1
|
Wójtowicz J, Mazur R, Jakubauskas D, Sokolova A, Garvey C, Mortensen K, Jensen PE, Kirkensgaard JJK, Kowalewska Ł. Shrink or expand? Just relax! Bidirectional grana structural dynamics as early light-induced regulator of photosynthesis. THE NEW PHYTOLOGIST 2025. [PMID: 40289507 DOI: 10.1111/nph.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
Light-induced structural changes in thylakoid membranes have been reported for decades, with conflicting data regarding their shrinkage or expansion during dark-light transitions. Understanding these dynamics is important for both fundamental photosynthesis research and agricultural applications. This research investigated the temporal sequence of thylakoid structural changes during light exposure and their functional significance. We combined high-resolution structural approaches (transmission electron microscopy, confocal microscopy with 3D modeling, and small-angle neutron scattering) with spectroscopic and electrophoretic analyses of the photosynthetic apparatus of Arabidopsis thaliana and Ficus elastica plants. A meta-analysis of published ultrastructural data complemented our experimental approach to resolve existing contradictions. We discovered a three-phase response pattern: initial shrinkage, expansion, and relaxation to dark-state equilibrium. The initial shrinkage specifically regulated the cyclic/linear electron transport ratio, providing rapid photoprotection. We also showed that plants' acclimation to different light regimes modulates the kinetics of this response, with constant-light-grown plants exhibiting faster structural adaptations than those acclimated to glasshouse conditions. This work challenges the traditional binary model of light-induced thylakoid structural dynamics, revealing a sophisticated temporal regulatory mechanism, with the dark-adapted state serving as a relaxed equilibrium. The discovered three-phase response reconciles decades of conflicting observations and reveals how plants achieve rapid photoprotection before engaging longer term adaptive responses.
Collapse
Affiliation(s)
- Joanna Wójtowicz
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Dainius Jakubauskas
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Copenhagen, Denmark
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Anna Sokolova
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, 2234, Australia
| | - Christopher Garvey
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748, Garching, Germany
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Copenhagen, Denmark
| | - Jacob J K Kirkensgaard
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Copenhagen, Denmark
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
2
|
Zeng Y, Duan S, Wang Y, Zheng Z, Wu Z, Shi M, Wang M, Jiang L, Li X, Wang HB, Jin HL. Chloroplast state transitions modulate nuclear genome stability via cytokinin signaling in Arabidopsis. MOLECULAR PLANT 2025; 18:513-526. [PMID: 39881542 DOI: 10.1016/j.molp.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/12/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Activities of the chloroplasts and nucleus are coordinated by retrograde signaling, which play crucial roles in plant development and environmental adaptation. However, the connection between chloroplast status and nuclear genome stability is poorly understood. Chloroplast state transitions enable the plant to balance photosystem absorption capacity in an environment with changing light quality. Here, we report that abnormal chloroplast state transitions lead to instability in the nuclear genome and impaired plant growth. We observed increased DNA damage in the state transition-defective Arabidopsis thaliana mutant stn7, and demonstrated that this damage was triggered by cytokinin accumulation and activation of cytokinin signaling. We showed that cytokinin signaling promotes a competitive association between ARABIDOPSIS RESPONSE REGULATOR 10 (ARR10) with PROLIFERATING CELLULAR NUCLEAR ANTIGEN 1/2 (PCNA1/2), inhibiting the binding of PCNA1/2 to nuclear DNA. This affects DNA replication, leading to replication-dependent genome instability. Treatment with 2,5-dibromo-3-methyl-6-isopropylbenzoquinone that simulates the reduction of the plastoquinone pool during abnormal state transitions increased the accumulation of ARABIDOPSIS HISTIDINE-CONTAINING PHOSPHOTRANSMITTER 1, a phosphotransfer protein involved in cytokinin signaling, and promoted the interaction between ARR10 with PCNA1/2, leading to increased DNA damage. These findings highlight the function of cytokinin signaling in coordinating chloroplast function and nuclear genome integrity during plant acclimation to environmental changes.
Collapse
Affiliation(s)
- Yajun Zeng
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, People's Republic of China
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, People's Republic of China
| | - Yawen Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Zhifeng Zheng
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Zeyi Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Meihui Shi
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Manchun Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Lan Jiang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xue Li
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, People's Republic of China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, People's Republic of China.
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, People's Republic of China.
| |
Collapse
|
3
|
Jiang J, Li R, Wang K, Xu Y, Lu H, Zhang D. Combined Bulked Segregant Analysis-Sequencing and Transcriptome Analysis to Identify Candidate Genes Associated with Cold Stress in Brassica napus L. Int J Mol Sci 2025; 26:1148. [PMID: 39940915 PMCID: PMC11818577 DOI: 10.3390/ijms26031148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Cold tolerance in rapeseed is closely related to its growth, yield, and geographical distribution. However, the mechanisms underlying cold resistance in rapeseed remain unclear. This study aimed to explore cold resistance genes and provide new insights into the molecular mechanisms of cold resistance in rapeseed. Rapeseed M98 (cold-sensitive line) and D1 (cold-tolerant line) were used as parental lines. In their F2 population, 30 seedlings with the lowest cold damage levels and 30 with the highest cold damage levels were selected to construct cold-tolerant and cold-sensitive pools, respectively. The two pools and parental lines were analyzed using bulk segregant sequencing (BSA-seq). The G'-value analysis indicated a single peak on Chromosome C09 as the candidate interval, which had a 2.59 Mb segment with 69 candidate genes. Combined time-course and weighted gene co-expression network analyses were performed at seven time points to reveal the genetic basis of the two-parent response to low temperatures. Twelve differentially expressed genes primarily involved in plant cold resistance were identified. Combined BSA-seq and transcriptome analysis revealed BnaC09G0354200ZS, BnaC09G0353200ZS, and BnaC09G0356600ZS as the candidate genes. Quantitative real-time PCR validation of the candidate genes was consistent with RNA-seq. This study facilitates the exploration of cold tolerance mechanisms in rapeseed.
Collapse
Affiliation(s)
- Jiayi Jiang
- Xianghu Laboratory, Hangzhou 311231, China; (J.J.); (R.L.); (K.W.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Rihui Li
- Xianghu Laboratory, Hangzhou 311231, China; (J.J.); (R.L.); (K.W.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Kaixuan Wang
- Xianghu Laboratory, Hangzhou 311231, China; (J.J.); (R.L.); (K.W.)
| | - Yifeng Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Hejun Lu
- Xianghu Laboratory, Hangzhou 311231, China; (J.J.); (R.L.); (K.W.)
| | - Dongqing Zhang
- Xianghu Laboratory, Hangzhou 311231, China; (J.J.); (R.L.); (K.W.)
| |
Collapse
|
4
|
Rocha DM, Neumann U, Nogueira FM, Tsipas G, Vanzela ALL, Marques A. Cryoimmobilized anther analysis reveals new ultrastructural insights into Rhynchospora (Cyperaceae) asymmetrical microsporogenesis. FRONTIERS IN PLANT SCIENCE 2025; 15:1518369. [PMID: 39906222 PMCID: PMC11790663 DOI: 10.3389/fpls.2024.1518369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025]
Abstract
Introduction The Cyperaceae family is distinguished by holocentric chromosomes and a distinctive microsporogenesis process, which includes inverted meiosis, asymmetric tetrad formation, selective cell death, and the formation of pseudomonad pollen. Despite significant advances, the ultrastructural details of these processes remain poorly understood. Methods This study provides a detailed analysis of microsporogenesis in Rhynchospora pubera using high-pressure freezing, freeze substitution, and transmission electron microscopy, significantly enhancing ultrastructural resolution. Results and discussion Our findings reveal that intracellular organization differs from model species Arabidopsis thaliana and drives nuclear selection, with endoplasmic reticulum vesicles organizing meiotic spindles. Microtubules attach to centromeres located deep within holocentric chromosomes, while extensive cytoplasmic connections facilitate material exchange until callose deposition encloses meiocytes. Lipid distribution contributes to cell asymmetry, resulting in the characteristic asymmetric tetrads. Following meiosis, cytoskeletal elements coordinate nuclear migration and cell plate formation. Pseudomonads exhibit reconfigurations in the endomembrane system, particularly involving the endoplasmic reticulum, which supports functional cell differentiation. Complementary histochemical analyses corroborate these findings, providing insights into the cellular processes governing Rhynchospora microsporogenesis. These findings contribute to a deeper understanding of the developmental processes of Cyperaceae pollen, thereby facilitating future investigations of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Danilo M. Rocha
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Ulla Neumann
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Fernanda M. Nogueira
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP) – Universidade de São Paulo—USP, Ribeirão Preto, Brazil
| | - Georgios Tsipas
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - André L. L. Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
5
|
John A, Keller I, Ebel KW, Neuhaus HE. Two critical membranes: how does the chloroplast envelope affect plant acclimation properties? JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:214-227. [PMID: 39441968 DOI: 10.1093/jxb/erae436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Chloroplasts play a pivotal role in the metabolism of leaf mesophyll cells, functioning as a cellular hub that orchestrates molecular reactions in response to environmental stimuli. These organelles contain complex protein machinery for energy conversion and are indispensable for essential metabolic pathways. Proteins located within the chloroplast envelope membranes facilitate bidirectional communication with the cell and connect essential pathways, thereby influencing acclimation processes to challenging environmental conditions such as temperature fluctuations and light intensity changes. Despite their importance, a comprehensive overview of the impact of envelope-located proteins during acclimation to environmental changes is lacking. Understanding the role of these proteins in acclimation processes could provide insights into enhancing stress tolerance under increasingly challenging environments. This review highlights the significance of envelope-located proteins in plant acclimation.
Collapse
Affiliation(s)
- Annalisa John
- University of Kaiserslautern, Plant Physiology, Paul-Ehrlich-Str., D-67663 Kaiserslautern, Germany
| | - Isabel Keller
- University of Kaiserslautern, Plant Physiology, Paul-Ehrlich-Str., D-67663 Kaiserslautern, Germany
| | - Katharina W Ebel
- University of Kaiserslautern, Plant Physiology, Paul-Ehrlich-Str., D-67663 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- University of Kaiserslautern, Plant Physiology, Paul-Ehrlich-Str., D-67663 Kaiserslautern, Germany
| |
Collapse
|
6
|
Lu S, Xu X, Wu Y, Ye J, Wu L, Nie M, Sun S, Jing W, Cho HK, Rouached H, Zheng L. Unravelling OsPHT2;1 function in Chloroplast Phosphorus Homeostasis and Photosynthetic Efficiency under Low Phosphorus Stress in Rice. PHYSIOLOGIA PLANTARUM 2025; 177:e70082. [PMID: 39868630 DOI: 10.1111/ppl.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency. Our findings show that the OsPHT2;1 mutation leads to a decrease in the plastoquinone (PQ) pool size. This change is associated with altered stomatal conductance and modifications in electron transport dynamics, including an increase in the transmembrane proton gradient and a shift from linear to cyclic electron transport. This disruption significantly impairs the transport of photosynthetic products, particularly triose phosphates, essential for sucrose synthesis in the cytoplasm. Additionally, the reduced PQ pool influences the expression of key genes involved in photostability, highlighting the interplay between P homeostasis and photosynthetic regulation. By elucidating the mechanisms underlying OsPHT2;1's role in chloroplast function, our research underscores its significance in optimizing rice adaptation to low P environments, thereby enhancing crop resilience and productivity.
Collapse
Affiliation(s)
- Shanshan Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongzhen Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Ye
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Linyan Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Miaomiao Nie
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shubin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Jing
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hui-Kyong Cho
- Plant Resilience Institute, Michigan State University, East Lansing, MI
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI
| | - Hatem Rouached
- Plant Resilience Institute, Michigan State University, East Lansing, MI
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Rühle T, Leister D, Pasch V. Chloroplast ATP synthase: From structure to engineering. THE PLANT CELL 2024; 36:3974-3996. [PMID: 38484126 PMCID: PMC11449085 DOI: 10.1093/plcell/koae081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 10/05/2024]
Abstract
F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Viviana Pasch
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
8
|
Brünje A, Füßl M, Eirich J, Boyer JB, Heinkow P, Neumann U, Konert M, Ivanauskaite A, Seidel J, Ozawa SI, Sakamoto W, Meinnel T, Schwarzer D, Mulo P, Giglione C, Finkemeier I. The Plastidial Protein Acetyltransferase GNAT1 Forms a Complex With GNAT2, yet Their Interaction Is Dispensable for State Transitions. Mol Cell Proteomics 2024; 23:100850. [PMID: 39349166 PMCID: PMC11585782 DOI: 10.1016/j.mcpro.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 08/18/2024] [Indexed: 10/02/2024] Open
Abstract
Protein N-acetylation is one of the most abundant co- and post-translational modifications in eukaryotes, extending its occurrence to chloroplasts within vascular plants. Recently, a novel plastidial enzyme family comprising eight acetyltransferases that exhibit dual lysine and N-terminus acetylation activities was unveiled in Arabidopsis. Among these, GNAT1, GNAT2, and GNAT3 reveal notable phylogenetic proximity, forming a subgroup termed NAA90. Our study focused on characterizing GNAT1, closely related to the state transition acetyltransferase GNAT2. In contrast to GNAT2, GNAT1 did not prove essential for state transitions and displayed no discernible phenotypic difference compared to the wild type under high light conditions, while gnat2 mutants were severely affected. However, gnat1 mutants exhibited a tighter packing of the thylakoid membranes akin to gnat2 mutants. In vitro studies with recombinant GNAT1 demonstrated robust N-terminus acetylation activity on synthetic substrate peptides. This activity was confirmed in vivo through N-terminal acetylome profiling in two independent gnat1 knockout lines. This attributed several acetylation sites on plastidial proteins to GNAT1, reflecting a subset of GNAT2's substrate spectrum. Moreover, co-immunoprecipitation coupled with mass spectrometry revealed a robust interaction between GNAT1 and GNAT2, as well as a significant association of GNAT2 with GNAT3 - the third acetyltransferase within the NAA90 subfamily. This study unveils the existence of at least two acetyltransferase complexes within chloroplasts, whereby complex formation might have a critical effect on the fine-tuning of the overall acetyltransferase activities. These findings introduce a novel layer of regulation in acetylation-dependent adjustments in plastidial metabolism.
Collapse
Affiliation(s)
- Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Magdalena Füßl
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Paulina Heinkow
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Minna Konert
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Aiste Ivanauskaite
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Julian Seidel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, Japan
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Paula Mulo
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany.
| |
Collapse
|
9
|
Eirich J, Boyer JB, Armbruster L, Ivanauskaite A, De La Torre C, Meinnel T, Wirtz M, Mulo P, Finkemeier I, Giglione C. Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks. Mol Cell Proteomics 2024; 23:100845. [PMID: 39321874 PMCID: PMC11546460 DOI: 10.1016/j.mcpro.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Protein acetylation is a key co- and post-translational modification. However, how different types of acetylation respond to environmental stress is still unknown. To address this, we investigated the role of a member of the newly discovered family of plastid acetyltransferases (GNAT2), which features both lysine- and N-terminal acetyltransferase activities. Our study aimed to provide a holistic multi-omics acetylation-dependent view of plant acclimation to short-term light changes. We found that both the yield and coverage of the N-terminal acetylome remained unchanged in WT and gnat2-KO backgrounds after 2 h of exposure to high light or darkness. Similarly, no differences in transcriptome or adenylate energy charge were observed between the genotypes under the tested light conditions. In contrast, the lysine acetylome proved to be sensitive to the changes in light conditions, especially in the gnat2 background. This suggests unique strategies of plant acclimation for quick responses to environmental changes involving lysine, but not N-terminal, GNAT2-mediated acetylation activity.
Collapse
Affiliation(s)
- Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Aiste Ivanauskaite
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany.
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Hoh D, Froehlich JE, Kramer DM. Redox regulation in chloroplast thylakoid lumen: The pmf changes everything, again. PLANT, CELL & ENVIRONMENT 2024; 47:2749-2765. [PMID: 38111217 DOI: 10.1111/pce.14789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Photosynthesis is the foundation of life on Earth. However, if not well regulated, it can also generate excessive reactive oxygen species (ROS), which can cause photodamage. Regulation of photosynthesis is highly dynamic, responding to both environmental and metabolic cues, and occurs at many levels, from light capture to energy storage and metabolic processes. One general mechanism of regulation involves the reversible oxidation and reduction of protein thiol groups, which can affect the activity of enzymes and the stability of proteins. Such redox regulation has been well studied in stromal enzymes, but more recently, evidence has emerged of redox control of thylakoid lumenal enzymes. This review/hypothesis paper summarizes the latest research and discusses several open questions and challenges to achieving effective redox control in the lumen, focusing on the distinct environments and regulatory components of the thylakoid lumen, including the need to transport electrons across the thylakoid membrane, the effects of pH changes by the proton motive force (pmf) in the stromal and lumenal compartments, and the observed differences in redox states. These constraints suggest that activated oxygen species are likely to be major regulatory contributors to lumenal thiol redox regulation, with key components and processes yet to be discovered.
Collapse
Affiliation(s)
- Donghee Hoh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - John E Froehlich
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
11
|
Freh M, Reinstädler A, Neumann KD, Neumann U, Panstruga R. The development of pleiotropic phenotypes in powdery mildew-resistant barley and Arabidopsis thaliana mlo mutants is linked to nitrogen availability. PLANT, CELL & ENVIRONMENT 2024; 47:2362-2376. [PMID: 38515393 DOI: 10.1111/pce.14884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
Powdery mildew-resistant barley (Hordeum vulgare) and Arabidopsis thaliana mlo mutant plants exhibit pleiotropic phenotypes such as the spontaneous formation of callose-rich cell wall appositions and early leaf chlorosis and necrosis, indicative of premature leaf senescence. The exogenous factors governing the occurrence of these undesired side effects remain poorly understood. Here, we characterised the formation of these symptoms in detail. Ultrastructural analysis revealed that the callose-rich cell wall depositions spontaneously formed in A. thaliana mlo mutants are indistinguishable from those induced by the bacterial pattern epitope, flagellin 22 (flg22). We further found that increased plant densities during culturing enhance the extent of the leaf senescence syndrome in A. thaliana mlo mutants. Application of a liquid fertiliser rescued the occurrence of leaf chlorosis and necrosis in both A. thaliana and barley mlo mutant plants. Controlled fertilisation experiments uncovered nitrogen as the macronutrient whose deficiency promotes the extent of pleiotropic phenotypes in A. thaliana mlo mutants. Light intensity and temperature had a modulatory impact on the incidence of leaf necrosis in the case of barley mlo mutant plants. Collectively, our data indicate that the development of pleiotropic phenotypes associated with mlo mutants is governed by various exogenous factors.
Collapse
Affiliation(s)
- Matthias Freh
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Kira D Neumann
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Zhang X, Shan J, Wang J, Zhang Y, Yang F, Liu B, Zhang L, Li G, Wang R. Comprehensive Proteome and Acetylome Analysis of Needle Senescence in Larix gmelinii. Int J Mol Sci 2024; 25:6824. [PMID: 38999933 PMCID: PMC11241215 DOI: 10.3390/ijms25136824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Leaf senescence is essential for the growth and development of deciduous trees in the next season. Larix gmelinii, a deciduous coniferous tree, exhibits its most distinctive feature by turning yellow in the autumn and eventually shedding its leaves, resulting in significant changes in its appearance during the fall. Lysine acetylation plays an important role in diverse cellular processes; however, limited knowledge is available regarding acetylations in the needle senescence of L. gmelinii. In this study, the proteomics and acetylated modification omics of two phenotypic leaves, yellow and green (senescent and non-senescent) needles, were analyzed before autumn defoliation. In total, 5022 proteins and 4469 unique acetylation sites in 2414 lysine acylated proteins were identified, and this resulted in the discovery of 1335 differentially expressed proteins (DEPs) and 605 differentially expressed acetylated proteins (DAPs) in yellow versus green needles. There are significant differences between the proteome and acetylome; only 269 proteins were found to be DEP and DAP, of which 136 proteins were consistently expressed in both the DEP and DAP, 91 proteins were upregulated, and 45 proteins were down-regulated. The DEPs participate in the metabolism of starch and sucrose, while the DAPs are involved in glycolysis and the tricarboxylic acid cycle. Among them, DEPs underwent significant changes in glycolysis and citric acid cycling. Most of the enzymes involved in glycolysis and the citrate cycle were acetylated. DAPs were down-regulated in glycolysis and up-regulated in the citrate cycle. In all, the results of this study reveal the important role of lysine acetylation in the senescence of L. gmelinii needles and provide a new perspective for understanding the molecular mechanism of leaf senescence and tree seasonal growth.
Collapse
Affiliation(s)
- Xuting Zhang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinyuan Shan
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jiaxiu Wang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanxia Zhang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Feiyun Yang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bin Liu
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lifeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Guojing Li
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ruigang Wang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
13
|
Krysiak M, Węgrzyn A, Kowalewska Ł, Kulik A, Ostaszewska-Bugajska M, Mazur J, Garstka M, Mazur R. Light-independent pathway of STN7 kinase activation under low temperature stress in runner bean (Phaseolus coccineus L.). BMC PLANT BIOLOGY 2024; 24:513. [PMID: 38849759 PMCID: PMC11157908 DOI: 10.1186/s12870-024-05169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/19/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND The phosphorylation of the Light-Harvesting Complex of photosystem II (LHCII) driven by STATE TRANSITION 7 (STN7) kinase is a part of one of the crucial regulatory mechanisms of photosynthetic light reactions operating in fluctuating environmental conditions, light in particular. There are evidenced that STN7 can also be activated without light as well as in dark-chilling conditions. However, the biochemical mechanism standing behind this complex metabolic pathway has not been deciphered yet. RESULTS In this work, we showed that dark-chilling induces light-independent LHCII phosphorylation in runner bean (Phaseolus coccineus L.). In dark-chilling conditions, we registered an increased reduction of the PQ pool which led to activation of STN7 kinase, subsequent LHCII phosphorylation, and possible LHCII relocation inside the thylakoid membrane. We also presented the formation of a complex composed of phosphorylated LHCII and photosystem I typically formed upon light-induced phosphorylation. Moreover, we indicated that the observed steps were preceded by the activation of the oxidative pentose phosphate pathway (OPPP) enzymes and starch accumulation. CONCLUSIONS Our results suggest a direct connection between photosynthetic complexes reorganization and dark-chilling-induced activation of the thioredoxin system. The proposed possible pathway starts from the activation of OPPP enzymes and further NADPH-dependent thioredoxin reductase C (NTRC) activation. In the next steps, NTRC simultaneously activates ADP-glucose pyrophosphorylase and thylakoid membrane-located NAD(P)H dehydrogenase-like complex. These results in starch synthesis and electron transfer to the plastoquinone (PQ) pool, respectively. Reduced PQ pool activates STN7 kinase which phosphorylates LHCII. In this work, we present a new perspective on the mechanisms involving photosynthetic complexes while efficiently operating in the darkness. Although we describe the studied pathway in detail, taking into account also the time course of the following steps, the biological significance of this phenomenon remains puzzling.
Collapse
Affiliation(s)
- Małgorzata Krysiak
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Anna Węgrzyn
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Monika Ostaszewska-Bugajska
- Department of Plant Bioenergetics, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Jan Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland.
| |
Collapse
|
14
|
Aliprandi E, Demaria S, Colpo A, Brestič M, Živčak M, Martina A, Pancaldi S, Baldisserotto C, Ferroni L. Thylakoid ultrastructural variations in chlorophyll-deficient wheat: aberrations or structural acclimation? PLANTA 2024; 259:90. [PMID: 38478121 PMCID: PMC10937782 DOI: 10.1007/s00425-024-04362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
MAIN CONCLUSION A structural re-modeling of the thylakoid system, including granum size and regularity, occurs in chlorophyll-deficient wheat mutants affected by photosynthetic membrane over-reduction. In the chloroplast of land plants, the thylakoid system is defined by appressed grana stacks and unstacked stroma lamellae. This study focuses on the variations of the grana organization occurring in outdoor-grown wheat mutants characterized by low chlorophyll content and a tendency for photosynthetic membrane over-reduction. Triticum aestivum ANK-32A and Triticum durum ANDW-7B were compared to their corresponding WT lines, NS67 and LD222, respectively. Electron micrographs of chloroplasts were used to calculate grana ultrastructural parameters. Photosynthetic parameters were obtained by modulated chlorophyll fluorescence and applying Light Curves (LC) and Rapid Light Curves (RLC) protocols. For each photosynthetic parameter, the difference Δ(RLC-LC) was calculated to evaluate the flexible response to light in the examined lines. In the mutants, fewer and smaller disks formed grana stacks characterized by a marked increase in lateral and cross-sectional irregularity, both negatively correlated with the number of layers per granum. A relationship was found between membrane over-reduction and granum structural irregularity. The possible acclimative significance of a greater proportion of stroma-exposed grana domains in relieving the excess electron pressure on PSI is discussed.
Collapse
Affiliation(s)
- Elisabetta Aliprandi
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy
| | - Andrea Colpo
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy
| | - Marian Brestič
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Marek Živčak
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Angela Martina
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I D'Este 32, 44121, Ferrara, Italy.
| |
Collapse
|
15
|
van Wijk KJ, Bentolila S, Leppert T, Sun Q, Sun Z, Mendoza L, Li M, Deutsch EW. Detection and editing of the updated Arabidopsis plastid- and mitochondrial-encoded proteomes through PeptideAtlas. PLANT PHYSIOLOGY 2024; 194:1411-1430. [PMID: 37879112 DOI: 10.1093/plphys/kiad572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) ecotype Col-0 has plastid and mitochondrial genomes encoding over 100 proteins. Public databases (e.g. Araport11) have redundancy and discrepancies in gene identifiers for these organelle-encoded proteins. RNA editing results in changes to specific amino acid residues or creation of start and stop codons for many of these proteins, but the impact of RNA editing at the protein level is largely unexplored due to the complexities of detection. Here, we assembled the nonredundant set of identifiers, their correct protein sequences, and 452 predicted nonsynonymous editing sites of which 56 are edited at lower frequency. We then determined accumulation of edited and/or unedited proteoforms by searching ∼259 million raw tandem MS spectra from ProteomeXchange, which is part of PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/). We identified all mitochondrial proteins and all except 3 plastid-encoded proteins (NdhG/Ndh6, PsbM, and Rps16), but no proteins predicted from the 4 ORFs were identified. We suggest that Rps16 and 3 of the ORFs are pseudogenes. Detection frequencies for each edit site and type of edit (e.g. S to L/F) were determined at the protein level, cross-referenced against the metadata (e.g. tissue), and evaluated for technical detection challenges. We detected 167 predicted edit sites at the proteome level. Minor frequency sites were edited at low frequency at the protein level except for cytochrome C biogenesis 382 at residue 124 (Ccb382-124). Major frequency sites (>50% editing of RNA) only accumulated in edited form (>98% to 100% edited) at the protein level, with the exception of Rpl5-22. We conclude that RNA editing for major editing sites is required for stable protein accumulation.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Stephane Bentolila
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Margaret Li
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| |
Collapse
|
16
|
Gong X, Boyer JB, Gierlich S, Pożoga M, Weidenhausen J, Sinning I, Meinnel T, Giglione C, Wang Y, Hell R, Wirtz M. HYPK controls stability and catalytic activity of the N-terminal acetyltransferase A in Arabidopsis thaliana. Cell Rep 2024; 43:113768. [PMID: 38363676 DOI: 10.1016/j.celrep.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
The ribosome-tethered N-terminal acetyltransferase A (NatA) acetylates 52% of soluble proteins in Arabidopsis thaliana. This co-translational modification of the N terminus stabilizes diverse cytosolic plant proteins. The evolutionary conserved Huntingtin yeast partner K (HYPK) facilitates NatA activity in planta, but in vitro, its N-terminal helix α1 inhibits human NatA activity. To dissect the regulatory function of HYPK protein domains in vivo, we genetically engineer CRISPR-Cas9 mutants expressing a HYPK fragment lacking all functional domains (hypk-cr1) or an internally deleted HYPK variant truncating helix α1 but retaining the C-terminal ubiquitin-associated (UBA) domain (hypk-cr2). We find that the UBA domain of HYPK is vital for stabilizing the NatA complex in an organ-specific manner. The N terminus of HYPK, including helix α1, is critical for promoting NatA activity on substrates starting with various amino acids. Consequently, deleting only 42 amino acids inside the HYPK N terminus causes substantial destabilization of the plant proteome and higher tolerance toward drought stress.
Collapse
Affiliation(s)
- Xiaodi Gong
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Simone Gierlich
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Marlena Pożoga
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Irmgard Sinning
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018 Tai'an, China
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Jia K, Yang M, Liu X, Zhang Q, Cao G, Ge F, Zhao J. Deciphering the structure, function, and mechanism of lysine acetyltransferase cGNAT2 in cyanobacteria. PLANT PHYSIOLOGY 2024; 194:634-661. [PMID: 37770070 DOI: 10.1093/plphys/kiad509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
Lysine acetylation is a conserved regulatory posttranslational protein modification that is performed by lysine acetyltransferases (KATs). By catalyzing the transfer of acetyl groups to substrate proteins, KATs play critical regulatory roles in all domains of life; however, no KATs have yet been identified in cyanobacteria. Here, we tested all predicted KATs in the cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) and demonstrated that A1596, which we named cyanobacterial Gcn5-related N-acetyltransferase (cGNAT2), can catalyze lysine acetylation in vivo and in vitro. Eight amino acid residues were identified as the key residues in the putative active site of cGNAT2, as indicated by structural simulation and site-directed mutagenesis. The loss of cGNAT2 altered both growth and photosynthetic electron transport in Syn7002. In addition, quantitative analysis of the lysine acetylome identified 548 endogenous substrates of cGNAT2 in Syn7002. We further demonstrated that cGNAT2 can acetylate NAD(P)H dehydrogenase J (NdhJ) in vivo and in vitro, with the inability to acetylate K89 residues, thus decreasing NdhJ activity and affecting both growth and electron transport in Syn7002. In summary, this study identified a KAT in cyanobacteria and revealed that cGNAT2 regulates growth and photosynthesis in Syn7002 through an acetylation-mediated mechanism.
Collapse
Affiliation(s)
- Kun Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430070, China
| | - Qi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxiang Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Wu J, Chen S, Wang C, Lin W, Huang C, Fan C, Han D, Lu D, Xu X, Sui S, Zhang L. Regulatory dynamics of the higher-plant PSI-LHCI supercomplex during state transitions. MOLECULAR PLANT 2023; 16:1937-1950. [PMID: 37936349 DOI: 10.1016/j.molp.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023]
Abstract
State transition is a fundamental light acclimation mechanism of photosynthetic organisms in response to the environmental light conditions. This process rebalances the excitation energy between photosystem I (PSI) and photosystem II through regulated reversible binding of the light-harvesting complex II (LHCII) to PSI. However, the structural reorganization of PSI-LHCI, the dynamic binding of LHCII, and the regulatory mechanisms underlying state transitions are less understood in higher plants. In this study, using cryoelectron microscopy we resolved the structures of PSI-LHCI in both state 1 (PSI-LHCI-ST1) and state 2 (PSI-LHCI-LHCII-ST2) from Arabidopsis thaliana. Combined genetic and functional analyses revealed novel contacts between Lhcb1 and PsaK that further enhanced the binding of the LHCII trimer to the PSI core with the known interactions between phosphorylated Lhcb2 and the PsaL/PsaH/PsaO subunits. Specifically, PsaO was absent in the PSI-LHCI-ST1 supercomplex but present in the PSI-LHCI-LHCII-ST2 supercomplex, in which the PsaL/PsaK/PsaA subunits undergo several conformational changes to strengthen the binding of PsaO in ST2. Furthermore, the PSI-LHCI module adopts a more compact configuration with shorter Mg-to-Mg distances between the chlorophylls, which may enhance the energy transfer efficiency from the peripheral antenna to the PSI core in ST2. Collectively, our work provides novel structural and functional insights into the mechanisms of light acclimation during state transitions in higher plants.
Collapse
Affiliation(s)
- Jianghao Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Shuaijiabin Chen
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China; State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Weijun Lin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chao Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Chengxu Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Dexian Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - SenFang Sui
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China; State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China.
| |
Collapse
|
19
|
Leverne L, Roach T, Perreau F, Maignan F, Krieger-Liszkay A. Increased drought resistance in state transition mutants is linked to modified plastoquinone pool redox state. PLANT, CELL & ENVIRONMENT 2023; 46:3737-3747. [PMID: 37614199 DOI: 10.1111/pce.14695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Identifying traits that exhibit improved drought resistance is highly important to cope with the challenges of predicted climate change. We investigated the response of state transition mutants to drought. Compared with the wild type, state transition mutants were less affected by drought. Photosynthetic parameters in leaves probed by chlorophyll fluorescence confirmed that mutants possess a more reduced plastoquinone (PQ) pool, as expected due to the absence of state transitions. Seedlings of the mutants showed an enhanced growth of the primary root and more lateral root formation. The photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, leading to an oxidised PQ pool, inhibited primary root growth in wild type and mutants, while the cytochrome b6 f complex inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone, leading to a reduced PQ pool, stimulated root growth. A more reduced state of the PQ pool was associated with a slight but significant increase in singlet oxygen production. Singlet oxygen may trigger a, yet unknown, signalling cascade promoting root growth. We propose that photosynthetic mutants with a deregulated ratio of photosystem II to photosystem I activity can provide a novel path for improving crop drought resistance.
Collapse
Affiliation(s)
- Lucas Leverne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thomas Roach
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - François Perreau
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles, France
| | - Fabienne Maignan
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Etherington RD, Bailey M, Boyer JB, Armbruster L, Cao X, Coates JC, Meinnel T, Wirtz M, Giglione C, Gibbs DJ. Nt-acetylation-independent turnover of SQUALENE EPOXIDASE 1 by Arabidopsis DOA10-like E3 ligases. PLANT PHYSIOLOGY 2023; 193:2086-2104. [PMID: 37427787 PMCID: PMC10602611 DOI: 10.1093/plphys/kiad406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
The acetylation-dependent (Ac/)N-degron pathway degrades proteins through recognition of their acetylated N-termini (Nt) by E3 ligases called Ac/N-recognins. To date, specific Ac/N-recognins have not been defined in plants. Here we used molecular, genetic, and multiomics approaches to characterize potential roles for Arabidopsis (Arabidopsis thaliana) DEGRADATION OF ALPHA2 10 (DOA10)-like E3 ligases in the Nt-acetylation-(NTA)-dependent turnover of proteins at global- and protein-specific scales. Arabidopsis has two endoplasmic reticulum (ER)-localized DOA10-like proteins. AtDOA10A, but not the Brassicaceae-specific AtDOA10B, can compensate for loss of yeast (Saccharomyces cerevisiae) ScDOA10 function. Transcriptome and Nt-acetylome profiling of an Atdoa10a/b RNAi mutant revealed no obvious differences in the global NTA profile compared to wild type, suggesting that AtDOA10s do not regulate the bulk turnover of NTA substrates. Using protein steady-state and cycloheximide-chase degradation assays in yeast and Arabidopsis, we showed that turnover of ER-localized SQUALENE EPOXIDASE 1 (AtSQE1), a critical sterol biosynthesis enzyme, is mediated by AtDOA10s. Degradation of AtSQE1 in planta did not depend on NTA, but Nt-acetyltransferases indirectly impacted its turnover in yeast, indicating kingdom-specific differences in NTA and cellular proteostasis. Our work suggests that, in contrast to yeast and mammals, targeting of Nt-acetylated proteins is not a major function of DOA10-like E3 ligases in Arabidopsis and provides further insight into plant ERAD and the conservation of regulatory mechanisms controlling sterol biosynthesis in eukaryotes.
Collapse
Affiliation(s)
- Ross D Etherington
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Mark Bailey
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Jean-Baptiste Boyer
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Xulyu Cao
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Thierry Meinnel
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Carmela Giglione
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| |
Collapse
|
21
|
Okegawa Y. PCP Research Highlights: Regulatory Role of Three Important Post-Translational Modifications in Chloroplast Proteins. PLANT & CELL PHYSIOLOGY 2023; 64:1119-1123. [PMID: 37655986 DOI: 10.1093/pcp/pcad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Affiliation(s)
- Yuki Okegawa
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| |
Collapse
|
22
|
Liebers M, Hommel E, Grübler B, Danehl J, Offermann S, Pfannschmidt T. Photosynthesis in the Biomass Model Species Lemna minor Displays Plant-Conserved and Species-Specific Features. PLANTS (BASEL, SWITZERLAND) 2023; 12:2442. [PMID: 37447003 PMCID: PMC10361204 DOI: 10.3390/plants12132442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Lemnaceae are small freshwater plants with extraordinary high growth rates. We aimed to test whether this correlates with a more efficient photosynthesis, the primary energy source for growth. To this end, we compared photosynthesis properties of the duckweed Lemna minor and the terrestrial model plant Arabidopsis thaliana. Chlorophyll fluorescence analyses revealed high similarity in principle photosynthesis characteristics; however, Lemna exhibited a more effective light energy transfer into photochemistry and more stable photosynthesis parameters especially under high light intensities. Western immunoblot analyses of representative photosynthesis proteins suggested potential post-translational modifications in Lemna proteins that are possibly connected to this. Phospho-threonine phosphorylation patterns of thylakoid membrane proteins displayed a few differences between the two species. However, phosphorylation-dependent processes in Lemna such as photosystem II antenna association and the recovery from high-light-induced photoinhibition were not different from responses known from terrestrial plants. We thus hypothesize that molecular differences in Lemna photosynthesis proteins are associated with yet unidentified mechanisms that improve photosynthesis and growth efficiencies. We also developed a high-magnification video imaging approach for Lemna multiplication which is useful to assess the impact of external factors on Lemna photosynthesis and growth.
Collapse
Affiliation(s)
- Monique Liebers
- Pflanzenphysiologie, Institut für Botanik, Naturwissenschaftliche Fakultät, Gottfried-Wilhelm-Leibniz-Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Elisabeth Hommel
- Pflanzenphysiologie, Institut für Botanik, Naturwissenschaftliche Fakultät, Gottfried-Wilhelm-Leibniz-Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Björn Grübler
- Pflanzenphysiologie, Institut für Botanik, Naturwissenschaftliche Fakultät, Gottfried-Wilhelm-Leibniz-Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jakob Danehl
- Pflanzenphysiologie, Institut für Botanik, Naturwissenschaftliche Fakultät, Gottfried-Wilhelm-Leibniz-Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Sascha Offermann
- Pflanzenphysiologie, Institut für Botanik, Naturwissenschaftliche Fakultät, Gottfried-Wilhelm-Leibniz-Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Pfannschmidt
- Pflanzenphysiologie, Institut für Botanik, Naturwissenschaftliche Fakultät, Gottfried-Wilhelm-Leibniz-Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
23
|
Lee K, Back K. Escherichia coli RimI Encodes Serotonin N-Acetyltransferase Activity and Its Overexpression Leads to Enhanced Growth and Melatonin Biosynthesis. Biomolecules 2023; 13:908. [PMID: 37371488 DOI: 10.3390/biom13060908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Serotonin N-acetyltransferase (SNAT) functions as the penultimate or final enzyme in melatonin biosynthesis, depending on the substrate. The Escherichia coli orthologue of archaeal SNAT from Thermoplasma volcanium was identified as RimI (EcRimI), with 42% amino acid similarity to archaeal SNAT. EcRimI has been reported to be an N-acetyltransferase enzyme. Here, we investigated whether EcRimI also exhibits SNAT enzyme activity. To achieve this goal, we purified recombinant EcRimI and examined its SNAT enzyme kinetics. As expected, EcRimI showed SNAT activity toward various amine substrates including serotonin and 5-methoxytryptamine, with Km and Vmax values of 531 μM and 528 pmol/min/mg protein toward serotonin and 201 μM and 587 pmol/min/mg protein toward 5-methoxytryptamine, respectively. In contrast to the rimI mutant E. coli strain that showed no growth defect, the EcRimI overexpression strain exhibited a 2-fold higher growth rate than the control strain after 24 h incubation in nutrient-rich medium. The EcRimI overexpression strain produced more melatonin than the control strain in the presence of 5-methoxytryptamine. The enhanced growth effect of EcRimI overexpression was also observed under cadmium stress. The higher growth rate associated with EcRimI expression was attributed to increased protein N-acetyltransferase activity, increased synthesis of melatonin, or the combined effects of both.
Collapse
Affiliation(s)
- Kyungjin Lee
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoungwhan Back
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
24
|
Ivanauskaite A, Rantala M, Laihonen L, Konert MM, Schwenner N, Mühlenbeck JS, Finkemeier I, Mulo P. Loss of Chloroplast GNAT Acetyltransferases Results in Distinct Metabolic Phenotypes in Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:549-563. [PMID: 37026998 DOI: 10.1093/pcp/pcad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Acetylation is one of the most common chemical modifications found on a variety of molecules ranging from metabolites to proteins. Although numerous chloroplast proteins have been shown to be acetylated, the role of acetylation in the regulation of chloroplast functions has remained mainly enigmatic. The chloroplast acetylation machinery in Arabidopsis thaliana consists of eight General control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT)-family enzymes that catalyze both N-terminal and lysine acetylation of proteins. Additionally, two plastid GNATs have also been reported to be involved in the biosynthesis of melatonin. Here, we have characterized six plastid GNATs (GNAT1, GNAT2, GNAT4, GNAT6, GNAT7 and GNAT10) using a reverse genetics approach with an emphasis on the metabolomes and photosynthesis of the knock-out plants. Our results reveal the impact of GNAT enzymes on the accumulation of chloroplast-related compounds, such as oxylipins and ascorbate, and the GNAT enzymes also affect the accumulation of amino acids and their derivatives. Specifically, the amount of acetylated arginine and proline was significantly decreased in the gnat2 and gnat7 mutants, respectively, as compared to the wild-type Col-0 plants. Additionally, our results show that the loss of the GNAT enzymes results in increased accumulation of Rubisco and Rubisco activase (RCA) at the thylakoids. Nevertheless, the reallocation of Rubisco and RCA did not have consequent effects on carbon assimilation under the studied conditions. Taken together, our results show that chloroplast GNATs affect diverse aspects of plant metabolism and pave way for future research into the role of protein acetylation.
Collapse
Affiliation(s)
- Aiste Ivanauskaite
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Marjaana Rantala
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Laura Laihonen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Minna M Konert
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Naike Schwenner
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jens S Mühlenbeck
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
25
|
Lee K, Back K. Human Naa50 Shows Serotonin N-Acetyltransferase Activity, and Its Overexpression Enhances Melatonin Biosynthesis, Resulting in Osmotic Stress Tolerance in Rice. Antioxidants (Basel) 2023; 12:antiox12020319. [PMID: 36829878 PMCID: PMC9952165 DOI: 10.3390/antiox12020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
A new clade of serotonin N-acetyltransferase (SNAT), the penultimate enzyme in the melatonin biosynthetic pathway, has been reported in the archaeon Thermoplasma volcanium. The closest homolog of archaea SNAT in human was an N-alpha-acetyltransferase50 (Naa50). To determine whether human Naa50 (hNaa50) shows SNAT enzyme activity, we chemically synthesized and expressed the hNaa50 gene in Escherichia coli, followed by Ni2+ affinity purification. Purified recombinant hNaa50 showed SNAT activity (Km and Vmax values of 986 μM and 1800 pmol/min/mg protein, respectively). To assess its in vivo function, hNaa50 was overexpressed in rice (hNaa50-OE). The transgenic rice plants produced more melatonin than nontransgenic wild-type rice, indicating that hNaa50 is functionally coupled with melatonin biosynthesis. Due to its overproduction of melatonin, hNaa50-OE had a higher tolerance against osmotic stress than the wild type. Enhanced expression of the chaperone genes BIP1 and CNX in hNaa50-OE plants was responsible for the increased tolerance. It is concluded that hNaa50 harbors serotonin N-acetyltransferase enzyme activity in addition to its initial N-alpha-acetyltransferase, suggesting the bifunctionality of the hNaa50 enzyme toward serotonin and protein substrates. Consequently, ectopic overexpression of hNaa50 in rice enhanced melatonin synthesis, indicating that hNaa50 is in fact involved in melatonin biosynthesis.
Collapse
|
26
|
Pandey J, Devadasu E, Saini D, Dhokne K, Marriboina S, Raghavendra AS, Subramanyam R. Reversible changes in structure and function of photosynthetic apparatus of pea (Pisum sativum) leaves under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:60-74. [PMID: 36377283 DOI: 10.1111/tpj.16034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The effects of drought on photosynthesis have been extensively studied, whereas those on thylakoid organization are limited. We observed a significant decline in gas exchange parameters of pea (Pisum sativum) leaves under progressive drought stress. Chl a fluorescence kinetics revealed the reduction of photochemical efficiency of photosystem (PS)II and PSI. The non-photochemical quenching (NPQ) and the levels of PSII subunit PSBS increased. Furthermore, the light-harvesting complexes (LHCs) and some of the PSI and PSII core proteins were disassembled in drought conditions, whereas these complexes were reassociated during recovery. By contrast, the abundance of supercomplexes of PSII-LHCII and PSII dimer were reduced, whereas LHCII monomers increased following the change in the macro-organization of thylakoids. The stacks of thylakoids were loosely arranged in drought-affected plants, which could be attributed to changes in the supercomplexes of thylakoids. Severe drought stress caused a reduction of both LHCI and LHCII and a few reaction center proteins of PSI and PSII, indicating significant disorganization of the photosynthetic machinery. After 7 days of rewatering, plants recovered well, with restored chloroplast thylakoid structure and photosynthetic efficiency. The correlation of structural changes with leaf reactive oxygen species levels indicated that these changes were associated with the production of reactive oxygen species.
Collapse
Affiliation(s)
- Jayendra Pandey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepak Saini
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kunal Dhokne
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sureshbabu Marriboina
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
27
|
Dukic E, Gollan PJ, Grebe S, Paakkarinen V, Herdean A, Aro EM, Spetea C. The Arabidopsis thylakoid chloride channel ClCe regulates ATP availability for light-harvesting complex II protein phosphorylation. FRONTIERS IN PLANT SCIENCE 2022; 13:1050355. [PMID: 36483957 PMCID: PMC9722747 DOI: 10.3389/fpls.2022.1050355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Coping with changes in light intensity is challenging for plants, but well-designed mechanisms allow them to acclimate to most unpredicted situations. The thylakoid K+/H+ antiporter KEA3 and the voltage-dependent Cl- channel VCCN1 play important roles in light acclimation by fine-tuning electron transport and photoprotection. Good evidence exists that the thylakoid Cl- channel ClCe is involved in the regulation of photosynthesis and state transitions in conditions of low light. However, a detailed mechanistic understanding of this effect is lacking. Here we report that the ClCe loss-of-function in Arabidopsis thaliana results in lower levels of phosphorylated light-harvesting complex II (LHCII) proteins as well as lower levels of the photosystem I-LHCII complexes relative to wild type (WT) in low light conditions. The phosphorylation of the photosystem II core D1/D2 proteins was less affected either in low or high light conditions. In low light conditions, the steady-state levels of ATP synthase conductivity and of the total proton flux available for ATP synthesis were lower in ClCe loss-of-function mutants, but comparable to WT at standard and high light intensity. As a long-term acclimation strategy, expression of the ClCe gene was upregulated in WT plants grown in light-limiting conditions, but not in WT plants grown in standard light even when exposed for up to 8 h to low light. Taken together, these results suggest a role of ClCe in the regulation of the ATP synthase activity which under low light conditions impacts LHCII protein phosphorylation and state transitions.
Collapse
Affiliation(s)
- Emilija Dukic
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Peter J. Gollan
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Steffen Grebe
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Virpi Paakkarinen
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Andrei Herdean
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Eva-Mari Aro
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Pożoga M, Armbruster L, Wirtz M. From Nucleus to Membrane: A Subcellular Map of the N-Acetylation Machinery in Plants. Int J Mol Sci 2022; 23:ijms232214492. [PMID: 36430970 PMCID: PMC9692967 DOI: 10.3390/ijms232214492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
N-terminal acetylation (NTA) is an ancient protein modification conserved throughout all domains of life. N-terminally acetylated proteins are present in the cytosol, the nucleus, the plastids, mitochondria and the plasma membrane of plants. The frequency of NTA differs greatly between these subcellular compartments. While up to 80% of cytosolic and 20-30% of plastidic proteins are subject to NTA, NTA of mitochondrial proteins is rare. NTA alters key characteristics of proteins such as their three-dimensional structure, binding properties and lifetime. Since the majority of proteins is acetylated by five ribosome-bound N-terminal acetyltransferases (Nats) in yeast and humans, NTA was long perceived as an exclusively co-translational process in eukaryotes. The recent characterization of post-translationally acting plant Nats, which localize to the plasma membrane and the plastids, has challenged this view. Moreover, findings in humans, yeast, green algae and higher plants uncover differences in the cytosolic Nat machinery of photosynthetic and non-photosynthetic eukaryotes. These distinctive features of the plant Nat machinery might constitute adaptations to the sessile lifestyle of plants. This review sheds light on the unique role of plant N-acetyltransferases in development and stress responses as well as their evolution-driven adaptation to function in different cellular compartments.
Collapse
|
29
|
Rantala M, Ivanauskaite A, Laihonen L, Kanna SD, Ughy B, Mulo P. Chloroplast Acetyltransferase GNAT2 is Involved in the Organization and Dynamics of Thylakoid Structure. PLANT & CELL PHYSIOLOGY 2022; 63:1205-1214. [PMID: 35792507 PMCID: PMC9474947 DOI: 10.1093/pcp/pcac096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 05/28/2023]
Abstract
Higher plants acclimate to changes in light conditions by adjusting the thylakoid membrane ultrastructure. Additionally, excitation energy transfer between photosystem II (PSII) and photosystem I (PSI) is balanced in a process known as state transition. These modifications are mediated by reversible phosphorylation of Lhcb1 and Lhcb2 proteins in different pools of light-harvesting complex (LHCII) trimers. Our recent study demonstrated that chloroplast acetyltransferase NUCLEAR SHUTTLE INTERACTING (NSI)/GNAT2 (general control non-repressible 5 (GCN5)-related N-acetyltransferase 2) is also needed for the regulation of light harvesting, evidenced by the inability of the gnat2 mutant to perform state transitions although there are no defects in LHCII phosphorylation. Here, we show that despite contrasting phosphorylation states of LHCII, grana packing in the gnat2 and state transition 7 (stn7) mutants possesses similar features, as the thylakoid structure of the mutants does not respond to the shift from darkness to light, which is in striking contrast to wild type (Wt). Circular dichroism and native polyacrylamide gel electrophoresis analyses further revealed that the thylakoid protein complex organization of gnat2 and stn7 resembles each other, but differ from that of Wt. Also, the location of the phosphorylated Lhcb2 as well as the LHCII antenna within the thylakoid network in gnat2 mutant is different from that of Wt. In gnat2, the LHCII antenna remains largely in grana stacks, where the phosphorylated Lhcb2 is found in all LHCII trimer pools, including those associated with PSII. These results indicate that in addition to phosphorylation-mediated regulation through STN7, the GNAT2 enzyme is involved in the organization and dynamics of thylakoid structure, probably through the regulation of chloroplast protein acetylation.
Collapse
Affiliation(s)
- Marjaana Rantala
- Molecular Plant Biology, University of Turku, BioCity A, Tykistökatu 6, Turku, FI-20520, Finland
| | - Aiste Ivanauskaite
- Molecular Plant Biology, University of Turku, BioCity A, Tykistökatu 6, Turku, FI-20520, Finland
| | - Laura Laihonen
- Molecular Plant Biology, University of Turku, BioCity A, Tykistökatu 6, Turku, FI-20520, Finland
| | - Sai Divya Kanna
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged H-6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged H-6726, Hungary
| | - Bettina Ughy
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged H-6726, Hungary
| | | |
Collapse
|
30
|
Meinnel T. Tracking N-terminal protein processing from the Golgi to the chromatophore of a rhizarian amoeba. PLANT PHYSIOLOGY 2022; 189:1226-1231. [PMID: 35485189 PMCID: PMC9237673 DOI: 10.1093/plphys/kiac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/16/2022] [Indexed: 05/03/2023]
Abstract
Mass spectrometry analysis of protein processing in a photosynthetic rhizarian amoeba, Paulinella chromatophora, suggests a major trafficking route from the cytosol to the chromatophore via the Golgi.
Collapse
|
31
|
Schiphorst C, Achterberg L, Gómez R, Koehorst R, Bassi R, van Amerongen H, Dall’Osto L, Wientjes E. The role of light-harvesting complex I in excitation energy transfer from LHCII to photosystem I in Arabidopsis. PLANT PHYSIOLOGY 2022; 188:2241-2252. [PMID: 34893885 PMCID: PMC8968287 DOI: 10.1093/plphys/kiab579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 05/26/2023]
Abstract
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI-LHCI-LHCII supercomplex. The binding site(s) of the "additional" LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that "additional" LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.
Collapse
Affiliation(s)
- Christo Schiphorst
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Luuk Achterberg
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Rodrigo Gómez
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
| | - Rob Koehorst
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
- MicroSpectroscopy Research Facility, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
- MicroSpectroscopy Research Facility, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
| | | |
Collapse
|
32
|
Functional Characterization of Serotonin N-Acetyltransferase in Archaeon Thermoplasma volcanium. Antioxidants (Basel) 2022; 11:antiox11030596. [PMID: 35326246 PMCID: PMC8945778 DOI: 10.3390/antiox11030596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Serotonin N-acetyltransferase is the penultimate enzyme in the melatonin biosynthetic pathway that catalyzes serotonin into N-acetylserotonin. Many SNAT genes have been cloned and characterized from organisms ranging from bacteria to plants and mammals. However, to date, no SNAT gene has been identified from Archaea. In this study, three archaeal SNAT candidate genes were synthesized and expressed in Escherichia coli, and SNAT enzyme activity was measured using their purified recombinant proteins. Two SNAT candidate genes, from Methanoregulaceae (Archaea) and Pyrococcus furiosus, showed no SNAT enzyme activity, whereas a SNAT candidate gene from Thermoplasma volcanium previously named TvArd1 exhibited SNAT enzyme activity. The substrate affinity and the maximum reaction rate of TvSNAT toward serotonin were 621 μM and 416 pmol/min/mg protein, respectively. The highest amine substrate was tyramine, followed by tryptamine, serotonin, and 5-methoxytryptamine, which were similar to those of plant SNAT enzymes. Homologs of TvSNAT were found in many Archaea families. Ectopic overexpression of TvSNAT in rice resulted in increased melatonin content, antioxidant activity, and seed size in conjunction with the enhanced expression of seed size-related gene. This study is the first to report the discovery of SNAT gene in Archaea. Future research avenues include the cloning of TvSNAT orthologs in different phyla, and identification of their regulation and functions related to melatonin biosynthesis in living organisms.
Collapse
|
33
|
Wang L, Li X, Wang M, Ma X, Song F, Hu J, Liang W, Liang W. Carbon Metabolism and the ROS Scavenging System Participate in Nostoc flagelliforme's Adaptive Response to Dehydration Conditions through Protein Acetylation. J Proteome Res 2022; 21:482-493. [PMID: 35020403 DOI: 10.1021/acs.jproteome.1c00823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Acetylation represents an extensively occurring protein post-translational modification (PTM) that plays a key role in many cellular physiological and biochemical processes. However, studies on PTMs such as acetylation of lysine (LysAc) in cyanobacteria are still rare. In this study, a quantitative LysAc approach (acetylome) on the strains of Nostoc flagelliforme subjected to different dehydration treatments was conducted. We observed that starch contents were significantly accumulated due to dehydration treatments, and we identified 2474 acetylpeptides and 1060 acetylproteins based on acetylome analysis. Furthermore, an integrative analysis was performed on acetylome and nontargeted metabolism, and the results showed that many KEGG terms were overlapped for both omics analyses, including starch and sucrose metabolism, transporter activity, and carbon metabolism. In addition, time series clustering was analyzed, and some proteins related to carbon metabolism and the ROS scavenging system were significantly enriched in the list of differentially abundant acetylproteins (DAAPs). These protein expression levels were further tested by qPCR. A working model was finally proposed to show the biological roles of protein acetylation from carbon metabolism and the ROS scavenging system in response to dehydration in N. flagelliforme. We highlighted that LysAc was essential for the regulation of key metabolic enzymes in the dehydration stress response.
Collapse
Affiliation(s)
- Lingxia Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan 750021, P. R. China
| | - Xiaoxu Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Meng Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Xiaorong Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Fan Song
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Jinhong Hu
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Wangli Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Wenyu Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan 750021, P. R. China
| |
Collapse
|
34
|
Xia L, Kong X, Song H, Han Q, Zhang S. Advances in proteome-wide analysis of plant lysine acetylation. PLANT COMMUNICATIONS 2022; 3:100266. [PMID: 35059632 PMCID: PMC8760137 DOI: 10.1016/j.xplc.2021.100266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Lysine acetylation (LysAc) is a conserved and important post-translational modification (PTM) that plays a key role in plant physiological and metabolic processes. Based on advances in Lys-acetylated protein immunoenrichment and mass-spectrometric technology, LysAc proteomics studies have been performed in many species. Such studies have made substantial contributions to our understanding of plant LysAc, revealing that Lys-acetylated histones and nonhistones are involved in a broad spectrum of plant cellular processes. Here, we present an extensive overview of recent research on plant Lys-acetylproteomes. We provide in-depth insights into the characteristics of plant LysAc modifications and the mechanisms by which LysAc participates in cellular processes and regulates metabolism and physiology during plant growth and development. First, we summarize the characteristics of LysAc, including the properties of Lys-acetylated sites, the motifs that flank Lys-acetylated lysines, and the dynamic alterations in LysAc among different tissues and developmental stages. We also outline a map of Lys-acetylated proteins in the Calvin-Benson cycle and central carbon metabolism-related pathways. We then introduce some examples of the regulation of plant growth, development, and biotic and abiotic stress responses by LysAc. We discuss the interaction between LysAc and Nα-terminal acetylation and the crosstalk between LysAc and other PTMs, including phosphorylation and succinylation. Finally, we propose recommendations for future studies in the field. We conclude that LysAc of proteins plays an important role in the regulation of the plant life cycle.
Collapse
Affiliation(s)
- Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qingquan Han
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Huber M, Armbruster L, Etherington RD, De La Torre C, Hawkesford MJ, Sticht C, Gibbs DJ, Hell R, Wirtz M. Disruption of the N α-Acetyltransferase NatB Causes Sensitivity to Reductive Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 12:799954. [PMID: 35046984 PMCID: PMC8761761 DOI: 10.3389/fpls.2021.799954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
In Arabidopsis thaliana, the evolutionary conserved N-terminal acetyltransferase (Nat) complexes NatA and NatB co-translationally acetylate 60% of the proteome. Both have recently been implicated in the regulation of plant stress responses. While NatA mediates drought tolerance, NatB is required for pathogen resistance and the adaptation to high salinity and high osmolarity. Salt and osmotic stress impair protein folding and result in the accumulation of misfolded proteins in the endoplasmic reticulum (ER). The ER-membrane resident E3 ubiquitin ligase DOA10 targets misfolded proteins for degradation during ER stress and is conserved among eukaryotes. In yeast, DOA10 recognizes conditional degradation signals (Ac/N-degrons) created by NatA and NatB. Assuming that this mechanism is preserved in plants, the lack of Ac/N-degrons required for efficient removal of misfolded proteins might explain the sensitivity of NatB mutants to protein harming conditions. In this study, we investigate the response of NatB mutants to dithiothreitol (DTT) and tunicamycin (TM)-induced ER stress. We report that NatB mutants are hypersensitive to DTT but not TM, suggesting that the DTT hypersensitivity is caused by an over-reduction of the cytosol rather than an accumulation of unfolded proteins in the ER. In line with this hypothesis, the cytosol of NatB depleted plants is constitutively over-reduced and a global transcriptome analysis reveals that their reductive stress response is permanently activated. Moreover, we demonstrate that doa10 mutants are susceptible to neither DTT nor TM, ruling out a substantial role of DOA10 in ER-associated protein degradation (ERAD) in plants. Contrary to previous findings in yeast, our data indicate that N-terminal acetylation (NTA) does not inhibit ER targeting of a substantial amount of proteins in plants. In summary, we provide further evidence that NatB-mediated imprinting of the proteome is vital for the response to protein harming stress and rule out DOA10 as the sole recognin for substrates in the plant ERAD pathway, leaving the role of DOA10 in plants ambiguous.
Collapse
Affiliation(s)
- Monika Huber
- Centre for Organismal Studies, Molecular Biology of Plants Group, Heidelberg University, Heidelberg, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, Molecular Biology of Plants Group, Heidelberg University, Heidelberg, Germany
| | | | - Carolina De La Torre
- Institute of Clinical Chemistry, NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, Heidelberg, Germany
| | | | - Carsten Sticht
- Institute of Clinical Chemistry, NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, Heidelberg, Germany
| | - Daniel J. Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Rüdiger Hell
- Centre for Organismal Studies, Molecular Biology of Plants Group, Heidelberg University, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Molecular Biology of Plants Group, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
36
|
Hommel E, Liebers M, Offermann S, Pfannschmidt T. Effectiveness of Light-Quality and Dark-White Growth Light Shifts in Short-Term Light Acclimation of Photosynthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 12:615253. [PMID: 35046964 PMCID: PMC8761940 DOI: 10.3389/fpls.2021.615253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2021] [Indexed: 05/23/2023]
Abstract
Photosynthesis needs to run efficiently under permanently changing illumination. To achieve this, highly dynamic acclimation processes optimize photosynthetic performance under a variety of rapidly changing light conditions. Such acclimation responses are acting by a complex interplay of reversible molecular changes in the photosynthetic antenna or photosystem assemblies which dissipate excess energy and balance uneven excitation between the two photosystems. This includes a number of non-photochemical quenching processes including state transitions and photosystem II remodeling. In the laboratory such processes are typically studied by selective illumination set-ups. Two set-ups known to be effective in a highly similar manner are (i) light quality shifts (inducing a preferential excitation of one photosystem over the other) or (ii) dark-light shifts (inducing a general off-on switch of the light harvesting machinery). Both set-ups result in similar effects on the plastoquinone redox state, but their equivalence in induction of photosynthetic acclimation responses remained still open. Here, we present a comparative study in which dark-light and light-quality shifts were applied to samples of the same growth batches of plants. Both illumination set-ups caused comparable effects on the phosphorylation of LHCII complexes and, hence, on the performance of state transitions, but generated different effects on the degree of state transitions and the formation of PSII super-complexes. The two light set-ups, thus, are not fully equivalent in their physiological effectiveness potentially leading to different conclusions in mechanistic models of photosynthetic acclimation. Studies on the regulation of photosynthetic light acclimation, therefore, requires to regard the respective illumination test set-up as a critical parameter that needs to be considered in the discussion of mechanistic and regulatory aspects in this subject.
Collapse
Affiliation(s)
- Elisabeth Hommel
- Pflanzenphysiologie, Institut für Biologie, Universität Leipzig, Leipzig, Germany
| | - Monique Liebers
- Molekulare Pflanzenphysiologie, Institut für Pflanzenwissenschaften und Mikrobiologie, Universität Hamburg, Hamburg, Germany
| | - Sascha Offermann
- Pflanzenphysiologie, Institut für Botanik, Naturwissenschaftliche Fakultät, Leibniz-Universität Hannover, Hanover, Germany
| | - Thomas Pfannschmidt
- Pflanzenphysiologie, Institut für Botanik, Naturwissenschaftliche Fakultät, Leibniz-Universität Hannover, Hanover, Germany
| |
Collapse
|
37
|
van Wijk KJ, Leppert T, Sun Q, Boguraev SS, Sun Z, Mendoza L, Deutsch EW. The Arabidopsis PeptideAtlas: Harnessing worldwide proteomics data to create a comprehensive community proteomics resource. THE PLANT CELL 2021; 33:3421-3453. [PMID: 34411258 PMCID: PMC8566204 DOI: 10.1093/plcell/koab211] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
We developed a resource, the Arabidopsis PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/), to solve central questions about the Arabidopsis thaliana proteome, such as the significance of protein splice forms and post-translational modifications (PTMs), or simply to obtain reliable information about specific proteins. PeptideAtlas is based on published mass spectrometry (MS) data collected through ProteomeXchange and reanalyzed through a uniform processing and metadata annotation pipeline. All matched MS-derived peptide data are linked to spectral, technical, and biological metadata. Nearly 40 million out of ∼143 million MS/MS (tandem MS) spectra were matched to the reference genome Araport11, identifying ∼0.5 million unique peptides and 17,858 uniquely identified proteins (only isoform per gene) at the highest confidence level (false discovery rate 0.0004; 2 non-nested peptides ≥9 amino acid each), assigned canonical proteins, and 3,543 lower-confidence proteins. Physicochemical protein properties were evaluated for targeted identification of unobserved proteins. Additional proteins and isoforms currently not in Araport11 were identified that were generated from pseudogenes, alternative start, stops, and/or splice variants, and small Open Reading Frames; these features should be considered when updating the Arabidopsis genome. Phosphorylation can be inspected through a sophisticated PTM viewer. PeptideAtlas is integrated with community resources including TAIR, tracks in JBrowse, PPDB, and UniProtKB. Subsequent PeptideAtlas builds will incorporate millions more MS/MS data.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, USA
| | - Sascha S Boguraev
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| |
Collapse
|
38
|
Longoni FP, Goldschmidt-Clermont M. Thylakoid Protein Phosphorylation in Chloroplasts. PLANT & CELL PHYSIOLOGY 2021; 62:1094-1107. [PMID: 33768241 DOI: 10.1093/pcp/pcab043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Because of their abundance and extensive phosphorylation, numerous thylakoid proteins stand out amongst the phosphoproteins of plants and algae. In particular, subunits of light-harvesting complex II (LHCII) and of photosystem II (PSII) are dynamically phosphorylated and dephosphorylated in response to light conditions and metabolic demands. These phosphorylations are controlled by evolutionarily conserved thylakoid protein kinases and counteracting protein phosphatases, which have distinct but partially overlapping substrate specificities. The best characterized are the kinases STATE TRANSITION 7 (STN7/STT7) and STATE TRANSITION 8 (STN8), and the antagonistic phosphatases PROTEIN PHOSPHATASE 1/THYLAKOID-ASSOCIATED PHOSPHATASE 38 (PPH1/TAP38) and PHOTOSYSTEM II CORE PHOSPHATASE (PBCP). The phosphorylation of LHCII is mainly governed by STN7 and PPH1/TAP38 in plants. LHCII phosphorylation is essential for state transitions, a regulatory feedback mechanism that controls the allocation of this antenna to either PSII or PSI, and thus maintains the redox balance of the electron transfer chain. Phosphorylation of several core subunits of PSII, regulated mainly by STN8 and PBCP, correlates with changes in thylakoid architecture, the repair cycle of PSII after photodamage as well as regulation of light harvesting and of alternative routes of photosynthetic electron transfer. Other kinases, such as the PLASTID CASEIN KINASE II (pCKII), also intervene in thylakoid protein phosphorylation and take part in the chloroplast kinase network. While some features of thylakoid phosphorylation were conserved through the evolution of photosynthetic eukaryotes, others have diverged in different lineages possibly as a result of their adaptation to varied environments.
Collapse
Affiliation(s)
- Fiamma Paolo Longoni
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | | |
Collapse
|
39
|
Krämer M, Kunz HH. Indirect Export of Reducing Equivalents From the Chloroplast to Resupply NADP for C 3 Photosynthesis-Growing Importance for Stromal NAD(H)? FRONTIERS IN PLANT SCIENCE 2021; 12:719003. [PMID: 34745158 PMCID: PMC8564385 DOI: 10.3389/fpls.2021.719003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/23/2021] [Indexed: 05/06/2023]
Abstract
Plant productivity greatly relies on a flawless concerted function of the two photosystems (PS) in the chloroplast thylakoid membrane. While damage to PSII can be rapidly resolved, PSI repair is complex and time-consuming. A major threat to PSI integrity is acceptor side limitation e.g., through a lack of stromal NADP ready to accept electrons from PSI. This situation can occur when oscillations in growth light and temperature result in a drop of CO2 fixation and concomitant NADPH consumption. Plants have evolved a plethora of pathways at the thylakoid membrane but also in the chloroplast stroma to avoid acceptor side limitation. For instance, reduced ferredoxin can be recycled in cyclic electron flow or reducing equivalents can be indirectly exported from the organelle via the malate valve, a coordinated effort of stromal malate dehydrogenases and envelope membrane transporters. For a long time, the NADP(H) was assumed to be the only nicotinamide adenine dinucleotide coenzyme to participate in diurnal chloroplast metabolism and the export of reductants via this route. However, over the last years several independent studies have indicated an underappreciated role for NAD(H) in illuminated leaf plastids. In part, it explains the existence of the light-independent NAD-specific malate dehydrogenase in the stroma. We review the history of the malate valve and discuss the potential role of stromal NAD(H) for the plant survival under adverse growth conditions as well as the option to utilize the stromal NAD(H) pool to mitigate PSI damage.
Collapse
Affiliation(s)
| | - Hans-Henning Kunz
- Department I, Plant Biochemistry and Physiology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
40
|
Mazur R, Mostowska A, Kowalewska Ł. How to Measure Grana - Ultrastructural Features of Thylakoid Membranes of Plant Chloroplasts. FRONTIERS IN PLANT SCIENCE 2021; 12:756009. [PMID: 34691132 PMCID: PMC8527009 DOI: 10.3389/fpls.2021.756009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/09/2021] [Indexed: 06/11/2023]
Abstract
Granum is a basic structural unit of the thylakoid membrane network of plant chloroplasts. It is composed of multiple flattened membranes forming a stacked arrangement of a cylindrical shape. Grana membranes are composed of lipids and tightly packed pigment-protein complexes whose primary role is the catalysis of photosynthetic light reactions. These membranes are highly dynamic structures capable of adapting to changing environmental conditions by fine-tuning photochemical efficiency, manifested by the structural reorganization of grana stacks. Due to a nanometer length scale of the structural granum features, the application of high-resolution electron microscopic techniques is essential for a detailed analysis of the granum architecture. This mini-review overviews recent approaches to quantitative grana structure analyses from electron microscopy data, highlighting the basic manual measurements and semi-automated workflows. We outline and define structural parameters used by different authors, for instance, granum height and diameter, thylakoid thickness, end-membrane length, Stacking Repeat Distance, and Granum Lateral Irregularity. This article also presents insights into efficient and effective measurements of grana stacks visualized on 2D micrographs. The information on how to correctly interpret obtained data, taking into account the 3D nature of grana stacks projected onto 2D space of electron micrograph, is also given. Grana ultrastructural observations reveal key features of this intriguing membrane arrangement, broadening our knowledge of the thylakoid network's remarkable plasticity.
Collapse
Affiliation(s)
- Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
41
|
Messant M, Krieger-Liszkay A, Shimakawa G. Dynamic Changes in Protein-Membrane Association for Regulating Photosynthetic Electron Transport. Cells 2021; 10:cells10051216. [PMID: 34065690 PMCID: PMC8155901 DOI: 10.3390/cells10051216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023] Open
Abstract
Photosynthesis has to work efficiently in contrasting environments such as in shade and full sun. Rapid changes in light intensity and over-reduction of the photosynthetic electron transport chain cause production of reactive oxygen species, which can potentially damage the photosynthetic apparatus. Thus, to avoid such damage, photosynthetic electron transport is regulated on many levels, including light absorption in antenna, electron transfer reactions in the reaction centers, and consumption of ATP and NADPH in different metabolic pathways. Many regulatory mechanisms involve the movement of protein-pigment complexes within the thylakoid membrane. Furthermore, a certain number of chloroplast proteins exist in different oligomerization states, which temporally associate to the thylakoid membrane and modulate their activity. This review starts by giving a short overview of the lipid composition of the chloroplast membranes, followed by describing supercomplex formation in cyclic electron flow. Protein movements involved in the various mechanisms of non-photochemical quenching, including thermal dissipation, state transitions and the photosystem II damage–repair cycle are detailed. We highlight the importance of changes in the oligomerization state of VIPP and of the plastid terminal oxidase PTOX and discuss the factors that may be responsible for these changes. Photosynthesis-related protein movements and organization states of certain proteins all play a role in acclimation of the photosynthetic organism to the environment.
Collapse
Affiliation(s)
- Marine Messant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France;
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France;
- Correspondence:
| | - Ginga Shimakawa
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan;
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
42
|
Giglione C, Meinnel T. Evolution-Driven Versatility of N Terminal Acetylation in Photoautotrophs. TRENDS IN PLANT SCIENCE 2021; 26:375-391. [PMID: 33384262 DOI: 10.1016/j.tplants.2020.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
N terminal protein α-acetylation (NTA) is a pervasive protein modification that has recently attracted renewed interest. Early studies on NTA were mostly conducted in yeast and metazoans, providing a detailed portrait of the modification, which was indirectly applied to all eukaryotes. However, new findings originating from photosynthetic organisms have expanded our knowledge of this modification, revealing strong similarities as well as idiosyncratic features. Here, we review the most recent advances on NTA and its dedicated machinery in photosynthetic organisms. We discuss the cytosolic and unique plastid NTA machineries and their critical biological roles in development, stress responses, protein translocation, and stability. These new findings suggest that the multitasking plastid and cytosolic machineries evolved to support the specific needs of photoautotrophs.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
43
|
Lee HY, Back K. Melatonin Regulates Chloroplast Protein Quality Control via a Mitogen-Activated Protein Kinase Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10040511. [PMID: 33806011 PMCID: PMC8064490 DOI: 10.3390/antiox10040511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Serotonin N-acetyltransferase 1 (SNAT1), the penultimate enzyme for melatonin biosynthesis has shown N-acetyltransferase activity toward multiple substrates, including histones, serotonin, and plastid proteins. Under two different light conditions such as 50 or 100 μmol m−2 s−1, a SNAT1-knockout (snat1) mutant of Arabidopsis thaliana ecotype Columbia (Col-0) exhibited small size phenotypes relative over wild-type (WT) Arabidopsis Col-0. Of note, the small phenotype is stronger when growing at the 50 μmol m−2 s−1, exhibiting a dwarfism phenotype and delayed flowering. The snat1 Arabidopsis Col-0 accumulated less starch than the WT Col-0. Moreover, snat1 exhibited lower Lhcb1, Lhcb4, and RBCL protein levels, compared with the WT Col-0, but no changes in the corresponding transcripts, suggesting the involvement of melatonin in chloroplast protein quality control (CPQC). Accordingly, caseinolytic protease (Clp) and chloroplast heat shock proteins (CpHSPs), two key proteins involved in CPQC, as well as ROS defense were suppressed in snat1. In contrast, exogenous melatonin treatment induced expression of Clp, CpHSP, APX1, and GST, but not other growth-related genes such as DWF4, KS, and IAA1. Finally, the induction of ClpR1, APX1, and GST1 in response to melatonin was inhibited in the mitogen-activated protein kinase (MAPK) knockdown Arabidopsis (mpk3/6), suggesting that melatonin-mediated CPQC was mediated, in part, by the MAPK signaling cascade. These results suggest that melatonin is involved in CPQC, which plays a pivotal role in starch synthesis in plants.
Collapse
|
44
|
Barajas-Lopez JDD, Tiwari A, Zarza X, Shaw MW, Pascual JS, Punkkinen M, Bakowska JC, Munnik T, Fujii H. EARLY RESPONSE TO DEHYDRATION 7 Remodels Cell Membrane Lipid Composition during Cold Stress in Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 62:80-91. [PMID: 33165601 DOI: 10.1093/pcp/pcaa139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/24/2020] [Indexed: 05/12/2023]
Abstract
Plants adjust to unfavorable conditions by altering physiological activities, such as gene expression. Although previous studies have identified multiple stress-induced genes, the function of many genes during the stress responses remains unclear. Expression of ERD7 (EARLY RESPONSE TO DEHYDRATION 7) is induced in response to dehydration. Here, we show that ERD7 plays essential roles in both plant stress responses and development. In Arabidopsis, ERD7 protein accumulated under various stress conditions, including exposure to low temperature. A triple mutant of Arabidopsis lacking ERD7 and two closely related homologs had an embryonic lethal phenotype, whereas a mutant lacking the two homologs and one ERD7 allele had relatively round leaves, indicating that the ERD7 gene family has essential roles in development. Moreover, the importance of the ERD7 family in stress responses was evidenced by the susceptibility of the mutant lines to cold stress. ERD7 protein was found to bind to several, but not all, negatively charged phospholipids and was associated with membranes. Lipid components and cold-induced reduction in PIP2 in the mutant line were altered relative to wild type. Furthermore, membranes from the mutant line had reduced fluidity. Taken together, ERD7 and its homologs are important for plant stress responses and development and associated with the modification in membrane lipid composition.
Collapse
Affiliation(s)
| | - Arjun Tiwari
- Molecular Plant Biology Unit, Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Xavier Zarza
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, Amsterdam, XH 1098, Netherlands
| | - Molly W Shaw
- Department of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jes S Pascual
- Molecular Plant Biology Unit, Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Matleena Punkkinen
- Molecular Plant Biology Unit, Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Joanna C Bakowska
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywod, IL 60153, USA
| | - Teun Munnik
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, Amsterdam, XH 1098, Netherlands
| | - Hiroaki Fujii
- Molecular Plant Biology Unit, Department of Biochemistry, University of Turku, Turku 20014, Finland
| |
Collapse
|
45
|
The Arabidopsis NOT4A E3 ligase promotes PGR3 expression and regulates chloroplast translation. Nat Commun 2021; 12:251. [PMID: 33431870 PMCID: PMC7801604 DOI: 10.1038/s41467-020-20506-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Chloroplast function requires the coordinated action of nuclear- and chloroplast-derived proteins, including several hundred nuclear-encoded pentatricopeptide repeat (PPR) proteins that regulate plastid mRNA metabolism. Despite their large number and importance, regulatory mechanisms controlling PPR expression are poorly understood. Here we show that the Arabidopsis NOT4A ubiquitin-ligase positively regulates the expression of PROTON GRADIENT REGULATION 3 (PGR3), a PPR protein required for translating several thylakoid-localised photosynthetic components and ribosome subunits within chloroplasts. Loss of NOT4A function leads to a strong depletion of cytochrome b6f and NAD(P)H dehydrogenase (NDH) complexes, as well as plastid 30 S ribosomes, which reduces mRNA translation and photosynthetic capacity, causing pale-yellow and slow-growth phenotypes. Quantitative transcriptome and proteome analysis of the not4a mutant reveal it lacks PGR3 expression, and that its molecular defects resemble those of a pgr3 mutant. Furthermore, we show that normal plastid function is restored to not4a through transgenic PGR3 expression. Our work identifies NOT4A as crucial for ensuring robust photosynthetic function during development and stress-response, through promoting PGR3 production and chloroplast translation.
Collapse
|
46
|
Zhou Y, Gan X, Viñegra de la Torre N, Neumann U, Albani MC. Beyond flowering time: diverse roles of an APETALA2-like transcription factor in shoot architecture and perennial traits. THE NEW PHYTOLOGIST 2021; 229:444-459. [PMID: 32745288 DOI: 10.1111/nph.16839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/22/2020] [Indexed: 05/11/2023]
Abstract
Polycarpic perennials maintain vegetative growth after flowering. PERPETUAL FLOWERING 1 (PEP1), the orthologue of FLOWERING LOCUS C (FLC) in Arabis alpina regulates flowering and contributes to polycarpy in a vernalisation-dependent pathway. pep1 mutants do not require vernalisation to flower and have reduced return to vegetative growth as all of their axillary branches become reproductive. To identify additional genes that regulate flowering and contribute to perennial traits we performed an enhancer screen of pep1. Using mapping-by-sequencing, we cloned a mutant (enhancer of pep1-055, eop055), performed transcriptome analysis and physiologically characterised the role it plays on perennial traits in an introgression line carrying the eop055 mutation and a functional PEP1 wild-type allele. eop055 flowers earlier than pep1 and carries a lesion in the A. alpina orthologue of the APETALA2 (AP2)-like gene, TARGET OF EAT2 (AaTOE2). AaTOE2 is a floral repressor and acts upstream of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 5 (AaSPL5). In the wild-type background, which requires cold treatment to flower, AaTOE2 regulates the age-dependent response to vernalisation. In addition, AaTOE2 ensures the maintenance of vegetative growth by delaying axillary meristem initiation and repressing flowering of axillary buds before and during cold exposure. We conclude that AaTOE2 is instrumental in fine tuning different developmental traits in the perennial life cycle of A. alpina.
Collapse
Affiliation(s)
- Yanhao Zhou
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, Cologne, 50674, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences, "From Complex Traits towards Synthetic Modules", Düsseldorf, 40225, Germany
| | - Xiangchao Gan
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, Cologne, 50674, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, Cologne, 50674, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences, "From Complex Traits towards Synthetic Modules", Düsseldorf, 40225, Germany
| |
Collapse
|
47
|
Rantala M, Rantala S, Aro EM. Composition, phosphorylation and dynamic organization of photosynthetic protein complexes in plant thylakoid membrane. Photochem Photobiol Sci 2021; 19:604-619. [PMID: 32297616 DOI: 10.1039/d0pp00025f] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The photosystems (PS), catalyzing the photosynthetic reactions of higher plants, are unevenly distributed in the thylakoid membrane: PSII, together with its light harvesting complex (LHC)II, is enriched in the appressed grana stacks, while PSI-LHCI resides in the non-appressed stroma thylakoids, which wind around the grana stacks. The two photosystems interact in a third membrane domain, the grana margins, which connect the grana and stroma thylakoids and allow the loosely bound LHCII to serve as an additional antenna for PSI. The light harvesting is balanced by reversible phosphorylation of LHCII proteins. Nevertheless, light energy also damages PSII and the repair process is regulated by reversible phosphorylation of PSII core proteins. Here, we discuss the detailed composition and organization of PSII-LHCII and PSI-LHCI (super)complexes in the thylakoid membrane of angiosperm chloroplasts and address the role of thylakoid protein phosphorylation in dynamics of the entire protein complex network of the photosynthetic membrane. Finally, we scrutinize the phosphorylation-dependent dynamics of the protein complexes in context of thylakoid ultrastructure and present a model on the reorganization of the entire thylakoid network in response to changes in thylakoid protein phosphorylation.
Collapse
Affiliation(s)
- Marjaana Rantala
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520, Turku, Finland
| | - Sanna Rantala
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520, Turku, Finland.
| |
Collapse
|
48
|
Mattila H, Khorobrykh S, Hakala-Yatkin M, Havurinne V, Kuusisto I, Antal T, Tyystjärvi T, Tyystjärvi E. Action spectrum of the redox state of the plastoquinone pool defines its function in plant acclimation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1088-1104. [PMID: 32889743 DOI: 10.1111/tpj.14983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 05/09/2023]
Abstract
The plastoquinone (PQ) pool mediates electron flow and regulates photoacclimation in plants. Here we report the action spectrum of the redox state of the PQ pool in Arabidopsis thaliana, showing that 470-500, 560 or 650-660 nm light favors Photosystem II (PSII) and reduces the PQ pool, whereas 420-440, 520 or 690 nm light favors Photosystem I (PSI) and oxidizes PQ. These data were used to construct a model predicting the redox state of PQ from the spectrum of any polychromatic light source. Moderate reduction of the PQ pool induced transition to light state 2, whereas state 1 required highly oxidized PQ. In low-intensity PSI light, PQ was more oxidized than in darkness and became gradually reduced with light intensity, while weak PSII light strongly reduced PQ. Natural sunlight was found to favor PSI, which enables plants to use the redox state of the PQ pool as a measure of light intensity.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, FI-20014, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, FI-20014, Finland
| | - Marja Hakala-Yatkin
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, FI-20014, Finland
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, FI-20014, Finland
| | - Iiris Kuusisto
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, FI-20014, Finland
| | - Taras Antal
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, FI-20014, Finland
- Department of Botany and Plant Ecology, Pskov State University, Pskov, 180000, Russia
| | - Taina Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, FI-20014, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, FI-20014, Finland
| |
Collapse
|
49
|
Rubisco lysine acetylation occurs at very low stoichiometry in mature Arabidopsis leaves: implications for regulation of enzyme function. Biochem J 2020; 477:3885-3896. [PMID: 32959870 PMCID: PMC7557146 DOI: 10.1042/bcj20200413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022]
Abstract
Multiple studies have shown ribulose-1,5-bisphosphate carboxylase/oxygenase (E.C. 4.1.1.39; Rubisco) to be subject to Lys-acetylation at various residues; however, opposing reports exist about the biological significance of these post-translational modifications. One aspect of the Lys-acetylation that has not been addressed in plants generally, or with Rubisco specifically, is the stoichiometry at which these Lys-acetylation events occur. As a method to ascertain which Lys-acetylation sites on Arabidopsis Rubisco might be of regulatory importance to its catalytic function in the Calvin–Benson cycle, we purified Rubisco from leaves in both the day and night-time and performed independent mass spectrometry based methods to determine the stoichiometry of Rubisco Lys-acetylation events. The results indicate that Rubisco is acetylated at most Lys residues, but each acetylation event occurs at very low stoichiometry. Furthermore, in vitro treatments that increased the extent of Lys-acetylation on purified Rubisco had no effect on Rubisco maximal activity. Therefore, we are unable to confirm that Lys-acetylation at low stoichiometries can be a regulatory mechanism controlling Rubisco maximal activity. The results highlight the need for further use of stoichiometry measurements when determining the biological significance of reversible PTMs like acetylation.
Collapse
|
50
|
Rödiger A, Galonska J, Bergner E, Agne B, Helm S, Alseekh S, Fernie AR, Thieme D, Hoehenwarter W, Hause G, Pfannschmidt T, Baginsky S. Working day and night: plastid casein kinase 2 catalyses phosphorylation of proteins with diverse functions in light- and dark-adapted plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:546-558. [PMID: 32745315 DOI: 10.1111/tpj.14944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Casein kinase 2 is a ubiquitous protein kinase that has puzzled researchers for several decades because of its pleiotropic activity. Here, we set out to identify the in vivo targets of plastid casein kinase 2 (pCK2) in Arabidopsis thaliana. Survey phosphoproteome analyses were combined with targeted analyses with wild-type and pck2 knockdown mutants to identify potential pCK2 targets by their decreased phosphorylation state in the mutant. To validate potential substrates, we complemented the pck2 knockdown line with tandem affinity tag (TAP)-tagged pCK2 and found it to restore growth parameters, as well as many, but not all, putative pCK2-dependent phosphorylation events. We further performed a targeted analysis at the end-of-night to increase the specificity of target protein identification. This analysis confirmed light-independent phosphorylation of several pCK2 target proteins. Based on the aforementioned data, we define a set of in vivo pCK2-targets that span different chloroplast functions, such as metabolism, transcription, translation and photosynthesis. The pleiotropy of pCK2 functions is also manifested by altered state transition kinetics during short-term acclimation and significant alterations in the mutant metabolism, supporting its function in photosynthetic regulation. Thus, our data expand our understanding on chloroplast phosphorylation networks and provide insights into kinase networks in the regulation of chloroplast functions.
Collapse
Affiliation(s)
- Anja Rödiger
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Charles Tanford Proteinzentrum, Kurt-Mothes-Str. 3a, Halle (Saale), 06120, Germany
| | - Johann Galonska
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Charles Tanford Proteinzentrum, Kurt-Mothes-Str. 3a, Halle (Saale), 06120, Germany
| | - Elena Bergner
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Charles Tanford Proteinzentrum, Kurt-Mothes-Str. 3a, Halle (Saale), 06120, Germany
| | - Birgit Agne
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Charles Tanford Proteinzentrum, Kurt-Mothes-Str. 3a, Halle (Saale), 06120, Germany
| | - Stefan Helm
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Charles Tanford Proteinzentrum, Kurt-Mothes-Str. 3a, Halle (Saale), 06120, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Potsdam, 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Potsdam, 14476, Germany
| | - Domenika Thieme
- Leibniz-Institut für Pflanzenbiochemie, Weinbergweg 3, Halle (Saale), 06120, Germany
| | - Wolfgang Hoehenwarter
- Leibniz-Institut für Pflanzenbiochemie, Weinbergweg 3, Halle (Saale), 06120, Germany
| | - Gerd Hause
- Biocentre, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, Halle (Saale), 06120, Germany
| | | | - Sacha Baginsky
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Charles Tanford Proteinzentrum, Kurt-Mothes-Str. 3a, Halle (Saale), 06120, Germany
| |
Collapse
|