantly, type-B ARABIDOPSIS RESPONSE REGULATOR (ARR) 10 and 12, which are key regulators of cytokinin signaling, were upregulated in TSA-treated callus, whereas the downstream targets of type-B ARRs, such as ARR5, ARR7, and ARR15, were significantly upregulated during shoot regeneration. Furthermore, mutants deficient in ARR10 and ARR12 showed diminished responsiveness to shoot regenerative capacity, a phenotype that was enhanced by TSA treatment. Our findings underscore the crucial role of histone deacetylation in mediating cytokinin responses and controlling de novo shoot regeneration in plants.
Collapse
Affiliation(s)
- Su Hyun Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Yu Jeong Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Soyoung Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Jiyoung Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea.
| | - Jae Cheol Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
7
|
Wang G, Wu Z, Sun B. KNUCKLES regulates floral meristem termination by controlling auxin distribution and cytokinin activity. THE PLANT CELL 2024; 37:koae312. [PMID: 39576002 DOI: 10.1093/plcell/koae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024]
Abstract
The termination of floral meristem (FM) activity is essential for the normal development of reproductive floral organs. During this process, KNUCKLES (KNU), a C2H2-type zinc finger protein, crucially regulates FM termination by directly repressing the expression of both the stem cell identity gene WUSCHEL (WUS) and the stem cell marker gene CLAVATA3 (CLV3) to abolish the WUS-CLV3 feedback loop required for FM maintenance. In addition, phytohormones auxin and cytokinin are involved in FM regulation. However, whether KNU modulates auxin and cytokinin activities for FM determinacy control remains unclear. Here, we show that the auxin distribution and the cytokinin activity mediated by KNU in Arabidopsis (Arabidopsis thaliana) promote the termination of FM during stage 6 of flower development. Mutation of KNU leads to altered distribution of auxin and cytokinin in the FM of a stage 6 floral bud. Moreover, KNU directly represses the auxin transporter gene PIN-FORMED1 (PIN1) and the cytokinin biosynthesis gene ISOPENTENYLTRANSFERASE7 (IPT7) via mediating H3K27me3 deposition on these 2 loci to regulate auxin and cytokinin activities. Our study presents a molecular regulatory network that elucidates how the transcriptional repressor KNU integrates and modulates the activities of auxin and cytokinin, thus securing the timed FM termination.
Collapse
Affiliation(s)
- Guangling Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhiyue Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
He H, Xu J, Cai N, Xu Y. Analysis of the molecular mechanism endogenous hormone regulating axillary bud development in Pinus yunnanensis. BMC PLANT BIOLOGY 2024; 24:1219. [PMID: 39701992 DOI: 10.1186/s12870-024-05819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND P. yunnanensis, a distinctive economic tree species native to Yunnan Province in China, possesses axillary buds that serve as superior material for asexual propagation. However, under natural growth conditions, the differentiation of these axillary buds is notably scarce. In this study, we employed decapitation to stimulate the development of axillary buds in P. yunnanensis. Subsequently, we assessed the phytohormone levels in both axillary and apical buds, and conducted a comprehensive transcriptomic analysis complemented by RT-qPCR validation. RESULTS We found that decapitation could effectively promote the releases of the axillary buds in P. yunnanensis. The levels of cytokinin, auxin, gibberellin and abscisic acid in axillary buds were higher than those in apical buds, and the difference in gibberellin levels was the greatest. The transcriptome sequencing results were highly reproducible, and the relative expression levels of the 13 genes screened were highly consistent with the FPKM value trend of transcriptome sequencing. There were 2877 differentially expressed genes (DEGs) between axillary buds and terminal buds, and 18 candidate genes (CGs) involved in axillary bud release were screened out. A total of 1171 DEGs were identified during the analysis of axillary bud growth, and 14 CGs involved in axillary bud growth and development were screened out. GO and KEGG enrichment analysis were performed on the DEGs. Furthermore, combined with the results and discussion, the functions of the candidate genes were analyzed and a possible regulatory network was constructed. CONCLUSION The findings and discussions indicated that the development of axillary buds in P. yunnanensis is predominantly governed by cytokinin, gibberellin, strigolactone, and auxin, as well as their biosynthesis and regulatory genes, which are crucial to the development of these buds. This study has, to some extent, bridged the research gap concerning the development of axillary buds in P. yunnanensis and has provided foundational data to support further research into the developmental mechanisms of these buds and the establishment of asexual propagation cutting nurseries.
Collapse
Affiliation(s)
- Haihao He
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China
| | - Junfei Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China
| | - Nianhui Cai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China.
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China.
| | - Yulan Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China.
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China.
| |
Collapse
|
9
|
Chaudhry A, Chen Z, Gallavotti A. Hormonal influence on maize inflorescence development and reproduction. PLANT REPRODUCTION 2024; 37:393-407. [PMID: 39367960 PMCID: PMC11511735 DOI: 10.1007/s00497-024-00510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/07/2024]
Abstract
KEY MESSAGE Different plant hormones contribute to maize reproductive success. Maize is a major crop species and significantly contributes directly and indirectly to human calorie uptake. Its success can be mainly attributed to its unisexual inflorescences, the tassel and the ear, whose formation is regulated by complex genetic and hormonal networks, and is influenced by environmental cues such as temperature, and nutrient and water availability. Traditional genetic analysis of classic developmental mutants, together with new molecular approaches, have shed light on many crucial aspects of maize reproductive development including the influence that phytohormones exert on key developmental steps leading to successful reproduction and seed yield. Here we will review both historical and recent findings concerning the main roles that phytohormones play in maize reproductive development, from the commitment to reproductive development to sexual reproduction.
Collapse
Affiliation(s)
- Amina Chaudhry
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
10
|
Liu L, Hu B, Guo S, Xue Z, Wang T, Zhang C. miR394 and LCR cooperate with TPL to regulate AM initiation. Nat Commun 2024; 15:10156. [PMID: 39578457 PMCID: PMC11584774 DOI: 10.1038/s41467-024-54494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024] Open
Abstract
Plant architecture is a main determinate of crop yield, and lateral branching significantly influences the number of inflorescences and seeds. The mechanism of axillary bud initiation remains unclear. This work aimed to examine how miRNAs regulate axillary bud initiation. By constructing a small RNA library and screening a mutant population, we revealed the initiation of axillary buds is specifically induced by miR394 and repressed by its target, LEAF CURLING RESPONSIVENESS (LCR). Using promoter-driven fluorescent tags and in situ hybridization, we showed that miR394 is localized in the center of the leaf axil where AMs are initiated. Through molecular and genetic research, we revealed that miR394/LCR may regulate REVOLUTA (REV) and SHOOT MERISTEMLESS (STM) to establish the axillary meristem. Immunoprecipitation-mass spectrometry studies revealed that LCR, as an F-box protein, may interact with TOPLESS (TPL) proteins and participate in ubiquitinated protein degradation. Our results reveal an important mechanism by which the miR394-regulated LCR accelerates the degradation of TPL to precisely modulate axillary bud initiation.
Collapse
Affiliation(s)
- Liya Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binbin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siying Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tao Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
11
|
Kumar M, Ayzenshtat D, Rather GA, Zemach H, Belausov E, Eshed Williams L, Bocobza S. A dynamic WUSCHEL/Layer 1 interplay directs shoot apical meristem formation during regeneration in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:578-597. [PMID: 39215624 DOI: 10.1111/tpj.17002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
De novo shoot apical meristem (SAM) organogenesis during regeneration in tissue culture has been investigated for several decades, but the precise mechanisms governing early-stage cell fate specification remain elusive. In contrast to SAM establishment during embryogenesis, in vitro SAM formation occurs without positional cues and is characterized by autonomous initiation of cellular patterning. Here, we report on the initial stages of SAM organogenesis and on the molecular mechanisms that orchestrate gene patterning to establish SAM homeostasis. We found that SAM organogenesis in tobacco calli starts with protuberance formation followed by the formation of an intact L1 layer covering the nascent protuberance. We also exposed a complex interdependent relationship between L1 and WUS expression and revealed that any disruption in this interplay compromises shoot formation. Silencing WUS in nascent protuberances prevented L1 formation and caused the disorganization of the outer cell layers exhibiting both anticlinal and periclinal divisions, suggesting WUS plays a critical role in the proper establishment and organization of L1 during SAM organogenesis. We further discovered that silencing TONNEAU1 prevents the exclusive occurrence of anticlinal divisions in the outermost layer of the protuberances and suppresses the acquisition of L1 cellular identity and L1 formation, ultimately impeding SAM formation and regeneration. This study provides a novel molecular framework for the characterization of a WUS/L1 interplay that mediates SAM formation during regeneration.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Gulzar A Rather
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Hanita Zemach
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Samuel Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| |
Collapse
|
12
|
Liu D, Ellison EE, Myers EA, Donahue LI, Xuan S, Swanson R, Qi S, Prichard LE, Starker CG, Voytas DF. Heritable gene editing in tomato through viral delivery of isopentenyl transferase and single-guide RNAs to latent axillary meristematic cells. Proc Natl Acad Sci U S A 2024; 121:e2406486121. [PMID: 39284063 PMCID: PMC11441571 DOI: 10.1073/pnas.2406486121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/07/2024] [Indexed: 10/02/2024] Open
Abstract
Realizing the full potential of genome editing for crop improvement has been slow due to inefficient methods for reagent delivery and the reliance on tissue culture for creating gene-edited plants. RNA viral vectors offer an alternative approach for delivering gene engineering reagents and bypassing the tissue culture requirement. Viruses, however, are often excluded from the shoot apical meristem, making virus-mediated gene editing inefficient in some species. Here, we developed effective approaches for generating gene-edited shoots in Cas9-expressing transgenic tomato plants using RNA virus-mediated delivery of single-guide RNAs (sgRNAs). RNA viral vectors expressing sgRNAs were either delivered to leaves or sites near axillary meristems. Trimming of the apical and axillary meristems induced new shoots to form from edited somatic cells. To further encourage the induction of shoots, we used RNA viral vectors to deliver sgRNAs along with the cytokinin biosynthesis gene, isopentenyl transferase. Abundant, phenotypically normal, gene-edited shoots were induced per infected plant with single and multiplexed gene edits fixed in the germline. The use of viruses to deliver both gene editing reagents and developmental regulators overcomes the bottleneck in applying virus-induced gene editing to dicotyledonous crops such as tomato and reduces the dependency on tissue culture.
Collapse
Affiliation(s)
- Degao Liu
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Evan E. Ellison
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Erik A. Myers
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Lilee I. Donahue
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Shuya Xuan
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Ryan Swanson
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Songyan Qi
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Lynn E. Prichard
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Colby G. Starker
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| |
Collapse
|
13
|
Rudolf J, Tomovicova L, Panzarova K, Fajkus J, Hejatko J, Skalak J. Epigenetics and plant hormone dynamics: a functional and methodological perspective. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5267-5294. [PMID: 38373206 PMCID: PMC11389840 DOI: 10.1093/jxb/erae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Plant hormones, pivotal regulators of plant growth, development, and response to environmental cues, have recently emerged as central modulators of epigenetic processes governing gene expression and phenotypic plasticity. This review addresses the complex interplay between plant hormones and epigenetic mechanisms, highlighting the diverse methodologies that have been harnessed to decipher these intricate relationships. We present a comprehensive overview to understand how phytohormones orchestrate epigenetic modifications, shaping plant adaptation and survival strategies. Conversely, we explore how epigenetic regulators ensure hormonal balance and regulate the signalling pathways of key plant hormones. Furthermore, our investigation includes a search for novel genes that are regulated by plant hormones under the control of epigenetic processes. Our review offers a contemporary overview of the epigenetic-plant hormone crosstalk, emphasizing its significance in plant growth, development, and potential agronomical applications.
Collapse
Affiliation(s)
- Jiri Rudolf
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Lucia Tomovicova
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Klara Panzarova
- Photon Systems Instruments, Prumyslova 470, CZ-664 24 Drasov, Czech Republic
| | - Jiri Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Hejatko
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Skalak
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
14
|
Walker CH, Bennett T. Cytokinin and reproductive shoot architecture: bigger and better? Biochem Soc Trans 2024; 52:1885-1893. [PMID: 39083016 PMCID: PMC11668285 DOI: 10.1042/bst20231565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Cytokinin (CK) is a key plant hormone, but one whose effects are often misunderstood, partly due to reliance on older data from before the molecular genetic age of plant science. In this mini-review, we examine the role of CK in controlling the reproductive shoot architecture of flowering plants. We begin with a long overdue re-examination of the role of CK in shoot branching, and discuss the relatively paucity of genetic evidence that CK does play a major role in this process. We then examine the role of CK in determining the number of inflorescences, flowers, fruit and seed that plants initiate during reproductive development, and how these are arranged in space and time. The genetic evidence for a major role of CK in controlling these processes is much clearer, and CK has profound effects in boosting the size and number of most reproductive structures. Conversely, the attenuation of CK levels during the reproductive phase likely contributes to reduced organ size seen later in flowering, and the ultimate arrest of inflorescence meristems during end-of-flowering. We finish by discussing how this information can potentially be used to improve crop yields.
Collapse
Affiliation(s)
- Catriona H. Walker
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
15
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
16
|
Uzair M, Urquidi Camacho RA, Liu Z, Overholt AM, DeGennaro D, Zhang L, Herron BS, Hong T, Shpak ED. An updated model of shoot apical meristem regulation by ERECTA family and CLAVATA3 signaling pathways in Arabidopsis. Development 2024; 151:dev202870. [PMID: 38814747 PMCID: PMC11234387 DOI: 10.1242/dev.202870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
The shoot apical meristem (SAM) gives rise to the aboveground organs of plants. The size of the SAM is relatively constant due to the balance between stem cell replenishment and cell recruitment into new organs. In angiosperms, the transcription factor WUSCHEL (WUS) promotes stem cell proliferation in the central zone of the SAM. WUS forms a negative feedback loop with a signaling pathway activated by CLAVATA3 (CLV3). In the periphery of the SAM, the ERECTA family receptors (ERfs) constrain WUS and CLV3 expression. Here, we show that four ligands of ERfs redundantly inhibit the expression of these two genes. Transcriptome analysis confirmed that WUS and CLV3 are the main targets of ERf signaling and uncovered new ones. Analysis of promoter reporters indicated that the WUS expression domain mostly overlaps with the CLV3 domain and does not shift along the apical-basal axis in clv3 mutants. Our three-dimensional mathematical model captured gene expression distributions at the single-cell level under various perturbed conditions. Based on our findings, CLV3 regulates cellular levels of WUS mostly through autocrine signaling, and ERfs regulate the spatial expression of WUS, preventing its encroachment into the peripheral zone.
Collapse
Affiliation(s)
- Muhammad Uzair
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Ziyi Liu
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Alex M. Overholt
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Daniel DeGennaro
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Liang Zhang
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brittani S. Herron
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Tian Hong
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Elena D. Shpak
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
17
|
Mou L, Zhang L, Qiu Y, Liu M, Wu L, Mo X, Chen J, Liu F, Li R, Liu C, Tian M. Endogenous Hormone Levels and Transcriptomic Analysis Reveal the Mechanisms of Bulbil Initiation in Pinellia ternata. Int J Mol Sci 2024; 25:6149. [PMID: 38892337 PMCID: PMC11173086 DOI: 10.3390/ijms25116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Pinellia ternata is a medicinal plant that has important pharmacological value, and the bulbils serve as the primary reproductive organ; however, the mechanisms underlying bulbil initiation remain unclear. Here, we characterized bulbil development via histological, transcriptomic, and targeted metabolomic analyses to unearth the intricate relationship between hormones, genes, and bulbil development. The results show that the bulbils initiate growth from the leaf axillary meristem (AM). In this stage, jasmonic acid (JA), abscisic acid (ABA), isopentenyl adenosine (IPA), and salicylic acid (SA) were highly enriched, while indole-3-acetic acid (IAA), zeatin, methyl jasmonate (MeJA), and 5-dexoxystrigol (5-DS) were notably decreased. Through OPLS-DA analysis, SA has emerged as the most crucial factor in initiating and positively regulating bulbil formation. Furthermore, a strong association between IPA and SA was observed during bulbil initiation. The transcriptional changes in IPT (Isopentenyltransferase), CRE1 (Cytokinin Response 1), A-ARR (Type-A Arabidopsis Response Regulator), B-ARR (Type-B Arabidopsis Response Regulator), AUX1 (Auxin Resistant 1), ARF (Auxin Response Factor), AUX/IAA (Auxin/Indole-3-acetic acid), GH3 (Gretchen Hagen 3), SAUR (Small Auxin Up RNA), GA2ox (Gibberellin 2-oxidase), GA20ox (Gibberellin 20-oxidase), AOS (Allene oxide synthase), AOC (Allene oxide cyclase), OPR (Oxophytodienoate Reductase), JMT (JA carboxy l Methyltransferase), COI1 (Coronatine Insensitive 1), JAZ (Jasmonate ZIM-domain), MYC2 (Myelocytomatosis 2), D27 (DWARF27), SMAX (Suppressor of MAX2), PAL (Phenylalanine Ammonia-Lyase), ICS (Isochorismate Synthase), NPR1 (Non-expressor of Pathogenesis-related Genes1), TGA (TGACG Sequence-specific Binding), PR-1 (Pathogenesis-related), MCSU (Molybdenium Cofactor Sulfurase), PP2C (Protein Phosphatase 2C), and SnRK (Sucrose Non-fermenting-related Protein Kinase 2) were highly correlated with hormone concentrations, indicating that bulbil initiation is coordinately controlled by multiple phytohormones. Notably, eight TFs (transcription factors) that regulate AM initiation have been identified as pivotal regulators of bulbil formation. Among these, WUS (WUSCHEL), CLV (CLAVATA), ATH1 (Arabidopsis Thaliana Homeobox Gene 1), and RAX (Regulator of Axillary meristems) have been observed to exhibit elevated expression levels. Conversely, LEAFY demonstrated contrasting expression patterns. The intricate expression profiles of these TFs are closely associated with the upregulated expression of KNOX(KNOTTED-like homeobox), suggesting a intricate regulatory network underlying the complex process of bulbil initiation. This study offers a profound understanding of the bulbil initiation process and could potentially aid in refining molecular breeding techniques specific to P. ternata.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mengliang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (L.Z.); (Y.Q.); (M.L.); (L.W.); (X.M.); (J.C.); (F.L.); (R.L.); (C.L.)
| |
Collapse
|
18
|
Xu M, Li L, Yan J, Li D, Liu Y, Zhang W, Liu Y. Blocking miR396 activity by overexpression MIM396 improved switchgrass tiller number and biomass yield. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:69. [PMID: 38802880 PMCID: PMC11131217 DOI: 10.1186/s13068-024-02514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND MicroRNA396 (miR396) plays an important role in the regulation of plant growth and development by repressing the expression level of its target growth-regulating factor (GRF) family genes. In our previous study, we found that overexpression of miR396 negatively regulated both tillering and biomass yield in switchgrass (Panicum virgatum L.). We, therefore, speculated that blocking the expression of miR396 could enhance switchgrass tillering and biomass yield. Here, we produced transgenic switchgrass plants overexpressing a target mimicry form of miR396 (MIM396) in wild type (WT) and Os-MIR319b overexpressing switchgrass plant (with higher enzymatic hydrolysis efficiency, but reduced tillering), in which the expression of miR396 was blocked. The phenotype and biological yields of these plants were analyzed. RESULTS Blocking miR396 to improve its target PvGRFs expression in switchgrass improved the tiller number and dry weight of transgenic plants. Further morphological analysis revealed that MIM396 plants increased the number of aerial branches and basal tillers compared to those of wild-type plants. The enzymatic efficiency of MIM396 plants was reduced; however, the total sugar production per plant was still significantly higher than that of wild-type plants due to the increase in biomass. In addition, blocking miR396 in a transgenic switchgrass plant overexpressing Os-MIR319b (TG21-Ms) significantly increased the PvGRF1/3/5 expression level and tiller number and biomass yield. The miR156-target gene PvSPL4, playing a negative role in aerial and basal buds outgrowth, showed significant downregulated in MIM396 and TG21-Ms. Those results indicate that miR396-PvGRFs, through disrupting the PvSPL4 expression, are involved in miR319-PvPCFs in regulating tiller number, at least partly. CONCLUSIONS MIM396 could be used as a molecular tool to improving tiller number and biomass yield in switchgrass wild type and miR319b transgenic plants. This finding may be applied to other graminaceous plants to regulate plant biological yield.
Collapse
Affiliation(s)
- Mingzhi Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lin Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianping Yan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, People's Republic of China
| | - Yaling Liu
- National Center of Pratacultural Technology Innovation (Under Preparation), Hohhot, 010010, China
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanrong Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Wen S, Hu Q, Wang J, Li H. Transcriptome analysis and functional validation reveal the novel role of LhCYCL in axillary bud development in hybrid Liriodendron. PLANT MOLECULAR BIOLOGY 2024; 114:55. [PMID: 38727895 DOI: 10.1007/s11103-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Shoot branching significantly influences yield and timber quality in woody plants, with hybrid Liriodendron being particularly valuable due to its rapid growth. However, understanding of the mechanisms governing shoot branching in hybrid Liriodendron remains limited. In this study, we systematically examined axillary bud development using morphological and anatomical approaches and selected four distinct developmental stages for an extensive transcriptome analysis. A total of 9,449 differentially expressed genes have been identified, many of which are involved in plant hormone signal transduction pathways. Additionally, we identified several transcription factors downregulated during early axillary bud development, including a noteworthy gene annotated as CYC-like from the TCP TF family, which emerged as a strong candidate for modulating axillary bud development. Quantitative real-time polymerase chain reaction results confirmed the highest expression levels of LhCYCL in hybrid Liriodendron axillary buds, while histochemical β-glucuronidase staining suggested its potential role in Arabidopsis thaliana leaf axil development. Ectopic expression of LhCYCL in A. thaliana led to an increase of branches and a decrease of plant height, accompanied by altered expression of genes involved in the plant hormone signaling pathways. This indicates the involvement of LhCYCL in regulating shoot branching through plant hormone signaling pathways. In summary, our results emphasize the pivotal role played by LhCYCL in shoot branching, offering insights into the function of the CYC-like gene and establishing a robust foundation for further investigations into the molecular mechanisms governing axillary bud development in hybrid Liriodendron.
Collapse
Affiliation(s)
- Shaoying Wen
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qinghua Hu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jing Wang
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
20
|
Li Z, Qian W, Qiu S, Wang W, Jiang M, Hu X, Huang H, Lin E. Identification and characterization of the WOX Gene Family revealed two WUS Clade Members associated with embryo development in Cunninghamia lanceolata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108570. [PMID: 38560957 DOI: 10.1016/j.plaphy.2024.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
The WUSCHEL-related homeobox (WOX) gene family is vital for plant development and stress response. In this study, we conducted a comprehensive analysis of WOX genes in Cunninghamia lanceolata (C. lanceolata) and subsequently explored the potential roles of two ClWOX genes within the WUS clade. In total, six ClWOX genes were identified through a full-length transcriptome analysis. These genes, exhibiting conserved structural and functional motifs, were assigned to the ancient clade and Modern/WUS clade, respectively, through a phylogenetic analysis. Our expression analysis indicated that these ClWOX genes were highly expressed in the middle and late developmental stages of zygotic embryos in C. lanceolata. Moreover, only ClWOX5 and ClWOX6 within the Modern/WUS clade exhibited transcriptional activity, and their expressions were also induced in response to auxin and wounding. Overexpression of ClWOX5 and ClWOX6 in Arabidopsis caused a partially sterile phenotype, resulting in a very low seed setting rate. Transcriptomic analysis revealed that expressions of many embryo-defective (EMB) genes, phytohormone-related genes, and transcription factors (TFs) were dramatically altered in ClWOX5 and ClWOX6 transgenic plants, which suggested that ClWOX5 and ClWOX6 may play specific important roles in embryo development via complex gene networks. In addition, overexpression of ClWOX5 and ClWOX6 in leaf segments promoted shoot regeneration in tobacco, indicating that ClWOX5 and ClWOX6 can promote plant regeneration and could be used to improve genetic transformation. In conclusion, these results help to elucidate the function of the WOX gene and provide a valuable basis for future studies of the developmental regulation and applications of WOX genes in C. lanceolata.
Collapse
Affiliation(s)
- Zhouyang Li
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wang Qian
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shan Qiu
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wenxin Wang
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Mei Jiang
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiange Hu
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Huahong Huang
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
| | - Erpei Lin
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
21
|
Yan X, Zheng K, Li P, Zhong X, Zhu Z, Zhou H, Zhu M. An efficient in vitro organogenesis protocol for the endangered relic tree species Bretschneidera sinensis and genetic fidelity assessment using DNA markers. FRONTIERS IN PLANT SCIENCE 2024; 15:1259925. [PMID: 38660444 PMCID: PMC11039884 DOI: 10.3389/fpls.2024.1259925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Bretschneidera sinensis is a monotypic species of rare and tertiary relic trees mainly distributed in China. B. sinensis is a potentially valuable horticultural plant, which has significant ornamental and research value, and is a crucial tool for the study of phylogeography. The artificial cultivation of B. sinensis is of great scientific value and practical significance. In this study, we developed a direct organogenesis process of B. sinensis using mature zygotic embryos as initial materials. The highest sterile germination induction (54.5%) from the mature zygotic embryo was obtained in a Murashige and Skoog (MS) medium with 2.0 mg·L-1 6-benzylaminopurine (6-BA) and 0.2 mg·L-1 α-naphthaleneacetic acid (NAA). The highest percentage of shoot regeneration (90.37%) was attained using 1.0 mg·L-1 6-BA and 0.01 mg·L-1 NAA in the MS medium. The Woody Plant Medium (WPM) had the greatest adventitious shoot elongation rate of 93.33%. The most optimized rooting rate was 88.89% in a half-strength MS medium containing 2.0 mg·L-1 indole-3-butyric acid (IBA) and 1.0 mg·L-1 NAA. The genetic fidelity of in vitro regenerated plantlets was assessed using inter-simple sequence repeats and random amplified polymorphic DNA molecular markers, confirming the genetic uniformity and stability of regenerated B. sinensis plantlets. Our research presents an effective in vitro propagation system for B. sinensis, laying the groundwork for its germplasm conservation and large-scale production while maintaining high genetic integrity.
Collapse
Affiliation(s)
- Xuetong Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Keyuan Zheng
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xin Zhong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Zongwei Zhu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huijing Zhou
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Mulan Zhu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai, China
| |
Collapse
|
22
|
Yuan Y, Du Y, Delaplace P. Unraveling the molecular mechanisms governing axillary meristem initiation in plants. PLANTA 2024; 259:101. [PMID: 38536474 DOI: 10.1007/s00425-024-04370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/22/2024] [Indexed: 04/24/2024]
Abstract
MAIN CONCLUSION Axillary meristems (AMs) located in the leaf axils determine the number of shoots or tillers eventually formed, thus contributing significantly to the plant architecture and crop yields. The study of AM initiation is unavoidable and beneficial for crop productivity. Shoot branching is an undoubted determinant of plant architecture and thus greatly impacts crop yield due to the panicle-bearing traits of tillers. The emergence of the AM is essential for the incipient bud formation, and then the bud is dormant or outgrowth immediately to form a branch or tiller. While numerous reviews have focused on plant branching and tillering development networks, fewer specifically address AM initiation and its regulatory mechanisms. This review synthesizes the significant advancements in the genetic and hormonal factors governing AM initiation, with a primary focus on studies conducted in Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.). In particular, by elaborating on critical genes like LATERAL SUPPRESSOR (LAS), which specifically regulates AM initiation and the networks in which they are involved, we attempt to unify the cascades through which they are positioned. We concentrate on clarifying the precise mutual regulation between shoot apical meristem (SAM) and AM-related factors. Additionally, we examine challenges in elucidating AM formation mechanisms alongside opportunities provided by emerging omics approaches to identify AM-specific genes. By expanding our comprehension of the genetic and hormonal regulation of AM development, we can develop strategies to optimize crop production and address global food challenges effectively.
Collapse
Affiliation(s)
- Yundong Yuan
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Yanfang Du
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Pierre Delaplace
- Plant Sciences, Gembloux Agro-Bio Tech, TERRA-Teaching and Research Center, Université de Liège, 5030, Gembloux, Belgium
| |
Collapse
|
23
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
24
|
Chun Y, Fang J, Savelieva EM, Lomin SN, Shang J, Sun Y, Zhao J, Kumar A, Yuan S, Yao X, Liu CM, Arkhipov DV, Romanov GA, Li X. The cytokinin receptor OHK4/OsHK4 regulates inflorescence architecture in rice via an IDEAL PLANT ARCHITECTURE1/WEALTHY FARMER'S PANICLE-mediated positive feedback circuit. THE PLANT CELL 2023; 36:40-64. [PMID: 37811656 PMCID: PMC10734611 DOI: 10.1093/plcell/koad257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
Inflorescence architecture is important for rice (Oryza sativa) grain yield. The phytohormone cytokinin (CK) has been shown to regulate rice inflorescence development; however, the underlying mechanism mediated by CK perception is still unclear. Employing a forward genetic approach, we isolated an inactive variant of the CK receptor OHK4/OsHK4 gene named panicle length1, which shows decreased panicle size due to reduced inflorescence meristem (IM) activity. A 2-amino acid deletion in the long α-helix stalk of the sensory module of OHK4 impairs the homodimerization and ligand-binding capacity of the receptor, even though the residues do not touch the ligand-binding domain or the dimerization interface. This deletion impairs CK signaling that occurs through the type-B response regulator OsRR21, which acts downstream of OHK4 in controlling inflorescence size. Meanwhile, we found that IDEAL PLANT ARCHITECTURE1(IPA1)/WEALTHY FARMER'S PANICLE (WFP), encoding a positive regulator of IM development, acts downstream of CK signaling and is directly activated by OsRR21. Additionally, we revealed that IPA1/WFP directly binds to the OHK4 promoter and upregulates its expression through interactions with 2 TCP transcription factors, forming a positive feedback circuit. Altogether, we identified the OHK4-OsRR21-IPA1 regulatory module, providing important insights into the role of CK signaling in regulating rice inflorescence architecture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xueyong Li
- Author for correspondence: (X.L.), (G.A.R.)
| |
Collapse
|
25
|
Kuznetsova K, Efremova E, Dodueva I, Lebedeva M, Lutova L. Functional Modules in the Meristems: "Tinkering" in Action. PLANTS (BASEL, SWITZERLAND) 2023; 12:3661. [PMID: 37896124 PMCID: PMC10610496 DOI: 10.3390/plants12203661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND A feature of higher plants is the modular principle of body organisation. One of these conservative morphological modules that regulate plant growth, histogenesis and organogenesis is meristems-structures that contain pools of stem cells and are generally organised according to a common principle. Basic content: The development of meristems is under the regulation of molecular modules that contain conservative interacting components and modulate the expression of target genes depending on the developmental context. In this review, we focus on two molecular modules that act in different types of meristems. The WOX-CLAVATA module, which includes the peptide ligand, its receptor and the target transcription factor, is responsible for the formation and control of the activity of all meristem types studied, but it has its own peculiarities in different meristems. Another regulatory module is the so-called florigen-activated complex, which is responsible for the phase transition in the shoot vegetative meristem (e.g., from the vegetative shoot apical meristem to the inflorescence meristem). CONCLUSIONS The review considers the composition and functions of these two functional modules in different developmental programmes, as well as their appearance, evolution and use in plant breeding.
Collapse
Affiliation(s)
| | | | - Irina Dodueva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia; (K.K.); (E.E.); (M.L.); (L.L.)
| | | | | |
Collapse
|
26
|
Cárdenas-Aquino MDR, Camas-Reyes A, Valencia-Lozano E, López-Sánchez L, Martínez-Antonio A, Cabrera-Ponce JL. The Cytokinins BAP and 2-iP Modulate Different Molecular Mechanisms on Shoot Proliferation and Root Development in Lemongrass ( Cymbopogon citratus). PLANTS (BASEL, SWITZERLAND) 2023; 12:3637. [PMID: 37896100 PMCID: PMC10610249 DOI: 10.3390/plants12203637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The known activities of cytokinins (CKs) are promoting shoot multiplication, root growth inhibition, and delaying senescence. 6-Benzylaminopurine (BAP) has been the most effective CK to induce shoot proliferation in cereal and grasses. Previously, we reported that in lemongrass (Cymbopogon citratus) micropropagation, BAP 10 µM induces high shoot proliferation, while the natural CK 6-(γ,γ-Dimethylallylamino)purine (2-iP) 10 µM shows less pronounced effects and developed rooting. To understand the molecular mechanisms involved, we perform a protein-protein interaction (PPI) network based on the genes of Brachypodium distachyon involved in shoot proliferation/repression, cell cycle, stem cell maintenance, auxin response factors, and CK signaling to analyze the molecular mechanisms in BAP versus 2-iP plants. A different pattern of gene expression was observed between BAP- versus 2-iP-treated plants. In shoots derived from BAP, we found upregulated genes that have already been demonstrated to be involved in de novo shoot proliferation development in several plant species; CK receptors (AHK3, ARR1), stem cell maintenance (STM, REV and CLV3), cell cycle regulation (CDKA-CYCD3 complex), as well as the auxin response factor (ARF5) and CK metabolism (CKX1). In contrast, in the 2-iP culture medium, there was an upregulation of genes involved in shoot repression (BRC1, MAX3), ARR4, a type A-response regulator (RR), and auxin metabolism (SHY2).
Collapse
Affiliation(s)
- María del Rosario Cárdenas-Aquino
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Alberto Camas-Reyes
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Lorena López-Sánchez
- Red de Estudios Moleculares Avanzados, Unidad de Microscopia Avanzada, Instituto de Ecología, A.C. INECOL 1975–2023, Carretera antigua a Coatepec 351, Col. El Haya, Xalapa 91073, Mexico;
| | - Agustino Martínez-Antonio
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| |
Collapse
|
27
|
Luo Z, Jones D, Philp-Wright S, Putterill J, Snowden KC. Transcriptomic analysis implicates ABA signaling and carbon supply in the differential outgrowth of petunia axillary buds. BMC PLANT BIOLOGY 2023; 23:482. [PMID: 37814235 PMCID: PMC10563266 DOI: 10.1186/s12870-023-04505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Shoot branching of flowering plants exhibits phenotypic plasticity and variability. This plasticity is determined by the activity of axillary meristems, which in turn is influenced by endogenous and exogenous cues such as nutrients and light. In many species, not all buds on the main shoot develop into branches despite favorable growing conditions. In petunia, basal axillary buds (buds 1-3) typically do not grow out to form branches, while more apical axillary buds (buds 6 and 7) are competent to grow. RESULTS The genetic regulation of buds was explored using transcriptome analyses of petunia axillary buds at different positions on the main stem. To suppress or promote bud outgrowth, we grew the plants in media with differing phosphate (P) levels. Using RNA-seq, we found many (> 5000) differentially expressed genes between bud 6 or 7, and bud 2. In addition, more genes were differentially expressed when we transferred the plants from low P to high P medium, compared with shifting from high P to low P medium. Buds 6 and 7 had increased transcript abundance of cytokinin and auxin-related genes, whereas the basal non-growing buds (bud 2 and to a lesser extent bud 3) had higher expression of strigolactone, abscisic acid, and dormancy-related genes, suggesting the outgrowth of these basal buds was actively suppressed. Consistent with this, the expression of ABA associated genes decreased significantly in apical buds after stimulating growth by switching the medium from low P to high P. Furthermore, comparisons between our data and transcriptome data from other species suggest that the suppression of outgrowth of bud 2 was correlated with a limited supply of carbon to these axillary buds. Candidate genes that might repress bud outgrowth were identified by co-expression analysis. CONCLUSIONS Plants need to balance growth of axillary buds into branches to fit with available resources while allowing some buds to remain dormant to grow after the loss of plant parts or in response to a change in environmental conditions. Here we demonstrate that different buds on the same plant with different developmental potentials have quite different transcriptome profiles.
Collapse
Affiliation(s)
- Zhiwei Luo
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Dan Jones
- NetValue Limited, Hamilton, New Zealand
| | - Sarah Philp-Wright
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna Putterill
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
28
|
Ma B, Zhu J, Huang X. Diversification of plant SUPPRESSOR OF MAX2 1 (SMAX1)-like genes and genome-wide identification and characterization of cotton SMXL gene family. BMC PLANT BIOLOGY 2023; 23:419. [PMID: 37691127 PMCID: PMC10494346 DOI: 10.1186/s12870-023-04421-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Strigolactones (SLs) are a recently discovered class of plant hormones. SUPPRESSOR OF MAX2 1 (SMAX1)-like proteins, key component of the SL signaling pathway, have been studied extensively for their roles in regulating plant growth and development, such as plant branching. However, systematic identification and functional characterization of SMXL genes in cotton (Gossypium sp.), an important fiber and oil crop, has rarely been conducted. RESULTS We identified 210 SMXL genes from 21 plant genomes and examined their evolutionary relationships. The structural characteristics of the SMXL genes and their encoded proteins exhibited both consistency and diversity. All plant SMXL proteins possess a conserved Clp-N domain, P-loop NTPase, and EAR motif. We identified 63 SMXL genes in cotton and classified these into four evolutionary branches. Gene expression analysis revealed tissue-specific expression patterns of GhSMXL genes, with some upregulated in response to GR24 treatment. Protein co-expression network analysis showed that GhSMXL6, GhSMXL7-1, and GhSMXL7-2 mainly interact with proteins functioning in growth and development, while virus-induced gene silencing revealed that GhSMAX1-1 and GhSMAX1-2 suppress the growth and development of axillary buds. CONCLUSIONS SMXL gene family members show evolutionary diversification through the green plant lineage. GhSMXL6/7-1/7-2 genes play critical roles in the SL signaling pathway, while GhSMXL1-1 and GhSMXL1-2 function redundantly in growth of axillary buds. Characterization of the cotton SMXL gene family provides new insights into their roles in responding to SL signals and in plant growth and development. Genes identified in this study could be used as the candidate genes for improvement of plant architecture and crop yield.
Collapse
Affiliation(s)
- Bin Ma
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
29
|
Bai M, Wang W, Chen Y, Fan C, Sun J, Lu J, Liu J, Wang C. The intragenic cis-elements mediate temperature response of RrKSN. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107983. [PMID: 37611488 DOI: 10.1016/j.plaphy.2023.107983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Gene regulation via intragenic sequences is becoming more recognized in many eukaryotes. However, the intragenic sequences mediated gene expressions in response to environmental stimuli have been largely uncharacterized. Here, we showed that the first intron of RrKSN from the Rosa rugosa cultivar 'Purple branch' had a positive effect on RrKSN expression, and the effect depends on its position and orientation. Further analyses revealed that the four adjacent cis-elements (T)CGATT/AATCG(A) within the first intron were critical for the positive regulation, and the RrKSN promotion was significantly suppressed with mutations of these elements. These cis-elements were further evidenced as binding sites for RrARR1, the homologous of Arabidopsis type-B ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) transcription factor. The first intron-mediated RrKSN expression was enhanced with over-expressing of RrARR1, but abolished with RrARR1 silencing in rose seedlings. Moreover, the expression difference of RrKSN between 16°C and 28°C was eliminated along with RrARR1-silencing. Taken together, these results suggested both RrARR1 and its binding elements are required for the first intron-mediated RrKSN expression in response to varying temperatures. Therefore, our results reveal a unique intragenic regulation mechanism of gene expression by which plants perceive the signal of ambient temperature in rose.
Collapse
Affiliation(s)
- Mengjuan Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Weinan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeqing Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunguo Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
30
|
Wang Y, Jiao Y. Cell signaling in the shoot apical meristem. PLANT PHYSIOLOGY 2023; 193:70-82. [PMID: 37224874 DOI: 10.1093/plphys/kiad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Distinct from animals, plants maintain organogenesis from specialized tissues termed meristems throughout life. In the shoot apex, the shoot apical meristem (SAM) produces all aerial organs, such as leaves, from its periphery. For this, the SAM needs to precisely balance stem cell renewal and differentiation, which is achieved through dynamic zonation of the SAM, and cell signaling within functional domains is key for SAM functions. The WUSCHEL-CLAVATA feedback loop plays a key role in SAM homeostasis, and recent studies have uncovered new components, expanding our understanding of the spatial expression and signaling mechanism. Advances in polar auxin transport and signaling have contributed to knowledge of the multifaceted roles of auxin in the SAM and organogenesis. Finally, single-cell techniques have expanded our understanding of the cellular functions within the shoot apex at single-cell resolution. In this review, we summarize the most up-to-date understanding of cell signaling in the SAM and focus on the multiple levels of regulation of SAM formation and maintenance.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
31
|
Wang H, Liu S, Ma S, Wang Y, Yang H, Liu J, Li M, Cui X, Liang S, Cheng Q, Shen H. Characterization of the Molecular Events Underlying the Establishment of Axillary Meristem Region in Pepper. Int J Mol Sci 2023; 24:12718. [PMID: 37628899 PMCID: PMC10454251 DOI: 10.3390/ijms241612718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Plant architecture is a major motif of plant diversity, and shoot branching patterns primarily determine the aerial architecture of plants. In this study, we identified an inbred pepper line with fewer lateral branches, 20C1734, which was free of lateral branches at the middle and upper nodes of the main stem with smooth and flat leaf axils. Successive leaf axil sections confirmed that in normal pepper plants, for either node n, Pn (Primordium n) < 1 cm and Pn+1 < 1 cm were the critical periods between the identification of axillary meristems and the establishment of the region, whereas Pn+3 < 1 cm was fully developed and formed a completely new organ. In 20C1734, the normal axillary meristematic tissue region establishment and meristematic cell identity confirmation could not be performed on the axils without axillary buds. Comparative transcriptome analysis revealed that "auxin-activated signaling pathway", "response to auxin", "response to abscisic acid", "auxin biosynthetic process", and the biosynthesis of the terms/pathways, such as "secondary metabolites", were differentially enriched in different types of leaf axils at critical periods of axillary meristem development. The accuracy of RNA-seq was verified using RT-PCR for some genes in the pathway. Several differentially expressed genes (DEGs) related to endogenous phytohormones were targeted, including several genes of the PINs family. The endogenous hormone assay showed extremely high levels of IAA and ABA in leaf axils without axillary buds. ABA content in particular was unusually high. At the same time, there is no regular change in IAA level in this type of leaf axils (normal leaf axils will be accompanied by AM formation and IAA content will be low). Based on this, we speculated that the contents of endogenous hormones IAA and ABA in 20C1734 plant increased sharply, which led to the abnormal expression of genes in related pathways, which affected the formation of Ams in leaf axils in the middle and late vegetative growth period, and finally, nodes without axillary buds and side branches appeared.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Sujun Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Shijie Ma
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yun Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Hanyu Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Jiankun Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Mingxuan Li
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiangyun Cui
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Sun Liang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Qing Cheng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Huolin Shen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| |
Collapse
|
32
|
Dong Z, Wang Y, Bao J, Li Y, Yin Z, Long Y, Wan X. The Genetic Structures and Molecular Mechanisms Underlying Ear Traits in Maize ( Zea mays L.). Cells 2023; 12:1900. [PMID: 37508564 PMCID: PMC10378120 DOI: 10.3390/cells12141900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Maize (Zea mays L.) is one of the world's staple food crops. In order to feed the growing world population, improving maize yield is a top priority for breeding programs. Ear traits are important determinants of maize yield, and are mostly quantitatively inherited. To date, many studies relating to the genetic and molecular dissection of ear traits have been performed; therefore, we explored the genetic loci of the ear traits that were previously discovered in the genome-wide association study (GWAS) and quantitative trait locus (QTL) mapping studies, and refined 153 QTL and 85 quantitative trait nucleotide (QTN) clusters. Next, we shortlisted 19 common intervals (CIs) that can be detected simultaneously by both QTL mapping and GWAS, and 40 CIs that have pleiotropic effects on ear traits. Further, we predicted the best possible candidate genes from 71 QTL and 25 QTN clusters that could be valuable for maize yield improvement.
Collapse
Affiliation(s)
- Zhenying Dong
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yanbo Wang
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
| | - Jianxi Bao
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
| | - Ya’nan Li
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
| | - Zechao Yin
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
| | - Yan Long
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| |
Collapse
|
33
|
Guo X, Hu X, Li J, Shao B, Wang Y, Wang L, Li K, Lin D, Wang H, Gao Z, Jiao Y, Wen Y, Ji H, Ma C, Ge S, Jiang W, Jin X. The Sapria himalayana genome provides new insights into the lifestyle of endoparasitic plants. BMC Biol 2023; 21:134. [PMID: 37280593 DOI: 10.1186/s12915-023-01620-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Sapria himalayana (Rafflesiaceae) is an endoparasitic plant characterized by a greatly reduced vegetative body and giant flowers; however, the mechanisms underlying its special lifestyle and greatly altered plant form remain unknown. To illustrate the evolution and adaptation of S. himalayasna, we report its de novo assembled genome and key insights into the molecular basis of its floral development, flowering time, fatty acid biosynthesis, and defense responses. RESULTS The genome of S. himalayana is ~ 1.92 Gb with 13,670 protein-coding genes, indicating remarkable gene loss (~ 54%), especially genes involved in photosynthesis, plant body, nutrients, and defense response. Genes specifying floral organ identity and controlling organ size were identified in S. himalayana and Rafflesia cantleyi, and showed analogous spatiotemporal expression patterns in both plant species. Although the plastid genome had been lost, plastids likely biosynthesize essential fatty acids and amino acids (aromatic amino acids and lysine). A set of credible and functional horizontal gene transfer (HGT) events (involving genes and mRNAs) were identified in the nuclear and mitochondrial genomes of S. himalayana, most of which were under purifying selection. Convergent HGTs in Cuscuta, Orobanchaceae, and S. himalayana were mainly expressed at the parasite-host interface. Together, these results suggest that HGTs act as a bridge between the parasite and host, assisting the parasite in acquiring nutrients from the host. CONCLUSIONS Our results provide new insights into the flower development process and endoparasitic lifestyle of Rafflesiaceae plants. The amount of gene loss in S. himalayana is consistent with the degree of reduction in its body plan. HGT events are common among endoparasites and play an important role in their lifestyle adaptation.
Collapse
Affiliation(s)
- Xuelian Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Xiaodi Hu
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Jianwu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan, 666303, China
| | - Bingyi Shao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yajun Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Long Wang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Kui Li
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Dongliang Lin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hanchen Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Zhiyuan Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yingying Wen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hongyu Ji
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Chongbo Ma
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, 100083, China.
| | - Xiaohua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China.
| |
Collapse
|
34
|
Lee PF, Zhan YX, Wang JC, Cheng YH, Hsu WH, Hsu HF, Chen WH, Yang CH. The AtERF19 gene regulates meristem activity and flower organ size in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1338-1352. [PMID: 36932949 DOI: 10.1111/tpj.16196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/17/2023]
Abstract
Ethylene-responsive factors (ERFs) have diverse functions in the regulation of various plant developmental processes. Here, we demonstrate the dual role of an Arabidopsis ERF gene, AtERF19, in regulating reproductive meristem activity and flower organ size through the regulation of genes involved in CLAVATA-WUSCHEL (CLV-WUS) and auxin signaling, respectively. We found that AtERF19 stimulated the formation of flower primordia and controlled the number of flowers produced by activating WUS and was negatively regulated by CLV3. 35S::AtERF19 expression resulted in significantly more flowers, whereas 35S::AtERF19 + SRDX dominant-negative mutants produced fewer flowers. In addition, AtERF19 also functioned to control flower organ size by promoting the division/expansion of the cells through activating Small Auxin Up RNA Gene 32 (SAUR32), which positively regulated MYB21/24 in the auxin signaling pathway. 35S::AtERF19 and 35S::SAUR32 resulted in similarly larger flowers, whereas 35S::AtERF19 + SRDX and 35S::SAUR32-RNAi mutants produced smaller flowers than the wild type. The functions of AtERF19 were confirmed by the production of similarly more and larger flowers in 35S::AtERF19 transgenic tobacco (Nicotiana benthamiana) and in transgenic Arabidopsis which ectopically expressed the orchid gene (Nicotiana benthamiana) PaERF19 than in wild-type plants. The finding that AtERF19 regulates genes involved in both CLV-WUS and auxin signaling during flower development significantly expands the current knowledge of the multifunctional evolution of ERF genes in plants. The results presented in this work indicate a dual role for the transcription factor AtERF19 in controlling the number of flowers produced and flower organ size through the regulation of genes involved in CLV-WUS and auxin signaling, respectively. Our findings expand the knowledge of the roles of ERF genes in the regulation of reproductive development.
Collapse
Affiliation(s)
- Pei-Fang Lee
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yong-Xiang Zhan
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Jou-Chen Wang
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yen-Hsuan Cheng
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsing-Fun Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wei-Han Chen
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
35
|
Yang Q, Yuan C, Cong T, Zhang Q. The Secrets of Meristems Initiation: Axillary Meristem Initiation and Floral Meristem Initiation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091879. [PMID: 37176937 PMCID: PMC10181267 DOI: 10.3390/plants12091879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The branching phenotype is an extremely important agronomic trait of plants, especially for horticultural crops. It is not only an important yield character of fruit trees, but also an exquisite ornamental trait of landscape trees and flowers. The branching characteristics of plants are determined by the periodic initiation and later development of meristems, especially the axillary meristem (AM) in the vegetative stage and the floral meristem (FM) in the reproductive stage, which jointly determine the above-ground plant architecture. The regulation of meristem initiation has made great progress in model plants in recent years. Meristem initiation is comprehensively regulated by a complex regulatory network composed of plant hormones and transcription factors. However, as it is an important trait, studies on meristem initiation in horticultural plants are very limited, and the mechanism of meristem initiation regulation in horticultural plants is largely unknown. This review summarizes recent research advances in axillary meristem regulation and mainly reviews the regulatory networks and mechanisms of AM and FM initiation regulated by transcription factors and hormones. Finally, considering the existing problems in meristem initiation studies and the need for branching trait improvement in horticulture plants, we prospect future studies to accelerate the genetic improvement of the branching trait in horticulture plants.
Collapse
Affiliation(s)
- Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tianci Cong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
36
|
Yang T, Jiao Y, Wang Y. Stem Cell Basis of Shoot Branching. PLANT & CELL PHYSIOLOGY 2023; 64:291-296. [PMID: 36416577 DOI: 10.1093/pcp/pcac165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
During their postembryonic development, plants continuously form branches to conquer more space and adapt to changing environments. In seed plants, this is achieved by lateral branching, in which axillary meristems (AMs) initiate at the leaf axils to form axillary buds. The developmental potential of AMs to form shoot branches is the same as that of embryonic shoot apical meristems (SAMs). Recent studies in Arabidopsis thaliana have revealed the cellular origin of AMs and have identified transcription factors and phytohormones that regulate sequential steps leading to AM initiation. In particular, a group of meristematic cells detached from the SAM are key to AM initiation, which constitutes an excellent system for understanding stem cell fate and de novo meristem formation.
Collapse
Affiliation(s)
- Tingting Yang
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Center for Quantitative Biology, Peking University, 5 Summer Palace Rd., Haidian District, Beijing 100871, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Rd., Shijingshan District, Beijing 100049, China
| |
Collapse
|
37
|
Jiang K, Guo H, Zhai J. Interplay of phytohormones and epigenetic regulation: A recipe for plant development and plasticity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:381-398. [PMID: 36223083 DOI: 10.1111/jipb.13384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Both phytohormone signaling and epigenetic mechanisms have long been known to play crucial roles in plant development and plasticity in response to ambient stimuli. Indeed, diverse signaling pathways mediated by phytohormones and epigenetic processes integrate multiple upstream signals to regulate various plant traits. Emerging evidence indicates that phytohormones and epigenetic processes interact at multiple levels. In this review, we summarize the current knowledge of the interplay between phytohormones and epigenetic processes from the perspective of phytohormone biology. We also review chemical regulators used in epigenetic studies and propose strategies for developing novel regulators using multidisciplinary approaches.
Collapse
Affiliation(s)
- Kai Jiang
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
38
|
Liang Y, Heyman J, Lu R, De Veylder L. Evolution of wound-activated regeneration pathways in the plant kingdom. Eur J Cell Biol 2023; 102:151291. [PMID: 36709604 DOI: 10.1016/j.ejcb.2023.151291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Regeneration serves as a self-protective mechanism that allows a tissue or organ to recover its entire form and function after suffering damage. However, the regenerative capacity varies greatly within the plant kingdom. Primitive plants frequently display an amazing regenerative ability as they have developed a complex system and strategy for long-term survival under extreme stress conditions. The regenerative ability of dicot species is highly variable, but that of monocots often exhibits extreme recalcitrance to tissue replenishment. Recent studies have revealed key factors and signals that affect cell fate during plant regeneration, some of which are conserved among the plant lineage. Among these, several members of the ETHYLENE RESPONSE FACTOR (ERF) transcription factors have been implicated in wound signaling, playing crucial roles in the regenerative mechanisms after different types of wounding. An understanding of plant regeneration may ultimately lead to an increased regenerative potential of recalcitrant species, producing more high-yielding, multi-resistant and environmentally friendly crops and ensuring the long-term development of global agriculture.
Collapse
Affiliation(s)
- Yuanke Liang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Ran Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium.
| |
Collapse
|
39
|
Fambrini M, Usai G, Pugliesi C. Induction of Somatic Embryogenesis in Plants: Different Players and Focus on WUSCHEL and WUS-RELATED HOMEOBOX (WOX) Transcription Factors. Int J Mol Sci 2022; 23:15950. [PMID: 36555594 PMCID: PMC9781121 DOI: 10.3390/ijms232415950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
In plants, other cells can express totipotency in addition to the zygote, thus resulting in embryo differentiation; this appears evident in apomictic and epiphyllous plants. According to Haberlandt's theory, all plant cells can regenerate a complete plant if the nucleus and the membrane system are intact. In fact, under in vitro conditions, ectopic embryos and adventitious shoots can develop from many organs of the mature plant body. We are beginning to understand how determination processes are regulated and how cell specialization occurs. However, we still need to unravel the mechanisms whereby a cell interprets its position, decides its fate, and communicates it to others. The induction of somatic embryogenesis might be based on a plant growth regulator signal (auxin) to determine an appropriate cellular environment and other factors, including stress and ectopic expression of embryo or meristem identity transcription factors (TFs). Still, we are far from having a complete view of the regulatory genes, their target genes, and their action hierarchy. As in animals, epigenetic reprogramming also plays an essential role in re-establishing the competence of differentiated cells to undergo somatic embryogenesis. Herein, we describe the functions of WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors in regulating the differentiation-dedifferentiation cell process and in the developmental phase of in vitro regenerated adventitious structures.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
40
|
Aki SS, Morimoto T, Ohnishi T, Oda A, Kato H, Ishizaki K, Nishihama R, Kohchi T, Umeda M. R2R3-MYB transcription factor GEMMA CUP-ASSOCIATED MYB1 mediates the cytokinin signal to achieve proper organ development in Marchantia polymorpha. Sci Rep 2022; 12:21123. [PMID: 36477255 PMCID: PMC9729187 DOI: 10.1038/s41598-022-25684-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Cytokinin, a plant hormone, plays essential roles in organ growth and development. The type-B response regulator-mediated cytokinin signaling is repressed by type-A response regulators and is conserved in the liverwort Marchantia polymorpha. Its signal coordinates the development of diverse organs on the thallus body, such as the gemma cup, rhizoid, and air pores. Here we report that the type-B response regulator MpRRB upregulates the expression of the R2R3-MYB transcription factor GEMMA CUP-ASSOCIATED MYB1 (MpGCAM1) in M. polymorpha. Whereas both Mpgcam1 and Mprrb knockout mutants exhibited defects in gemma cup formation, the Mpgcam1 Mprra double mutant, in which cytokinin signaling is activated due to the lack of type-A response regulator, also formed no gemma cups. This suggests that MpGCAM1 functions downstream of cytokinin signaling. Inducible overexpression of MpGCAM1 produced undifferentiated cell clumps on the thalli of both wild-type and Mprrb. However, smaller thalli were formed in Mprrb compared to the wild-type after the cessation of overexpression. These results suggest that cytokinin signaling promotes gemma cup formation and cellular reprogramming through MpGCAM1, while cytokinin signals also participate in activating cell division during thallus development.
Collapse
Affiliation(s)
- Shiori S. Aki
- grid.260493.a0000 0000 9227 2257Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192 Japan
| | - Tomoyo Morimoto
- grid.260493.a0000 0000 9227 2257Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192 Japan
| | - Taiki Ohnishi
- grid.260493.a0000 0000 9227 2257Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192 Japan
| | - Ayumi Oda
- grid.260493.a0000 0000 9227 2257Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192 Japan
| | - Hirotaka Kato
- grid.31432.370000 0001 1092 3077Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501 Japan ,grid.255464.40000 0001 1011 3808Present Address: Graduate School of Science and Engineering, Ehime University, 2-5, Bunkyo-Cho, Matsuyama, Ehime 790-8577 Japan
| | - Kimitsune Ishizaki
- grid.31432.370000 0001 1092 3077Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501 Japan
| | - Ryuichi Nishihama
- grid.143643.70000 0001 0660 6861Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278‐8510 Japan
| | - Takayuki Kohchi
- grid.258799.80000 0004 0372 2033Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Masaaki Umeda
- grid.260493.a0000 0000 9227 2257Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192 Japan
| |
Collapse
|
41
|
Qi H, Cai H, Liu X, Liu S, Ding C, Xu M. The cytokinin type-B response regulator PeRR12 is a negative regulator of adventitious rooting and salt tolerance in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111456. [PMID: 36087886 DOI: 10.1016/j.plantsci.2022.111456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Adventitious root (AR) development is an ecologically and economically important biological process that maintains ecological balance, improves plant survivability, and allows for massive vegetative propagation, but its genetic mechanisms are not well understood. Here, eight Arabidopsis response regulator (ARR) genes were cloned and identified in poplar, most of which were detected in the AR, phloem, and xylem and showed remarkable induction at different time points during AR development. Subcellular localization indicated that most of these PeRR genes are in the nucleus. Based on qRT-PCR expression analysis of some genes related to AR development, we inferred that overexpression of PeRR12 (OE_PeRR12) may inhibited AR formation by suppressing the transcription of PeWOX11, PeWOX5, PePIN1 and PePIN3 in poplar while promoting type-A RR transcripts. Correspondingly, exogenous auxin partially restored the rooting of OE_PeRR12 poplar by inhibiting PeRR12 expression. Moreover, the activities of the antioxidant systems of OE_PeRR12 poplars were lower than those of wild-type poplars under salt stress conditions, indicating that PeRR12 may acts as a repressor that mediates salt tolerance by suppressing the expression of PeHKT1;1. Altogether, these results suggest that PeRR12 plays essential roles in mediating AR formation and salinity tolerance in poplar.
Collapse
Affiliation(s)
- Haoran Qi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Heng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Sian Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
42
|
Nicolas A, Maugarny-Calès A, Adroher B, Chelysheva L, Li Y, Burguet J, Bågman AM, Smit ME, Brady SM, Li Y, Laufs P. De novo stem cell establishment in meristems requires repression of organ boundary cell fate. THE PLANT CELL 2022; 34:4738-4759. [PMID: 36029254 PMCID: PMC9709991 DOI: 10.1093/plcell/koac269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/24/2022] [Indexed: 05/27/2023]
Abstract
Stem cells play important roles in animal and plant biology, as they sustain morphogenesis and tissue replenishment following aging or injury. In plants, stem cells are embedded in multicellular structures called meristems. The formation of new meristems is essential for the plastic expansion of the highly branched shoot and root systems. In particular, axillary meristems (AMs) that produce lateral shoots arise from the division of boundary domain cells at the leaf base. The CUP-SHAPED COTYLEDON (CUC) genes are major determinants of the boundary domain and are required for AM initiation. However, how AMs get structured and how stem cells become established de novo remain elusive. Here, we show that two NGATHA-LIKE (NGAL) transcription factors, DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4)/NGAL3 and SUPPRESSOR OF DA1-1 7 (SOD7)/NGAL2, redundantly repress CUC expression in initiating AMs of Arabidopsis thaliana. Ectopic boundary fate leads to abnormal growth and organization of the AM and prevents de novo stem cell establishment. Floral meristems of the dpa4 sod7 double mutant show a similar delay in de novo stem cell establishment. Altogether, while boundary fate is required for the initiation of AMs, our work reveals how it is later repressed to allow proper meristem establishment and de novo stem cell niche formation.
Collapse
Affiliation(s)
- Antoine Nicolas
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
- Université Paris-Saclay, Orsay, 91405, France
| | - Aude Maugarny-Calès
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
- Université Paris-Saclay, Orsay, 91405, France
| | - Bernard Adroher
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Liudmila Chelysheva
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Yu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jasmine Burguet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Anne-Maarit Bågman
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Margot E Smit
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| |
Collapse
|
43
|
Zhu M, Tao L, Zhang J, Liu R, Tian H, Hu C, Zhu Y, Li M, Wei Z, Yi J, Li J, Gou X. The type-B response regulators ARR10, ARR12, and ARR18 specify the central cell in Arabidopsis. THE PLANT CELL 2022; 34:4714-4737. [PMID: 36130292 PMCID: PMC9709988 DOI: 10.1093/plcell/koac285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis thaliana, the female gametophyte consists of two synergid cells, an egg cell, a diploid central cell, and three antipodal cells. CYTOKININ INDEPENDENT 1 (CKI1), a histidine kinase constitutively activating the cytokinin signaling pathway, specifies the central cell and restricts the egg cell. However, the mechanism regulating CKI1-dependent central cell specification is largely unknown. Here, we showed that the type-B ARABIDOPSIS RESPONSE REGULATORS10, 12, and 18 (ARR10/12/18) localize at the chalazal pole of the female gametophyte. Phenotypic analysis showed that the arr10 12 18 triple mutant is female sterile. We examined the expression patterns of embryo sac marker genes and found that the embryo sac of arr10 12 18 plants had lost central cell identity, a phenotype similar to that of the Arabidopsis cki1 mutant. Genetic analyses demonstrated that ARR10/12/18, CKI1, and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN2, 3, and 5 (AHP2/3/5) function in a common pathway to regulate female gametophyte development. In addition, constitutively activated ARR10/12/18 in the cki1 embryo sac partially restored the fertility of cki1. Results of transcriptomic analysis supported the conclusion that ARR10/12/18 and CKI1 function together to regulate the identity of the central cell. Our results demonstrated that ARR10/12/18 function downstream of CKI1-AHP2/3/5 as core factors to determine cell fate of the female gametophyte.
Collapse
Affiliation(s)
- Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Tao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinghua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruini Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongai Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chong Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yafen Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
44
|
Du Y, Wu B, Xing Y, Zhang Z. Conservation and divergence: Regulatory networks underlying reproductive branching in rice and maize. J Adv Res 2022; 41:179-190. [PMID: 36328747 PMCID: PMC9637487 DOI: 10.1016/j.jare.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cereal crops are a major source of raw food and nutrition for humans worldwide. Inflorescence of cereal crops is their reproductive organ, which also contributes to crop productivity. The branching pattern in flowering plant species not only determines inflorescence architecture but also determines the grain yield. There are good reviews describing the grass inflorescence architecture contributing to the final grain yield. However, very few discuss the aspects of inflorescence branching. AIM OF REVIEW This review aimed at systematically and comprehensively summarizing the latest progress in the field of conservation and divergence of genetic regulatory network that controls inflorescence branching in maize and rice, provide strategies to efficiently utilize the achievements in reproductive branching for crop yield improvement, and suggest a potential regulatory network underlying the inflorescence branching and vegetative branching system. KEY SCIENTIFIC CONCEPTS OF REVIEW Inflorescence branching is the consequence of a series of developmental events including the initiation, outgrowth, determinacy, and identity of reproductive axillary meristems, and it is controlled by a complex functional hierarchy of genetic networks. Initially, we compared the inflorescence architecture of maize and rice; then, we reviewed the genetic regulatory pathways controlling the inflorescence meristem size, bud initiation, and outgrowth, and the key transition steps that shape the inflorescence branching in maize and rice; additionally, we summarized strategies to effectively apply the recent advances in inflorescence branching for crop yield improvement. Finally, we discussed how the newly discovered hormones coordinate the regulation of inflorescence branching and yield traits. Furthermore, we discussed the possible reason behind distinct regulatory pathways for vegetative and inflorescence branching.
Collapse
Affiliation(s)
- Yanfang Du
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Bi Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
45
|
Song S, Huang B, Pan Z, Zhong Q, Yang Y, Chen D, Zhu L, Hu G, He M, Wu C, Zouine M, Chen R, Bouzayen M, Hao Y. The SlTPL3-SlWUS module regulates multi-locule formation in tomato by modulating auxin and gibberellin levels in the shoot apical meristem. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2150-2167. [PMID: 35980297 DOI: 10.1111/jipb.13347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Malformed fruits depreciate a plant's market value. In tomato (Solanum lycopersicum), fruit malformation is associated with the multi-locule trait, which involves genes regulating shoot apical meristem (SAM) development. The expression pattern of TOPLESS3 (SlTPL3) throughout SAM development prompted us to investigate its functional significance via RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. Lower SlTPL3 transcript levels resulted in larger fruits with more locules and larger SAMs at the 5 d after germination (DAG5) stage. Differentially expressed genes in the SAM of wild-type (WT) and SlTPL3-RNAi plants, identified by transcriptome deep sequencing (RNA-seq), were enriched in the gibberellin (GA) biosynthesis and plant hormone signaling pathways. Moreover, exogenous auxin and paclobutrazol treatments rescued the multi-locule phenotype, indicating that SlTPL3 affects SAM size by mediating auxin and GA levels in the SAM. Furthermore, SlTPL3 interacted with WUSCHEL (SlWUS), which plays an important role in SAM size maintenance. We conducted RNA-seq and DNA affinity purification followed by sequencing (DAP-seq) analyses to identify the genes regulated by SlTPL3 and SlWUS in the SAM and to determine how they regulate SAM size. We detected 24 overlapping genes regulated by SlTPL3 and SlWUS and harboring an SlWUS-binding motif in their promoters. Furthermore, functional annotation revealed a notable enrichment for functions in auxin transport, auxin signal transduction, and GA biosynthesis. Dual-luciferase assays also revealed that SlTPL3 enhances SlWUS-mediated regulation (repression and activation) of SlPIN3 and SlGA2ox4 transcription, indicating that the SlTPL3-SlWUS module regulates SAM size by mediating auxin distribution and GA levels, and perturbations of this module result in enlarged SAM. These results provide novel insights into the molecular mechanism of SAM maintenance and locule formation in tomato and highlight the SlTPL3-SlWUS module as a key regulator.
Collapse
Affiliation(s)
- Shiwei Song
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Binbin Huang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zanlin Pan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuxiang Zhong
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yinghua Yang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Da Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Lisha Zhu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guojian Hu
- Laboratory of Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Castanet Tolosan, F-31326, France
| | - Mi He
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Caiyu Wu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Mohammed Zouine
- Laboratory of Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Castanet Tolosan, F-31326, France
| | - Riyuan Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Mondher Bouzayen
- Laboratory of Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Castanet Tolosan, F-31326, France
| | - Yanwei Hao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
46
|
The NGATHA-like Genes DPA4 and SOD7 Are Not Required for Stem Cell Specification during Embryo Development in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms231912007. [PMID: 36233309 PMCID: PMC9569844 DOI: 10.3390/ijms231912007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 01/09/2023] Open
Abstract
In plants, stem cells are embedded in structures called meristems. Meristems can be formed either during embryogenesis or during the plant's life such as, for instance, axillary meristems. While the regulation of the stem cell population in an established meristem is well described, how it is initiated in newly formed meristems is less well understood. Recently, two transcription factors of the NGATHA-like family, DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4)/NGAL3 and SUPPRESSOR OF DA1-1 7 (SOD7)/NGAL2 have been shown to facilitate de novo stem cell initiation in Arabidopsis thaliana axillary meristems. Here, we tested whether the DPA4 and SOD7 genes had a similar role during stem cell formation in embryo shoot apical meristems. Using DPA4 and SOD7 reporter lines, we characterized the expression pattern of these genes during embryo development, revealing only a partial overlap with the stem cell population. In addition, we showed that the expression of a stem cell reporter was not modified in dpa4-2 sod7-2 double mutant embryos compared to the wild type. Together, these observations suggest that DPA4 and SOD7 are not required for stem cell specification during embryo shoot apical meristem initiation. This work stresses the difference in the regulatory network leading to meristem formation during the embryonic and post-embryonic phases.
Collapse
|
47
|
He G, Cao Y, Wang J, Song M, Bi M, Tang Y, Xu L, Ming J, Yang P. WUSCHEL-related homeobox genes cooperate with cytokinin to promote bulbil formation in Lilium lancifolium. PLANT PHYSIOLOGY 2022; 190:387-402. [PMID: 35670734 PMCID: PMC9773970 DOI: 10.1093/plphys/kiac259] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/01/2022] [Indexed: 06/09/2023]
Abstract
The bulbil is an important vegetative reproductive organ in triploid tiger lily (Lilium lancifolium). Based on our previously obtained transcriptome data, we screened two WUSCHEL-related homeobox (WOX) genes closely related to bulbil formation, LlWOX9 and LlWOX11. However, the biological functions and regulatory mechanisms of LlWOX9 and LlWOX11 are unclear. In this study, we cloned the full-length coding sequences of LlWOX9 and LlWOX11. Transgenic Arabidopsis (Arabidopsis thaliana) showed increased branch numbers, and the overexpression of LlWOX9 and LlWOX11 in stem segments promoted bulbil formation, while the silencing of LlWOX9 and LlWOX11 inhibited bulbil formation, indicating that LlWOX9 and LlWOX11 are positive regulators of bulbil formation. Cytokinin type-B response regulators could bind to the promoters of LlWOX9 and LlWOX11 and promote their transcription. LlWOX11 could enhance cytokinin pathway signaling by inhibiting the transcription of type-A LlRR9. Our study enriches the understanding of the regulation of plant development by the WOX gene family and lays a foundation for further research on the molecular mechanism of bulbil formation in lily.
Collapse
Affiliation(s)
- Guoren He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuwei Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengmeng Bi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuchao Tang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leifeng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Ming
- Authors for correspondence: (P.P.Y.); (J.M.)
| | - Panpan Yang
- Authors for correspondence: (P.P.Y.); (J.M.)
| |
Collapse
|
48
|
Okazaki K, Koike I, Kera S, Yamaguchi K, Shigenobu S, Shimomura K, Umehara M. Gene expression profiling before and after internode culture for adventitious shoot formation in ipecac. BMC PLANT BIOLOGY 2022; 22:361. [PMID: 35869421 PMCID: PMC9308184 DOI: 10.1186/s12870-022-03756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In ipecac (Carapichea ipecacuanha (Brot.) L. Andersson), adventitious shoots can be induced simply by placing internodal segments on phytohormone-free culture medium. The shoots form locally on the epidermis of the apical region of the segments, but not the basal region. Levels of endogenous auxin and cytokinin transiently increase in the segments after 1 week of culture. RESULTS Here, we conducted RNA-seq analysis to compare gene expression patterns in apical and basal regions of segments before culture and after 1 week of culture for adventitious shoot formation. The results revealed 8987 differentially expressed genes in a de novo assembly of 76,684 genes. Among them, 276 genes were upregulated in the apical region after 1 week of culture relative to before culture and the basal region after 1 week of culture. These genes include 18 phytohormone-response genes and shoot-formation-related genes. Validation of the gene expression by quantitative real-time PCR assay confirmed that the expression patterns were similar to those of the RNA-seq data. CONCLUSIONS The transcriptome data show that expression of cytokinin biosynthesis genes is induced along with the acquisition of cellular pluripotency and the initiation of cell division by wounding in the apical region of internodal segments, that trigger adventitious shoot formation without callusing.
Collapse
Affiliation(s)
- Karin Okazaki
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Imari Koike
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Sayuri Kera
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Katushi Yamaguchi
- Trans-Scale Biology Center, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Koichiro Shimomura
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Mikihisa Umehara
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
- Department of Applied Biosciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan.
| |
Collapse
|
49
|
Ren H, Chen S, Hou J, Li H. Genome-wide identification, expression analyses of Wuschel-related homeobox (WOX) genes in Brachypodium distachyon and functional characterization of BdWOX12. Gene X 2022; 836:146691. [PMID: 35738446 DOI: 10.1016/j.gene.2022.146691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022] Open
Abstract
As one kind of plant-specific transcription factors (TFs), WOX (Wuschel-related homeobox) plays an essential role in plant growth and development. In this study, 21 WOX TFs were identified in Brachypodium distachyon. They were divided into ancient, intermediate, and WUS clades based on phylogenetic analysis. These 21 BdWOX genes are mapped on 5 chromosomes unevenly. In the promoters, the most abundant cis-elements are ABRE, TGACG-motif, and G-box. qRT-PCR results showed that most BdWOX genes are expressed in vegetative and reproductive organs. Meanwhile, the expression of 14, 12, and 15 BdWOX genes are up-regulated by exogenous 6-BA, NAA, and GA, respectively. These results indicated that BdWOX genes participate in hormone signaling and regulate plant growth and development. Overexpression of BdWOX12 in Arabidopsis improved the root system, further indicating the functions of BdWOX genes in growth and development. This study provided a basis for the functional elucidation of BdWOX genes.
Collapse
Affiliation(s)
- Hongyu Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Jiayuan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China.
| |
Collapse
|
50
|
Liang J, Wu Z, Zheng J, Koskela EA, Fan L, Fan G, Gao D, Dong Z, Hou S, Feng Z, Wang F, Hytönen T, Wang H. The GATA factor HANABA TARANU promotes runner formation by regulating axillary bud initiation and outgrowth in cultivated strawberry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1237-1254. [PMID: 35384101 DOI: 10.1111/tpj.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
A runner, as an elongated branch, develops from the axillary bud (AXB) in the leaf axil and is crucial for the clonal propagation of cultivated strawberry (Fragaria × ananassa Duch.). Runner formation occurs in at least two steps: AXB initiation and AXB outgrowth. HANABA TARANU (HAN ) encodes a GATA transcription factor that affects AXB initiation in Arabidopsis and promotes branching in grass species, but the underlying mechanism is largely unknown. Here, the function of a strawberry HAN homolog FaHAN in runner formation was characterized. FaHAN transcripts can be detected in the leaf axils. Overexpression (OE) of FaHAN increased the number of runners, mainly by enhancing AXB outgrowth, in strawberry. The expression of the strawberry homolog of BRANCHED1 , a key inhibitor of AXB outgrowth in many plant species, was significantly downregulated in the AXBs of FaHAN -OE lines, whereas the expression of the strawberry homolog of SHOOT MERISTEMLESS, a marker gene for AXB initiation in Arabidopsis, was upregulated. Moreover, several genes of gibberellin biosynthesis and cytokinin signaling pathways were activated, whereas the auxin response pathway genes were repressed. Further assays indicated that FaHAN could be directly activated by FaNAC2, the overexpression of which in strawberry also increased the number of runners. The silencing of FaNAC2 or FaHAN inhibited AXB initiation and led to a higher proportion of dormant AXBs, confirming their roles in the control of runner formation. Taken together, our results revealed a FaNAC2-FaHAN pathway in the control of runner formation and have provided a means to enhance the vegetative propagation of cultivated strawberry.
Collapse
Affiliation(s)
- Jiahui Liang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zheng
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Elli A Koskela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Lingjiao Fan
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guangxun Fan
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Dehang Gao
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenfei Dong
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shengfan Hou
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zekun Feng
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Feng Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
- NIAB EMR, Kent, ME19 6BJ, UK
| | - Hongqing Wang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|