1
|
Zhang X, Liang SB, Yi Z, Qiao Z, Xu B, Geng H, Wang H, Yin X, Tang M, Ge W, Xu YZ, Liang K, Fan YJ, Chen L. Global coupling of R-loop dynamics with RNA polymerase II modulates gene expression and early development of Drosophila. Nucleic Acids Res 2024; 52:13110-13127. [PMID: 39470713 PMCID: PMC11602159 DOI: 10.1093/nar/gkae933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
R-loops are involved in many biological processes in cells, yet the regulatory principles for R-loops in vivo and their impact on development remain to be explored. Here, we modified the CUT&Tag strategy to profile R-loops in Drosophila at multiple developmental stages. While high GC content promotes R-loop formation in mammalian cells, it is not required in Drosophila. In contrast, RNAPII abundance appears to be a universal inducing factor for R-loop formation, including active promoters and enhancers, and H3K27me3 decorated repressive regions and intergenic repeat sequences. Importantly, such a regulatory relationship is dynamically maintained throughout development, and development-related transcription factors may regulate RNAPII activation and R-loop dynamics. By ablating Spt6, we further showed the global R-loop induction coupled with RNAPII pausing. Importantly, depending on the gene length, genes underwent up- or down-regulation, both of which were largely reversed by rnh1 overexpression, suggesting that R-loops play a significant role in the divergent regulation of transcription by Spt6 ablation. DNA damage, defects in survival, and cuticle development were similarly alleviated by rnh1 overexpression. Altogether, our findings indicate that dynamic R-loop regulation is dictated by RNAPII pausing and transcription activity, and plays a feedback role in gene regulation, genome stability maintenance, and Drosophila development.
Collapse
Affiliation(s)
- Xianhong Zhang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shao-Bo Liang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhuoyun Yi
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaohui Qiao
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Xu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huichao Geng
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Honghong Wang
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Research Center for Medicine and Structural Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinhua Yin
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Mingliang Tang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yong-Zhen Xu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kaiwei Liang
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Research Center for Medicine and Structural Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Jie Fan
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Lin W, Huang D, Li M, Ren Y, Zheng X, Wu B, Miao Y. WHIRLY proteins, multi-layer regulators linking the nucleus and organelles in developmental and stress-induced senescence of plants. ANNALS OF BOTANY 2024; 134:521-536. [PMID: 38845347 PMCID: PMC11523626 DOI: 10.1093/aob/mcae092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/03/2024] [Indexed: 11/01/2024]
Abstract
Plant senescence is an integrated programme of plant development that aims to remobilize nutrients and energy from senescing tissues to developing organs under developmental and stress-induced conditions. Upstream in the regulatory network, a small family of single-stranded DNA/RNA-binding proteins known as WHIRLYs occupy a central node, acting at multiple regulatory levels and via trans-localization between the nucleus and organelles. In this review, we summarize the current progress on the role of WHIRLY members in plant development and stress-induced senescence. WHIRLY proteins can be traced back in evolution to green algae. WHIRLY proteins trade off the balance of plant developmental senescence and stress-induced senescence through maintaining organelle genome stability via R-loop homeostasis, repressing the transcription at a configuration condition, and recruiting RNA to impact organelle RNA editing and splicing, as evidenced in several species. WHIRLY proteins also act as retrograde signal transducers between organelles and the nucleus through protein modification and stromule or vesicle trafficking. In addition, WHIRLY proteins interact with hormones, reactive oxygen species and environmental signals to orchestrate cell fate in an age-dependent manner. Finally, prospects for further research and promotion to improve crop production under environmental constraints are highlighted.
Collapse
Affiliation(s)
- Wenfang Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Dongmei Huang
- Department of Biochemistry and Molecular Biology, Xiamen Medical College, Xiamen 361023, China
| | - Mengsi Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yujun Ren
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Binghua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| |
Collapse
|
3
|
Xu W, Liu X, Li J, Sun C, Chen L, Zhou J, Li K, Li Q, Meng A, Sun Q. ULI-ssDRIP-seq revealed R-loop dynamics during vertebrate early embryogenesis. CELL INSIGHT 2024; 3:100179. [PMID: 38974143 PMCID: PMC11225018 DOI: 10.1016/j.cellin.2024.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
R-loop, a chromatin structure containing one RNA:DNA hybrid and one unpaired single-stranded DNA, plays multiple biological roles. However, due to technical limitations, the landscapes and potential functions of R-loops during embryogenesis remain elusive. Here, we developed a quantitative and high-resolution ultra-low input R-loop profiling method, named ULI-ssDRIP-seq, which can map global R-loops with as few as 1000 cells. By using ULI-ssDRIP-seq, we reveal the R-loop dynamics in the zebrafish from gametes to early embryos. In oocytes, the R-loop level is relatively low in most regions of the nuclear genome, except maternal-inherited rDNA and mitochondrial genome. The correlation between R-loop and CG methylation dynamics during early development is relatively weak. Furthermore, either up- or down-regulation of global R-loops by knockdown or overexpression of RNase H1 causes a delay of embryonic development with dramatic expression changes in zygotic and maternal genes. This study provides comprehensive R-loop landscapes during early vertebrate embryogenesis and demonstrates the implication of R-loops in embryonic development.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xin Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Jinjin Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Changbin Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Luxi Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Jincong Zhou
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Kuan Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Qin Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Anming Meng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Qianwen Sun
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
4
|
Chai X, Wang X, Rong L, Luo M, Yuan L, Li Q, He B, Jiang J, Ji D, Ouyang M, Lu Q, Zhang L, Rochaix JD, Chi W. The translocon protein FtsHi1 is an ATP-dependent DNA/RNA helicase that prevents R-loop accumulation in chloroplasts. THE NEW PHYTOLOGIST 2024; 241:2209-2226. [PMID: 38084045 DOI: 10.1111/nph.19470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
R-loops, three-stranded nucleic acid structures consisting of a DNA: RNA hybrid and displaced single-stranded DNA, play critical roles in gene expression and genome stability. How R-loop homeostasis is integrated into chloroplast gene expression remains largely unknown. We found an unexpected function of FtsHi1, an inner envelope membrane-bound AAA-ATPase in chloroplast R-loop homeostasis of Arabidopsis thaliana. Previously, this protein was shown to function as a component of the import motor complex for nuclear-encoded chloroplast proteins. However, this study provides evidence that FtsHi1 is an ATP-dependent helicase that efficiently unwinds both DNA-DNA and DNA-RNA duplexes, thereby preventing R-loop accumulation. Over-accumulation of R-loops could impair chloroplast transcription but not necessarily genome integrity. The dual function of FtsHi1 in both protein import and chloroplast gene expression may be important to coordinate the biogenesis of nuclear- and chloroplast-encoded subunits of multi-protein photosynthetic complexes. This study suggests a mechanical link between protein import and R-loop homeostasis in chloroplasts of higher plants.
Collapse
Affiliation(s)
- Xin Chai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiushun Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Rong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manfei Luo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Yuan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuxin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoye He
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingjing Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun St., Kaifeng, 475001, China
| | - Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, 1211, Geneva, Switzerland
- Department of Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
5
|
Zhang W, Yang Z, Wang W, Sun Q. Primase promotes the competition between transcription and replication on the same template strand resulting in DNA damage. Nat Commun 2024; 15:73. [PMID: 38168108 PMCID: PMC10761990 DOI: 10.1038/s41467-023-44443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Transcription-replication conflicts (TRCs), especially Head-On TRCs (HO-TRCs) can introduce R-loops and DNA damage, however, the underlying mechanisms are still largely unclear. We previously identified a chloroplast-localized RNase H1 protein AtRNH1C that can remove R-loops and relax HO-TRCs for genome integrity. Through the mutagenesis screen, we identify a mutation in chloroplast-localized primase ATH that weakens the binding affinity of DNA template and reduces the activities of RNA primer synthesis and delivery. This slows down DNA replication, and reduces competition of transcription-replication, thus rescuing the developmental defects of atrnh1c. Strand-specific DNA damage sequencing reveals that HO-TRCs cause DNA damage at the end of the transcription unit in the lagging strand and overexpression of ATH can boost HO-TRCs and exacerbates DNA damage. Furthermore, mutation of plastid DNA polymerase Pol1A can similarly rescue the defects in atrnh1c mutants. Taken together these results illustrate a potentially conserved mechanism among organisms, of which the primase activity can promote the occurrence of transcription-replication conflicts leading to HO-TRCs and genome instability.
Collapse
Affiliation(s)
- Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Zhuo Yang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Wenjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China.
| |
Collapse
|
6
|
Du P, Hu J, Du M, Gao X, Yang W, Zhang C, Zou X, Wang X, Li W. Interaction of a bacterial non-classically secreted RNase HⅠ with a citrus B-Box zinc finger protein delays flowering in Arabidopsis thaliana and suppresses the expression of FLOWERING LOCUS T. Microbiol Res 2024; 278:127541. [PMID: 37972521 DOI: 10.1016/j.micres.2023.127541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Ribonuclease HI (RNase HI) is well conserved across prokaryotes and eukaryotes, and has long been known to localize in the nucleic acid-containing cellular compartments for acting as an R-loop eraser but has never been determined to be a secreted protein. "Candidatus Liberibacter asiaticus" (CLas) is a fastidious α-proteobacterium that causes Huanglongbing (HLB), a devastating citrus disease often associated with flowering out of season. In this study, using the SecretomeP program coupled with an Escherichia coli-based alkaline phosphatase assay, we demonstrated that the CLas RNase HI (LasRNHⅠ) was a non-classically secreted protein. Further experiments identified that LasRNHⅠ could interact with a citrus B-box zinc finger protein CsBBX28 in the plant nucleolus. The in vitro assays indicated that CsBBX28 dramatically enhanced the R-loop-degrading activity of LasRNHⅠ. Remarkably, co-expression of CsBBX28 and LasRNHⅠ in Arabidopsis thaliana led to a much later flowering time than that of wild-type Arabidopsis, as well as that of the transgenic A. thaliana expressing only CsBBX28 or LasRNHⅠ, and lastingly and significantly repressed transcription of FLOWERING LOCUS T (FT), a floral pathway integrator. Similarly, ectopic expression of LasRNHⅠ in citrus greatly reduced the transcription level of FT. The data together disclosed the extracellular secretion of LasRNHⅠ, and that LasRNHⅠ physically interacted with CsBBX28 and served as a flowering repressor through suppressing the FT expression, suggesting a novel role of RNase HI in the bacteria interacting with the host plants.
Collapse
Affiliation(s)
- Peixiu Du
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Junxia Hu
- Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, PR China
| | - Meixia Du
- Citrus Research Institute, Southwest University, Chongqing 400716, PR China
| | - Xiaoyu Gao
- Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, PR China
| | - Wendi Yang
- Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, PR China
| | - Chao Zhang
- College of Life Science, Hebei Agricultural University, Baoding 071001, PR China
| | - Xiuping Zou
- Citrus Research Institute, Southwest University, Chongqing 400716, PR China
| | - Xuefeng Wang
- Citrus Research Institute, Southwest University, Chongqing 400716, PR China
| | - Weimin Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, PR China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, PR China.
| |
Collapse
|
7
|
Li Q, Zhou J, Li S, Zhang W, Du Y, Li K, Wang Y, Sun Q. DNA polymerase ε harmonizes topological states and R-loops formation to maintain genome integrity in Arabidopsis. Nat Commun 2023; 14:7763. [PMID: 38012183 PMCID: PMC10682485 DOI: 10.1038/s41467-023-43680-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Genome topology is tied to R-loop formation and genome stability. However, the regulatory mechanism remains to be elucidated. By establishing a system to sense the connections between R-loops and genome topology states, we show that inhibiting DNA topoisomerase 1 (TOP1i) triggers the global increase of R-loops (called topoR-loops) and DNA damages, which are exacerbated in the DNA damage repair-compromised mutant atm. A suppressor screen identifies a mutation in POL2A, the catalytic subunit of DNA polymerase ε, rescuing the TOP1i-induced topoR-loop accumulation and genome instability in atm. Importantly we find that a highly conserved junction domain between the exonuclease and polymerase domains in POL2A is required for modulating topoR-loops near DNA replication origins and facilitating faithful DNA replication. Our results suggest that DNA replication acts in concert with genome topological states to fine-tune R-loops and thereby maintain genome integrity, revealing a likely conserved regulatory mechanism of TOP1i resistance in chemotherapy for ATM-deficient cancers.
Collapse
Affiliation(s)
- Qin Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Shuai Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yingxue Du
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Yingxiang Wang
- College of Life Science, South China Agricultural University, Guangdong Laboratory for Lingnan Morden Agriculture, Guangzhou, 510642, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
8
|
Li F, Zafar A, Luo L, Denning AM, Gu J, Bennett A, Yuan F, Zhang Y. R-Loops in Genome Instability and Cancer. Cancers (Basel) 2023; 15:4986. [PMID: 37894353 PMCID: PMC10605827 DOI: 10.3390/cancers15204986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
R-loops are unique, three-stranded nucleic acid structures that primarily form when an RNA molecule displaces one DNA strand and anneals to the complementary DNA strand in a double-stranded DNA molecule. R-loop formation can occur during natural processes, such as transcription, in which the nascent RNA molecule remains hybridized with the template DNA strand, while the non-template DNA strand is displaced. However, R-loops can also arise due to many non-natural processes, including DNA damage, dysregulation of RNA degradation pathways, and defects in RNA processing. Despite their prevalence throughout the whole genome, R-loops are predominantly found in actively transcribed gene regions, enabling R-loops to serve seemingly controversial roles. On one hand, the pathological accumulation of R-loops contributes to genome instability, a hallmark of cancer development that plays a role in tumorigenesis, cancer progression, and therapeutic resistance. On the other hand, R-loops play critical roles in regulating essential processes, such as gene expression, chromatin organization, class-switch recombination, mitochondrial DNA replication, and DNA repair. In this review, we summarize discoveries related to the formation, suppression, and removal of R-loops and their influence on genome instability, DNA repair, and oncogenic events. We have also discussed therapeutical opportunities by targeting pathological R-loops.
Collapse
Affiliation(s)
- Fang Li
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alyan Zafar
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ariana Maria Denning
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ansley Bennett
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
9
|
Tripathi D, Oldenburg DJ, Bendich AJ. Ribonucleotide and R-Loop Damage in Plastid DNA and Mitochondrial DNA during Maize Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3161. [PMID: 37687407 PMCID: PMC10489836 DOI: 10.3390/plants12173161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Although the temporary presence of ribonucleotides in DNA is normal, their persistence represents a form of DNA damage. Here, we assess such damage and damage defense to DNA in plastids and mitochondria of maize. Shoot development proceeds from meristematic, non-pigmented cells containing proplastids and promitochondria at the leaf base to non-dividing green cells in the leaf blade containing mature organelles. The organellar DNAs (orgDNAs) become fragmented during this transition. Previously, orgDNA damage and damage defense of two types, oxidative and glycation, was described in maize, and now a third type, ribonucleotide damage, is reported. We hypothesized that ribonucleotide damage changes during leaf development and could contribute to the demise of orgDNAs. The levels of ribonucleotides and R-loops in orgDNAs and of RNase H proteins in organelles were measured throughout leaf development and in leaves grown in light and dark conditions. The data reveal that ribonucleotide damage to orgDNAs increased by about 2- to 5-fold during normal maize development from basal meristem to green leaf and when leaves were grown in normal light conditions compared to in the dark. During this developmental transition, the levels of the major agent of defense, RNase H, declined. The decline in organellar genome integrity during maize development may be attributed to oxidative, glycation, and ribonucleotide damages that are not repaired.
Collapse
Affiliation(s)
| | | | - Arnold J. Bendich
- Department of Biology, University of Washington, Seattle, WA 98195, USA; (D.T.); (D.J.O.)
| |
Collapse
|
10
|
Manavella PA, Godoy Herz MA, Kornblihtt AR, Sorenson R, Sieburth LE, Nakaminami K, Seki M, Ding Y, Sun Q, Kang H, Ariel FD, Crespi M, Giudicatti AJ, Cai Q, Jin H, Feng X, Qi Y, Pikaard CS. Beyond transcription: compelling open questions in plant RNA biology. THE PLANT CELL 2023; 35:1626-1653. [PMID: 36477566 PMCID: PMC10226580 DOI: 10.1093/plcell/koac346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 12/06/2022] [Indexed: 05/30/2023]
Abstract
The study of RNAs has become one of the most influential research fields in contemporary biology and biomedicine. In the last few years, new sequencing technologies have produced an explosion of new and exciting discoveries in the field but have also given rise to many open questions. Defining these questions, together with old, long-standing gaps in our knowledge, is the spirit of this article. The breadth of topics within RNA biology research is vast, and every aspect of the biology of these molecules contains countless exciting open questions. Here, we asked 12 groups to discuss their most compelling question among some plant RNA biology topics. The following vignettes cover RNA alternative splicing; RNA dynamics; RNA translation; RNA structures; R-loops; epitranscriptomics; long non-coding RNAs; small RNA production and their functions in crops; small RNAs during gametogenesis and in cross-kingdom RNA interference; and RNA-directed DNA methylation. In each section, we will present the current state-of-the-art in plant RNA biology research before asking the questions that will surely motivate future discoveries in the field. We hope this article will spark a debate about the future perspective on RNA biology and provoke novel reflections in the reader.
Collapse
Affiliation(s)
- Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Micaela A Godoy Herz
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Buenos Aires C1428EHA, Argentina
| | - Alberto R Kornblihtt
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Buenos Aires C1428EHA, Argentina
| | - Reed Sorenson
- School of Biological Sciences, University of UtahSalt Lake City 84112, USA
| | - Leslie E Sieburth
- School of Biological Sciences, University of UtahSalt Lake City 84112, USA
| | - Kentaro Nakaminami
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, Saitama 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa 244-0813, Japan
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, Orsay 91405, France
| | - Axel J Giudicatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Hailing Jin
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Craig S Pikaard
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
11
|
Li X, Li C, Zhu J, Zhong S, Zhu H, Zhang X. Functions and mechanisms of RNA helicases in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2295-2310. [PMID: 36416783 PMCID: PMC10082930 DOI: 10.1093/jxb/erac462] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 05/21/2023]
Abstract
RNA helicases (RHs) are a family of ubiquitous enzymes that alter RNA structures and remodel ribonucleoprotein complexes typically using energy from the hydrolysis of ATP. RHs are involved in various aspects of RNA processing and metabolism, exemplified by transcriptional regulation, pre-mRNA splicing, miRNA biogenesis, liquid-liquid phase separation, and rRNA biogenesis, among other molecular processes. Through these mechanisms, RHs contribute to vegetative and reproductive growth, as well as abiotic and biotic stress responses throughout the life cycle in plants. In this review, we systematically characterize RH-featured domains and signature motifs in Arabidopsis. We also summarize the functions and mechanisms of RHs in various biological processes in plants with a focus on DEAD-box and DEAH-box RNA helicases, aiming to present the latest understanding of RHs in plant biology.
Collapse
Affiliation(s)
- Xindi Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Songxiao Zhong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, College of Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
UPL5 modulates WHY2 protein distribution in a Kub-site dependent ubiquitination in response to [Ca2+]cyt-induced leaf senescence. iScience 2023; 26:106216. [PMID: 36994183 PMCID: PMC10040967 DOI: 10.1016/j.isci.2023.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/08/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
The translocation of proteins between various compartments of cells is the simplest and most direct way of an/retrograde communication. However, the mechanism of protein trafficking is far understood. In this study, we showed that the alteration of WHY2 protein abundance in various compartments of cells was dependent on a HECT-type ubiquitin E3 ligase UPL5 interacting with WHY2 in the cytoplasm, plastid, and nucleus, as well as mitochondrion to selectively ubiquitinate various Kub-sites (Kub 45 and Kub 227) of WHY2. Plastid genome stability can be maintained by the UPL5-WHY2 module, accompany by the alteration of photosystem activity and senescence-associated gene expression. In addition, the specificity of UPL5 ubiquitinating various Kub-sites of WHY2 was responded to cold or CaCl2 stress, in a dose [Ca2+]cyt-dependent manner. This demonstrates the integration of the UPL5 ubiquitination with the regulation of WHY2 distribution and retrograde communication between organelle and nuclear events of leaf senescence.
Collapse
|
13
|
Volná A, Bartas M, Nezval J, Pech R, Pečinka P, Špunda V, Červeň J. Beyond the Primary Structure of Nucleic Acids: Potential Roles of Epigenetics and Noncanonical Structures in the Regulations of Plant Growth and Stress Responses. Methods Mol Biol 2023; 2642:331-361. [PMID: 36944887 DOI: 10.1007/978-1-0716-3044-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Epigenetics deals with changes in gene expression that are not caused by modifications in the primary sequence of nucleic acids. These changes beyond primary structures of nucleic acids not only include DNA/RNA methylation, but also other reversible conversions, together with histone modifications or RNA interference. In addition, under particular conditions (such as specific ion concentrations or protein-induced stabilization), the right-handed double-stranded DNA helix (B-DNA) can form noncanonical structures commonly described as "non-B DNA" structures. These structures comprise, for example, cruciforms, i-motifs, triplexes, and G-quadruplexes. Their formation often leads to significant differences in replication and transcription rates. Noncanonical RNA structures have also been documented to play important roles in translation regulation and the biology of noncoding RNAs. In human and animal studies, the frequency and dynamics of noncanonical DNA and RNA structures are intensively investigated, especially in the field of cancer research and neurodegenerative diseases. In contrast, noncanonical DNA and RNA structures in plants have been on the fringes of interest for a long time and only a few studies deal with their formation, regulation, and physiological importance for plant stress responses. Herein, we present a review focused on the main fields of epigenetics in plants and their possible roles in stress responses and signaling, with special attention dedicated to noncanonical DNA and RNA structures.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
14
|
Zhou J, Zhang W, Sun Q. R-loop: The new genome regulatory element in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2275-2289. [PMID: 36223078 DOI: 10.1111/jipb.13383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
An R-loop is a three-stranded chromatin structure that consists of a displaced single strand of DNA and an RNA:DNA hybrid duplex, which was thought to be a rare by-product of transcription. However, recent genome-wide data have shown that R-loops are widespread and pervasive in a variety of genomes, and a growing body of experimental evidence indicates that R-loops have both beneficial and harmful effects on an organism. To maximize benefit and avoid harm, organisms have evolved several means by which they tightly regulate R-loop levels. Here, we summarize our current understanding of the biogenesis and effects of R-loops, the mechanisms that regulate them, and methods of R-loop profiling, reviewing recent research advances on R-loops in plants. Furthermore, we provide perspectives on future research directions for R-loop biology in plants, which might lead to a more comprehensive understanding of R-loop functions in plant genome regulation and contribute to future agricultural improvements.
Collapse
Affiliation(s)
- Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
15
|
Khan ES, Danckwardt S. Pathophysiological Role and Diagnostic Potential of R-Loops in Cancer and Beyond. Genes (Basel) 2022; 13:genes13122181. [PMID: 36553448 PMCID: PMC9777984 DOI: 10.3390/genes13122181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
R-loops are DNA-RNA hybrids that play multifunctional roles in gene regulation, including replication, transcription, transcription-replication collision, epigenetics, and preserving the integrity of the genome. The aberrant formation and accumulation of unscheduled R-loops can disrupt gene expression and damage DNA, thereby causing genome instability. Recent links between unscheduled R-loop accumulation and the abundance of proteins that modulate R-loop biogenesis have been associated with numerous human diseases, including various cancers. Although R-loops are not necessarily causative for all disease entities described to date, they can perpetuate and even exacerbate the initially disease-eliciting pathophysiology, making them structures of interest for molecular diagnostics. In this review, we discuss the (patho) physiological role of R-loops in health and disease, their surprising diagnostic potential, and state-of-the-art techniques for their detection.
Collapse
Affiliation(s)
- Essak S. Khan
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Consortium for Translational Cancer Research (DKTK), DKFZ Frankfurt-Mainz, 60590 Frankfurt am Main, Germany
| | - Sven Danckwardt
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
16
|
Patitaki E, Schivre G, Zioutopoulou A, Perrella G, Bourbousse C, Barneche F, Kaiserli E. Light, chromatin, action: nuclear events regulating light signaling in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:333-349. [PMID: 35949052 PMCID: PMC9826491 DOI: 10.1111/nph.18424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 05/31/2023]
Abstract
The plant nucleus provides a major hub for environmental signal integration at the chromatin level. Multiple light signaling pathways operate and exchange information by regulating a large repertoire of gene targets that shape plant responses to a changing environment. In addition to the established role of transcription factors in triggering photoregulated changes in gene expression, there are eminent reports on the significance of chromatin regulators and nuclear scaffold dynamics in promoting light-induced plant responses. Here, we report and discuss recent advances in chromatin-regulatory mechanisms modulating plant architecture and development in response to light, including the molecular and physiological roles of key modifications such as DNA, RNA and histone methylation, and/or acetylation. The significance of the formation of biomolecular condensates of key light signaling components is discussed and potential applications to agricultural practices overviewed.
Collapse
Affiliation(s)
- Eirini Patitaki
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Geoffrey Schivre
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
- Université Paris‐SaclayOrsay91400France
| | - Anna Zioutopoulou
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Giorgio Perrella
- Department of BiosciencesUniversity of MilanVia Giovanni Celoria, 2620133MilanItaly
| | - Clara Bourbousse
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Fredy Barneche
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
17
|
RNase HI Depletion Strongly Potentiates Cell Killing by Rifampicin in Mycobacteria. Antimicrob Agents Chemother 2022; 66:e0209121. [PMID: 36154174 DOI: 10.1128/aac.02091-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant (MDR) tuberculosis (TB) is defined by the resistance of Mycobacterium tuberculosis, the causative organism, to the first-line antibiotics rifampicin and isoniazid. Mitigating or reversing resistance to these drugs offers a means of preserving and extending their use in TB treatment. R-loops are RNA/DNA hybrids that are formed in the genome during transcription, and they can be lethal to the cell if not resolved. RNase HI is an enzyme that removes R-loops, and this activity is essential in M. tuberculosis: knockouts of rnhC, the gene encoding RNase HI, are nonviable. This essentiality makes it a candidate target for the development of new antibiotics. In the model organism Mycolicibacterium smegmatis, RNase HI activity is provided by two enzymes, RnhA and RnhC. We show that the partial depletion of RNase HI activity in M. smegmatis, by knocking out either of the genes encoding RnhA or RnhC, led to the accumulation of R-loops. The sensitivity of the knockout strains to the antibiotics moxifloxacin, streptomycin, and rifampicin was increased, the latter by a striking near 100-fold. We also show that R-loop accumulation accompanies partial transcriptional inhibition, suggesting a mechanistic basis for the synergy between RNase HI depletion and rifampicin. A model of how transcriptional inhibition can potentiate R-loop accumulation is presented. Finally, we identified four small molecules that inhibit recombinant RnhC activity and that also potentiated rifampicin activity in whole-cell assays against M. tuberculosis, supporting an on-target mode of action and providing the first step in developing a new class of antimycobacterial drug.
Collapse
|
18
|
Regulation of Heat Stress in Physcomitrium (Physcomitrella) patens Provides Novel Insight into the Functions of Plant RNase H1s. Int J Mol Sci 2022; 23:ijms23169270. [PMID: 36012542 PMCID: PMC9409398 DOI: 10.3390/ijms23169270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
RNase H1s are associated with growth and development in both plants and animals, while the roles of RNase H1s in bryophytes have been rarely reported. Our previous data found that PpRNH1A, a member of the RNase H1 family, could regulate the development of Physcomitrium (Physcomitrella) patens by regulating the auxin. In this study, we further investigated the biological functions of PpRNH1A and found PpRNH1A may participate in response to heat stress by affecting the numbers and the mobilization of lipid droplets and regulating the expression of heat-related genes. The expression level of PpRNH1A was induced by heat stress (HS), and we found that the PpRNH1A overexpression plants (A-OE) were more sensitive to HS. At the same time, A-OE plants have a higher number of lipid droplets but with less mobility in cells. Consistent with the HS sensitivity phenotype in A-OE plants, transcriptomic analysis results indicated that PpRNH1A is involved in the regulation of expression of heat-related genes such as DNAJ and DNAJC. Taken together, these results provide novel insight into the functions of RNase H1s.
Collapse
|
19
|
Tripathi D, Oldenburg DJ, Bendich AJ. Analysis of the Plastid Genome Sequence During Maize Seedling Development. Front Genet 2022; 13:870115. [PMID: 35559017 PMCID: PMC9086435 DOI: 10.3389/fgene.2022.870115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Shoot development in maize progresses from small, non-pigmented meristematic cells to expanded cells in the green leaf. During this transition, large plastid DNA (ptDNA) molecules in proplastids become fragmented in the photosynthetically-active chloroplasts. The genome sequences were determined for ptDNA obtained from Zea mays B73 plastids isolated from four tissues: base of the stalk (the meristem region); fully-developed first green leaf; first three leaves from light-grown seedlings; and first three leaves from dark-grown (etiolated) seedlings. These genome sequences were then compared to the Z. mays B73 plastid reference genome sequence that was previously obtained from green leaves. The assembled plastid genome was identical among these four tissues to the reference genome. Furthermore, there was no difference among these tissues in the sequence at and around the previously documented 27 RNA editing sites. There were, however, more sequence variants (insertions/deletions and single-nucleotide polymorphisms) for leaves grown in the dark than in the light. These variants were tightly clustered into two areas within the inverted repeat regions of the plastid genome. We propose a model for how these variant clusters could be generated by replication-transcription conflict.
Collapse
Affiliation(s)
- Diwaker Tripathi
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Delene J Oldenburg
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Arnold J Bendich
- Department of Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
20
|
Popov VN, Syromyatnikov MY, Franceschi C, Moskalev AA, Krutovsky KV, Krutovsky KV. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Res Rev 2022; 77:101601. [PMID: 35278719 DOI: 10.1016/j.arr.2022.101601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 12/18/2022]
Abstract
Plants hold all records in longevity. Their aging is a complex process. In the presented review, we analyzed published data on various aspects of plant aging with focus on any inferences that could shed a light on aging in animals and help to fight it in human. Plant aging can be caused by many factors, such as telomere depletion, genomic instability, loss of proteostasis, changes in intercellular interaction, desynchronosis, autophagy misregulation, epigenetic changes and others. Plants have developed a number of mechanisms to increase lifespan. Among these mechanisms are gene duplication ("genetic backup"), the active work of telomerases, abundance of meristematic cells, capacity of maintaining the meristems permanently active and continuous activity of phytohormones. Plant aging usually occurs throughout the whole perennial life, but could be also seasonal senescence. Study of causes for seasonal aging can also help to uncover the mechanisms of plant longevity. The influence of different factors such as microbiome communities, glycation, alternative oxidase activity, mitochondrial dysfunction on plant longevity was also reviewed. Adaptive mechanisms of long-lived plants are considered. Further comparative study of the mechanisms underlying longevity of plants is necessary. This will allow us to reach a potentially new level of understanding of the aging process of plants.
Collapse
|
21
|
Krupinska K, Desel C, Frank S, Hensel G. WHIRLIES Are Multifunctional DNA-Binding Proteins With Impact on Plant Development and Stress Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:880423. [PMID: 35528945 PMCID: PMC9070903 DOI: 10.3389/fpls.2022.880423] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/24/2022] [Indexed: 06/01/2023]
Abstract
WHIRLIES are plant-specific proteins binding to DNA in plastids, mitochondria, and nucleus. They have been identified as significant components of nucleoids in the organelles where they regulate the structure of the nucleoids and diverse DNA-associated processes. WHIRLIES also fulfil roles in the nucleus by interacting with telomers and various transcription factors, among them members of the WRKY family. While most plants have two WHIRLY proteins, additional WHIRLY proteins evolved by gene duplication in some dicot families. All WHIRLY proteins share a conserved WHIRLY domain responsible for ssDNA binding. Structural analyses revealed that WHIRLY proteins form tetramers and higher-order complexes upon binding to DNA. An outstanding feature is the parallel localization of WHIRLY proteins in two or three cell compartments. Because they translocate from organelles to the nucleus, WHIRLY proteins are excellent candidates for transducing signals between organelles and nucleus to allow for coordinated activities of the different genomes. Developmental cues and environmental factors control the expression of WHIRLY genes. Mutants and plants with a reduced abundance of WHIRLY proteins gave insight into their multiple functionalities. In chloroplasts, a reduction of the WHIRLY level leads to changes in replication, transcription, RNA processing, and DNA repair. Furthermore, chloroplast development, ribosome formation, and photosynthesis are impaired in monocots. In mitochondria, a low level of WHIRLIES coincides with a reduced number of cristae and a low rate of respiration. The WHIRLY proteins are involved in the plants' resistance toward abiotic and biotic stress. Plants with low levels of WHIRLIES show reduced responsiveness toward diverse environmental factors, such as light and drought. Consequently, because such plants are impaired in acclimation, they accumulate reactive oxygen species under stress conditions. In contrast, several plant species overexpressing WHIRLIES were shown to have a higher resistance toward stress and pathogen attacks. By their multiple interactions with organelle proteins and nuclear transcription factors maybe a comma can be inserted here? and their participation in organelle-nucleus communication, WHIRLY proteins are proposed to serve plant development and stress resistance by coordinating processes at different levels. It is proposed that the multifunctionality of WHIRLY proteins is linked to the plasticity of land plants that develop and function in a continuously changing environment.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christine Desel
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Susann Frank
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Götz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
22
|
Gonzalo L, Tossolini I, Gulanicz T, Cambiagno DA, Kasprowicz-Maluski A, Smolinski DJ, Mammarella MF, Ariel FD, Marquardt S, Szweykowska-Kulinska Z, Jarmolowski A, Manavella PA. R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRNAs in plants. NATURE PLANTS 2022; 8:402-418. [PMID: 35449404 PMCID: PMC9023350 DOI: 10.1038/s41477-022-01125-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/08/2022] [Indexed: 05/03/2023]
Abstract
In most organisms, the maturation of nascent RNAs is coupled to transcription. Unlike in animals, the RNA polymerase II (RNAPII) transcribes microRNA genes (MIRNAs) as long and structurally variable pri-miRNAs in plants. Current evidence suggests that the miRNA biogenesis complex assembly initiates early during the transcription of pri-miRNAs in plants. However, it is unknown whether miRNA processing occurs co-transcriptionally. Here, we used native elongating transcript sequencing data and imaging techniques to demonstrate that plant miRNA biogenesis occurs coupled to transcription. We found that the entire biogenesis occurs co-transcriptionally for pri-miRNAs processed from the loop of the hairpin but requires a second nucleoplasmic step for those processed from the base. Furthermore, we found that co- and post-transcriptional miRNA processing mechanisms co-exist for most miRNAs in a dynamic balance. Notably, we discovered that R-loops, formed near the transcription start site region of MIRNAs, promote co-transcriptional pri-miRNA processing. Furthermore, our results suggest the neofunctionalization of co-transcriptionally processed miRNAs, boosting countless regulatory scenarios.
Collapse
Affiliation(s)
- Lucia Gonzalo
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ileana Tossolini
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Tomasz Gulanicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Damian A Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Unidad de Estudios Agropecuarios (UDEA), INTA-CONICET, Córdoba, Argentina
| | - Anna Kasprowicz-Maluski
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Dariusz Jan Smolinski
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - María Florencia Mammarella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
23
|
Thagun C, Horii Y, Mori M, Fujita S, Ohtani M, Tsuchiya K, Kodama Y, Odahara M, Numata K. Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts. ACS NANO 2022; 16:3506-3521. [PMID: 35195009 PMCID: PMC8945396 DOI: 10.1021/acsnano.1c07723] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Genetic engineering of economically important traits in plants is an effective way to improve global welfare. However, introducing foreign DNA molecules into plant genomes to create genetically engineered plants not only requires a lengthy testing period and high developmental costs but also is not well-accepted by the public due to safety concerns about its effects on human and animal health and the environment. Here, we present a high-throughput nucleic acids delivery platform for plants using peptide nanocarriers applied to the leaf surface by spraying. The translocation of sub-micrometer-scale nucleic acid/peptide complexes upon spraying varied depending on the physicochemical characteristics of the peptides and was controlled by a stomata-dependent-uptake mechanism in plant cells. We observed efficient delivery of DNA molecules into plants using cell-penetrating peptide (CPP)-based foliar spraying. Moreover, using foliar spraying, we successfully performed gene silencing by introducing small interfering RNA molecules in plant nuclei via siRNA-CPP complexes and, more importantly, in chloroplasts via our CPP/chloroplast-targeting peptide-mediated delivery system. This technology enables effective nontransgenic engineering of economically important plant traits in agricultural systems.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoko Horii
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Maai Mori
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Seiya Fujita
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Misato Ohtani
- Department
of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Kousuke Tsuchiya
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yutaka Kodama
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan
| | - Masaki Odahara
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- (Ma.O.)
| | - Keiji Numata
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- (K.N.)
| |
Collapse
|
24
|
Mishra B, Ulaszewski B, Meger J, Aury JM, Bodénès C, Lesur-Kupin I, Pfenninger M, Da Silva C, Gupta DK, Guichoux E, Heer K, Lalanne C, Labadie K, Opgenoorth L, Ploch S, Le Provost G, Salse J, Scotti I, Wötzel S, Plomion C, Burczyk J, Thines M. A Chromosome-Level Genome Assembly of the European Beech ( Fagus sylvatica) Reveals Anomalies for Organelle DNA Integration, Repeat Content and Distribution of SNPs. Front Genet 2022; 12:691058. [PMID: 35211148 PMCID: PMC8862710 DOI: 10.3389/fgene.2021.691058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
The European Beech is the dominant climax tree in most regions of Central Europe and valued for its ecological versatility and hardwood timber. Even though a draft genome has been published recently, higher resolution is required for studying aspects of genome architecture and recombination. Here, we present a chromosome-level assembly of the more than 300 year-old reference individual, Bhaga, from the Kellerwald-Edersee National Park (Germany). Its nuclear genome of 541 Mb was resolved into 12 chromosomes varying in length between 28 and 73 Mb. Multiple nuclear insertions of parts of the chloroplast genome were observed, with one region on chromosome 11 spanning more than 2 Mb which fragments up to 54,784 bp long and covering the whole chloroplast genome were inserted randomly. Unlike in Arabidopsis thaliana, ribosomal cistrons are present in Fagus sylvatica only in four major regions, in line with FISH studies. On most assembled chromosomes, telomeric repeats were found at both ends, while centromeric repeats were found to be scattered throughout the genome apart from their main occurrence per chromosome. The genome-wide distribution of SNPs was evaluated using a second individual from Jamy Nature Reserve (Poland). SNPs, repeat elements and duplicated genes were unevenly distributed in the genomes, with one major anomaly on chromosome 4. The genome presented here adds to the available highly resolved plant genomes and we hope it will serve as a valuable basis for future research on genome architecture and for understanding the past and future of European Beech populations in a changing climate.
Collapse
Affiliation(s)
- Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Bartosz Ulaszewski
- Department of Genetics, ul. Chodkiewicza 30, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Joanna Meger
- Department of Genetics, ul. Chodkiewicza 30, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Jean-Marc Aury
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Isabelle Lesur-Kupin
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
- HelixVenture, Mérignac, France
- Faculty of Biology, Plant Ecology and Geobotany, Philipps University Marburg, Marburg, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Corinne Da Silva
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Deepak K Gupta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | | | - Katrin Heer
- Faculty of Biology, Plant Ecology and Geobotany, Philipps University Marburg, Marburg, Germany
- Forest Genetics, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Lars Opgenoorth
- Faculty of Biology, Plant Ecology and Geobotany, Philipps University Marburg, Marburg, Germany
| | - Sebastian Ploch
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | | | | | | | - Stefan Wötzel
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | | | - Jaroslaw Burczyk
- Department of Genetics, ul. Chodkiewicza 30, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
25
|
Xiao Q, Huang X, Zhang Y, Xu W, Yang Y, Zhang Q, Hu Z, Xing F, Sun Q, Li G, Li X. The landscape of promoter-centred RNA-DNA interactions in rice. NATURE PLANTS 2022; 8:157-170. [PMID: 35115727 DOI: 10.1038/s41477-021-01089-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 12/16/2021] [Indexed: 05/04/2023]
Abstract
Chromatin-associated RNAs play key roles in various biological processes. However, both their repository and conjugation genomic loci and potential functions remain largely unclear. Here, we develop an effective method for mapping of chromatin-associated RNA-DNA interactions, followed by paired-end-tag sequencing (ChRD-PET) in rice. We present a comprehensive interaction map between RNAs and H3K4me3-marked regions based on H3K4me3 ChRD-PET data, showing three types of RNA-DNA interactions-local, proximal and distal. We further characterize the origin and composition of the RNA strand in R-loop RNA-DNA hybrids and identify that extensive cis and trans RNAs, including trans-non-coding RNAs, are prevalently involved in the R-loop. Integrative analysis of rice epigenome and three-dimensional genome data suggests that both coding and non-coding RNAs engage extensively in the formation of chromatin loops and chromatin-interacting domains. In summary, ChRD-PET is an efficient method for studying the features of RNA-chromatin interactions, and the resulting datasets constitute a valuable resource for the study of RNAs and their biological functions.
Collapse
Affiliation(s)
- Qin Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xingyu Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Wei Xu
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Yongqing Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhe Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Feng Xing
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Qianwen Sun
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
26
|
Wang W, Cheng L, Sun Q. Chromatin Immunoprecipitation in Chloroplasts. Curr Protoc 2022; 2:e360. [PMID: 35077029 DOI: 10.1002/cpz1.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chromatin is the genetic material assembled by nucleic acids (including DNA and RNA) and proteins. The biological functions of chromatin are highly dependent on the interaction between DNA (and/or RNA) and proteins that bind to it. Chromatin immunoprecipitation (ChIP) is a powerful technique for evaluating these interactions and has been widely used to characterize the functions of nuclear proteins. However, its application in identifying plant organellar chromatin-binding proteins is lagging. This article describes the method for analyzing the association of chloroplast-localized proteins with the chloroplast genome. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Chloroplast isolation Basic Protocol 2: Crosslinking of DNA-Protein complexes Basic Protocol 3: Chromatin isolation and preparation Support Protocol: Bead-antibody complex preparation Basic Protocol 4: Immunoprecipitation and washes Basic Protocol 5: DNA preparation Basic Protocol 6: Analysis of results.
Collapse
Affiliation(s)
- Wenjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
27
|
Chen S, Dong X, Yang Z, Hou X, Liu L. Regulation of the Development in Physcomitrium (Physcomitrella) patens implicates the functional differentiation of plant RNase H1s. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111070. [PMID: 34763863 DOI: 10.1016/j.plantsci.2021.111070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
R-loops, consisting of a DNA:RNA hybrid and a single-stranded DNA (ssDNA), form naturally as functional chromosome structures and are crucial in many vital biological processes. However, disrupted R-loop homeostasis will threat to the integrity and stability of genome. As the endonuclease, RNase H1 can efficiently recognize and remove excess R-loops to protect organisms from DNA damage induced by R-loop over-accumulation. Here, we investigated the function of RNase H1 in Physcomitrium (Physcomitrella) patens to illustrate its important role in the evolution of plants. We found that PpRNH1A dysfunction seriously affected shoot growth and branch formation in P. patens, revealing a noticeable functional difference between PpRNH1A and AtRNH1A of Arabidopsis. Furthermore, auxin signaling was significantly affected at the transcriptional level in PpRNH1A mutant plants, as a result of the accumulation of R-loops at several auxin-related genes. This study provides evidence that PpRNH1A regulates the development of P. patens by controlling R-loop formation at specific loci to modulate the transcription of auxin-related genes. It also highlights the interspecific functional differences between early land plants and vascular plants, despite crucial and conserved role of RNase H1 played in maintaining R-loop homeostasis.
Collapse
Affiliation(s)
- Silin Chen
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiumei Dong
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Zhuo Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Liu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
28
|
Liu K, Sun Q. Intragenic tRNA-promoted R-loops orchestrate transcription interference for plant oxidative stress responses. THE PLANT CELL 2021; 33:3574-3591. [PMID: 34463741 PMCID: PMC8566210 DOI: 10.1093/plcell/koab220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/26/2021] [Indexed: 05/15/2023]
Abstract
Eukaryotic genomes are transcribed by at least three RNA polymerases, RNAPI, II, and III. Co-transcriptional R-loops play diverse roles in genome regulation and maintenance. However, little is known about how R-loops regulate transcription interference, the transcriptional event that is caused by different RNA polymerases transcribing the same genomic templates. Here, we established that the intragenic transfer RNA (tRNA) genes can promote sense R-loop enrichment (named intra-tR-loops) in Arabidopsis thaliana, and found that intra-tR-loops are decreased in an RNAPIII mutant, NUCLEAR RNA POLYMERASE C, SUBUNIT 7(nrpc7-1). NRPC7 is co-localized with RNAPIIS2P at intragenic tRNA genes and interferes with RNAPIIS2P elongation. Conversely, the binding of NRPC7 at intragenic tRNA genes is increased following inhibition of RNAPII elongation. The transcription of specific tRNA host genes is inhibited by RNAPIII, and the inhibition of tRNA host genes is intra-tR-loop dependent. Moreover, alleviating the inhibition of tRNAPro-induced intra-tR-loops on its host gene AtNUDX1 promotes oxidative stress tolerance in A. thaliana. Our work suggests intra-tR-loops regulate host gene expression by modulating RNA polymerases interference.
Collapse
Affiliation(s)
- Kunpeng Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | | |
Collapse
|
29
|
Gao J, Zhang P, Li X, Wu W, Wei H, Zhang W. Toward an understanding of the detection and function of R-loops in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6110-6122. [PMID: 34115858 DOI: 10.1093/jxb/erab280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Although lagging behind studies in humans and other mammals, studies of R-loops in plants have recently entered an exciting stage in which the roles of R-loops in gene expression, genome stability, epigenomic signatures, and plant development and stress responses are being elucidated. Here, we review the strengths and weaknesses of existing methodologies, which were largely developed for R-loop studies in mammals, and then discuss the potential challenges of applying these methodologies to R-loop studies in plants. We then focus on recent advances in the functional characterization of R-loops in Arabidopsis thaliana and rice. Recent studies in plants indicate that there are coordinated relationships between R-loops and gene expression, and between R-loops and epigenomic signatures that depend, in part, on the types of R-loops involved. Finally, we discuss the emerging roles of R-loops in plants and directions for future research.
Collapse
Affiliation(s)
- Jingjing Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Pengyue Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Xinxu Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
30
|
Cheng L, Wang W, Yao Y, Sun Q. Mitochondrial RNase H1 activity regulates R-loop homeostasis to maintain genome integrity and enable early embryogenesis in Arabidopsis. PLoS Biol 2021; 19:e3001357. [PMID: 34343166 PMCID: PMC8330923 DOI: 10.1371/journal.pbio.3001357] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
Plant mitochondrial genomes undergo frequent homologous recombination (HR). Ectopic HR activity is inhibited by the HR surveillance pathway, but the underlying regulatory mechanism is unclear. Here, we show that the mitochondrial RNase H1 AtRNH1B impairs the formation of RNA:DNA hybrids (R-loops) and participates in the HR surveillance pathway in Arabidopsis thaliana. AtRNH1B suppresses ectopic HR at intermediate-sized repeats (IRs) and thus maintains mitochondrial DNA (mtDNA) replication. The RNase H1 AtRNH1C is restricted to the chloroplast; however, when cells lack AtRNH1B, transport of chloroplast AtRNH1C into the mitochondria secures HR surveillance, thus ensuring the integrity of the mitochondrial genome and allowing embryogenesis to proceed. HR surveillance is further regulated by the single-stranded DNA-binding protein ORGANELLAR SINGLE-STRANDED DNA BINDING PROTEIN1 (OSB1), which decreases the formation of R-loops. This study uncovers a facultative dual targeting mechanism between organelles and sheds light on the roles of RNase H1 in organellar genome maintenance and embryogenesis. This study clarifies the function of mitochondrial RNase H1 in genome stability and early embryogenesis in plants, and shows that mitochondrial R-loops are involved in homologous recombination surveillance of mtDNA. Facultative re-targeting of the chloroplast RNase H1 protein to mitochondria, in response to cellular conditions, can help guarantee mitochondrial RNase H1 activity.
Collapse
Affiliation(s)
- Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yao Yao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
31
|
Liu Y, Liu Q, Su H, Liu K, Xiao X, Li W, Sun Q, Birchler JA, Han F. Genome-wide mapping reveals R-loops associated with centromeric repeats in maize. Genome Res 2021; 31:1409-1418. [PMID: 34244230 PMCID: PMC8327920 DOI: 10.1101/gr.275270.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022]
Abstract
R-loops are stable chromatin structures comprising a DNA:RNA hybrid and a displaced single-stranded DNA. R-loops have been implicated in gene expression and chromatin structure, as well as in replication blocks and genome instability. Here, we conducted a genome-wide identification of R-loops and identified more than 700,000 R-loop peaks in the maize (Zea mays) genome. We found that sense R-loops were mainly enriched in promoters and transcription termination sites and relatively less enriched in gene bodies, which is different from the main gene-body localization of sense R-loops in Arabidopsis and Oryza sativa. At the chromosome scale, maize R-loops were enriched in pericentromeric heterochromatin regions, and a significant portion of R-loops were derived from transposable elements. In centromeres, R-loops preferentially formed within the binding regions of the centromere-specific histone CENH3, and centromeric retrotransposons were strongly associated with R-loop formation. Furthermore, centromeric retrotransposon R-loops were observed by applying the single-molecule imaging technique of atomic force microscopy. These findings elucidate the fundamental character of R-loops in the maize genome and reveal the potential role of R-loops in centromeres.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kunpeng Liu
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qianwen Sun
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211-7400, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Wang W, Li K, Yang Z, Hou Q, Zhao WW, Sun Q. RNase H1C collaborates with ssDNA binding proteins WHY1/3 and recombinase RecA1 to fulfill the DNA damage repair in Arabidopsis chloroplasts. Nucleic Acids Res 2021; 49:6771-6787. [PMID: 34133716 PMCID: PMC8266629 DOI: 10.1093/nar/gkab479] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/25/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Proper repair of damaged DNA is crucial for genetic integrity and organismal survival. As semi-autonomous organelles, plastids have their own genomes whose integrity must be preserved. Several factors have been shown to participate in plastid DNA damage repair; however, the underlying mechanism remains unclear. Here, we elucidate a mechanism of homologous recombination (HR) repair in chloroplasts that involves R-loops. We find that the recombinase RecA1 forms filaments in chloroplasts during HR repair, but aggregates as puncta when RNA:DNA hybrids accumulate. ssDNA-binding proteins WHY1/3 and chloroplast RNase H1 AtRNH1C are recruited to the same genomic sites to promote HR repair. Depletion of AtRNH1C or WHY1/3 significantly suppresses the binding of RNA polymerase to the damaged DNA, thus reducing HR repair and modulating microhomology-mediated double-strand break repair. Furthermore, we show that DNA polymerase IB works with AtRNH1C genetically to complete the DNA damage repair process. This study reveals the positive role of R-loops in facilitating the activities of WHY1/3 and RecA1, which in turn secures HR repair and organellar development.
Collapse
Affiliation(s)
- Wenjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Zhuo Yang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Quancan Hou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei W Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
33
|
Zhang P, Gao J, Li X, Feng Y, Shi M, Shi Y, Zhang W. Interplay of DNA and RNA N 6 -methyladenine with R-loops in regulating gene transcription in Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1163-1171. [PMID: 34177142 PMCID: PMC8212284 DOI: 10.1007/s12298-021-01010-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 06/01/2023]
Abstract
UNLABELLED R-loops and covalent modifications of N 6 -methyladenine on DNA (D-6 mA) or RNA (R-m6A) have been documented to function in various cellular processes in eukaryotes. However, the relationships between R-loops and both covalent modifications are still elusive in plants. Here, we integrated existing ssDRIP-seq with D-6 mA and R-m6A data from Arabidopsis thaliana. We found that the presence of either of both modifications facilitates R-loop formation and transcription of overlapping genes. Interestingly, our study suggests that the presence of R-m6A is key to affect R-loop intensity and positively regulate gene transcription. Moreover, the presence of D-6 mA plays an additive role to facilitate the effect of R-m6A on R-loop intensity, however, D-6 mA may negatively regulate gene transcription when coexisted with R-m6A. Our analyses indicate that D-6 mA, R-m6A, or histone marks may act individually and cooperatively with R-loops in regulating gene transcription. Our study is the first to link R-loops with D-6 mA and R-m6A in plants, thereby providing new insights into interactions between R-loops with D-6 mA, R-m6A, and histone marks for regulating gene transcription. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01010-5.
Collapse
Affiliation(s)
- Pengyue Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Jingjing Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Xinxu Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Manli Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Yining Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Wenli Zhang
- College of agronomy,
Nanjing Agricultural University
, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
34
|
Cui Y, Peng Y, Zhang Q, Xia S, Ruan B, Xu Q, Yu X, Zhou T, Liu H, Zeng D, Zhang G, Gao Z, Hu J, Zhu L, Shen L, Guo L, Qian Q, Ren D. Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:942-956. [PMID: 33190327 DOI: 10.1111/tpj.15079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 05/18/2023]
Abstract
Lesion-mimic mutants (LMMs) provide a valuable tool to reveal the molecular mechanisms determining programmed cell death (PCD) in plants. Despite intensive research, the mechanisms behind PCD and the formation of lesions in various LMMs still remain to be elucidated. Here, we identified a rice (Oryza sativa) LMM, early lesion leaf 1 (ell1), cloned the causal gene by map-based cloning, and verified this by complementation. ELL1 encodes a cytochrome P450 monooxygenase, and the ELL1 protein was located in the endoplasmic reticulum. The ell1 mutant exhibited decreased chlorophyll contents, serious chloroplast degradation, upregulated expression of chloroplast degradation-related genes, and attenuated photosynthetic protein activity, indicating that ELL1 is involved in chloroplast development. RNA sequencing analysis showed that genes related to oxygen binding were differentially expressed in ell1 and wild-type plants; histochemistry and paraffin sectioning results indicated that hydrogen peroxide (H2 O2 ) and callose accumulated in the ell1 leaves, and the cell structure around the lesions was severely damaged, which indicated that reactive oxygen species (ROS) accumulated and cell death occurred in the mutant. TUNEL staining and comet experiments revealed that severe DNA degradation and abnormal PCD occurred in the ell1 mutants, which implied that excessive ROS accumulation may induce DNA damage and ROS-mediated cell death in the mutant. Additionally, lesion initiation in the ell1 mutant was light dependent and temperature sensitive. Our findings revealed that ELL1 affects chloroplast development or function, and that loss of ELL1 function induces ROS accumulation and lesion formation in rice.
Collapse
Affiliation(s)
- Yuanjiang Cui
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Youlin Peng
- Rice Research Institute, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Saisai Xia
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Banpu Ruan
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Qiankun Xu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Xiaoqi Yu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Tingting Zhou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - He Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, P. R. China
| |
Collapse
|
35
|
Yang Z, Li M, Sun Q. RHON1 Co-transcriptionally Resolves R-Loops for Arabidopsis Chloroplast Genome Maintenance. Cell Rep 2021; 30:243-256.e5. [PMID: 31914390 DOI: 10.1016/j.celrep.2019.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/24/2019] [Accepted: 12/02/2019] [Indexed: 01/10/2023] Open
Abstract
Preventing transcription-replication head-on conflict (HO-TRC)-triggered R-loop formation is essential for maintaining genome integrity in bacteria, plants, and mammals. The R-loop eraser RNase H can efficiently relax HO-TRCs. However, it is not clear how organisms resist HO-TRC-triggered R-loops when RNase H proteins are deficient. By screening factors that may relieve R-loop accumulation in the Arabidopsis atrnh1c mutant, we find that overexpression of the R-loop helicase RHON1 can rescue the defects of aberrantly accumulated HO-TRC-triggered R-loops co-transcriptionally. In addition, we find that RHON1 interacts with and orchestrates the transcriptional activity of plastid-encoded RNA polymerases to release the conflicts between transcription and replication. Our study illustrates that organisms employ multiple mechanisms to escape HO-TRC-triggered R-loop accumulation and thus maintain genome integrity.
Collapse
Affiliation(s)
- Zhuo Yang
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengmeng Li
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianwen Sun
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
Sutormin DA, Galivondzhyan AK, Polkhovskiy AV, Kamalyan SO, Severinov KV, Dubiley SA. Diversity and Functions of Type II Topoisomerases. Acta Naturae 2021; 13:59-75. [PMID: 33959387 PMCID: PMC8084294 DOI: 10.32607/actanaturae.11058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
The DNA double helix provides a simple and elegant way to store and copy genetic information. However, the processes requiring the DNA helix strands separation, such as transcription and replication, induce a topological side-effect - supercoiling of the molecule. Topoisomerases comprise a specific group of enzymes that disentangle the topological challenges associated with DNA supercoiling. They relax DNA supercoils and resolve catenanes and knots. Here, we review the catalytic cycles, evolution, diversity, and functional roles of type II topoisomerases in organisms from all domains of life, as well as viruses and other mobile genetic elements.
Collapse
Affiliation(s)
- D. A. Sutormin
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - A. K. Galivondzhyan
- Lomonosov Moscow State University, Moscow, 119991 Russia
- Institute of Molecular Genetics RAS, Moscow, 123182 Russia
| | - A. V. Polkhovskiy
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - S. O. Kamalyan
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - K. V. Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
- Waksman Institute for Microbiology, Piscataway, New Jersey, 08854 USA
| | - S. A. Dubiley
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
37
|
Nye TM, McLean EK, Burrage AM, Dennison DD, Kearns DB, Simmons LA. RnhP is a plasmid-borne RNase HI that contributes to genome maintenance in the ancestral strain Bacillus subtilis NCIB 3610. Mol Microbiol 2020; 115:99-115. [PMID: 32896031 DOI: 10.1111/mmi.14601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 01/27/2023]
Abstract
RNA-DNA hybrids form throughout the chromosome during normal growth and under stress conditions. When left unresolved, RNA-DNA hybrids can slow replication fork progression, cause DNA breaks, and increase mutagenesis. To remove hybrids, all organisms use ribonuclease H (RNase H) to specifically degrade the RNA portion. Here we show that, in addition to chromosomally encoded RNase HII and RNase HIII, Bacillus subtilis NCIB 3610 encodes a previously uncharacterized RNase HI protein, RnhP, on the endogenous plasmid pBS32. Like other RNase HI enzymes, RnhP incises Okazaki fragments, ribopatches, and a complementary RNA-DNA hybrid. We show that while chromosomally encoded RNase HIII is required for pBS32 hyper-replication, RnhP compensates for the loss of RNase HIII activity on the chromosome. Consequently, loss of RnhP and RNase HIII impairs bacterial growth. We show that the decreased growth rate can be explained by laggard replication fork progression near the terminus region of the right replichore, resulting in SOS induction and inhibition of cell division. We conclude that all three functional RNase H enzymes are present in B. subtilis NCIB 3610 and that the plasmid-encoded RNase HI contributes to chromosome stability, while the chromosomally encoded RNase HIII is important for chromosome stability and plasmid hyper-replication.
Collapse
Affiliation(s)
- Taylor M Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Emma K McLean
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Devon D Dennison
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Huang Y, Rodriguez-Granados NY, Latrasse D, Raynaud C, Benhamed M, Ramirez-Prado JS. The matrix revolutions: towards the decoding of the plant chromatin three-dimensional reality. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5129-5147. [PMID: 32639553 DOI: 10.1093/jxb/eraa322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
In recent years, we have witnessed a significant increase in studies addressing the three-dimensional (3D) chromatin organization of the plant nucleus. Important advances in chromatin conformation capture (3C)-derived and related techniques have allowed the exploration of the nuclear topology of plants with large and complex genomes, including various crops. In addition, the increase in their resolution has permitted the depiction of chromatin compartmentalization and interactions at the gene scale. These studies have revealed the highly complex mechanisms governing plant nuclear architecture and the remarkable knowledge gaps in this field. Here we discuss the state-of-the-art in plant chromosome architecture, including our knowledge of the hierarchical organization of the genome in 3D space and regarding other nuclear components. Furthermore, we highlight the existence in plants of topologically associated domain (TAD)-like structures that display striking differences from their mammalian counterparts, proposing the concept of ICONS-intergenic condensed spacers. Similarly, we explore recent advances in the study of chromatin loops and R-loops, and their implication in the regulation of gene activity. Finally, we address the impact that polyploidization has had on the chromatin topology of modern crops, and how this is related to phenomena such as subgenome dominance and biased gene retention in these organisms.
Collapse
Affiliation(s)
- Ying Huang
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - Natalia Yaneth Rodriguez-Granados
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - Cecile Raynaud
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
- Institut Universitaire de France (IUF), France
| | - Juan Sebastian Ramirez-Prado
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| |
Collapse
|
39
|
Kuciński J, Chamera S, Kmera A, Rowley MJ, Fujii S, Khurana P, Nowotny M, Wierzbicki AT. Evolutionary History and Activity of RNase H1-Like Proteins in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2020; 61:1107-1119. [PMID: 32191307 PMCID: PMC7295395 DOI: 10.1093/pcp/pcaa040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/14/2020] [Indexed: 06/01/2023]
Abstract
RNase H1 is an endonuclease specific toward the RNA strand of RNA:DNA hybrids. Members of this protein family are present in most living organisms and are essential for removing RNA that base pairs with DNA. It prevents detrimental effects of RNA:DNA hybrids and is involved in several biological processes. Arabidopsis thaliana has been previously shown to contain three genes encoding RNase H1 proteins that localize to three distinct cellular compartments. We show that these genes originate from two gene duplication events. One occurred in the common ancestor of dicots and produced nuclear and organellar RNase H1 paralogs. Second duplication occurred in the common ancestor of Brassicaceae and produced mitochondrial- and plastid-localized proteins. These proteins have the canonical RNase H1 activity, which requires at least four ribonucleotides for endonucleolytic digestion. Analysis of mutants in the RNase H1 genes revealed that the nuclear RNH1A and mitochondrial RNH1B are dispensable for development under normal growth conditions. However, the presence of at least one organellar RNase H1 (RNH1B or RNH1C) is required for embryonic development. The plastid-localized RNH1C affects plastid DNA copy number and sensitivity to replicative stress. Our results present the evolutionary history of RNH1 proteins in A. thaliana, demonstrate their canonical RNase H1 activity and indicate their role in early embryonic development.
Collapse
Affiliation(s)
- Jan Kuciński
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sebastian Chamera
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Aleksandra Kmera
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - M Jordan Rowley
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sho Fujii
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Pragya Khurana
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej T Wierzbicki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
40
|
Castandet B, Germain A, Hotto AM, Stern DB. Systematic sequencing of chloroplast transcript termini from Arabidopsis thaliana reveals >200 transcription initiation sites and the extensive imprints of RNA-binding proteins and secondary structures. Nucleic Acids Res 2020; 47:11889-11905. [PMID: 31732725 PMCID: PMC7145512 DOI: 10.1093/nar/gkz1059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
Chloroplast transcription requires numerous quality control steps to generate the complex but selective mixture of accumulating RNAs. To gain insight into how this RNA diversity is achieved and regulated, we systematically mapped transcript ends by developing a protocol called Terminome-seq. Using Arabidopsis thaliana as a model, we catalogued >215 primary 5′ ends corresponding to transcription start sites (TSS), as well as 1628 processed 5′ ends and 1299 3′ ends. While most termini were found in intergenic regions, numerous abundant termini were also found within coding regions and introns, including several major TSS at unexpected locations. A consistent feature was the clustering of both 5′ and 3′ ends, contrasting with the prevailing description of discrete 5′ termini, suggesting an imprecision of the transcription and/or RNA processing machinery. Numerous termini correlated with the extremities of small RNA footprints or predicted stem-loop structures, in agreement with the model of passive RNA protection. Terminome-seq was also implemented for pnp1–1, a mutant lacking the processing enzyme polynucleotide phosphorylase. Nearly 2000 termini were altered in pnp1–1, revealing a dominant role in shaping the transcriptome. In summary, Terminome-seq permits precise delineation of the roles and regulation of the many factors involved in organellar transcriptome quality control.
Collapse
Affiliation(s)
- Benoît Castandet
- Boyce Thompson Institute, Ithaca, NY 14853, USA.,Institut des Sciences des Plantes de Paris Saclay (IPS2), UEVE, INRA, CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91192 Gif sur Yvette, France.,Université de Paris, IPS2, F-91192 Gif sur Yvette, France
| | | | | | | |
Collapse
|
41
|
Xu W, Li K, Li S, Hou Q, Zhang Y, Liu K, Sun Q. The R-Loop Atlas of Arabidopsis Development and Responses to Environmental Stimuli. THE PLANT CELL 2020; 32:888-903. [PMID: 32075864 PMCID: PMC7145480 DOI: 10.1105/tpc.19.00802] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 05/19/2023]
Abstract
R-loops are a common chromatin feature with essential functions in multiple cellular processes and diseases. However, little is known about the dynamic patterns of R-loops in a given organism. Here, using our recently developed genome-wide R-loop profiling method, we generated a comprehensive atlas quantifying the R-loop patterns of Arabidopsis (Arabidopsis thaliana) in 53 samples during development and during responses to environmental stimuli. The R-loop patterns were fairly stable in plants at the vegetative stage and in response to different light spectra and other environmental stimuli. Notably, the R-loops showed turnover during the plant life cycle, with patterns switching between generations. Importantly, R-loop dynamics was not strongly associated with RNA abundance, indicating that the mechanisms regulating R-loop formation and RNA accumulation are independent. We also observed enrichment of R-loops in transcription factor binding regions, suggesting that R-loops could function as potential cis-transcriptional regulators. This study provides an overview of R-loop dynamics in Arabidopsis during development and stress responses, highlights the unique dynamics of R-loops in the flowering plant Arabidopsis, and lays the groundwork for elucidating the functions of R-loops.
Collapse
Affiliation(s)
- Wei Xu
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kuan Li
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuai Li
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Quancan Hou
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yushun Zhang
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kunpeng Liu
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianwen Sun
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Nava GM, Grasso L, Sertic S, Pellicioli A, Muzi Falconi M, Lazzaro F. One, No One, and One Hundred Thousand: The Many Forms of Ribonucleotides in DNA. Int J Mol Sci 2020; 21:E1706. [PMID: 32131532 PMCID: PMC7084774 DOI: 10.3390/ijms21051706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become evident that RNA is frequently found in DNA. It is now well established that single embedded ribonucleoside monophosphates (rNMPs) are primarily introduced by DNA polymerases and that longer stretches of RNA can anneal to DNA, generating RNA:DNA hybrids. Among them, the most studied are R-loops, peculiar three-stranded nucleic acid structures formed upon the re-hybridization of a transcript to its template DNA. In addition, polyribonucleotide chains are synthesized to allow DNA replication priming, double-strand breaks repair, and may as well result from the direct incorporation of consecutive rNMPs by DNA polymerases. The bright side of RNA into DNA is that it contributes to regulating different physiological functions. The dark side, however, is that persistent RNA compromises genome integrity and genome stability. For these reasons, the characterization of all these structures has been under growing investigation. In this review, we discussed the origin of single and multiple ribonucleotides in the genome and in the DNA of organelles, focusing on situations where the aberrant processing of RNA:DNA hybrids may result in multiple rNMPs embedded in DNA. We concluded by providing an overview of the currently available strategies to study the presence of single and multiple ribonucleotides in DNA in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Marco Muzi Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| |
Collapse
|
43
|
Bader AS, Hawley BR, Wilczynska A, Bushell M. The roles of RNA in DNA double-strand break repair. Br J Cancer 2020; 122:613-623. [PMID: 31894141 PMCID: PMC7054366 DOI: 10.1038/s41416-019-0624-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/12/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
Effective DNA repair is essential for cell survival: a failure to correctly repair damage leads to the accumulation of mutations and is the driving force for carcinogenesis. Multiple pathways have evolved to protect against both intrinsic and extrinsic genotoxic events, and recent developments have highlighted an unforeseen critical role for RNA in ensuring genome stability. It is currently unclear exactly how RNA molecules participate in the repair pathways, although many models have been proposed and it is possible that RNA acts in diverse ways to facilitate DNA repair. A number of well-documented DNA repair factors have been described to have RNA-binding capacities and, moreover, screens investigating DNA-damage repair mechanisms have identified RNA-binding proteins as a major group of novel factors involved in DNA repair. In this review, we integrate some of these datasets to identify commonalities that might highlight novel and interesting factors for future investigations. This emerging role for RNA opens up a new dimension in the field of DNA repair; we discuss its impact on our current understanding of DNA repair processes and consider how it might influence cancer progression.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Ben R Hawley
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | | | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
44
|
Supercoiling, R-loops, Replication and the Functions of Bacterial Type 1A Topoisomerases. Genes (Basel) 2020; 11:genes11030249. [PMID: 32120891 PMCID: PMC7140829 DOI: 10.3390/genes11030249] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
Type 1A topoisomerases (topos) are the only topos that bind single-stranded DNA and the only ones found in all cells of the three domains of life. Two subfamilies, topo I and topo III, are present in bacteria. Topo I, found in all of them, relaxes negative supercoiling, while topo III acts as a decatenase in replication. However, recent results suggest that they can also act as back-up for each other. Because they are ubiquitous, type 1A enzymes are expected to be essential for cell viability. Single topA (topo I) and topB (topo III) null mutants of Escherichia coli are viable, but for topA only with compensatory mutations. Double topA topB null mutants were initially believed to be non-viable. However, in two independent studies, results of next generation sequencing (NGS) have recently shown that double topA topB null mutants of Bacillus subtilis and E. coli are viable when they carry parC parE gene amplifications. These genes encode the two subunits of topo IV, the main cellular decatenase. Here, we discuss the essential functions of bacterial type 1A topos in the context of this observation and new results showing their involvement in preventing unregulated replication from R-loops.
Collapse
|
45
|
Brieba LG. Structure-Function Analysis Reveals the Singularity of Plant Mitochondrial DNA Replication Components: A Mosaic and Redundant System. PLANTS 2019; 8:plants8120533. [PMID: 31766564 PMCID: PMC6963530 DOI: 10.3390/plants8120533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Plants are sessile organisms, and their DNA is particularly exposed to damaging agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival. During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while minimizing the effects of DNA damaging agents. The recombinogenic character of plant mitochondrial DNA, absence of defined origins of replication, and its linear structure suggest that mitochondrial DNA replication is achieved by a recombination-dependent replication mechanism. Here, I review the mitochondrial proteins possibly involved in mitochondrial DNA replication from a structural point of view. A revision of these proteins supports the idea that mitochondrial DNA replication could be replicated by several processes. The analysis indicates that DNA replication in plant mitochondria could be achieved by a recombination-dependent replication mechanism, but also by a replisome in which primers are synthesized by three different enzymes: Mitochondrial RNA polymerase, Primase-Helicase, and Primase-Polymerase. The recombination-dependent replication model and primers synthesized by the Primase-Polymerase may be responsible for the presence of genomic rearrangements in plant mitochondria.
Collapse
Affiliation(s)
- Luis Gabriel Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato C.P. 36821, Mexico
| |
Collapse
|
46
|
Zhang P, Feng Y, Wei H, Zhang W. R-Loop Identification and Profiling in Plants. TRENDS IN PLANT SCIENCE 2019; 24:971-972. [PMID: 31447301 DOI: 10.1016/j.tplants.2019.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Pengyue Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
47
|
Plant Organelle Genome Replication. PLANTS 2019; 8:plants8100358. [PMID: 31546578 PMCID: PMC6843274 DOI: 10.3390/plants8100358] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022]
Abstract
Mitochondria and chloroplasts perform essential functions in respiration, ATP production, and photosynthesis, and both organelles contain genomes that encode only some of the proteins that are required for these functions. The proteins and mechanisms for organelle DNA replication are very similar to bacterial or phage systems. The minimal replisome may consist of DNA polymerase, a primase/helicase, and a single-stranded DNA binding protein (SSB), similar to that found in bacteriophage T7. In Arabidopsis, there are two genes for organellar DNA polymerases and multiple potential genes for SSB, but there is only one known primase/helicase protein to date. Genome copy number varies widely between type and age of plant tissues. Replication mechanisms are only poorly understood at present, and may involve multiple processes, including recombination-dependent replication (RDR) in plant mitochondria and perhaps also in chloroplasts. There are still important questions remaining as to how the genomes are maintained in new organelles, and how genome copy number is determined. This review summarizes our current understanding of these processes.
Collapse
|
48
|
Fang Y, Chen L, Lin K, Feng Y, Zhang P, Pan X, Sanders J, Wu Y, Wang XE, Su Z, Chen C, Wei H, Zhang W. Characterization of functional relationships of R-loops with gene transcription and epigenetic modifications in rice. Genome Res 2019; 29:1287-1297. [PMID: 31262943 PMCID: PMC6673715 DOI: 10.1101/gr.246009.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 06/27/2019] [Indexed: 11/24/2022]
Abstract
We conducted genome-wide identification of R-loops followed by integrative analyses of R-loops with relation to gene expression and epigenetic signatures in the rice genome. We found that the correlation between gene expression levels and profiled R-loop peak levels was dependent on the positions of R-loops within gene structures (hereafter named “genic position”). Both antisense only (ASO)-R-loops and sense/antisense (S/AS)-R-loops sharply peaked around transcription start sites (TSSs), and these peak levels corresponded positively with transcript levels of overlapping genes. In contrast, sense only (SO)-R-loops were generally spread over the coding regions, and their peak levels corresponded inversely to transcript levels of overlapping genes. In addition, integrative analyses of R-loop data with existing RNA-seq, chromatin immunoprecipitation sequencing (ChIP-seq), DNase I hypersensitive sites sequencing (DNase-seq), and whole-genome bisulfite sequencing (WGBS or BS-seq) data revealed interrelationships and intricate connections among R-loops, gene expression, and epigenetic signatures. Experimental validation provided evidence that the demethylation of both DNA and histone marks can influence R-loop peak levels on a genome-wide scale. This is the first study in plants that reveals novel functional aspects of R-loops, their interrelations with epigenetic methylation, and roles in transcriptional regulation.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Lifen Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Kande Lin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Pengyue Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Xiucai Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Jennifer Sanders
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Xiu-E Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Caiyan Chen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, P.R. China
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, P.R. China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
49
|
Yuan W, Zhou J, Tong J, Zhuo W, Wang L, Li Y, Sun Q, Qian W. ALBA protein complex reads genic R-loops to maintain genome stability in Arabidopsis. SCIENCE ADVANCES 2019; 5:eaav9040. [PMID: 31106272 PMCID: PMC6520018 DOI: 10.1126/sciadv.aav9040] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/02/2019] [Indexed: 05/19/2023]
Abstract
The R-loop, composed of a DNA-RNA hybrid and the displaced single-stranded DNA, regulates diverse cellular processes. However, how cellular R-loops are recognized remains poorly understood. Here, we report the discovery of the evolutionally conserved ALBA proteins (AtALBA1 and AtALBA2) functioning as the genic R-loop readers in Arabidopsis. While AtALBA1 binds to the DNA-RNA hybrid, AtALBA2 associates with single-stranded DNA in the R-loops in vitro. In vivo, these two proteins interact and colocalize in the nucleus, where they preferentially bind to genic regions with active epigenetic marks in an R-loop-dependent manner. Depletion of AtALBA1 or AtALBA2 results in hypersensitivity of plants to DNA damaging agents. The formation of DNA breaks in alba mutants originates from unprotected R-loops. Our results reveal that the AtALBA1 and AtALBA2 protein complex is the genic R-loop reader crucial for genome stability in Arabidopsis.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jincong Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jinjin Tong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wanqing Zhuo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lishuan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qianwen Sun
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Corresponding author. (Q.S.); (W.Q.)
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Corresponding author. (Q.S.); (W.Q.)
| |
Collapse
|
50
|
Pérez Di Giorgio JA, Lepage É, Tremblay-Belzile S, Truche S, Loubert-Hudon A, Brisson N. Transcription is a major driving force for plastid genome instability in Arabidopsis. PLoS One 2019; 14:e0214552. [PMID: 30943245 PMCID: PMC6447228 DOI: 10.1371/journal.pone.0214552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Though it is an essential process, transcription can be a source of genomic instability. For instance, it may generate RNA:DNA hybrids as the nascent transcript hybridizes with the complementary DNA template. These hybrids, called R-loops, act as a major cause of replication fork stalling and DNA breaks. In this study, we show that lowering transcription and R-loop levels in plastids of Arabidopsis thaliana reduces DNA rearrangements and mitigates plastid genome instability phenotypes. This effect can be observed on a genome-wide scale, as the loss of the plastid sigma transcription factor SIG6 prevents DNA rearrangements by favoring conservative repair in the presence of ciprofloxacin-induced DNA damage or in the absence of plastid genome maintenance actors such as WHY1/WHY3, RECA1 and POLIB. Additionally, resolving R-loops by the expression of a plastid-targeted exogenous RNAse H1 produces similar results. We also show that highly-transcribed genes are more susceptible to DNA rearrangements, as increased transcription of the psbD operon by SIG5 correlates with more locus-specific rearrangements. The effect of transcription is not specific to Sigma factors, as decreased global transcription levels by mutation of heat-stress-induced factor HSP21, mutation of nuclear-encoded polymerase RPOTp, or treatment with transcription-inhibitor rifampicin all prevent the formation of plastid genome rearrangements, especially under induced DNA damage conditions.
Collapse
Affiliation(s)
| | - Étienne Lepage
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Truche
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Audrey Loubert-Hudon
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Normand Brisson
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|