1
|
Cheng Y, Su J, Jiao Q, Jia T, Hu X. Recent advance on the physiological functions of proteases in chloroplast. Biochem Biophys Res Commun 2025; 765:151813. [PMID: 40262467 DOI: 10.1016/j.bbrc.2025.151813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
Chloroplast proteases play an essential role in orchestrating chloroplast biogenesis and maintaining the homeostasis of diverse metabolic pathways within these organelles, including photosynthesis, amino acid biosynthesis, and stress response regulation. Recent advances in chloroplast proteostasis research have systematically elucidated the physiological functions of key protease families (e.g., FtsH, Deg, and CLP complexes) within chloroplast. This review systematically integrates cutting-edge advances in the physiological functions of chloroplast proteolytic systems, including protein maturation, protein quantity control, protein quality control, and amino acid recovery, and provide a fresh perspective to understand proteases in chloroplasts. According to the latest research progress, the key remaining problems and future research directions in this field are highlighted.
Collapse
Affiliation(s)
- Yuting Cheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Jinling Su
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsong Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Hong ZH, Zhu L, Gao LL, Zhu Z, Su T, Krall L, Wu XN, Bock R, Wu GZ. Chloroplast precursor protein preClpD overaccumulation triggers multilevel reprogramming of gene expression and a heat shock-like response. Nat Commun 2025; 16:3777. [PMID: 40263324 PMCID: PMC12015282 DOI: 10.1038/s41467-025-59043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Thousands of nucleus-encoded chloroplast proteins are synthesized as precursors on cytosolic ribosomes and posttranslationally imported into chloroplasts. Cytosolic accumulation of unfolded chloroplast precursor proteins (e.g., under stress conditions) is hazardous to the cell. The global cellular responses and regulatory pathways involved in triggering appropriate responses are largely unknown. Here, by inducible and constitutive overexpression of ClpD-GFP to result in precursor protein overaccumulation, we present a comprehensive picture of multilevel reprogramming of gene expression in response to chloroplast precursor overaccumulation stress (cPOS), reveal a critical role of translational activation in the expression of cytosolic chaperones (heat-shock proteins, HSPs), and demonstrate that chloroplast-derived reactive oxygen species act as retrograde signal for the transcriptional activation of small HSPs. Furthermore, we reveal an important role of the chaperone ClpB1/HOT1 in maintaining cellular proteostasis upon cPOS. Together, our observations uncover a cytosolic heat shock-like response to cPOS and provide insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liyu Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhu
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Tong Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Leonard Krall
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Xu-Na Wu
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Tingting L, Guangyan L, Jiaying M, Haozhe H, Weimeng F, Tingting C, Wenting W, Yuxiang Z, Mojun C, Guanfu F, Baohua F. ATP utilization efficiency plays a key role in determining rice quality under high-temperature conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109582. [PMID: 39923415 DOI: 10.1016/j.plaphy.2025.109582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
High-temperature stress significantly adversely affects both rice yield and quality by disrupting energy metabolism, specifically ATP levels and ATP utilization efficiency. However, the exact mechanisms involved remain unclear. This study investigated two rice cultivars with distinct heat tolerance: ZZY1, which produces a higher yield but lower quality, and ZZY8, which has a lower yield but higher quality. Both cultivars were subjected to heat stress during the flowering stage. As temperatures increased, both cultivars experienced considerable declines in grain yield, seed-setting rate, and kernel weight, with ZZY8 showing more severe impacts. Furthermore, ZZY1 demonstrated a significant rise in chalkiness and a reduction in the head rice rate. To uncover the underlying mechanisms, the study analyzed antioxidant enzyme activity, levels of H2O2 and MDA, and various factors related to energy metabolism, including ATP content, ATPase levels, energy charge, AOX content, and the activity of complexes I and V, alongside NAD(H) and NADP(H) content, as well as transcriptome analysis. The complex V content was increased in ZZY1 while decreased in ZZY8, as well as the ATPase decreased more in ZZY1 than ZZY8, which illustrated the ZZY8 had a higher ATP utilization efficiency. The findings showed that ZZY1 had a notably higher ATP content than ZZY8, while ZZY8 exhibited elevated ATPase levels. Transcriptome analysis supported these observations, suggesting that ATP utilization efficiency may be crucial in determining rice quality under high-temperature stress during flowering stage.
Collapse
Affiliation(s)
- Lu Tingting
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Guangyan
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Agricultural College, Yangzhou University, Yangzhou, 225009, China
| | - Ma Jiaying
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Huang Haozhe
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Fu Weimeng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Chen Tingting
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Wang Wenting
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zeng Yuxiang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Chen Mojun
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Fu Guanfu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Feng Baohua
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
4
|
Korek M, Mehta D, Uhrig GR, Daszkowska-Golec A, Novak O, Buchcik W, Marzec M. Strigolactone insensitivity affects the hormonal homeostasis in barley. Sci Rep 2025; 15:9375. [PMID: 40102576 PMCID: PMC11920428 DOI: 10.1038/s41598-025-94430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/13/2025] [Indexed: 03/20/2025] Open
Abstract
In response to environmental changes, plants continuously make architectural changes in order to optimize their growth and development. The regulation of plant branching, influenced by environmental conditions and affecting hormone balance and gene expression, is crucial for agronomic purposes due to its direct correlation with yield. Strigolactones (SL), the youngest class of phytohormones, function to shape the architecture of plants by inhibiting axillary outgrowth. Barley plants harboring the mutation in the HvDWARF14 (HvD14) gene, which encodes the SL-specific receptor, produce almost twice as many tillers as wild-type (WT) Sebastian plants. Here, through hormone profiling and comparison of transcriptomic and proteomic changes between 2- and 4-week-old plants of WT and hvd14 genotypes, we elucidate a regulatory mechanism that might affect the tillering of SL-insensitive plants. The analysis showed statistically significant increased cytokinin content and decreased auxin and abscisic acid content in 'bushy' hvd14 compared to WT, which aligns with the commonly known actions of these hormones regarding branching regulation. Further, transcriptomic and proteomic analysis revealed a set of differentially expressed genes (DEG) and abundant proteins (DAP), among which 11.6% and 14.6% were associated with phytohormone-related processes, respectively. Bioinformatics analyses then identified a series of potential SL-dependent transcription factors (TF), which may control the differences observed in the hvd14 transcriptome and proteome. Comparison to available Arabidopsis thaliana data implicates a sub-selection of these TF as being involved in the transduction of SL signal in both monocotyledonous and dicotyledonous plants.
Collapse
Affiliation(s)
- Magdalena Korek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Glen R Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Weronika Buchcik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Marek Marzec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| |
Collapse
|
5
|
Martinez-Seidel F, Suwanchaikasem P, Gentry-Torfer D, Rajarathinam Y, Ebert A, Erban A, Firmino A, Nie S, Leeming M, Williamson N, Roessner U, Kopka J, Boughton BA. Remodelled ribosomal populations synthesize a specific proteome in proliferating plant tissue during cold. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230384. [PMID: 40045790 PMCID: PMC11883437 DOI: 10.1098/rstb.2023.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 09/11/2024] [Indexed: 03/09/2025] Open
Abstract
Plant acclimation occurs through system-wide mechanisms that include proteome shifts, some of which occur at the level of protein synthesis. All proteins are synthesized by ribosomes. Rather than being monolithic, transcript-to-protein translation machines, ribosomes can be selective and cause proteome shifts. In this study, we use apical root meristems of germinating seedlings of the monocotyledonous plant barley as a model to examine changes in protein abundance and synthesis during cold acclimation. We measured metabolic and physiological parameters that allowed us to compare protein synthesis in the cold to optimal rearing temperatures. We demonstrated that the synthesis and assembly of ribosomal proteins are independent processes in root proliferative tissue. We report the synthesis and accumulation of various macromolecular complexes and propose how ribosome compositional shifts may be associated with functional proteome changes that are part of successful cold acclimation. Our study indicates that translation initiation is limiting during cold acclimation while the ribosome population is remodelled. The distribution of the triggered ribosomal protein heterogeneity suggests that altered compositions may confer 60S subunits selective association capabilities towards translation initiation complexes. To what extent selective translation depends on heterogeneous ribo-proteome compositions in barley proliferative root tissue remains a yet unresolved question.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pipob Suwanchaikasem
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dione Gentry-Torfer
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Yogeswari Rajarathinam
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alina Ebert
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Erban
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexandre Firmino
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Research School of Biology, The Australian National University, Acton, Australia
| | - Joachim Kopka
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Berin A. Boughton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- La Trobe Institute of Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria3083, Australia
| |
Collapse
|
6
|
Bruhn D, Fan Y, Griffin KL, Cowan‐Turner D, Scafaro AP, Møller IM, Atkin OK. Importance of the leaf respiratory quotient. PHYSIOLOGIA PLANTARUM 2025; 177:e70235. [PMID: 40259516 PMCID: PMC12012293 DOI: 10.1111/ppl.70235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/15/2025] [Accepted: 02/27/2025] [Indexed: 04/23/2025]
Abstract
Rates of leaf respiratory CO2-release (RCO2) are important for terrestrial biosphere models that estimate carbon exchange between plants and the atmosphere. Hitherto, models of RCO2 have primarily been based on considerations of respiratory energy demand (particularly ATP) for maintenance and growth purposes. Respiratory ATP synthesis is closely tied to the rate of respiratory O2-uptake (RO2), with relative engagement of the alternative oxidase influencing the ATP:O ratio. However, the extent to which respiratory ATP synthesis is coupled to leaf RCO2 depends on the respiratory quotient (RQ, mol CO2 efflux per unit mol O2 uptake), with models predicting leaf RCO2 assuming that the RQ is at unity. Here, we show systematic inter-specific, temporal and temperature-dependent variation in leaf RQ, with values of RQ ranging from 0.51 to 2.2, challenging model assumptions on the RQ. We discuss possible mechanisms underlying the variation in leaf RQ, potential ways forward in terms of new measurement protocols, and perspectives for modelled RCO2. Our analyses highlight a range of outstanding research questions that need to be answered before we can mechanistically model leaf RCO2 at various scales.
Collapse
Affiliation(s)
- Dan Bruhn
- Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Yuzhen Fan
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Kevin L. Griffin
- Department of Ecology, Evolution and Environmental Biology, Lamont‐Doherty Earth Observatory, Department of Earth and Environmental SciencesColumbia UniversityNew YorkNYUSA
| | - Daniel Cowan‐Turner
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Andrew P. Scafaro
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Ian Max Møller
- Department of Molecular Biology and GeneticsAarhus UniversitySlagelseDenmark
| | - Owen K. Atkin
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraAustralia
| |
Collapse
|
7
|
Smoly I, Elbaz H, Engelen C, Wechsler T, Elbaz G, Ben-Ari G, Samach A, Friedlander T. A model estimating the level of floral transition in olive trees exposed to warm periods during winter. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1266-1284. [PMID: 39535233 DOI: 10.1093/jxb/erae459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Rising winter temperatures jeopardize the fruit yield of trees that require a prolonged and sufficiently cold winter to flower. Predicting the exact risk to different crop varieties is the first step in mitigating the harmful effects of climate change. This work focused on olive (Olea europaea)-a traditional crop in the Mediterranean basin in which flowering depends on the sufficiency of cold periods and the lack of warm ones during the preceding winter. A satisfactory quantitative model forecasting its expected flowering under natural temperature conditions is still lacking. The effect of different temperature regimes on olive flowering level and flowering gene expression was tested empirically. A modified 'dynamic model' describing the response of a putative flowering factor to the temperature signal was constructed. The crucial component of the model was an unstable intermediate, produced and degraded at temperature-dependent rates. The model accounts for the number of both cold and warm hours and also for their sequence. Empirical flowering and temperature data were applied to fit the model parameters, using numerical constrained optimization techniques; the model outcomes were successfully validated. The model accurately predicted low-to-moderate flowering under winters with warm periods and properly accounted for the effects of warm periods during winter.
Collapse
Affiliation(s)
- Ilan Smoly
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Haim Elbaz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Chaim Engelen
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Tahel Wechsler
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gal Elbaz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Giora Ben-Ari
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7528809, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Tamar Friedlander
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Li G, Wang H, Li H, Feng B, Fu W, Ma J, Li J, Wu Z, Islam MR, Chen T, Zhang H, Wei H, Tao L, Fu G. GRAIN SIZE ON CHROMOSOME 2 orchestrates phytohormone, sugar signaling and energy metabolism to confer thermal resistance in rice. PHYSIOLOGIA PLANTARUM 2025; 177:e70113. [PMID: 39972987 DOI: 10.1111/ppl.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
GRAIN SIZE ON CHROMOSOME 2 (GS2) has been reported to enhance rice grain yield and confer tolerance to cold, drought, and salt stress, but its function in heat tolerance of rice remains undocumented. This study aimed to investigate whether GS2 could enhance thermal tolerance by subjecting rice seedlings of Huazhan (HZ) and its near-isogenic line (HZ-GS2) to heat stress. HZ-GS2 plants exhibited less damage compared to HZ plants under heat stress. Transcriptome revealed the involvement of phytohormones, sugar signaling, and energy metabolism in the mechanism by which GS2 influences heat tolerance. Under heat stress, HZ-GS2 plants showed higher increases or lower decreases in glucose, gibberellins (GAs), salicylic acid (SA), indoleacetic acid (IAA), adenosine triphosphate (ATP), energy charge, as well as the activities of hexokinase, NADH dehydrogenase, cytochrome oxidase, ATP synthase, and ATPase. Exogenous GA3 enhanced heat tolerance in rice by increasing energy charge, ATPase, activities of complex V and hexokinase. Additionally, glucose, sucrose, 3-aminobenzamide (3-ab), and Na2SO3 conferred heat tolerance in rice plants. Importantly, a significant increase in Fv/Fm was observed in plants treated with a combination of GA3, glucose, and 3-ab, compared to those sprayed alone. Thus, GS2 coordinates GA3, hexokinase, and energy metabolism to improve energy status, thereby enhancing heat tolerance in rice plants.
Collapse
Affiliation(s)
- Guangyan Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Huanran Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Hubo Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Baohua Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Weimeng Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Jiaying Ma
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Juncai Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Zhihai Wu
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Md Rezaul Islam
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Department of agriculture Extension, Ministry of agriculture, Dhaka, Bangladesh
| | - Tingting Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Longxing Tao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Robbins EHJ, Kelly S. Widespread adaptive evolution in angiosperm photosystems provides insight into the evolution of photosystem II repair. THE PLANT CELL 2024; 37:koae281. [PMID: 39405425 DOI: 10.1093/plcell/koae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024]
Abstract
Oxygenic photosynthesis generates the initial energy source that fuels nearly all life on Earth. At the heart of the process are the photosystems, which are pigment binding multiprotein complexes that catalyze the first step of photochemical conversion of light energy into chemical energy. Here, we investigate the molecular evolution of the plastid-encoded photosystem subunits at single-residue resolution across 773 angiosperm species. We show that despite an extremely high level of conservation, 7% of residues in the photosystems, spanning all photosystem subunits, exhibit hallmarks of adaptive evolution. Through in silico modeling of these adaptive substitutions, we uncover the impact of these changes on the predicted properties of the photosystems, focusing on their effects on cofactor binding and intersubunit interface formation. By analyzing these cohorts of changes, we reveal that evolution has repeatedly altered the interaction between Photosystem II and its D1 subunit in a manner that is predicted to reduce the energetic barrier for D1 turnover and photosystem repair. Together, these results provide insight into the trajectory of photosystem adaptation during angiosperm evolution.
Collapse
Affiliation(s)
| | - Steven Kelly
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
10
|
Li Y, Li X, Peng D, Luo J, Zhu S, Du H, Li X, Zhang J, Meng J, Pei X, Zhao X. Comprehensive physiological, transcriptomic, and metabolomic analyses revealed the regulation mechanism of evergreen and cold resistance of Pinus koraiensis needles. BMC PLANT BIOLOGY 2024; 24:1182. [PMID: 39695949 DOI: 10.1186/s12870-024-05924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
As a significant fruit and timber tree species among conifers, Pinus koraiensis remains it evergreen status throughout the harsh winters of the north, a testament to its intricate and prolonged evolutionary adaptation. This study delves into the annual trends of physiological indicators, gene expression levels, and metabolite accumulation to dissect the seasonal adaptability of P. koraiensis needles. Chlorophyll content reaches its zenith primarily between July and September, whereas carotenoids persist until spring. Additionally, notable seasonal variations are observed in the levels of soluble sugar and protein. Transcriptome data is categorized into four distinct stages: spring (S2), summer (S3-S4), autumn (S5), and winter (S6-S1). The differential expression of transcription factor genes, including bHLH, MYB-related, AP2/ERF, C3H, and NAC, provides insights into the needles' seasonal adaptations. Analysis of chlorophyll and carotenoid metabolism, sugar metabolism, and the MAPK signaling pathway identifies PSY5 (Cluster-50735.3), AMY13 (Cluster-37114.0), pgm1 (Cluster-46022.0), and MEKK1-1 (Cluster-33069.0) may as potential key genes involved in sustaining the needle's evergreen nature and cold resistance. Ultimately, a comprehensive annual adaptability map for P. koraiensis is proposed, enhancing understanding of its responses to seasonal variations.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China
| | - Dan Peng
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China
| | - Jiaxin Luo
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China
| | - Shuai Zhu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China
| | - Haibo Du
- Baicheng Forestry Science Research Institute, Baicheng, 137099, China
| | - Xiaoning Li
- Baicheng Forestry Science Research Institute, Baicheng, 137099, China
| | - Jiafeng Zhang
- Yongji County Forest Seed Station, Jilin, 132100, China
| | - Jun Meng
- Jilin Forest Seedling Management Station, Changchun, 130118, China
| | - Xiaona Pei
- College of Horticulture, Jilin Agricultural University, Changchun, 130118, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
11
|
Tong Z, Kamran M, Zhang Q, Lin F, Fang D, Chen X, Zhu T, Xu H, Xiao B. Identification of QTLs associated with yield-related traits and superior genotype prediction using recombinant inbred line population in tobacco. Gene 2024; 928:148765. [PMID: 39019098 DOI: 10.1016/j.gene.2024.148765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Tobacco is an economically significant industrial crop and model plant for genetic research, yet little is known about its genetic architecture. Quantitative trait loci (QTL) analysis was performed for six agronomic traits on an F_7 population of 341 genotypes, parents, and F1 plants using 1974 SSR markers across two environments. 31 QTLs contributing single-locus additive effects on 13 linkage groups (LGs) and 6 QTL pairs contributing epistatic effects on 6 LGs, were detected by the QTLNetwork 2.0 which was developed for the mixed-linear-model-based composite interval mapping (MCIM). Notably, 5 QTLs and 1 epistatic QTL pair were found to have pleiotropic effects on some genetically related traits. Moreover, the Broad sense heritability of the detected QTLs ranged from 1.05% to 43.33%, while genotype-by-environment interaction heritability spanned from 27.09% to 56.25%. Based on the results of QTL mapping, the potential superior lines for all or specific environments were designed and evaluated. Five major QTLs were finely dissected based on the tobacco reference genome of K326, and 31 candidate genes were predicted. This study offered new insights into the complicated genetic architecture and QTL resources for efficient breeding design for genetic improvement of agronomic traits in tobacco.
Collapse
Affiliation(s)
- Zhijun Tong
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China
| | - Muhammad Kamran
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qixin Zhang
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Feng Lin
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dunhuang Fang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China
| | - Xuejun Chen
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China
| | - Tianneng Zhu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haiming Xu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Bingguang Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China.
| |
Collapse
|
12
|
Usmanova DR, Plata G, Vitkup D. Functional Optimization in Distinct Tissues and Conditions Constrains the Rate of Protein Evolution. Mol Biol Evol 2024; 41:msae200. [PMID: 39431545 PMCID: PMC11523136 DOI: 10.1093/molbev/msae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 10/22/2024] Open
Abstract
Understanding the main determinants of protein evolution is a fundamental challenge in biology. Despite many decades of active research, the molecular and cellular mechanisms underlying the substantial variability of evolutionary rates across cellular proteins are not currently well understood. It also remains unclear how protein molecular function is optimized in the context of multicellular species and why many proteins, such as enzymes, are only moderately efficient on average. Our analysis of genomics and functional datasets reveals in multiple organisms a strong inverse relationship between the optimality of protein molecular function and the rate of protein evolution. Furthermore, we find that highly expressed proteins tend to be substantially more functionally optimized. These results suggest that cellular expression costs lead to more pronounced functional optimization of abundant proteins and that the purifying selection to maintain high levels of functional optimality significantly slows protein evolution. We observe that in multicellular species both the rate of protein evolution and the degree of protein functional efficiency are primarily affected by expression in several distinct cell types and tissues, specifically, in developed neurons with upregulated synaptic processes in animals and in young and fast-growing tissues in plants. Overall, our analysis reveals how various constraints from the molecular, cellular, and species' levels of biological organization jointly affect the rate of protein evolution and the level of protein functional adaptation.
Collapse
Affiliation(s)
- Dinara R Usmanova
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Germán Plata
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- BiomEdit, Fishers, IN 46037, USA
| | - Dennis Vitkup
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
13
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
14
|
Osinuga A, González Solís A, Cahoon RE, Alsiyabi A, Cahoon EB, Saha R. Deciphering sphingolipid biosynthesis dynamics in Arabidopsis thaliana cell cultures: Quantitative analysis amid data variability. iScience 2024; 27:110675. [PMID: 39297170 PMCID: PMC11409011 DOI: 10.1016/j.isci.2024.110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed toward fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its de novo biosynthesis and homeostasis in Arabidopsis thaliana cell cultures, shedding light on fundamental metabolic mechanisms. Employing 15N isotope labeling and quantitative dynamic modeling approach, we obtained data with notable variations and developed a regularized and constraint-based dynamic metabolic flux analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase (LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found to affect cellular viability and increase the potential for programmed cell death (PCD). Despite challenges posed by data variability, this work enhances our understanding of sphingolipid metabolism and demonstrates the utility of dynamic modeling in analyzing complex metabolic pathways.
Collapse
Affiliation(s)
- Abraham Osinuga
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ariadna González Solís
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rebecca E Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Adil Alsiyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
15
|
Réthoré E, Pelletier S, Balliau T, Zivy M, Avelange-Macherel MH, Macherel D. Multi-scale analysis of heat stress acclimation in Arabidopsis seedlings highlights the primordial contribution of energy-transducing organelles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:300-331. [PMID: 38613336 DOI: 10.1111/tpj.16763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.
Collapse
Affiliation(s)
- Elise Réthoré
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Sandra Pelletier
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Thierry Balliau
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | - Michel Zivy
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | | | - David Macherel
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| |
Collapse
|
16
|
Fitzpatrick TB. B Vitamins: An Update on Their Importance for Plant Homeostasis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:67-93. [PMID: 38424064 DOI: 10.1146/annurev-arplant-060223-025336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
B vitamins are a source of coenzymes for a vast array of enzyme reactions, particularly those of metabolism. As metabolism is the basis of decisions that drive maintenance, growth, and development, B vitamin-derived coenzymes are key components that facilitate these processes. For over a century, we have known about these essential compounds and have elucidated their pathways of biosynthesis, repair, salvage, and degradation in numerous organisms. Only now are we beginning to understand their importance for regulatory processes, which are becoming an important topic in plants. Here, I highlight and discuss emerging evidence on how B vitamins are integrated into vital processes, from energy generation and nutrition to gene expression, and thereby contribute to the coordination of growth and developmental programs, particularly those that concern maintenance of a stable state, which is the foundational tenet of plant homeostasis.
Collapse
|
17
|
Fan KT, Xu Y, Hegeman AD. Elevated Temperature Effects on Protein Turnover Dynamics in Arabidopsis thaliana Seedlings Revealed by 15N-Stable Isotope Labeling and ProteinTurnover Algorithm. Int J Mol Sci 2024; 25:5882. [PMID: 38892074 PMCID: PMC11172382 DOI: 10.3390/ijms25115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Global warming poses a threat to plant survival, impacting growth and agricultural yield. Protein turnover, a critical regulatory mechanism balancing protein synthesis and degradation, is crucial for the cellular response to environmental changes. We investigated the effects of elevated temperature on proteome dynamics in Arabidopsis thaliana seedlings using 15N-stable isotope labeling and ultra-performance liquid chromatography-high resolution mass spectrometry, coupled with the ProteinTurnover algorithm. Analyzing different cellular fractions from plants grown under 22 °C and 30 °C growth conditions, we found significant changes in the turnover rates of 571 proteins, with a median 1.4-fold increase, indicating accelerated protein dynamics under thermal stress. Notably, soluble root fraction proteins exhibited smaller turnover changes, suggesting tissue-specific adaptations. Significant turnover alterations occurred with redox signaling, stress response, protein folding, secondary metabolism, and photorespiration, indicating complex responses enhancing plant thermal resilience. Conversely, proteins involved in carbohydrate metabolism and mitochondrial ATP synthesis showed minimal changes, highlighting their stability. This analysis highlights the intricate balance between proteome stability and adaptability, advancing our understanding of plant responses to heat stress and supporting the development of improved thermotolerant crops.
Collapse
Affiliation(s)
- Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Yuan Xu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Adrian D. Hegeman
- Departments of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, MN 55108, USA
| |
Collapse
|
18
|
Goelzer A, Rajjou L, Chardon F, Loudet O, Fromion V. Resource allocation modeling for autonomous prediction of plant cell phenotypes. Metab Eng 2024; 83:86-101. [PMID: 38561149 DOI: 10.1016/j.ymben.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Predicting the plant cell response in complex environmental conditions is a challenge in plant biology. Here we developed a resource allocation model of cellular and molecular scale for the leaf photosynthetic cell of Arabidopsis thaliana, based on the Resource Balance Analysis (RBA) constraint-based modeling framework. The RBA model contains the metabolic network and the major macromolecular processes involved in the plant cell growth and survival and localized in cellular compartments. We simulated the model for varying environmental conditions of temperature, irradiance, partial pressure of CO2 and O2, and compared RBA predictions to known resource distributions and quantitative phenotypic traits such as the relative growth rate, the C:N ratio, and finally to the empirical characteristics of CO2 fixation given by the well-established Farquhar model. In comparison to other standard constraint-based modeling methods like Flux Balance Analysis, the RBA model makes accurate quantitative predictions without the need for empirical constraints. Altogether, we show that RBA significantly improves the autonomous prediction of plant cell phenotypes in complex environmental conditions, and provides mechanistic links between the genotype and the phenotype of the plant cell.
Collapse
Affiliation(s)
- Anne Goelzer
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Olivier Loudet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Vincent Fromion
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| |
Collapse
|
19
|
Zhang J, Wang Q, Yu H, Lin L, Zhang Z, Song Y. Metagenomic insights into protein degradation mechanisms in natural fermentation of cassava leaves. BIORESOURCE TECHNOLOGY 2024; 396:130433. [PMID: 38342281 DOI: 10.1016/j.biortech.2024.130433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Cassava (Manihot esculenta Crantz) leaves, the primary by-product of cassava processing, constitute a significant protein source, accounting for 18 to 38 percent on a dry weight basis. Despite their nutritional value, a substantial portion of these leaves is often discarded post-harvest, resulting in notable resource waste. This study employs metagenomic technology to investigate the protein degradation mechanism in cassava leaves, aiming to provide a technical reference for value-added of this by-product. Following a 36-hour period of natural fermentation, the protein degradation rate reached 58%, a phenomenon intricately linked to both the microbial community structure and its functional properties. Notably, Lactococcus and Enterobacter, recognized for their abundant protease activity, were predominant. Metagenomically assembled genomes further revealed Lactococcus's substantial role in producing flavors and active compounds, including amino acids and peptides. This study offers novel perspectives to the foodization and high-value utilization of cassava by-products, emphasizing the sustainable exploitation of biomass resources.
Collapse
Affiliation(s)
- Jinquan Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, Haikou 571101, China; College of Horticulture, Hunan Agricultural University, Hunan Province, Changsha 410000, China
| | - Qinfei Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, Haikou 571101, China
| | - Houmei Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, Haikou 571101, China
| | - Liming Lin
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, Haikou 571101, China
| | - Zhenwen Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, Haikou 571101, China.
| | - Yong Song
- College of Horticulture, Hunan Agricultural University, Hunan Province, Changsha 410000, China.
| |
Collapse
|
20
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Symonds K, Teresinski H, Hau B, Chiasson D, Benidickson K, Plaxton W, Snedden WA. Arabidopsis CML13 and CML14 Have Essential and Overlapping Roles in Plant Development. PLANT & CELL PHYSIOLOGY 2024; 65:228-242. [PMID: 37946525 DOI: 10.1093/pcp/pcad142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Calmodulin (CaM)-like proteins (CMLs) are the largest family of calcium-binding proteins in plants, yet the functions of most CMLs are unknown. Arabidopsis CML13 and CML14 are closely related paralogs that interact with the isoleucine-glutamine (IQ) domains of myosins, IQ-domain proteins and CaM-binding transcription activators (CAMTAs). Here, we explored the physiological roles of CML13 and CML14 during development by using dexamethasone (Dex)-inducible RNA silencing to suppress either CML13 or CML14 transcript levels. In the absence of inducible suppression, CML13- and CML14-RNA-interference lines were indistinguishable from wild-type (WT) plants throughout development. In contrast, induction of silencing treatment led to rapid increases in RNA-hairpin production that correlated with a targeted reduction in CML13 or CML14 transcript levels and a range of developmental and morphological effects. RNA-suppression treatment did not impair the germination of CML13- or 14-RNA-interference lines, but these seedlings were chlorotic, displayed high mortality and failed to achieve seedling establishment. Under Dex treatment, seeds of CML13- and CML14-RNA-interference lines exhibited differential sensitivity to exogenous ABA compared to WT seeds. Induced RNA suppression of mature plants led to reduced silique length, shorter roots and rapid leaf senescence in CML13- and 14-RNA-interference plants, which correlated with increased gene expression of the senescence marker Senescence-Associated Gene13 (SAG13). Plants induced for RNA suppression at 2 weeks post-germination exhibited a much stronger phenotype than treatment of 3-, 4- or 5-week-old plants. Collectively, our data indicate that both CML13 and CML14 are essential for normal development and function across a broad range of tissues and developmental stages.
Collapse
Affiliation(s)
- Kyle Symonds
- Department of Biology, Queen's University, Kingston, ON K7L3N6, Canada
| | - Howard Teresinski
- Department of Biology, Queen's University, Kingston, ON K7L3N6, Canada
| | - Bryan Hau
- Department of Biology, Queen's University, Kingston, ON K7L3N6, Canada
| | - David Chiasson
- Department of Biology, St. Mary's University, Halifax, NS B3H 3C3, Canada
| | | | - William Plaxton
- Department of Biology, Queen's University, Kingston, ON K7L3N6, Canada
| | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, ON K7L3N6, Canada
| |
Collapse
|
22
|
Smith AB, Ganguly DR, Moore M, Bowerman AF, Janapala Y, Shirokikh NE, Pogson BJ, Crisp PA. Dynamics of mRNA fate during light stress and recovery: from transcription to stability and translation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:818-839. [PMID: 37947266 PMCID: PMC10952913 DOI: 10.1111/tpj.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Transcript stability is an important determinant of its abundance and, consequently, translational output. Transcript destabilisation can be rapid and is well suited for modulating the cellular response. However, it is unclear the extent to which RNA stability is altered under changing environmental conditions in plants. We previously hypothesised that recovery-induced transcript destabilisation facilitated a phenomenon of rapid recovery gene downregulation (RRGD) in Arabidopsis thaliana (Arabidopsis) following light stress, based on mathematical calculations to account for ongoing transcription. Here, we test this hypothesis and investigate processes regulating transcript abundance and fate by quantifying changes in transcription, stability and translation before, during and after light stress. We adapt syringe infiltration to apply a transcriptional inhibitor to soil-grown plants in combination with stress treatments. Compared with measurements in juvenile plants and cell culture, we find reduced stability across a range of transcripts encoding proteins involved in RNA binding and processing. We also observe light-induced destabilisation of transcripts, followed by their stabilisation during recovery. We propose that this destabilisation facilitates RRGD, possibly in combination with transcriptional shut-off that was confirmed for HSP101, ROF1 and GOLS1. We also show that translation remains highly dynamic over the course of light stress and recovery, with a bias towards transcript-specific increases in ribosome association, independent of changes in total transcript abundance, after 30 min of light stress. Taken together, we provide evidence for the combinatorial regulation of transcription and stability that occurs to coordinate translation during light stress and recovery in Arabidopsis.
Collapse
Affiliation(s)
- Aaron B. Smith
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Diep R. Ganguly
- CSIRO Synthetic Biology Future Science PlatformCanberraAustralian Capital Territory2601Australia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marten Moore
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Andrew F. Bowerman
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Yoshika Janapala
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Shine‐Dalgarno Centre for RNA InnovationThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Barry J. Pogson
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Peter A. Crisp
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
23
|
Melicher P, Dvořák P, Řehák J, Šamajová O, Pechan T, Šamaj J, Takáč T. Methyl viologen-induced changes in the Arabidopsis proteome implicate PATELLIN 4 in oxidative stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:405-421. [PMID: 37728561 PMCID: PMC10735431 DOI: 10.1093/jxb/erad363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
The photosynthesis-induced accumulation of reactive oxygen species in chloroplasts can lead to oxidative stress, triggering changes in protein synthesis, degradation, and the assembly/disassembly of protein complexes. Using shot-gun proteomics, we identified methyl viologen-induced changes in protein abundance in wild-type Arabidopsis and oxidative stress-hypersensitive fsd1-1 and fsd1-2 knockout mutants, which are deficient in IRON SUPEROXIDE DISMUTASE 1 (FSD1). The levels of proteins that are localized in chloroplasts and the cytoplasm were modified in all lines treated with methyl viologen. Compared with the wild-type, fsd1 mutants showed significant changes in metabolic protein and chloroplast chaperone levels, together with increased ratio of cytoplasmic, peroxisomal, and mitochondrial proteins. Different responses in proteins involved in the disassembly of photosystem II-light harvesting chlorophyll a/b binding proteins were observed. Moreover, the abundance of PATELLIN 4, a phospholipid-binding protein enriched in stomatal lineage, was decreased in response to methyl viologen. Reverse genetic studies using patl4 knockout mutants and a PATELLIN 4 complemented line indicate that PATELLIN 4 affects plant responses to oxidative stress by effects on stomatal closure.
Collapse
Affiliation(s)
- Pavol Melicher
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Petr Dvořák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Řehák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, USA
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tomáš Takáč
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
24
|
Osinuga A, Solis AG, Cahoon RE, Al-Siyabi A, Cahoon EB, Saha R. Quantitative Dynamic Analysis of de novo Sphingolipid Biosynthesis in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570827. [PMID: 38105963 PMCID: PMC10723408 DOI: 10.1101/2023.12.08.570827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed towards fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its de novo biosynthesis and homeostasis in Arabidopsis thaliana cell cultures, shedding light on fundamental metabolic mechanisms. Employing 15N isotope labeling and quantitative dynamic modeling approach, we developed a regularized and constraint-based Dynamic Metabolic Flux Analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase (LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found to affect cellular viability and increase the potential for programmed cell death (PCD). Thus, this work enhances our understanding of sphingolipid metabolism and demonstrates the utility of dynamic modeling in analyzing complex metabolic pathways.
Collapse
Affiliation(s)
- Abraham Osinuga
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ariadna Gonzalez Solis
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rebecca E Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Adil Al-Siyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
25
|
Abukhalaf M, Proksch C, Thieme D, Ziegler J, Hoehenwarter W. Changing turn-over rates regulate abundance of tryptophan, GS biosynthesis, IAA transport and photosynthesis proteins in Arabidopsis growth defense transitions. BMC Biol 2023; 21:249. [PMID: 37940940 PMCID: PMC10634109 DOI: 10.1186/s12915-023-01739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Shifts in dynamic equilibria of the abundance of cellular molecules in plant-pathogen interactions need further exploration. We induced PTI in optimally growing Arabidopsis thaliana seedlings for 16 h, returning them to growth conditions for another 16 h. METHODS Turn-over and abundance of 99 flg22 responding proteins were measured chronologically using a stable heavy nitrogen isotope partial labeling strategy and targeted liquid chromatography coupled to mass spectrometry (PRM LC-MS). These experiments were complemented by measurements of mRNA and phytohormone levels. RESULTS Changes in synthesis and degradation rate constants (Ks and Kd) regulated tryptophane and glucosinolate, IAA transport, and photosynthesis-associated protein (PAP) homeostasis in growth/PTI transitions independently of mRNA levels. Ks values increased after elicitation while protein and mRNA levels became uncorrelated. mRNA returned to pre-elicitation levels, yet protein abundance remained at PTI levels even 16 h after media exchange, indicating protein levels were robust and unresponsive to transition back to growth. The abundance of 23 PAPs including FERREDOXIN-NADP( +)-OXIDOREDUCTASE (FNR1) decreased 16 h after PAMP exposure, their depletion was nearly abolished in the myc234 mutant. FNR1 Kd increased as mRNA levels decreased early in PTI, its Ks decreased in prolonged PTI. FNR1 Kd was lower in myc234, mRNA levels decreased as in wild type. CONCLUSIONS Protein Kd and Ks values change in response to flg22 exposure and constitute an additional layer of protein abundance regulation in growth defense transitions next to changes in mRNA levels. Our results suggest photosystem remodeling in PTI to direct electron flow away from the photosynthetic carbon reaction towards ROS production as an active defense mechanism controlled post-transcriptionally and by MYC2 and homologs. Target proteins accumulated later and PAP and auxin/IAA depletion was repressed in myc234 indicating a positive effect of the transcription factors in the establishment of PTI.
Collapse
Affiliation(s)
- Mohammad Abukhalaf
- Present address: Institute for Experimental Medicine, Christian-Albrechts University Kiel, Niemannsweg 11, 24105, Kiel, Germany
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany
| | - Carsten Proksch
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany
| | - Domenika Thieme
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany
| | - Jörg Ziegler
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany.
| |
Collapse
|
26
|
Colombié S, Prigent S, Cassan C, Hilbert-Masson G, Renaud C, Dell'Aversana E, Carillo P, Moing A, Beaumont C, Beauvoit B, McCubbin T, Nielsen LK, Gibon Y. Comparative constraint-based modelling of fruit development across species highlights nitrogen metabolism in the growth-defence trade-off. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:786-803. [PMID: 37531405 DOI: 10.1111/tpj.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Although primary metabolism is well conserved across species, it is useful to explore the specificity of its network to assess the extent to which some pathways may contribute to particular outcomes. Constraint-based metabolic modelling is an established framework for predicting metabolic fluxes and phenotypes and helps to explore how the plant metabolic network delivers specific outcomes from temporal series. After describing the main physiological traits during fruit development, we confirmed the correlations between fruit relative growth rate (RGR), protein content and time to maturity. Then a constraint-based method is applied to a panel of eight fruit species with a knowledge-based metabolic model of heterotrophic cells describing a generic metabolic network of primary metabolism. The metabolic fluxes are estimated by constraining the model using a large set of metabolites and compounds quantified throughout fruit development. Multivariate analyses showed a clear common pattern of flux distribution during fruit development with differences between fast- and slow-growing fruits. Only the latter fruits mobilise the tricarboxylic acid cycle in addition to glycolysis, leading to a higher rate of respiration. More surprisingly, to balance nitrogen, the model suggests, on the one hand, nitrogen uptake by nitrate reductase to support a high RGR at early stages of cucumber and, on the other hand, the accumulation of alkaloids during ripening of pepper and eggplant. Finally, building virtual fruits by combining 12 biomass compounds shows that the growth-defence trade-off is supported mainly by cell wall synthesis for fast-growing fruits and by total polyphenols accumulation for slow-growing fruits.
Collapse
Affiliation(s)
- Sophie Colombié
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Sylvain Prigent
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Cédric Cassan
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Ghislaine Hilbert-Masson
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882, Villenave d'Ornon, France
| | - Christel Renaud
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882, Villenave d'Ornon, France
| | - Emilia Dell'Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Annick Moing
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Chloé Beaumont
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
| | - Bertrand Beauvoit
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Building 75), Brisbane, QLD, 4072, Australia
| | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Building 75), Brisbane, QLD, 4072, Australia
| | - Yves Gibon
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| |
Collapse
|
27
|
Noordally ZB, Hindle MM, Martin SF, Seaton DD, Simpson TI, Le Bihan T, Millar AJ. A phospho-dawn of protein modification anticipates light onset in the picoeukaryote Ostreococcus tauri. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5514-5531. [PMID: 37481465 PMCID: PMC10540734 DOI: 10.1093/jxb/erad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Diel regulation of protein levels and protein modification had been less studied than transcript rhythms. Here, we compare transcriptome data under light-dark cycles with partial proteome and phosphoproteome data, assayed using shotgun MS, from the alga Ostreococcus tauri, the smallest free-living eukaryote. A total of 10% of quantified proteins but two-thirds of phosphoproteins were rhythmic. Mathematical modelling showed that light-stimulated protein synthesis can account for the observed clustering of protein peaks in the daytime. Prompted by night-peaking and apparently dark-stable proteins, we also tested cultures under prolonged darkness, where the proteome changed less than under the diel cycle. Among the dark-stable proteins were prasinophyte-specific sequences that were also reported to accumulate when O. tauri formed lipid droplets. In the phosphoproteome, 39% of rhythmic phospho-sites reached peak levels just before dawn. This anticipatory phosphorylation suggests that a clock-regulated phospho-dawn prepares green cells for daytime functions. Acid-directed and proline-directed protein phosphorylation sites were regulated in antiphase, implicating the clock-related casein kinases 1 and 2 in phase-specific regulation, alternating with the CMGC protein kinase family. Understanding the dynamic phosphoprotein network should be facilitated by the minimal kinome and proteome of O. tauri. The data are available from ProteomeXchange, with identifiers PXD001734, PXD001735, and PXD002909.
Collapse
Affiliation(s)
- Zeenat B Noordally
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Matthew M Hindle
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sarah F Martin
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - T Ian Simpson
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Thierry Le Bihan
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
28
|
Graham CA, Paajanen P, Edwards KJ, Dodd AN. Genome-wide circadian gating of a cold temperature response in bread wheat. PLoS Genet 2023; 19:e1010947. [PMID: 37721961 PMCID: PMC10538658 DOI: 10.1371/journal.pgen.1010947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/28/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Circadian rhythms coordinate the responses of organisms with their daily fluctuating environments, by establishing a temporal program of gene expression. This schedules aspects of metabolism, physiology, development and behaviour according to the time of day. Circadian regulation in plants is extremely pervasive, and is important because it underpins both productivity and seasonal reproduction. Circadian regulation extends to the control of environmental responses through a regulatory process known as circadian gating. Circadian gating is the process whereby the circadian clock regulates the response to an environmental cue, such that the magnitude of response to an identical cue varies according to the time of day of the cue. Here, we show that there is genome-wide circadian gating of responses to cold temperatures in plants. By using bread wheat as an experimental model, we establish that circadian gating is crucial to the programs of gene expression that underlie the environmental responses of a crop of major socioeconomic importance. Furthermore, we identify that circadian gating of cold temperature responses are distributed unevenly across the three wheat subgenomes, which might reflect the geographical origins of the ancestors of modern wheat.
Collapse
Affiliation(s)
- Calum A. Graham
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Bristol, United Kingdom
| | - Pirita Paajanen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Keith J. Edwards
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Bristol, United Kingdom
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
29
|
Munns R, Millar AH. Seven plant capacities to adapt to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4308-4323. [PMID: 37220077 PMCID: PMC10433935 DOI: 10.1093/jxb/erad179] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/11/2023] [Indexed: 05/25/2023]
Abstract
Abiotic stresses such as drought and heat continue to impact crop production in a warming world. This review distinguishes seven inherent capacities that enable plants to respond to abiotic stresses and continue growing, although at a reduced rate, to achieve a productive yield. These are the capacities to selectively take up essential resources, store them and supply them to different plant parts, generate the energy required for cellular functions, conduct repairs to maintain plant tissues, communicate between plant parts, manage existing structural assets in the face of changed circumstances, and shape-shift through development to be efficient in different environments. By illustration, we show how all seven plant capacities are important for reproductive success of major crop species during drought, salinity, temperature extremes, flooding, and nutrient stress. Confusion about the term 'oxidative stress' is explained. This allows us to focus on the strategies that enhance plant adaptation by identifying key responses that can be targets for plant breeding.
Collapse
Affiliation(s)
- Rana Munns
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
30
|
Wang L, Jing M, Gu S, Li D, Dai X, Chen Z, Chen J. Genome-Wide Investigation of BAM Gene Family in Annona atemoya: Evolution and Expression Network Profiles during Fruit Ripening. Int J Mol Sci 2023; 24:10516. [PMID: 37445694 DOI: 10.3390/ijms241310516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
β-amylase proteins (BAM) are important to many aspects of physiological process such as starch degradation. However, little information was available about the BAM genes in Annona atemoya, an important tropical fruit. Seven BAM genes containing the conservative domain of glycoside hydrolase family 14 (PF01373) were identified with Annona atemoya genome, and these BAM genes can be divided into four groups. Subcellular localization analysis revealed that AaBAM3 and AaBAM9 were located in the chloroplast, and AaBAM1.2 was located in the cell membrane and the chloroplast. The AaBAMs belonging to Subfamily I contribute to starch degradation have the higher expression than those belonging to Subfamily II. The analysis of the expression showed that AaBAM3 may function in the whole fruit ripening process, and AaBAM1.2 may be important to starch degradation in other organs. Temperature and ethylene affect the expression of major AaBAM genes in Subfamily I during fruit ripening. These expressions and subcellular localization results indicating β-amylase play an important role in starch degradation.
Collapse
Affiliation(s)
- Luli Wang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Minmin Jing
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Shuailei Gu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Dongliang Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiaohong Dai
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Zhihui Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Jingjing Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| |
Collapse
|
31
|
da Fonseca-Pereira P, Monteiro-Batista RDC, Araújo WL, Nunes-Nesi A. Harnessing enzyme cofactors and plant metabolism: an essential partnership. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1014-1036. [PMID: 36861364 DOI: 10.1111/tpj.16167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 05/31/2023]
Abstract
Cofactors are fundamental to the catalytic activity of enzymes. Additionally, because plants are a critical source of several cofactors (i.e., including their vitamin precursors) within the context of human nutrition, there have been several studies aiming to understand the metabolism of coenzymes and vitamins in plants in detail. For example, compelling evidence has been brought forth regarding the role of cofactors in plants; specifically, it is becoming increasingly clear that an adequate supply of cofactors in plants directly affects their development, metabolism, and stress responses. Here, we review the state-of-the-art knowledge on the significance of coenzymes and their precursors with regard to general plant physiology and discuss the emerging functions attributed to them. Furthermore, we discuss how our understanding of the complex relationship between cofactors and plant metabolism can be used for crop improvement.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rita de Cássia Monteiro-Batista
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
32
|
Gago J, Nadal M, Clemente-Moreno MJ, Figueroa CM, Medeiros DB, Cubo-Ribas N, Cavieres LA, Gulías J, Fernie AR, Flexas J, Bravo LA. Nutrient availability regulates Deschampsia antarctica photosynthetic and stress tolerance performance in Antarctica. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2620-2637. [PMID: 36880307 DOI: 10.1093/jxb/erad043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/05/2023] [Indexed: 06/06/2023]
Abstract
Deschampsia antarctica is one of the only two native vascular plants in Antarctica, mostly located in the ice-free areas of the Peninsula's coast and adjacent islands. This region is characterized by a short growing season, frequent extreme climatic events, and soils with reduced nutrient availability. However, it is unknown whether its photosynthetic and stress tolerance mechanisms are affected by the availability of nutrients to deal with this particular environment. We studied the photosynthetic, primary metabolic, and stress tolerance performance of D. antarctica plants growing on three close sites (<500 m) with contrasting soil nutrient conditions. Plants from all sites showed similar photosynthetic rates, but mesophyll conductance and photobiochemistry were more limiting (~25%) in plants growing on low-nutrient availability soils. Additionally, these plants showed higher stress levels and larger investments in photoprotection and carbon pools, most probably driven by the need to stabilize proteins and membranes, and remodel cell walls. In contrast, when nutrients were readily available, plants shifted their carbon investment towards amino acids related to osmoprotection, growth, antioxidants, and polyamines, leading to vigorous plants without appreciable levels of stress. Taken together, these findings demonstrate that D. antarctica displays differential physiological performances to cope with adverse conditions depending on resource availability, allowing it to maximize stress tolerance without jeopardizing photosynthetic capacity.
Collapse
Affiliation(s)
- Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122 Palma, Spain
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Carlos María Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, 3000 Santa Fe, Argentina
| | - David Barbosa Medeiros
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Golm, Germany
| | - Neus Cubo-Ribas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Lohengrin Alexis Cavieres
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción and Instituto de Ecología y Biodiversidad (IEB), Concepción, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus. Universidad de La Frontera, Temuco, Chile
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Alisdair Robert Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Golm, Germany
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - León Aloys Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Dpt. de Cs. Agronómicas y Recursos Naturales, Facultad de Cs. Agropecuarias y Forestales, Instituto de Agroindustria, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
33
|
Bathe U, Leong BJ, Van Gelder K, Barbier GG, Henry CS, Amthor JS, Hanson AD. Respiratory energy demands and scope for demand expansion and destruction. PLANT PHYSIOLOGY 2023; 191:2093-2103. [PMID: 36271857 PMCID: PMC10069906 DOI: 10.1093/plphys/kiac493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Nonphotosynthetic plant metabolic processes are powered by respiratory energy, a limited resource that metabolic engineers—like plants themselves—must manage prudently.
Collapse
Affiliation(s)
| | | | | | | | - Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Jeffrey S Amthor
- Northern Arizona University Center for Ecosystem Science and Society, Flagstaff, Arizona 86011, USA
| | | |
Collapse
|
34
|
Li H, Feng B, Li J, Fu W, Wang W, Chen T, Liu L, Wu Z, Peng S, Tao L, Fu G. RGA1 alleviates low-light-repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy. PLANT, CELL & ENVIRONMENT 2023; 46:1363-1383. [PMID: 36658612 DOI: 10.1111/pce.14547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Low-light stress compromises photosynthetic and energy efficiency and leads to spikelet sterility; however, the effect of low-light stress on pollen tube elongation in the pistil remains poorly understood. The gene RGA1, which encodes a Gα-subunit of the heterotrimeric G-protein, enhanced low-light tolerance at anthesis by preventing the cessation of pollen tube elongation in the pistil of rice plants. In this process, marked increases in the activities of acid invertase (INV), sucrose synthase (SUS) and mitochondrial respiratory electron transport chain complexes, as well as the relative expression levels of SUTs (sucrose transporter), SWEETs (sugars will eventually be exported transporters), SUSs, INVs, CINs (cell-wall INV 1), SnRK1A (sucrose-nonfermenting 1-related kinase 1) and SnRK1B, were observed in OE-1 plants. Accordingly, notable increases in contents of ATP and ATPase were presented in OE-1 plants under low-light conditions, while they were decreased in d1 plants. Importantly, INV and ATPase activators (sucrose and Na2 SO3 , respectively) increased spikelet fertility by improving the energy status in the pistil under low-light conditions, and the ATPase inhibitor Na2 VO4 induced spikelet sterility and decreased ATPase activity. These results suggest that RGA1 could alleviate the low-light stress-induced impairment of pollen tube elongation to increase spikelet fertility by promoting sucrose unloading in the pistil and improving the metabolism and allocation of energy.
Collapse
Affiliation(s)
- Hubo Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Juncai Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wenting Wang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianmeng Liu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhihai Wu
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Shaobing Peng
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| |
Collapse
|
35
|
Winckler LI, Dissmeyer N. Molecular determinants of protein half-life in chloroplasts with focus on the Clp protease system. Biol Chem 2023; 404:499-511. [PMID: 36972025 DOI: 10.1515/hsz-2022-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Abstract
Proteolysis is an essential process to maintain cellular homeostasis. One pathway that mediates selective protein degradation and which is in principle conserved throughout the kingdoms of life is the N-degron pathway, formerly called the ‘N-end rule’. In the cytosol of eukaryotes and prokaryotes, N-terminal residues can be major determinants of protein stability. While the eukaryotic N-degron pathway depends on the ubiquitin proteasome system, the prokaryotic counterpart is driven by the Clp protease system. Plant chloroplasts also contain such a protease network, which suggests that they might harbor an organelle specific N-degron pathway similar to the prokaryotic one. Recent discoveries indicate that the N-terminal region of proteins affects their stability in chloroplasts and provides support for a Clp-mediated entry point in an N-degron pathway in plastids. This review discusses structure, function and specificity of the chloroplast Clp system, outlines experimental approaches to test for an N-degron pathway in chloroplasts, relates these aspects into general plastid proteostasis and highlights the importance of an understanding of plastid protein turnover.
Collapse
Affiliation(s)
- Lioba Inken Winckler
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| | - Nico Dissmeyer
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| |
Collapse
|
36
|
Xu K, Li N, Zhang Y, Gao S, Yin Y, Yao M, Wang F. Silencing of Pepper CaFtsH1 or CaFtsH8 Genes Alters Normal Leaf Development. Int J Mol Sci 2023; 24:ijms24054927. [PMID: 36902361 PMCID: PMC10003178 DOI: 10.3390/ijms24054927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Filamentation temperature-sensitive H (FtsH) is a proteolytic enzyme that plays an important role in plant photomorphogenesis and stress resistance. However, information regarding the FtsH family genes in pepper is limited. In our research, through genome-wide identification, 18 members of the pepper FtsH family (including five FtsHi members) were identified and renamed based on phylogenetic analysis. CaFtsH1 and CaFtsH8 were found to be essential for pepper chloroplast development and photosynthesis because FtsH5 and FtsH2 were lost in Solanaceae diploids. We found that the CaFtsH1 and CaFtsH8 proteins were located in the chloroplasts and specifically expressed in pepper green tissues. Meanwhile, CaFtsH1 and CaFtsH8-silenced plants created by virus-induced gene silencing exhibited albino leaf phenotypes. In addition, CaFtsH1-silenced plants were observed to contain very few dysplastic chloroplasts and lost the capacity for photoautotrophic growth. Transcriptome analysis revealed that the expression of chloroplast-related genes such as those coding the photosynthesis-antenna protein and structural proteins was downregulated in CaFtsH1-silenced plants, resulting in the inability to form normal chloroplasts. This study improves our understanding of pepper chloroplast formation and photosynthesis through the identification and functional study of CaFtsH genes.
Collapse
|
37
|
Fu W, Cui Z, Guo J, Cui X, Han G, Zhu Y, Hu J, Gao X, Li Y, Xu M, Fu A, Wang F. Immunophilin CYN28 is required for accumulation of photosystem II and thylakoid FtsH protease in Chlamydomonas. PLANT PHYSIOLOGY 2023; 191:1002-1016. [PMID: 36417279 PMCID: PMC9922407 DOI: 10.1093/plphys/kiac524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Excess light causes severe photodamage to photosystem II (PSII) where the primary charge separation for electron transfer takes place. Dissection of mechanisms underlying the PSII maintenance and repair cycle in green algae promotes the usage of genetic engineering and synthetic biology to improve photosynthesis and biomass production. In this study, we systematically analyzed the high light (HL) responsive immunophilin genes in Chlamydomonas (Chlamydomonas reinhardtii) and identified one chloroplast lumen-localized immunophilin, CYN28, as an essential player in HL tolerance. Lack of CYN28 caused HL hypersensitivity, severely reduced accumulation of PSII supercomplexes and compromised PSII repair in cyn28. The thylakoid FtsH (filamentation temperature-sensitive H) is an essential AAA family metalloprotease involved in the degradation of photodamaged D1 during the PSII repair cycle and was identified as one potential target of CYN28. In the cyn28 mutant, the thylakoid FtsH undergoes inefficient turnover under HL conditions. The CYN28-FtsH1/2 interaction relies on the FtsH N-terminal proline residues and is strengthened particularly under HL. Further analyses demonstrated CYN28 displays peptidyl-prolyl isomerase (PPIase) activity, which is necessary for its physiological function. Taken together, we propose that immunophilin CYN28 participates in PSII maintenance and regulates the homeostasis of FtsH under HL stress via its PPIase activity.
Collapse
Affiliation(s)
- Weihan Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Zheng Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jia Guo
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiayu Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Guomao Han
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yunpeng Zhu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jinju Hu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiaoling Gao
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yeqing Li
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Min Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Fei Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
38
|
Noordally Z, Land L, Trichtinger C, Dalvit I, de Meyer M, Wang K, Fitzpatrick TB. Clock and riboswitch control of THIC in tandem are essential for appropriate gauging of TDP levels under light/dark cycles in Arabidopsis. iScience 2023; 26:106134. [PMID: 36866249 PMCID: PMC9972560 DOI: 10.1016/j.isci.2023.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/03/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Metabolic homeostasis is regulated by enzyme activities, but the importance of regulating their corresponding coenzyme levels is unexplored. The organic coenzyme thiamine diphosphate (TDP) is suggested to be supplied as needed and controlled by a riboswitch-sensing mechanism in plants through the circadian-regulated THIC gene. Riboswitch disruption negatively impacts plant fitness. A comparison of riboswitch-disrupted lines to those engineered for enhanced TDP levels suggests that time-of-day regulation of THIC expression particularly under light/dark cycles is crucial. Altering the phase of THIC expression to be synchronous with TDP transporters disrupts the precision of the riboswitch implying that temporal separation of these processes by the circadian clock is important for gauging its response. All defects are bypassed by growing plants under continuous light conditions, highlighting the need to control levels of this coenzyme under light/dark cycles. Thus, consideration of coenzyme homeostasis within the well-studied domain of metabolic homeostasis is highlighted.
Collapse
Affiliation(s)
- Zeenat Noordally
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Lara Land
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Celso Trichtinger
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Ivan Dalvit
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Mireille de Meyer
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Kai Wang
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland,Corresponding author
| |
Collapse
|
39
|
Vidal‐Meireles A, Kuntam S, Széles E, Tóth D, Neupert J, Bock R, Tóth SZ. The lifetime of the oxygen-evolving complex subunit PSBO depends on light intensity and carbon availability in Chlamydomonas. PLANT, CELL & ENVIRONMENT 2023; 46:422-439. [PMID: 36320098 PMCID: PMC10100022 DOI: 10.1111/pce.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
PSBO is essential for the assembly of the oxygen-evolving complex in plants and green algae. Despite its importance, we lack essential information on its lifetime and how it depends on the environmental conditions. We have generated nitrate-inducible PSBO amiRNA lines in the green alga Chlamydomonas reinhardtii. Transgenic strains grew normally under non-inducing conditions, and their photosynthetic performance was comparable to the control strain. Upon induction of the PSBO amiRNA constructs, cell division halted. In acetate-containing medium, cellular PSBO protein levels decreased by 60% within 24 h in the dark, by 75% in moderate light, and in high light, the protein completely degraded. Consequently, the photosynthetic apparatus became strongly damaged, probably due to 'donor-side-induced photoinhibition', and cellular ultrastructure was also severely affected. However, in the absence of acetate during induction, PSBO was remarkably stable at all light intensities and less substantial changes occurred in photosynthesis. Our results demonstrate that the lifetime of PSBO strongly depends on the light intensity and carbon availability, and thus, on the metabolic status of the cells. We also confirm that PSBO is required for photosystem II stability in C. reinhardtii and demonstrate that its specific loss also entails substantial changes in cell morphology and cell cycle.
Collapse
Affiliation(s)
- André Vidal‐Meireles
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
- Present address:
Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms‐Universität Münster (WWU)MünsterGermany
| | - Soujanya Kuntam
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
| | - Eszter Széles
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
- Doctoral School of BiologyUniversity of SzegedSzegedHungary
| | - Dávid Tóth
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
- Doctoral School of BiologyUniversity of SzegedSzegedHungary
| | - Juliane Neupert
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Szilvia Z. Tóth
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
| |
Collapse
|
40
|
Amack S, Ferreira SS, Antunes MS. Tuning the Transcriptional Activity of the CaMV 35S Promoter in Plants by Single-Nucleotide Changes in the TATA Box. ACS Synth Biol 2023; 12:178-185. [PMID: 36563338 PMCID: PMC9872816 DOI: 10.1021/acssynbio.2c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 12/24/2022]
Abstract
Synthetic biology uses genetically encoded devices and circuits to implement novel complex functions in living cells and organisms. A hallmark of these genetic circuits is the interaction among their individual parts, according to predefined rules, to process cellular information and produce a circuit output or response. As the number of individual components in a genetic circuit increases, so does the number of interactions needed to achieve the correct behavior, and hence, a greater need to fine-tune the levels of expression of each component. Transcriptional promoters play a key regulatory role in genetic circuits, as they influence the levels of RNA and proteins produced. In multicellular organisms, such as plants, they can also determine developmental, spatial, and tissue-specific patterns of gene expression. The 35S promoter from the Cauliflower Mosaic Virus (CaMV 35S) is widely used in plant biotechnology to direct high levels of gene expression in a variety of plant species. We produced a library of 21 variants of the CaMV 35S promoter by introducing all single nucleotide substitutions to the promoter's TATA box sequence. We then characterized the activity of all variants in homozygous transgenic plants and showed that some of these variants have lower activity than the wild type in plants. These promoter variants could be used to fine-tune the behavior of synthetic genetic circuits in plants.
Collapse
Affiliation(s)
- Stephanie
C. Amack
- Department
of Biology, University of North Texas, Denton, Texas 76203, United States
- BioDiscovery
Institute, University of North Texas, Denton, Texas 76203, United States
| | - Savio S. Ferreira
- Department
of Biology, University of North Texas, Denton, Texas 76203, United States
- BioDiscovery
Institute, University of North Texas, Denton, Texas 76203, United States
| | - Mauricio S. Antunes
- Department
of Biology, University of North Texas, Denton, Texas 76203, United States
- BioDiscovery
Institute, University of North Texas, Denton, Texas 76203, United States
| |
Collapse
|
41
|
Pollastri S, Velikova V, Castaldini M, Fineschi S, Ghirardo A, Renaut J, Schnitzler JP, Sergeant K, Winkler JB, Zorzan S, Loreto F. Isoprene-Emitting Tobacco Plants Are Less Affected by Moderate Water Deficit under Future Climate Change Scenario and Show Adjustments of Stress-Related Proteins in Actual Climate. PLANTS (BASEL, SWITZERLAND) 2023; 12:333. [PMID: 36679046 PMCID: PMC9862500 DOI: 10.3390/plants12020333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Isoprene-emitting plants are better protected against thermal and oxidative stresses, which is a desirable trait in a climate-changing (drier and warmer) world. Here we compared the ecophysiological performances of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual environmental conditions (400 ppm of CO2 and 28 °C of average daily temperature) and in a future climate scenario (600 ppm of CO2 and 32 °C of average daily temperature). Furthermore, we intended to complement the present knowledge on the mechanisms involved in isoprene-induced resistance to water deficit stress by examining the proteome of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual climate. Isoprene emitters maintained higher photosynthesis and electron transport rates under moderate stress in future climate conditions. However, physiological resistance to water stress in the isoprene-emitting plants was not as marked as expected in actual climate conditions, perhaps because the stress developed rapidly. In actual climate, isoprene emission capacity affected the tobacco proteomic profile, in particular by upregulating proteins associated with stress protection. Our results strengthen the hypothesis that isoprene biosynthesis is related to metabolic changes at the gene and protein levels involved in the activation of general stress defensive mechanisms of plants.
Collapse
Affiliation(s)
- Susanna Pollastri
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Maurizio Castaldini
- Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, Via di Lanciola 12/A, 50125 Cascine del Riccio, Florence, Italy
| | - Silvia Fineschi
- Institute of Heritage Science-CNR (ISPC), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Jenny Renaut
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Kjell Sergeant
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Simone Zorzan
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Francesco Loreto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Naples, Italy
| |
Collapse
|
42
|
Gao LL, Hong ZH, Wang Y, Wu GZ. Chloroplast proteostasis: A story of birth, life, and death. PLANT COMMUNICATIONS 2023; 4:100424. [PMID: 35964157 PMCID: PMC9860172 DOI: 10.1016/j.xplc.2022.100424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinsong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
43
|
Zhang H, Linster E, Wirtz M, Theodoulou FL. Relative Protein Lifetime Measurement in Plants Using Tandem Fluorescent Protein Timers. Methods Mol Biol 2023; 2581:201-220. [PMID: 36413319 DOI: 10.1007/978-1-0716-2784-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Targeted protein degradation plays a wide range of important roles in plant growth and development, but analyzing protein turnover in vivo is technically challenging. Until recently, there has been no straightforward methodology for quantifying protein dynamics at subcellular resolution during cellular transitions in plants. A tandem fluorescent protein timer (tFT) is a fusion of two different fluorescent proteins with distinct fluorophore maturation kinetics, which allows estimation of relative protein age from the ratio of fluorescence intensities of the two fluorescent proteins. Here, we describe approaches to use this technology to report relative protein lifetime in both transient and stable plant transformation systems. tFTs enable in vivo, real-time protein lifetime assessment within subcellular compartments and across tissues, permitting the analysis of protein degradation dynamics in response to stresses or developmental cues and in different genetic backgrounds.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, UK
| | - Eric Linster
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
44
|
Garcia A, Gaju O, Bowerman AF, Buck SA, Evans JR, Furbank RT, Gilliham M, Millar AH, Pogson BJ, Reynolds MP, Ruan Y, Taylor NL, Tyerman SD, Atkin OK. Enhancing crop yields through improvements in the efficiency of photosynthesis and respiration. THE NEW PHYTOLOGIST 2023; 237:60-77. [PMID: 36251512 PMCID: PMC10100352 DOI: 10.1111/nph.18545] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/15/2022] [Indexed: 06/06/2023]
Abstract
The rate with which crop yields per hectare increase each year is plateauing at the same time that human population growth and other factors increase food demand. Increasing yield potential (Y p ) of crops is vital to address these challenges. In this review, we explore a component ofY p that has yet to be optimised - that being improvements in the efficiency with which light energy is converted into biomass (ε c ) via modifications to CO2 fixed per unit quantum of light (α), efficiency of respiratory ATP production (ε prod ) and efficiency of ATP use (ε use ). For α, targets include changes in photoprotective machinery, ribulose bisphosphate carboxylase/oxygenase kinetics and photorespiratory pathways. There is also potential forε prod to be increased via targeted changes to the expression of the alternative oxidase and mitochondrial uncoupling pathways. Similarly, there are possibilities to improveε use via changes to the ATP costs of phloem loading, nutrient uptake, futile cycles and/or protein/membrane turnover. Recently developed high-throughput measurements of respiration can serve as a proxy for the cumulative energy cost of these processes. There are thus exciting opportunities to use our growing knowledge of factors influencing the efficiency of photosynthesis and respiration to create a step-change in yield potential of globally important crops.
Collapse
Affiliation(s)
- Andres Garcia
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Oorbessy Gaju
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- College of Science, Lincoln Institute for Agri‐Food TechnologyUniversity of LincolnLincolnshireLN2 2LGUK
| | - Andrew F. Bowerman
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Sally A. Buck
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - John R. Evans
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Robert T. Furbank
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences & Institute of AgricultureThe University of Western AustraliaCrawleyWA6009Australia
| | - Barry J. Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Matthew P. Reynolds
- International Maize and Wheat Improvement Center (CIMMYT)Km. 45, Carretera Mexico, El BatanTexcoco56237Mexico
| | - Yong‐Ling Ruan
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Nicolas L. Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences & Institute of AgricultureThe University of Western AustraliaCrawleyWA6009Australia
| | - Stephen D. Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
| | - Owen K. Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|
45
|
Chen T, Ma J, Xu C, Jiang N, Li G, Fu W, Feng B, Wang D, Wu Z, Tao L, Fu G. Increased ATPase activity promotes heat-resistance, high-yield, and high-quality traits in rice by improving energy status. FRONTIERS IN PLANT SCIENCE 2022; 13:1035027. [PMID: 36600923 PMCID: PMC9806274 DOI: 10.3389/fpls.2022.1035027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 06/17/2023]
Abstract
Heat stress during the reproductive stage results in major losses in yield and quality, which might be mainly caused by an energy imbalance. However, how energy status affected heat response, yield and quality remains unclear. No relationships were observed among the heat resistance, yield, and quality of the forty-nine early rice cultivars under normal temperature conditions. However, two cultivars, Zhuliangyou30 (ZLY30) and Luliangyou35 (LLY35), differing in heat resistance, yield, and quality were detected. The yield was higher and the chalkiness degree was lower in ZLY30 than in LLY35. Decreases in yields and increases in the chalkiness degree with temperatures were more pronounced in LLY35 than in ZLY30. The accumulation and allocation (ratio of the panicle to the whole plant) of dry matter weight and non-structural carbohydrates were higher in ZLY30 than in LLY35 across all sowing times and temperatures. The accumulation and allocation of dry matter weight and non-structural carbohydrates in panicles were higher in ZLY30 than in LLY35. Similar patterns were observed in the relative expression levels of sucrose unloading related genes SUT1 and SUT2 in grains. The ATP content was higher in the grains of LLY35 than in ZLY30, whereas the ATPase activity, which determined the energy status, was significantly lower in the former than in the latter. Thus, increased ATPase activity, which improved the energy status of rice, was the factor mediating the balance among heat-resistance, high-yield, and high-quality traits in rice.
Collapse
Affiliation(s)
- Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Jiaying Ma
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Chunmei Xu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ning Jiang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangyan Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College, Yangzhou University, Yangzhou, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Danying Wang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhihai Wu
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| |
Collapse
|
46
|
Koh E, Brandis A, Fluhr R. Plastid and cytoplasmic origins of 1O 2-mediated transcriptomic responses. FRONTIERS IN PLANT SCIENCE 2022; 13:982610. [PMID: 36420020 PMCID: PMC9676463 DOI: 10.3389/fpls.2022.982610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The reactive oxygen species singlet oxygen, 1O2, has an extremely short half-life, yet is intimately involved with stress signalling in the cell. We previously showed that the effects of 1O2 on the transcriptome are highly correlated with 80S ribosomal arrest due to oxidation of guanosine residues in mRNA. Here, we show that dysregulation of chlorophyll biosynthesis in the flu mutant or through feeding by δ-aminolevulinic acid can lead to accumulation of photoactive chlorophyll intermediates in the cytoplasm, which generates 1O2 upon exposure to light and causes the oxidation of RNA, eliciting 1O2-responsive genes. In contrast, transcriptomes derived from DCMU treatment, or the Ch1 mutant under moderate light conditions display commonalties with each other but do not induce 1O2 gene signatures. Comparing 1O2 related transcriptomes to an index transcriptome induced by cycloheximide inhibition enables distinction between 1O2 of cytosolic or of plastid origin. These comparisons provide biological insight to cases of mutants or environmental conditions that produce 1O2.
Collapse
Affiliation(s)
- Eugene Koh
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Fluhr
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
47
|
Phillips AL, Scafaro AP, Atwell BJ. Photosynthetic traits of Australian wild rice (Oryza australiensis) confer tolerance to extreme daytime temperatures. PLANT MOLECULAR BIOLOGY 2022; 110:347-363. [PMID: 34997897 PMCID: PMC9646608 DOI: 10.1007/s11103-021-01210-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/27/2021] [Indexed: 05/08/2023]
Abstract
A wild relative of rice from the Australian savannah was compared with cultivated rice, revealing thermotolerance in growth and photosynthetic processes and a more robust carbon economy in extreme heat. Above ~ 32 °C, impaired photosynthesis compromises the productivity of rice. We compared leaf tissues from heat-tolerant wild rice (Oryza australiensis) with temperate-adapted O. sativa after sustained exposure to heat, as well as diurnal heat shock. Leaf elongation and shoot biomass in O. australiensis were unimpaired at 45 °C, and soluble sugar concentrations trebled during 10 h of a 45 °C shock treatment. By contrast, 45 °C slowed growth strongly in O. sativa. Chloroplastic CO2 concentrations eliminated CO2 supply to chloroplasts as the basis of differential heat tolerance. This directed our attention to carboxylation and the abundance of the heat-sensitive chaperone Rubisco activase (Rca) in each species. Surprisingly, O. australiensis leaves at 45 °C had 50% less Rca per unit Rubisco, even though CO2 assimilation was faster than at 30 °C. By contrast, Rca per unit Rubisco doubled in O. sativa at 45 °C while CO2 assimilation was slower, reflecting its inferior Rca thermostability. Plants grown at 45 °C were simultaneously exposed to 700 ppm CO2 to enhance the CO2 supply to Rubisco. Growth at 45 °C responded to CO2 enrichment in O. australiensis but not O. sativa, reflecting more robust carboxylation capacity and thermal tolerance in the wild rice relative.
Collapse
Affiliation(s)
- Aaron L Phillips
- Waite Research Institute and School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, SA, Australia
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
48
|
Banh ATM, Thiele B, Chlubek A, Hombach T, Kleist E, Matsubara S. Combination of long-term 13CO 2 labeling and isotopolog profiling allows turnover analysis of photosynthetic pigments in Arabidopsis leaves. PLANT METHODS 2022; 18:114. [PMID: 36183136 PMCID: PMC9526918 DOI: 10.1186/s13007-022-00946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Living cells maintain and adjust structural and functional integrity by continual synthesis and degradation of metabolites and macromolecules. The maintenance and adjustment of thylakoid membrane involve turnover of photosynthetic pigments along with subunits of protein complexes. Quantifying their turnover is essential to understand the mechanisms of homeostasis and long-term acclimation of photosynthetic apparatus. Here we report methods combining whole-plant long-term 13CO2 labeling and liquid chromatography - mass spectrometry (LC-MS) analysis to determine the size of non-labeled population (NLP) of carotenoids and chlorophylls (Chl) in leaf pigment extracts of partially 13C-labeled plants. RESULTS The labeling chamber enabled parallel 13CO2 labeling of up to 15 plants of Arabidopsis thaliana with real-time environmental monitoring ([CO2], light intensity, temperature, relative air humidity and pressure) and recording. No significant difference in growth or photosynthetic pigment composition was found in leaves after 7-d exposure to normal CO2 (~ 400 ppm) or 13CO2 in the labeling chamber, or in ambient air outside the labeling chamber (control). Following chromatographic separation of the pigments and mass peak assignment by high-resolution Fourier-transform ion cyclotron resonance MS, mass spectra of photosynthetic pigments were analyzed by triple quadrupole MS to calculate NLP. The size of NLP remaining after the 7-d 13CO2 labeling was ~ 10.3% and ~ 11.5% for all-trans- and 9-cis-β-carotene, ~ 21.9% for lutein, ~ 18.8% for Chl a and 33.6% for Chl b, highlighting non-uniform turnover of these pigments in thylakoids. Comparable results were obtained in all replicate plants of the 13CO2 labeling experiment except for three that were showing anthocyanin accumulation and growth impairment due to insufficient water supply (leading to stomatal closure and less 13C incorporation). CONCLUSIONS Our methods allow 13CO2 labeling and estimation of NLP for photosynthetic pigments with high reproducibility despite potential variations in [13CO2] between the experiments. The results indicate distinct turnover rates of carotenoids and Chls in thylakoid membrane, which can be investigated in the future by time course experiments. Since 13C enrichment can be measured in a range of compounds, long-term 13CO2 labeling chamber, in combination with appropriate MS methods, facilitates turnover analysis of various metabolites and macromolecules in plants on a time scale of hours to days.
Collapse
Affiliation(s)
- Anh Thi-Mai Banh
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Björn Thiele
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
- IBG-3: Agrosphere, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Antonia Chlubek
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Thomas Hombach
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Einhard Kleist
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Shizue Matsubara
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
49
|
Scandola S, Mehta D, Li Q, Rodriguez Gallo MC, Castillo B, Uhrig RG. Multi-omic analysis shows REVEILLE clock genes are involved in carbohydrate metabolism and proteasome function. PLANT PHYSIOLOGY 2022; 190:1005-1023. [PMID: 35670757 PMCID: PMC9516735 DOI: 10.1093/plphys/kiac269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 06/01/2023]
Abstract
Plants are able to sense changes in their light environments, such as the onset of day and night, as well as anticipate these changes in order to adapt and survive. Central to this ability is the plant circadian clock, a molecular circuit that precisely orchestrates plant cell processes over the course of a day. REVEILLE (RVE) proteins are recently discovered members of the plant circadian circuitry that activate the evening complex and PSEUDO-RESPONSE REGULATOR genes to maintain regular circadian oscillation. The RVE8 protein and its two homologs, RVE 4 and 6 in Arabidopsis (Arabidopsis thaliana), have been shown to limit the length of the circadian period, with rve 4 6 8 triple-knockout plants possessing an elongated period along with increased leaf surface area, biomass, cell size, and delayed flowering relative to wild-type Col-0 plants. Here, using a multi-omics approach consisting of phenomics, transcriptomics, proteomics, and metabolomics we draw new connections between RVE8-like proteins and a number of core plant cell processes. In particular, we reveal that loss of RVE8-like proteins results in altered carbohydrate, organic acid, and lipid metabolism, including a starch excess phenotype at dawn. We further demonstrate that rve 4 6 8 plants have lower levels of 20S proteasome subunits and possess significantly reduced proteasome activity, potentially explaining the increase in cell-size observed in RVE8-like mutants. Overall, this robust, multi-omic dataset provides substantial insight into the far-reaching impact RVE8-like proteins have on the diel plant cell environment.
Collapse
Affiliation(s)
| | | | - Qiaomu Li
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | - Brigo Castillo
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
50
|
Li L, Lee CP, Ding X, Qin Y, Wijerathna-Yapa A, Broda M, Otegui MS, Millar AH. Defects in autophagy lead to selective in vivo changes in turnover of cytosolic and organelle proteins in Arabidopsis. THE PLANT CELL 2022; 34:3936-3960. [PMID: 35766863 PMCID: PMC9516138 DOI: 10.1093/plcell/koac185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2022] [Indexed: 05/26/2023]
Abstract
Identification of autophagic protein cargo in plants in autophagy-related genes (ATG) mutants is complicated by changes in protein synthesis and protein degradation. To detect autophagic cargo, we measured protein degradation rate in shoots and roots of Arabidopsis (Arabidopsis thaliana) atg5 and atg11 mutants. These data show that less than a quarter of proteins changing in abundance are probable cargo and revealed roles of ATG11 and ATG5 in degradation of specific glycolytic enzymes and of other cytosol, chloroplast, and ER-resident proteins, and a specialized role for ATG11 in degradation of proteins from mitochondria and chloroplasts. Protein localization in transformed protoplasts and degradation assays in the presence of inhibitors confirm a role for autophagy in degrading glycolytic enzymes. Autophagy induction by phosphate (Pi) limitation changed metabolic profiles and the protein synthesis and degradation rates of atg5 and atg11 plants. A general decrease in the abundance of amino acids and increase in secondary metabolites in autophagy mutants was consistent with altered catabolism and changes in energy conversion caused by reduced degradation rate of specific proteins. Combining measures of changes in protein abundance and degradation rates, we also identify ATG11 and ATG5-associated protein cargo of low Pi-induced autophagy in chloroplasts and ER-resident proteins involved in secondary metabolism.
Collapse
Affiliation(s)
- Lei Li
- Authors for correspondence (L.L.) and (A.H.M)
| | - Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Xinxin Ding
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yu Qin
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Akila Wijerathna-Yapa
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Martyna Broda
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|