1
|
Bao H, Wang Y, Li H, Wang Q, Lei Y, Ye Y, Wadood SF, Zhu H, Staehelin C, Stacey G, Xu S, Cao Y. The rhizobial effector NopT targets Nod factor receptors to regulate symbiosis in Lotus japonicus. eLife 2025; 13:RP97196. [PMID: 40183777 PMCID: PMC11970910 DOI: 10.7554/elife.97196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
It is well documented that type-III effectors are required by Gram-negative pathogens to directly target different host cellular pathways to promote bacterial infection. However, in the context of legume-rhizobium symbiosis, the role of rhizobial effectors in regulating plant symbiotic pathways remains largely unexplored. Here, we show that NopT, a YopT-type cysteine protease of Sinorhizobium fredii NGR234 directly targets the plant's symbiotic signaling pathway by associating with two Nod factor receptors (NFR1 and NFR5 of Lotus japonicus). NopT inhibits cell death triggered by co-expression of NFR1/NFR5 in Nicotiana benthamiana. Full-length NopT physically interacts with NFR1 and NFR5. NopT proteolytically cleaves NFR5 both in vitro and in vivo, but can be inactivated by NFR1 as a result of phosphorylation. NopT plays an essential role in mediating rhizobial infection in L. japonicus. Autocleaved NopT retains the ability to cleave NFR5 but no longer interacts with NFR1. Interestingly, genomes of certain Sinorhizobium species only harbor nopT genes encoding truncated proteins without the autocleavage site. These results reveal an intricate interplay between rhizobia and legumes, in which a rhizobial effector protease targets NFR5 to suppress symbiotic signaling. NFR1 appears to counteract this process by phosphorylating the effector. This discovery highlights the role of a bacterial effector in regulating a signaling pathway in plants and opens up the perspective of developing kinase-interacting proteases to fine-tune cellular signaling processes in general.
Collapse
Affiliation(s)
- Hanbin Bao
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Yanan Wang
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Haoxing Li
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Qiang Wang
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Yutao Lei
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Ying Ye
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Syed F Wadood
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhouChina
| | - Hui Zhu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhouChina
| | - Gary Stacey
- Divisions of Plant Science and Technology, Christopher S. Bond Life Sciences Center, University of MissouriColumbiaUnited States
| | - Shutong Xu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Yangrong Cao
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
2
|
Li R, Gou C, Zhang K, He M, Li L, Kong F, Sun Z, Liu H. Genome-Wide Identification and Expression Analyses of Glycoside Hydrolase Family 18 Genes During Nodule Symbiosis in Glycine max. Int J Mol Sci 2025; 26:1649. [PMID: 40004114 PMCID: PMC11855358 DOI: 10.3390/ijms26041649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Glycoside hydrolase family 18 (GH18) proteins can hydrolyze the β-1,4-glycosidic bonds of chitin, which is a common structure component of insect exoskeletons and fungal cell walls. In this study, 36 GH18 genes were identified and subjected to bioinformatic analysis based on the genomic data of Glycine max. They were distributed in 16 out of 20 tested soybean chromosomes. According to the amino acid sequences, they can be further divided into five subclades. Class III chitinases (22 members) and class V chitinases (6 members) are the major two subclades. The amino acid size of soybean GH18 proteins ranges from 173 amino acids (aa) to 820 aa and the molecular weight ranges from 19.46 kDa to 91.01 kDa. From an evolutionary perspective, soybean GH18 genes are closely related to Medicago (17 collinear loci with soybean) and Lotus (23 collinear loci with soybean). Promoter analysis revealed that GH18 genes could be induced by environmental stress, hormones, and embryo development. GmGH18-15, GmGH18-24, and GmGH18-33 were screened out due to their nodulation specific expression and further verified by RT-qPCR. These results provide an elaborate reference for the further characterization of specific GH18 genes, especially during nodule formation in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhihui Sun
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Huan Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
3
|
Chen W, Wang D, Ke S, Cao Y, Xiang W, Guo X, Yang Q. A soybean cyst nematode suppresses microbial plant symbionts using a lipochitooligosaccharide-hydrolysing enzyme. Nat Microbiol 2024; 9:1993-2005. [PMID: 38886584 DOI: 10.1038/s41564-024-01727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Cyst nematodes are the most damaging species of plant-parasitic nematodes. They antagonize the colonization of beneficial microbial symbionts that are important for nutrient acquisition of plants. The molecular mechanism of the antagonism, however, remains elusive. Here, through biochemical combined with structural analysis, we reveal that Heterodera glycines, the most notorious soybean cyst nematode, suppresses symbiosis by secreting an enzyme named HgCht2 to hydrolyse the key symbiotic signalling molecules, lipochitooligosaccharides (LCOs). We solved the three-dimensional structures of apo HgCht2, as well as its chitooligosaccharide-bound and LCO-bound forms. These structures elucidated the substrate binding and hydrolysing mechanism of the enzyme. We designed an HgCht2 inhibitor, 1516b, which successfully suppresses the antagonism of cyst nematodes towards nitrogen-fixing rhizobia and phosphorus-absorbing arbuscular mycorrhizal symbioses. As HgCht2 is phylogenetically conserved across all cyst nematodes, our study revealed a molecular mechanism by which parasitic cyst nematodes antagonize the establishment of microbial symbiosis and provided a small-molecule solution.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Di Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoyong Ke
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoli Guo
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Zhang CX, Li RJ, Baude L, Reinhardt D, Xie ZP, Staehelin C. CRISPR/Cas9-Mediated Generation of Mutant Lines in Medicago truncatula Indicates a Symbiotic Role of MtLYK10 during Nodule Formation. BIOLOGY 2024; 13:53. [PMID: 38275729 PMCID: PMC10812973 DOI: 10.3390/biology13010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
CRISPR/Cas9 systems are commonly used for plant genome editing; however, the generation of homozygous mutant lines in Medicago truncatula remains challenging. Here, we present a CRISPR/Cas9-based protocol that allows the efficient generation of M. truncatula mutants. Gene editing was performed for the LysM receptor kinase gene MtLYK10 and two major facilitator superfamily transporter genes. The functionality of CRISPR/Cas9 vectors was tested in Nicotiana benthamiana leaves by editing a co-transformed GUSPlus gene. Transformed M. truncatula leaf explants were regenerated to whole plants at high efficiency (80%). An editing efficiency (frequency of mutations at a given target site) of up to 70% was reached in the regenerated plants. Plants with MtLYK10 knockout mutations were propagated, and three independent homozygous mutant lines were further characterized. No off-target mutations were identified in these lyk10 mutants. Finally, the lyk10 mutants and wild-type plants were compared with respect to the formation of root nodules induced by nitrogen-fixing Sinorhizobium meliloti bacteria. Nodule formation was considerably delayed in the three lyk10 mutant lines. Surprisingly, the size of the rare nodules in mutant plants was higher than in wild-type plants. In conclusion, the symbiotic characterization of lyk10 mutants generated with the developed CRISPR/Cas9 protocol indicated a role of MtLYK10 in nodule formation.
Collapse
Affiliation(s)
- Chun-Xiao Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ru-Jie Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Laura Baude
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Liu Z, Yang J, Long Y, Zhang C, Wang D, Zhang X, Dong W, Zhao L, Liu C, Zhai J, Wang E. Single-nucleus transcriptomes reveal spatiotemporal symbiotic perception and early response in Medicago. NATURE PLANTS 2023; 9:1734-1748. [PMID: 37749242 DOI: 10.1038/s41477-023-01524-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
Establishing legume-rhizobial symbiosis requires precise coordination of complex responses in a time- and cell type-specific manner. Encountering Rhizobium, rapid changes of gene expression levels in host plants occur in the first few hours, which prepare the plants to turn off defence and form a symbiotic relationship with the microbes. Here, we applied single-nucleus RNA sequencing to characterize the roots of Medicago truncatula at 30 min, 6 h and 24 h after nod factor treatment. We found drastic global gene expression reprogramming at 30 min in the epidermis and cortex and most of these changes were restored at 6 h. Moreover, plant defence response genes are activated at 30 min and subsequently suppressed at 6 h in non-meristem cells. Only in the cortical cells but not in other cell types, we found the flavonoid synthase genes required to recruit rhizobia are highly expressed 30 min after inoculation with nod factors. A gene module enriched for symbiotic nitrogen fixation genes showed that MtFER (MtFERONIA) and LYK3 (LysM domain receptor-like kinase 3) share similar responses to symbiotic signals. We further found that MtFER can be phosphorylated by LYK3 and it participates in rhizobial symbiosis. Our results expand our understanding of dynamic spatiotemporal symbiotic responses at the single-cell level.
Collapse
Affiliation(s)
- Zhijian Liu
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Jun Yang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanping Long
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chi Zhang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dapeng Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaowei Zhang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wentao Dong
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li Zhao
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Chengwu Liu
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Ertao Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
6
|
Wilkinson H, Coppock A, Richmond BL, Lagunas B, Gifford ML. Plant-Environment Response Pathway Regulation Uncovered by Investigating Non-Typical Legume Symbiosis and Nodulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1964. [PMID: 37653881 PMCID: PMC10223263 DOI: 10.3390/plants12101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Nitrogen is an essential element needed for plants to survive, and legumes are well known to recruit rhizobia to fix atmospheric nitrogen. In this widely studied symbiosis, legumes develop specific structures on the roots to host specific symbionts. This review explores alternate nodule structures and their functions outside of the more widely studied legume-rhizobial symbiosis, as well as discussing other unusual aspects of nodulation. This includes actinorhizal-Frankia, cycad-cyanobacteria, and the non-legume Parasponia andersonii-rhizobia symbioses. Nodules are also not restricted to the roots, either, with examples found within stems and leaves. Recent research has shown that legume-rhizobia nodulation brings a great many other benefits, some direct and some indirect. Rhizobial symbiosis can lead to modifications in other pathways, including the priming of defence responses, and to modulated or enhanced resistance to biotic and abiotic stress. With so many avenues to explore, this review discusses recent discoveries and highlights future directions in the study of nodulation.
Collapse
Affiliation(s)
- Helen Wilkinson
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Alice Coppock
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Miriam L. Gifford
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
7
|
Legumes Regulate Symbiosis with Rhizobia via Their Innate Immune System. Int J Mol Sci 2023; 24:ijms24032800. [PMID: 36769110 PMCID: PMC9917363 DOI: 10.3390/ijms24032800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Plant roots are constantly exposed to a diverse microbiota of pathogens and mutualistic partners. The host's immune system is an essential component for its survival, enabling it to monitor nearby microbes for potential threats and respond with a defence response when required. Current research suggests that the plant immune system has also been employed in the legume-rhizobia symbiosis as a means of monitoring different rhizobia strains and that successful rhizobia have evolved to overcome this system to infect the roots and initiate nodulation. With clear implications for host-specificity, the immune system has the potential to be an important target for engineering versatile crops for effective nodulation in the field. However, current knowledge of the interacting components governing this pathway is limited, and further research is required to build on what is currently known to improve our understanding. This review provides a general overview of the plant immune system's role in nodulation. With a focus on the cycles of microbe-associated molecular pattern-triggered immunity (MTI) and effector-triggered immunity (ETI), we highlight key molecular players and recent findings while addressing the current knowledge gaps in this area.
Collapse
|
8
|
Cervantes-Pérez SA, Thibivilliers S, Laffont C, Farmer AD, Frugier F, Libault M. Cell-specific pathways recruited for symbiotic nodulation in the Medicago truncatula legume. MOLECULAR PLANT 2022; 15:1868-1888. [PMID: 36321199 DOI: 10.1016/j.molp.2022.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia. This symbiosis called nodulation is initiated in roots with the infection of root hair cells by the bacteria, as well as the initiation of nodule primordia from root cortical, endodermal, and pericycle cells, leading to the development of a new root organ, the nodule, where bacteria fix and assimilate the atmospheric dinitrogen for the benefit of the plant. Here, we report the isolation and use of the nuclei from mock and rhizobia-inoculated roots for the single nuclei RNA-seq (sNucRNA-seq) profiling to gain a deeper understanding of early responses to rhizobial infection in Medicago roots. A gene expression map of the Medicago root was generated, comprising 25 clusters, which were annotated as specific cell types using 119 Medicago marker genes and orthologs to Arabidopsis cell-type marker genes. A focus on root hair, cortex, endodermis, and pericycle cell types, showing the strongest differential regulation in response to a short-term (48 h) rhizobium inoculation, revealed not only known genes and functional pathways, validating the sNucRNA-seq approach, but also numerous novel genes and pathways, allowing a comprehensive analysis of early root symbiotic responses at a cell type-specific level.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Sandra Thibivilliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Carole Laffont
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Paris-Cité, Université d'Evry, 91190 Gif-sur-Yvette, France
| | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Paris-Cité, Université d'Evry, 91190 Gif-sur-Yvette, France
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
9
|
Ghantasala S, Roy Choudhury S. Nod factor perception: an integrative view of molecular communication during legume symbiosis. PLANT MOLECULAR BIOLOGY 2022; 110:485-509. [PMID: 36040570 DOI: 10.1007/s11103-022-01307-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Compatible interaction between rhizobial Nod factors and host receptors enables initial recognition and signaling events during legume-rhizobia symbiosis. Molecular communication is a new paradigm of information relay, which uses chemical signals or molecules as dialogues for communication and has been witnessed in prokaryotes, plants as well as in animal kingdom. Understanding this fascinating relay of signals between plants and rhizobia during the establishment of a synergistic relationship for biological nitrogen fixation represents one of the hotspots in plant biology research. Predominantly, their interaction is initiated by flavonoids exuding from plant roots, which provokes changes in the expression profile of rhizobial genes. Compatible interactions promote the secretion of Nod factors (NFs) from rhizobia, which are recognised by cognate host receptors. Perception of NFs by host receptors initiates the symbiosis and ultimately leads to the accommodation of rhizobia within root nodules via a series of mutual exchange of signals. This review elucidates the bacterial and plant perspectives during the early stages of symbiosis, explicitly emphasizing the significance of NFs and their cognate NF receptors.
Collapse
Affiliation(s)
- Swathi Ghantasala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
10
|
Li RJ, Zhang CX, Fan SY, Wang YH, Wen J, Mysore KS, Xie ZP, Staehelin C. The Medicago truncatula hydrolase MtCHIT5b degrades Nod factors of Sinorhizobium meliloti and cooperates with MtNFH1 to regulate the nodule symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:1034230. [PMID: 36466271 PMCID: PMC9712974 DOI: 10.3389/fpls.2022.1034230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Nod factors secreted by nitrogen-fixing rhizobia are lipo-chitooligosaccharidic signals required for establishment of the nodule symbiosis with legumes. In Medicago truncatula, the Nod factor hydrolase 1 (MtNFH1) was found to cleave Nod factors of Sinorhizobium meliloti. Here, we report that the class V chitinase MtCHIT5b of M. truncatula expressed in Escherichia coli can release lipodisaccharides from Nod factors. Analysis of M. truncatula mutant plants indicated that MtCHIT5b, together with MtNFH1, degrades S. meliloti Nod factors in the rhizosphere. MtCHIT5b expression was induced by treatment of roots with purified Nod factors or inoculation with rhizobia. MtCHIT5b with a fluorescent tag was detected in the infection pocket of root hairs. Nodulation of a MtCHIT5b knockout mutant was not significantly altered whereas overexpression of MtCHIT5b resulted in fewer nodules. Reduced nodulation was observed when MtCHIT5b and MtNFH1 were simultaneously silenced in RNA interference experiments. Overall, this study shows that nodule formation of M. truncatula is regulated by a second Nod factor cleaving hydrolase in addition to MtNFH1.
Collapse
Affiliation(s)
- Ru-Jie Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Xiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sheng-Yao Fan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Han Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiangqi Wen
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kirankumar S. Mysore
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Velandia K, Reid JB, Foo E. Right time, right place: The dynamic role of hormones in rhizobial infection and nodulation of legumes. PLANT COMMUNICATIONS 2022; 3:100327. [PMID: 35605199 PMCID: PMC9482984 DOI: 10.1016/j.xplc.2022.100327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Many legume plants form beneficial associations with rhizobial bacteria that are hosted in new plant root organs, nodules, in which atmospheric nitrogen is fixed. This association requires the precise coordination of two separate programs, infection in the epidermis and nodule organogenesis in the cortex. There is extensive literature indicating key roles for plant hormones during nodulation, but a detailed analysis of the spatial and temporal roles of plant hormones during the different stages of nodulation is required. This review analyses the current literature on hormone regulation of infection and organogenesis to reveal the differential roles and interactions of auxin, cytokinin, brassinosteroids, ethylene, and gibberellins during epidermal infection and cortical nodule initiation, development, and function. With the exception of auxin, all of these hormones suppress infection events. By contrast, there is evidence that all of these hormones promote nodule organogenesis, except ethylene, which suppresses nodule initiation. This differential role for many of the hormones between the epidermal and cortical programs is striking. Future work is required to fully examine hormone interactions and create a robust model that integrates this knowledge into our understanding of nodulation pathways.
Collapse
Affiliation(s)
- Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
12
|
Raul B, Bhattacharjee O, Ghosh A, Upadhyay P, Tembhare K, Singh A, Shaheen T, Ghosh AK, Torres-Jerez I, Krom N, Clevenger J, Udvardi M, Scheffler BE, Ozias-Akins P, Sharma RD, Bandyopadhyay K, Gaur V, Kumar S, Sinharoy S. Microscopic and Transcriptomic Analyses of Dalbergoid Legume Peanut Reveal a Divergent Evolution Leading to Nod-Factor-Dependent Epidermal Crack-Entry and Terminal Bacteroid Differentiation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:131-145. [PMID: 34689599 DOI: 10.1094/mpmi-05-21-0122-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Root nodule symbiosis (RNS) is the pillar behind sustainable agriculture and plays a pivotal role in the environmental nitrogen cycle. Most of the genetic, molecular, and cell-biological knowledge on RNS comes from model legumes that exhibit a root-hair mode of bacterial infection, in contrast to the Dalbergoid legumes exhibiting crack-entry of rhizobia. As a step toward understanding this important group of legumes, we have combined microscopic analysis and temporal transcriptome to obtain a dynamic view of plant gene expression during Arachis hypogaea (peanut) nodule development. We generated comprehensive transcriptome data by mapping the reads to A. hypogaea, and two diploid progenitor genomes. Additionally, we performed BLAST searches to identify nodule-induced yet-to-be annotated peanut genes. Comparison between peanut, Medicago truncatula, Lotus japonicus, and Glycine max showed upregulation of 61 peanut orthologs among 111 tested known RNS-related genes, indicating conservation in mechanisms of nodule development among members of the Papilionoid family. Unlike model legumes, recruitment of class 1 phytoglobin-derived symbiotic hemoglobin (SymH) in peanut indicates diversification of oxygen-scavenging mechanisms in the Papilionoid family. Finally, the absence of cysteine-rich motif-1-containing nodule-specific cysteine-rich peptide (NCR) genes but the recruitment of defensin-like NCRs suggest a diverse molecular mechanism of terminal bacteroid differentiation. In summary, our work describes genetic conservation and diversification in legume-rhizobia symbiosis in the Papilionoid family, as well as among members of the Dalbergoid legumes.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Bikash Raul
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Oindrila Bhattacharjee
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Amity University Haryana, Amity Education Valley, Manesar, Panchgaon, Haryana 122412, India
| | - Amit Ghosh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Priya Upadhyay
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kunal Tembhare
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ajeet Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tarannum Shaheen
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Asim Kumar Ghosh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | - Nick Krom
- Noble Research Institute, 2510 Sam Noble Pkwy, Ardmore, OK 73401, U.S.A
| | - Josh Clevenger
- University of Georgia, Institute of Plant Breeding, Genetics and Genomics and Department of Horticulture, Tifton, GA 31793, U.S.A
| | - Michael Udvardi
- Noble Research Institute, 2510 Sam Noble Pkwy, Ardmore, OK 73401, U.S.A
| | - Brian E Scheffler
- United States Department of Agriculture-Agricultural Research Service Jamie Whitten Delta States Research Center (JWDSRC) Stoneville, JWDSRC, Bldg.1, Room 229, Experiment Station Road, PO Box 36, Stoneville, MS 38776-0036, U.S.A
| | - Peggy Ozias-Akins
- University of Georgia, Institute of Plant Breeding, Genetics and Genomics and Department of Horticulture, Tifton, GA 31793, U.S.A
| | - Ravi Datta Sharma
- Amity University Haryana, Amity Education Valley, Manesar, Panchgaon, Haryana 122412, India
| | - Kaustav Bandyopadhyay
- Amity University Haryana, Amity Education Valley, Manesar, Panchgaon, Haryana 122412, India
| | - Vineet Gaur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Kumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Senjuti Sinharoy
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
13
|
Wang Y, Liao J, Wu J, Huang H, Yuan Z, Yang W, Wu X, Li X. Genome-Wide Identification and Characterization of the Soybean DEAD-Box Gene Family and Expression Response to Rhizobia. Int J Mol Sci 2022; 23:1120. [PMID: 35163041 PMCID: PMC8835661 DOI: 10.3390/ijms23031120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
DEAD-box proteins are a large family of RNA helicases that play important roles in almost all cellular RNA processes in model plants. However, little is known about this family of proteins in crops such as soybean. Here, we identified 80 DEAD-box family genes in the Glycine max (soybean) genome. These DEAD-box genes were distributed on 19 chromosomes, and some genes were clustered together. The majority of DEAD-box family proteins were highly conserved in Arabidopsis and soybean, but Glyma.08G231300 and Glyma.14G115100 were specific to soybean. The promoters of these DEAD-box genes share cis-acting elements involved in plant responses to MeJA, salicylic acid (SA), low temperature and biotic as well as abiotic stresses; interestingly, half of the genes contain nodulation-related cis elements in their promoters. Microarray data analysis revealed that the DEAD-box genes were differentially expressed in the root and nodule. Notably, 31 genes were induced by rhizobia and/or were highly expressed in the nodule. Real-time quantitative PCR analysis validated the expression patterns of some DEAD-box genes, and among them, Glyma.08G231300 and Glyma.14G115100 were induced by rhizobia in root hair. Thus, we provide a comprehensive view of the DEAD-box family genes in soybean and highlight the crucial role of these genes in symbiotic nodulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan 430070, China; (Y.W.); (J.L.); (J.W.); (H.H.); (Z.Y.); (W.Y.); (X.W.)
| |
Collapse
|
14
|
Guha S, Molla F, Sarkar M, Ibańez F, Fabra A, DasGupta M. Nod factor-independent 'crack-entry' symbiosis in dalbergoid legume Arachis hypogaea. Environ Microbiol 2022; 24:2732-2746. [PMID: 34995397 DOI: 10.1111/1462-2920.15888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
Dalbergoids are typified by crack-entry symbiosis which is evidenced to be Nod Factor (NF)- independent in several Aeschynomene legumes. Natural symbionts of the dalbergoid legume Arachis hypogaea are always NF-producing, prompting us to check whether symbiosis in this legume could also be NF-independent. For this, we followed the symbiosis with two NF containing bradyrhizobial strains- SEMIA6144, a natural symbiont of Arachis and ORS285, a versatile nodulator of Aeschynomene legumes, along with their corresponding nodulation (nod) mutants. Additionally, we investigated NF-deficient bradyrhizobia like BTAi1, a natural symbiont of Aeschynomene indica and the WBOS strains that were natural endophytes of Oryza sativa, collected from an Arachis-Oryza intercropped field. While SEMIA6144ΔnodC was non-nodulating, both ORS285 and ORS285ΔnodB could induce functional nodulation, although with lower efficiency than SEMIA6144. On the other hand, all the NF-deficient strains- BTAi1, WBOS2 and WBOS4 showed comparable nodulation with ORS285 indicating Arachis to harbour a NF-independent mechanism of symbiosis. Intriguingly, symbiosis in Arachis, irrespective of whether it was NF-dependent or independent, was always associated with the curling or branching of the rosette root hairs at the lateral root bases. Thus, despite being predominantly described as NF-dependent legume, Arachis does retain a vestigial, less-efficient form of NF-independent symbiosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sohini Guha
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - Firoz Molla
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - Monolina Sarkar
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - Fernando Ibańez
- Instituto de Investigaciones Agrobiotecnologicas (CONCINET-UNRC), Ruta 36 Km 601, Río Cuarto, Argentina
| | - Adriana Fabra
- Instituto de Investigaciones Agrobiotecnologicas (CONCINET-UNRC), Ruta 36 Km 601, Río Cuarto, Argentina
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| |
Collapse
|
15
|
Khokhani D, Carrera Carriel C, Vayla S, Irving TB, Stonoha-Arther C, Keller NP, Ané JM. Deciphering the Chitin Code in Plant Symbiosis, Defense, and Microbial Networks. Annu Rev Microbiol 2021; 75:583-607. [PMID: 34623896 DOI: 10.1146/annurev-micro-051921-114809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chitin is a structural polymer in many eukaryotes. Many organisms can degrade chitin to defend against chitinous pathogens or use chitin oligomers as food. Beneficial microorganisms like nitrogen-fixing symbiotic rhizobia and mycorrhizal fungi produce chitin-based signal molecules called lipo-chitooligosaccharides (LCOs) and short chitin oligomers to initiate a symbiotic relationship with their compatible hosts and exchange nutrients. A recent study revealed that a broad range of fungi produce LCOs and chitooligosaccharides (COs), suggesting that these signaling molecules are not limited to beneficial microbes. The fungal LCOs also affect fungal growth and development, indicating that the roles of LCOs beyond symbiosis and LCO production may predate mycorrhizal symbiosis. This review describes the diverse structures of chitin; their perception by eukaryotes and prokaryotes; and their roles in symbiotic interactions, defense, and microbe-microbe interactions. We also discuss potential strategies of fungi to synthesize LCOs and their roles in fungi with different lifestyles.
Collapse
Affiliation(s)
- Devanshi Khokhani
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Current affiliation: Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota 55108, USA;
| | - Cristobal Carrera Carriel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Shivangi Vayla
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Christina Stonoha-Arther
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
16
|
Unay J, Perret X. A Minimal Genetic Passkey to Unlock Many Legume Doors to Root Nodulation by Rhizobia. Genes (Basel) 2020; 11:genes11050521. [PMID: 32392829 PMCID: PMC7290934 DOI: 10.3390/genes11050521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
In legume crops, formation of developmentally mature nodules is a prerequisite for efficient nitrogen fixation by populations of rhizobial bacteroids established inside nodule cells. Development of root nodules, and concomitant microbial colonization of plant cells, are constrained by sets of recognition signals exchanged by infecting rhizobia and their legume hosts, with much of the specificity of symbiotic interactions being determined by the flavonoid cocktails released by legume roots and the strain-specific nodulation factors (NFs) secreted by rhizobia. Hence, much of Sinorhizobium fredii strain NGR234 symbiotic promiscuity was thought to stem from a family of >80 structurally diverse NFs and associated nodulation keys in the form of secreted effector proteins and rhamnose-rich surface polysaccharides. Here, we show instead that a mini-symbiotic plasmid (pMiniSym2) carrying only the nodABCIJ, nodS and nodD1 genes of NGR234 conferred promiscuous nodulation to ANU265, a derivative strain cured of the large symbiotic plasmid pNGR234a. The ANU265::pMiniSym2 transconjugant triggered nodulation responses on 12 of the 22 legumes we tested. On roots of Macroptilium atropurpureum, Leucaena leucocephala and Vigna unguiculata, ANU265::pMiniSym2 formed mature-like nodule and successfully infected nodule cells. While cowpea and siratro responded to nodule colonization with defense responses that eventually eliminated bacteria, L. leucocephala formed leghemoglobin-containing mature-like nodules inside which the pMiniSym2 transconjugant established persistent intracellular colonies. These data show seven nodulation genes of NGR234 suffice to trigger nodule formation on roots of many hosts and to establish chronic infections in Leucaena cells.
Collapse
|
17
|
Abstract
The rhizobium-legume symbiosis contributes around 65% of biological nitrogen fixation in agriculture systems and is critical for sustainable agriculture by reducing the amount of chemical nitrogen fertilizer being used. Rhizobial inocula have been commercialized for more than 100 years, but the efficiency of inoculation can vary among legume cultivars, field sites, and years. These long-lasting challenging problems impede the establishment of a sustainable agriculture, particularly in developing countries. Here, we report that rhizobial zinc starvation machinery containing a conserved high-affinity zinc transporter and accessory components makes cumulative contributions to modulating rhizobial symbiotic compatibility. This work highlights a critical role of largely unexplored nutritional immunity in the rhizobium-legume symbiosis, which makes zinc starvation machinery an attractive target for improving rhizobial symbiotic compatibility. Pathogenic bacteria need high-affinity zinc uptake systems to counteract the nutritional immunity exerted by infected hosts. However, our understanding of zinc homeostasis in mutualistic systems such as the rhizobium-legume symbiosis is limited. Here, we show that the conserved high-affinity zinc transporter ZnuABC and accessory transporter proteins (Zip1, Zip2, and c06450) made cumulative contributions to nodulation of the broad-host-range strain Sinorhizobium fredii CCBAU45436. Zur acted as a zinc-dependent repressor for the znuC-znuB-zur operon, znuA, and c06450 by binding to the associated Zur box, but did not regulate zip1 and zip2. ZnuABC was the major zinc transporter. Combined mutants lacking znuA and one of the three accessory genes had more severe defects in nodulation and growth under zinc starvation conditions than the znuA mutant, though rhizoplane colonization by these mutants was not impaired. In contrast to the elite strain CCBAU45436, more drastic symbiotic defects were observed for the znuA mutants of other Sinorhizobium strains, which lack at least one of the three accessory genes in their genomes and are characterized by their limited host range and geographical distribution. The znu-derived mutants showed a higher expression level of nod genes involved in Nod factor biosynthesis and a reduced expression of genes encoding a type three secretion system and its effector NopP, which can interfere with the host immune system. Application of exogenous zinc restored the nodulation ability of these znu-derived mutants. Therefore, the conserved ZnuABC and accessory components in the zinc starvation machinery play an important role in modulating symbiotic compatibility.
Collapse
|
18
|
Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, Frugoli J, Dickstein R, Udvardi MK. Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. THE PLANT CELL 2020; 32:15-41. [PMID: 31649123 PMCID: PMC6961631 DOI: 10.1105/tpc.19.00279] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/17/2019] [Accepted: 10/24/2019] [Indexed: 05/13/2023]
Abstract
Since 1999, various forward- and reverse-genetic approaches have uncovered nearly 200 genes required for symbiotic nitrogen fixation (SNF) in legumes. These discoveries advanced our understanding of the evolution of SNF in plants and its relationship to other beneficial endosymbioses, signaling between plants and microbes, the control of microbial infection of plant cells, the control of plant cell division leading to nodule development, autoregulation of nodulation, intracellular accommodation of bacteria, nodule oxygen homeostasis, the control of bacteroid differentiation, metabolism and transport supporting symbiosis, and the control of nodule senescence. This review catalogs and contextualizes all of the plant genes currently known to be required for SNF in two model legume species, Medicago truncatula and Lotus japonicus, and two crop species, Glycine max (soybean) and Phaseolus vulgaris (common bean). We also briefly consider the future of SNF genetics in the era of pan-genomics and genome editing.
Collapse
Affiliation(s)
- Sonali Roy
- Noble Research Institute, Ardmore, Oklahoma 73401
| | - Wei Liu
- Noble Research Institute, Ardmore, Oklahoma 73401
| | | | - Ashley Crook
- College of Science, Clemson University, Clemson, South Carolina 29634
| | | | | | - Julia Frugoli
- College of Science, Clemson University, Clemson, South Carolina 29634
| | - Rebecca Dickstein
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton Texas 76203
| | | |
Collapse
|
19
|
Ratet P. Symbiosis Signaling: Solanaceae Symbiotic LCO Receptors Are Functional for Rhizobium Perception in Legumes. Curr Biol 2019; 29:R1312-R1314. [DOI: 10.1016/j.cub.2019.10.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Benezech C, Doudement M, Gourion B. Legumes tolerance to rhizobia is not always observed and not always deserved. Cell Microbiol 2019; 22:e13124. [DOI: 10.1111/cmi.13124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Claire Benezech
- LIPM, Université de Toulouse, INRA, CNRS Castanet‐Tolosan France
| | - Maëva Doudement
- LIPM, Université de Toulouse, INRA, CNRS Castanet‐Tolosan France
| | - Benjamin Gourion
- LIPM, Université de Toulouse, INRA, CNRS Castanet‐Tolosan France
| |
Collapse
|
21
|
Wippel K, Long SR. Symbiotic Performance of Sinorhizobium meliloti Lacking ppGpp Depends on the Medicago Host Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:717-728. [PMID: 30576265 DOI: 10.1094/mpmi-11-18-0306-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Host specificity in the root-nodule symbiosis between legumes and rhizobia is crucial for the establishment of a successful interaction and ammonia provision to the plant. The specificity is mediated by plant-bacterial signal exchange during early stages of interaction. We observed that a Sinorhizobium meliloti mutant ∆relA, which is deficient in initiating the bacterial stringent response, fails to nodulate Medicago sativa (alfalfa) but successfully infects Medicago truncatula. We used biochemical, histological, transcriptomic, and imaging approaches to compare the behavior of the S. meliloti ∆relA mutant and wild type (WT) on the two plant hosts. ∆relA performed almost WT-like on M. truncatula, except for reduced nitrogen-fixation capacity and a disorganized positioning of bacteroids within nodule cells. In contrast, ∆relA showed impaired root colonization on alfalfa and failed to infect nodule primordia. Global transcriptome analyses of ∆relA cells treated with the alfalfa flavonoid luteolin and of mature nodules induced by the mutant on M. truncatula revealed normal nod gene expression but overexpression of exopolysaccharide biosynthesis genes and a slight suppression of plant defense-like reactions. Many RelA-dependent transcripts overlap with the hypo-osmolarity-related FeuP regulon or are characteristic of stress responses. Based on our findings, we suggest that RelA is not essential until the late stages of symbiosis with M. truncatula, in which it may be involved in processes that optimize nitrogen fixation.
Collapse
Affiliation(s)
- Kathrin Wippel
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Sharon R Long
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
22
|
Schlöffel MA, Käsbauer C, Gust AA. Interplay of plant glycan hydrolases and LysM proteins in plant-Bacteria interactions. Int J Med Microbiol 2019; 309:252-257. [PMID: 31079999 DOI: 10.1016/j.ijmm.2019.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/10/2019] [Accepted: 04/25/2019] [Indexed: 12/18/2022] Open
Abstract
Plants are always found together with bacteria and other microbes. Although plants can be attacked by phytopathogenic bacteria, they are more often engaged in neutral or mutualistic bacterial interactions. In the soil, plants associate with rhizobia or other plant growth promoting rhizosphere bacteria; above ground, bacteria colonise plants as epi- and endophytes. For mounting appropriate responses, such as permitting colonisation by beneficial symbionts while at the same time fending off pathogenic invaders, plants need to distinguish between the "good" and the "bad". Plants make use of proteins containing the lysin motif (LysM) for perception of N-acetylglucosamine containing carbohydrate structures, such as chitooligosaccharides functioning as symbiotic nodulation factors or bacterial peptidoglycan. Moreover, plant hydrolytic enzymes of the chitinase family, which are able to cleave bacterial peptidoglycan or chitooligosaccharides, are essential for cellular signalling induced by rhizobial nodulation factors during symbiosis as well as bacterial peptidoglycan during pathogenesis. Hence, LysM receptors seem to work in concert with hydrolytic enzymes that fine-tune ligand availability to either allow symbiotic interactions or trigger plant immunity.
Collapse
Affiliation(s)
- Maria A Schlöffel
- Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Christoph Käsbauer
- Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Andrea A Gust
- Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
23
|
Valdés-López O, Jayaraman D, Maeda J, Delaux PM, Venkateshwaran M, Isidra-Arellano MC, Reyero-Saavedra MDR, Sánchez-Correa MDS, Verastegui-Vidal MA, Delgado-Buenrostro N, Van Ness L, Mysore KS, Wen J, Sussman MR, Ané JM. A Novel Positive Regulator of the Early Stages of Root Nodule Symbiosis Identified by Phosphoproteomics. PLANT & CELL PHYSIOLOGY 2019; 60:575-586. [PMID: 30476329 DOI: 10.1093/pcp/pcy228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Signals and signaling pathways underlying the symbiosis between legumes and rhizobia have been studied extensively over the past decades. In a previous phosphoproteomic study on the Medicago truncatula-Sinorhizobium meliloti symbiosis, we identified plant proteins that are differentially phosphorylated upon the perception of rhizobial signals, called Nod factors. In this study, we provide experimental evidence that one of these proteins, Early Phosphorylated Protein 1 (EPP1), is required for the initiation of this symbiosis. Upon inoculation with rhizobia, MtEPP1 expression was induced in curled root hairs. Down-regulation of MtEPP1 in M. truncatula roots almost abolished calcium spiking, reduced the expression of essential symbiosis-related genes (MtNIN, MtNF-YB1, MtERN1 and MtENOD40) and strongly decreased nodule development. Phylogenetic analyses revealed that orthologs of MtEPP1 are present in legumes and specifically in plant species able to host arbuscular mycorrhizal fungi, suggesting a possible role in this association too. Short chitin oligomers induced the phosphorylation of MtEPP1 like Nod factors. However, the down-regulation of MtEPP1 affected the colonization of M. truncatula roots by arbuscular mycorrhizal fungi only moderately. Altogether, these findings indicate that MtEPP1 is essential for the establishment of the legume-rhizobia symbiosis but might plays a limited role in the arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Dhileepkumar Jayaraman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Pierre-Marc Delaux
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Muthusubramanian Venkateshwaran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacan, Ciudad de México, México
| | - María del Rocío Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - María del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Miguel A Verastegui-Vidal
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Norma Delgado-Buenrostro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Lori Van Ness
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | | | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, USA
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
24
|
Rey T, André O, Nars A, Dumas B, Gough C, Bottin A, Jacquet C. Lipo-chitooligosaccharide signalling blocks a rapid pathogen-induced ROS burst without impeding immunity. THE NEW PHYTOLOGIST 2019; 221:743-749. [PMID: 30378690 DOI: 10.1111/nph.15574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Molecular signals released by microbes at the surface of plant roots and leaves largely determine host responses, notably by triggering either immunity or symbiosis. How these signalling pathways cross-talk upon coincident perception of pathogens and symbionts is poorly described in plants forming symbiosis. Nitrogen fixing symbiotic Rhizobia spp. and arbuscular mycorrhizal fungi produce lipo-chitooligosaccharides (LCOs) to initiate host symbiotic programmes. In Medicago truncatula roots, the perception of LCOs leads to reduced efflux of reactive oxygen species (ROS). By contrast, pathogen perception generally triggers a strong ROS burst and activates defence gene expression. Here we show that incubation of M. truncatula seedlings with culture filtrate (CF) of the legume pathogen Aphanomyces euteiches alone or simultaneously with Sinorhizobium meliloti LCOs, resulted in a strong ROS release. However, this response was completely inhibited if CF was added after pre-incubation of seedlings with LCOs. By contrast, expression of immunity-associated genes in response to CF and disease resistance to A. euteiches remained unaffected by LCO treatment of M. truncatula roots. Our findings suggest that symbiotic plants evolved ROS inhibition response to LCOs to facilitate early steps of symbiosis whilst maintaining a parallel defence mechanisms toward pathogens.
Collapse
Affiliation(s)
- Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Olivier André
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Amaury Nars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Clare Gough
- Laboratory of Plant-Microbe Interactions (LIPM), Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Arnaud Bottin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| |
Collapse
|
25
|
Wang J, Wang J, Liu C, Ma C, Li C, Zhang Y, Qi Z, Zhu R, Shi Y, Zou J, Li Q, Zhu J, Wen Y, Sun Z, Liu H, Jiang H, Yin Z, Hu Z, Chen Q, Wu X, Xin D. Identification of Soybean Genes Whose Expression is Affected by the Ensifer fredii HH103 Effector Protein NopP. Int J Mol Sci 2018; 19:E3438. [PMID: 30400148 PMCID: PMC6274870 DOI: 10.3390/ijms19113438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023] Open
Abstract
In some legume⁻rhizobium symbioses, host specificity is influenced by rhizobial nodulation outer proteins (Nops). However, the genes encoding host proteins that interact with Nops remain unknown. We generated an Ensifer fredii HH103 NopP mutant (HH103ΩNopP), and analyzed the nodule number (NN) and nodule dry weight (NDW) of 10 soybean germplasms inoculated with the wild-type E. fredii HH103 or the mutant strain. An analysis of recombinant inbred lines (RILs) revealed the quantitative trait loci (QTLs) associated with NopP interactions. A soybean genomic region containing two overlapping QTLs was analyzed in greater detail. A transcriptome analysis and qRT-PCR assay were used to identify candidate genes encoding proteins that interact with NopP. In some germplasms, NopP positively and negatively affected the NN and NDW, while NopP had different effects on NN and NDW in other germplasms. The QTL region in chromosome 12 was further analyzed. The expression patterns of candidate genes Glyma.12g031200 and Glyma.12g073000 were determined by qRT-PCR, and were confirmed to be influenced by NopP.
Collapse
Affiliation(s)
- Jinhui Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jieqi Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Chunyan Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Chao Ma
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Changyu Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yongqian Zhang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhaoming Qi
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Rongsheng Zhu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yan Shi
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jianan Zou
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qingying Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jingyi Zhu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yingnan Wen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhijun Sun
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Hanxi Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Hongwei Jiang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhengong Yin
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
- Heilongjiang Academy of Agricultural Sciences, Harbin 150030, China.
| | - Zhenbang Hu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qingshan Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaoxia Wu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dawei Xin
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Malolepszy A, Kelly S, Sørensen KK, James EK, Kalisch C, Bozsoki Z, Panting M, Andersen SU, Sato S, Tao K, Jensen DB, Vinther M, Jong ND, Madsen LH, Umehara Y, Gysel K, Berentsen MU, Blaise M, Jensen KJ, Thygesen MB, Sandal N, Andersen KR, Radutoiu S. A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis. eLife 2018; 7:38874. [PMID: 30284535 PMCID: PMC6192697 DOI: 10.7554/elife.38874] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/02/2018] [Indexed: 01/03/2023] Open
Abstract
Morphogens provide positional information and their concentration is key to the organized development of multicellular organisms. Nitrogen-fixing root nodules are unique organs induced by Nod factor-producing bacteria. Localized production of Nod factors establishes a developmental field within the root where plant cells are reprogrammed to form infection threads and primordia. We found that regulation of Nod factor levels by Lotus japonicus is required for the formation of nitrogen-fixing organs, determining the fate of this induced developmental program. Our analysis of plant and bacterial mutants shows that a host chitinase modulates Nod factor levels possibly in a structure-dependent manner. In Lotus, this is required for maintaining Nod factor signalling in parallel with the elongation of infection threads within the nodule cortex, while root hair infection and primordia formation are not influenced. Our study shows that infected nodules require balanced levels of Nod factors for completing their transition to functional, nitrogen-fixing organs.
Collapse
Affiliation(s)
- Anna Malolepszy
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | - Christina Kalisch
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Zoltan Bozsoki
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Michael Panting
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Japan
| | - Ke Tao
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dorthe Bødker Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Maria Vinther
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Noor de Jong
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lene Heegaard Madsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kira Gysel
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mette U Berentsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mickael Blaise
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Knud Jørgen Jensen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Roy S. Goldilocks Principle: MtNFH1 Ensures Optimal Nod Factor Activity. THE PLANT CELL 2018; 30:267-268. [PMID: 29436475 PMCID: PMC5868701 DOI: 10.1105/tpc.18.00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Sonali Roy
- Noble Research InstituteArdmore, Oklahoma
| |
Collapse
|