1
|
Guo X, Yuan J, Zhang Y, Wu J, Wang X. Developmental landscape and asymmetric gene expression in the leaf vasculature of Brassica rapa revealed by single-cell transcriptome. HORTICULTURE RESEARCH 2025; 12:uhaf060. [PMID: 40271455 PMCID: PMC12017798 DOI: 10.1093/hr/uhaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/16/2025] [Indexed: 04/25/2025]
Abstract
Leaf vasculature not only acts as a channel for nutrients and signaling information but also influences leaf morphology. It consists of several distinct cell types with specialized functions. Cell type-specific characterizations based on single-cell RNA sequencing technology could aid in understanding the identities of vascular tissues and their roles in leaf morphogenesis in Brassica rapa. Here, we generated a single-cell transcriptome landscape of the Chinese cabbage leaf vasculature. A total of 12 cell clusters covering seven known cell types were identified. Different vascular cell types were characterized by distinct identities. The xylem parenchyma and companion cells exhibited an active expression pattern of amino acid metabolism genes. Tracheary elements and sieve elements were enriched in many genes related to cell wall biosynthesis, and the phloem parenchyma was enriched in many sugar transporter-encoding genes. Pseudo-time analyses revealed the developmental trajectories of the xylem and phloem and the potential roles of auxin and ethylene in xylem development. Furthermore, we identified key candidate regulators along the differentiation trajectory of the sieve elements and companion cells. Most of the homoeologous genes in the syntenic triads from the three subgenomes showed asymmetric gene expression patterns in different vascular cell types. Collectively, our study revealed that Chinese cabbage leaf vasculature cells had highly heterogeneous transcriptomes, providing new insights into the complex processes of leaf vasculature development in B. rapa leafy vegetables and other Brassica crops.
Collapse
Affiliation(s)
- Xinlei Guo
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jingping Yuan
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuanyuan Zhang
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Zhang L, Gao C, Gao Y, Yang H, Jia M, Wang X, Zhang B, Zhou Y. New insights into plant cell wall functions. J Genet Genomics 2025:S1673-8527(25)00122-5. [PMID: 40287129 DOI: 10.1016/j.jgg.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The plant cell wall is an extremely complicated natural nanoscale structure composed of cellulose microfibrils embedded in a matrix of noncellulosic polysaccharides, further reinforced by the phenolic compound lignins in some cell types. Such network formed by the interactions of multiscale polymers actually reflects functional form of cell wall to meet the requirements of plant cell functionalization. Therefore, how plants assemble cell wall functional structure is fundamental in plant biology and critical for crop trait formation and domestication as well. Due to the lack of effective analytical techniques to characterize this fundamental but complex network, it remains difficult to establish direct links between cell-wall genes and phenotypes. The roles of plant cell walls are often underestimated as indirect. Over the past decades, many genes involved in cell wall biosynthesis, modification, and remodeling have been identified. The application of a variety of state-of-the-art techniques has made it possible to reveal the fine cell wall networks and polymer interactions. Hence, many exciting advances in cell wall biology have been achieved in recent years. This review provides an updated overview of the mechanistic and conceptual insights in cell wall functionality, and prospects the opportunities and challenges in this field.
Collapse
Affiliation(s)
- Lanjun Zhang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengxu Gao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihong Gao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanlei Yang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meiru Jia
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohong Wang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yihua Zhou
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Kijima ST, Sasaki T, Kikushima Y, Inoue D, Sakamoto S, Kondo Y, Inagaki S, Yamaguchi M, Mitsuda N, Oda Y. Control of plasma membrane-associated actin polymerization specifies the pattern of the cell wall in xylem vessels. Nat Commun 2025; 16:1921. [PMID: 40011437 PMCID: PMC11865516 DOI: 10.1038/s41467-025-56866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/25/2025] [Indexed: 02/28/2025] Open
Abstract
Cell wall patterning is central to determining the shape and function of plant cells. Protoxylem and metaxylem vessel cells deposit banded and pitted cell walls, respectively, which enable their distinctive water transport capabilities. Here, we show that the pitted cell wall pattern in metaxylem vessels is specified by transcriptional control of actin polymerization. A newly isolated allele of KNOTTED-LIKE HOMEOBOX TRANSCRIPTION FACTOR 7 (KNAT7) was associated with the formation of banded cell walls in metaxylem vessels. Loss of KNAT7 caused misexpression of FORMIN HOMOLOGY DOMAIN CONTAINING PROTEIN11 (FH11) in the metaxylem, which in turn caused rearrangements of ROP GTPases and microtubules in banded patterns. FH11 function required its plasma membrane anchoring and actin polymerization activity. These results suggest that excessive actin polymerization at the plasma membrane abolishes the pitted cell wall formation and promotes banded cell wall formation in metaxylem vessels. This study unveils the importance of proper control of actin polymerization for cell wall pattern determination.
Collapse
Affiliation(s)
- Saku T Kijima
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero-Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Sasaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yuichiro Kikushima
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Daisuke Inoue
- Faculty of Design, Kyusyu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero-Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Soichi Inagaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero-Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
4
|
Maeda N, Aoki D, Fujiyasu S, Matsushita Y, Yoshida M, Hiraide H, Mitsuda H, Tobimatsu Y, Fukushima K. The distribution of monolignol glucosides coincides with lignification during the formation of compression wood in Pinus thunbergii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17209. [PMID: 39673723 PMCID: PMC11776043 DOI: 10.1111/tpj.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
The distributions of monolignol glucosides (MLGs) in compression and opposite woods of Pinus thunbergii were assessed using cryo-time-of-flight secondary ion mass spectrometry to investigate their involvement in lignification. p-Glucocoumaryl alcohol (PG) was identified in the region of the differentiating xylem adjacent to the cambial zone only in compression wood, whereas coniferin (CF) was similarly localized in both compression and opposite woods. Their distribution from the phloem to the xylem was evaluated by high-performance liquid chromatography (HPLC) using serial tangential sections. Variations in storage amounts of CF and PG in the stem of P. thunbergii agreed with lignification stages of the tracheid, supporting the idea that MLGs act as a storage and transportation form of lignin precursors. The imaging of monolignol (ML)-dependent active lignification sites using fluorescence-tagged MLs supported distinct distribution patterns of MLGs for lignification in compression and opposite woods. Methylation-thioacidolysis was applied to compression and opposite wood samples to examine the structural difference between the guaiacyl (G) and p-hydroxyphenyl (H) units in lignin. Most of the H units in compression wood were detected as lignin end groups via thioacidolysis. PG was detected in opposite wood by HPLC; however, the H unit was not detected by thioacidolysis. The differences in ML and MLG distributions, enzyme activity, and resultant lignin structures between the G and H units suggest the possibility of individual mechanisms regulating the heterogeneous structures of G and H unit in lignin.
Collapse
Affiliation(s)
- Naoki Maeda
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Dan Aoki
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Syunya Fujiyasu
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Yasuyuki Matsushita
- Institute of AgricultureTokyo University of Agriculture and TechnologyTokyo183‐8509Japan
| | - Masato Yoshida
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Hideto Hiraide
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
- Research Institute for Sustainable HumanosphereKyoto UniversityGokashoUji611‐0011Japan
| | - Hayato Mitsuda
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable HumanosphereKyoto UniversityGokashoUji611‐0011Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| |
Collapse
|
5
|
Tamadaddi C, Choi J, Ghasemi M, Kim SH, Gomez ED, Gomez EW, Anderson CT. NST3 induces ectopic transdifferentiation, forming secondary walls with diverse patterns and composition in Arabidopsis thaliana. ANNALS OF BOTANY 2024; 134:1097-1111. [PMID: 39212164 PMCID: PMC11687626 DOI: 10.1093/aob/mcae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS The master transcription factor NAC SECONDARY WALL THICKENING PROMOTING FACTOR3 (NST3), also known as SND1, plays a pivotal role in regulating secondary cell wall (SCW) development in interfascicular and xylary fibres in Arabidopsis thaliana. Despite progress in understanding SCW assembly in xylem vessel-like cells, the mechanisms behind its assembly across different cell types remain unclear. Overexpression of NST3 or its homologue NST1 leads to reduced fertility, posing challenges for studying their impact on secondary wall formation. This study aimed to develop a tightly regulated dexamethasone (DEX)-inducible expression system for NST3 and NST1 to elucidate the structure and assembly of diverse SCWs. METHODS Using the DEX-inducible system, we characterized ectopically formed SCWs for their diverse patterns, mesoscale organization, cellulose microfibril orientation and molecular composition using spinning disc confocal microscopy, field emission scanning electron microscopy, vibrational sum-frequency generation spectroscopy, and histochemical staining and time-of-flight secondary ion mass spectrometry, respectively. KEY RESULTS Upon DEX treatment, NST3 and NST1 transgenic hypocotyls underwent time-dependent transdifferentiation, progressing from protoxylem-like to metaxylem-like cells. NST3-induced plants exhibited normal growth but had rough secondary wall surfaces with delaminating S2 and S3 layers. Mesoscale examination of induced SCWs in epidermal cells revealed that macrofibril thickness and orientation were comparable to xylem vessels, while wall thickness resembled that of interfascicular fibres. Additionally, induced epidermal cells formed SCWs with altered cellulose and lignin contents. CONCLUSIONS These findings suggest NST3 and/or NST1 induce SCWs with shared characteristics of both xylem and fibre-like cells forming loosely arranged cell wall layers and cellulose organized at multiple angles relative to the cell growth axis and with varied cellulose and lignin abundance. This inducible system opens avenues to explore ectopic SCWs for bioenergy and bioproducts, offering valuable insights into SCW patterning across diverse cell types and developmental stages.
Collapse
Affiliation(s)
- Chetana Tamadaddi
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for Lignocellulose Structure and Formation (CLSF), The Pennsylvania State University, University Park, PA 16802, USA
| | - Juseok Choi
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Masoud Ghasemi
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Seong H Kim
- Center for Lignocellulose Structure and Formation (CLSF), The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Enrique D Gomez
- Center for Lignocellulose Structure and Formation (CLSF), The Pennsylvania State University, University Park, PA 16802, USA
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Esther W Gomez
- Center for Lignocellulose Structure and Formation (CLSF), The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for Lignocellulose Structure and Formation (CLSF), The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Xue JY, McNair G, Watanabe Y, Kaplen MV, Guevara-Rozo S, Schuetz M, Schneider R, Mansfield SD, Samuels AL. COBRA-LIKE4 modulates cellulose synthase velocity and facilitates cellulose deposition in the secondary cell wall. PLANT PHYSIOLOGY 2024; 196:2531-2548. [PMID: 39230913 PMCID: PMC11852337 DOI: 10.1093/plphys/kiae469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Cellulose is a critical component of secondary cell walls (CWs) and woody tissues of plants. Cellulose synthase (CESA) complexes (CSCs) produce cellulose as they move within the plasma membrane, extruding glucan chains into the CW that coalesce and often crystallize into cellulose fibrils. Here we examine COBRA-LIKE4 (COBL4), a GPI-anchored protein on the outer leaflet of the plasma membrane that is required for normal cellulose deposition in secondary CWs. Characterization of the Arabidopsis (Arabidopsis thaliana) cobl4 mutant alleles called irregular xylem6, irx6-2 and irx6-3, showed reduced α-cellulose content and lower crystallinity, supporting a role for COBL4 in maintaining cellulose quantity and quality. In live-cell imaging, mNeon Green-tagged CESA7 moved in the plasma membrane at higher speeds in the irx6-2 background compared to wild-type. To test conservation of COBL4 function between herbaceous and woody plants, poplar (Populus trichocarpa) COBL4 homologs PtCOBL4a and PtCOBL4b were transformed into, and rescued, the Arabidopsis irx6 mutants. Using the Arabidopsis secondary CW-inducible VND7-GR system to study poplar COBL4 dynamics, YFP-tagged PtCOBL4a localized to the plasma membrane in regions of high cellulose deposition in secondary CW bands. As predicted for a lipid-linked protein, COBL4 was more mobile in the plane of the plasma membrane than CESA7 or a control plasma membrane marker. Following programmed cell death, COBL4 anchored to the secondary CW bands. These data support a role for COBL4 as a modulator of cellulose organization in the secondary CW, influencing cellulose production, and CSC velocity at the plasma membrane.
Collapse
Affiliation(s)
- Jan Y Xue
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Grant McNair
- Department of Wood Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Wood Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Madison V Kaplen
- Department of Wood Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sydne Guevara-Rozo
- Department of Wood Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mathias Schuetz
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rene Schneider
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Shawn D Mansfield
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Wood Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
7
|
Pfaff SA, Wagner ER, Cosgrove DJ. The structure and interaction of polymers affects secondary cell wall banding patterns in Arabidopsis. THE PLANT CELL 2024; 36:4309-4322. [PMID: 39163271 PMCID: PMC11449099 DOI: 10.1093/plcell/koae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Xylem tracheary elements (TEs) synthesize patterned secondary cell walls (SCWs) to reinforce against the negative pressure of water transport. VASCULAR-RELATED NAC-DOMAIN 7 (VND7) induces differentiation, accompanied by cellulose, xylan, and lignin deposition into banded domains. To investigate the effect of polymer biosynthesis mutations on SCW patterning, we developed a method to induce tracheary element transdifferentiation of isolated protoplasts, by transient transformation with VND7. Our data showed that proper xylan elongation is necessary for distinct cellulose bands, cellulose-xylan interactions are essential for coincident polymer patterns, and cellulose deposition is needed to override the intracellular organization that yields unique xylan patterns. These data indicate that a properly assembled cell wall network acts as a scaffold to direct polymer deposition into distinctly banded domains. We describe the transdifferentiation of protoplasts into TEs, providing an avenue to study patterned SCW biosynthesis in a tissue-free environment and in various mutant backgrounds.
Collapse
Affiliation(s)
- Sarah A Pfaff
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Edward R Wagner
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Chaudhari AA, Sharma AM, Rastogi L, Dewangan BP, Sharma R, Singh D, Sah RK, Das S, Bhattacharjee S, Mellerowicz EJ, Pawar PAM. Modifying lignin composition and xylan O-acetylation induces changes in cell wall composition, extractability, and digestibility. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:73. [PMID: 38822388 PMCID: PMC11141020 DOI: 10.1186/s13068-024-02513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Lignin and xylan are important determinants of cell wall structure and lignocellulosic biomass digestibility. Genetic manipulations that individually modify either lignin or xylan structure improve polysaccharide digestibility. However, the effects of their simultaneous modifications have not been explored in a similar context. Here, both individual and combinatorial modification in xylan and lignin was studied by analysing the effect on plant cell wall properties, biotic stress responses and integrity sensing. RESULTS Arabidopsis plant co-harbouring mutation in FERULATE 5-HYDROXYLASE (F5H) and overexpressing Aspergillus niger acetyl xylan esterase (35S:AnAXE1) were generated and displayed normal growth attributes with intact xylem architecture. This fah1-2/35S:AnAXE1 cross was named as hyper G lignin and hypoacetylated (HrGHypAc) line. The HrGHypAc plants showed increased crystalline cellulose content with enhanced digestibility after chemical and enzymatic pre-treatment. Moreover, both parents and HrGHypAc without and after pre-treating with glucuronyl esterase and alpha glucuronidase exhibited an increase in xylose release after xylanase digestion as compared to wild type. The de-pectinated fraction in HrGHypAc displayed elevated levels of xylan and cellulose. Furthermore, the transcriptomic analysis revealed differential expression in cell wall biosynthetic, transcription factors and wall-associated kinases genes implying the role of lignin and xylan modification on cellular regulatory processes. CONCLUSIONS Simultaneous modification in xylan and lignin enhances cellulose content with improved saccharification efficiency. These modifications loosen cell wall complexity and hence resulted in enhanced xylose and xylobiose release with or without pretreatment after xylanase digestion in both parent and HrGHypAc. This study also revealed that the disruption of xylan and lignin structure is possible without compromising either growth and development or defense responses against Pseudomonas syringae infection.
Collapse
Affiliation(s)
- Aniket Anant Chaudhari
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Anant Mohan Sharma
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Lavi Rastogi
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Bhagwat Prasad Dewangan
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Raunak Sharma
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Deepika Singh
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Rajan Kumar Sah
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Shouvik Das
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Saikat Bhattacharjee
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre, Swedish University of Agricultural Sciences, Umea, Sweden
| | - Prashant Anupama-Mohan Pawar
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
9
|
Tian X, Ji M, You J, Zhang Y, Lindsey K, Zhang X, Tu L, Wang M. Synergistic interplay of redox homeostasis and polysaccharide synthesis promotes cotton fiber elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:405-422. [PMID: 38163320 DOI: 10.1111/tpj.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Cell polarity is the foundation of cell development and tissue morphogenesis. The investigation of polarized growth provides opportunities to gain profound insights into morphogenesis and tissue functionality in organisms. Currently, there are still many mysteries surrounding the mechanisms that regulate polarized cell growth. Cotton fiber cells serve as an excellent model for studying polarized growth, and provide important clues for unraveling the molecular mechanisms, signaling pathways, and regulatory networks of polarized growth. In this study, we characterized two functional genes, GhMDHAR1AT/DT and GhDHAR2AT/DT with predominant expression during fiber elongation. Loss of function of both genes contributed to a significant increase in fiber length. Transcriptomic data revealed up-regulated expression of antioxidant genes in CRISPR mutant lines, along with delayed expression of secondary wall-related genes and temporally prolonged expression of primary wall-related genes. Experimental evidence demonstrated that the increase in GSH content and glutathione peroxidase (GPX) enzyme activity led to enhanced total antioxidant capacity (T-AOC), resulting in reduced H2O2 levels, which contributed to the extension of fiber elongation stage in CRISPR mutant lines. Moreover, the increased polysaccharide synthesis in CRISPR mutant lines was found to provide an abundant supply of raw materials for fiber cell wall elongation, suggesting that synergistic interplay between redox homeostasis and polysaccharide synthesis in fiber cells may facilitate cell wall remodeling and fiber elongation. This study provides valuable insights for deciphering the mechanisms of cell polarized growth and improving cotton fiber quality.
Collapse
Affiliation(s)
- Xuehan Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengyuan Ji
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Uy ALT, Yamamoto A, Matsuda M, Arae T, Hasunuma T, Demura T, Ohtani M. The Carbon Flow Shifts from Primary to Secondary Metabolism during Xylem Vessel Cell Differentiation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 64:1563-1575. [PMID: 37875012 PMCID: PMC10734892 DOI: 10.1093/pcp/pcad130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Xylem vessel cell differentiation is characterized by the deposition of a secondary cell wall (SCW) containing cellulose, hemicellulose and lignin. VASCULAR-RELATED NAC-DOMAIN7 (VND7), a plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factor, is a master regulator of xylem vessel cell differentiation in Arabidopsis (Arabidopsis thaliana). Previous metabolome analysis using the VND7-inducible system in tobacco BY-2 cells successfully revealed significant quantitative changes in primary metabolites during xylem vessel cell differentiation. However, the flow of primary metabolites is not yet well understood. Here, we performed a metabolomic analysis of VND7-inducible Arabidopsis T87 suspension cells. Capillary electrophoresis-time-of-flight mass spectrometry quantified 57 metabolites, and subsequent data analysis highlighted active changes in the levels of UDP-glucose and phenylalanine, which are building blocks of cellulose and lignin, respectively. In a metabolic flow analysis using stable carbon 13 (13C) isotope, the 13C-labeling ratio specifically increased in 3-phosphoglycerate after 12 h of VND7 induction, followed by an increase in shikimate after 24 h of induction, while the inflow of 13C into lactate from pyruvate was significantly inhibited, indicating an active shift of carbon flow from glycolysis to the shikimate pathway during xylem vessel cell differentiation. In support of this notion, most glycolytic genes involved in the downstream of glyceraldehyde 3-phosphate were downregulated following the induction of xylem vessel cell differentiation, whereas genes for the shikimate pathway and phenylalanine biosynthesis were upregulated. These findings provide evidence for the active shift of carbon flow from primary metabolic pathways to the SCW polymer biosynthetic pathway at specific points during xylem vessel cell differentiation.
Collapse
Affiliation(s)
| | - Atsushi Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Mami Matsuda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501 Japan
| | - Toshihiro Arae
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501 Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501 Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192 Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
11
|
Miyagi A, Mori K, Ishikawa T, Ohkubo S, Adachi S, Yamaguchi M, Ookawa T, Kotake T, Kawai-Yamada M. Metabolomic analysis of rice brittle culm mutants reveals each mutant- specific metabolic pattern in each organ. Metabolomics 2022; 18:95. [PMID: 36409428 DOI: 10.1007/s11306-022-01958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Plant cell walls play an important role in providing physical strength and defence against abiotic stress. Rice brittle culm (bc) mutants are a strength-decreased mutant because of abnormal cell walls, and it has been reported that the causative genes of bc mutants affect cell wall composition. However, the metabolic alterations in each organ of bc mutants have remained unknown. OBJECTIVES To evaluate the metabolic changes in rice bc mutants, comparative analysis of the primary metabolites was conducted. METHODS The primary metabolites in leaves, internodes, and nodes of rice bc mutants and wild-type control were measured using CE- and LC-MS/MS. Multivariate analyses using metabolomic data was performed. RESULTS We found that mutations in each bc mutant had different effects on metabolism. For example, higher oxalate content was observed in bc3 and bc1 bc3 mutants, suggesting that surplus carbon that was not used for cell wall components might be used for oxalate synthesis. In addition, common metabolic alterations such as a decrease of sugar nucleotides in nodes were found in bc1 and Bc6, in which the causative genes are involved in cellulose accumulation. CONCLUSION These results suggest that metabolic analysis of the bc mutants could elucidate the functions of causative gene and improve the cell wall components for livestock feed or bioethanol production.
Collapse
Affiliation(s)
- Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama, 338-8570, Japan.
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka, Yamagata, 997-8555, Japan.
| | - Kazuhisa Mori
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama, 338-8570, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama, 338-8570, Japan
| | - Satoshi Ohkubo
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3‑5‑8 Saiwai‑cho, Fuchu-City, Tokyo, 183‑8509, Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai-City, Miyagi, 980-8577, Japan
| | - Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3‑5‑8 Saiwai‑cho, Fuchu-City, Tokyo, 183‑8509, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama, 338-8570, Japan
| | - Taiichiro Ookawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3‑5‑8 Saiwai‑cho, Fuchu-City, Tokyo, 183‑8509, Japan
| | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama, 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama, 338-8570, Japan.
| |
Collapse
|
12
|
Ménard D, Blaschek L, Kriechbaum K, Lee CC, Serk H, Zhu C, Lyubartsev A, Nuoendagula , Bacsik Z, Bergström L, Mathew A, Kajita S, Pesquet E. Plant biomechanics and resilience to environmental changes are controlled by specific lignin chemistries in each vascular cell type and morphotype. THE PLANT CELL 2022; 34:koac284. [PMID: 36215679 PMCID: PMC9709985 DOI: 10.1093/plcell/koac284] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/11/2022] [Indexed: 05/12/2023]
Abstract
The biopolymer lignin is deposited in the cell walls of vascular cells and is essential for long-distance water conduction and structural support in plants. Different vascular cell types contain distinct and conserved lignin chemistries, each with specific aromatic and aliphatic substitutions. Yet, the biological role of this conserved and specific lignin chemistry in each cell type remains unclear. Here, we investigated the roles of this lignin biochemical specificity for cellular functions by producing single cell analyses for three cell morphotypes of tracheary elements, which all allow sap conduction but differ in their morphology. We determined that specific lignin chemistries accumulate in each cell type. Moreover, lignin accumulated dynamically, increasing in quantity and changing in composition, to alter the cell wall biomechanics during cell maturation. For similar aromatic substitutions, residues with alcohol aliphatic functions increased stiffness whereas aldehydes increased flexibility of the cell wall. Modifying this lignin biochemical specificity and the sequence of its formation impaired the cell wall biomechanics of each morphotype and consequently hindered sap conduction and drought recovery. Together, our results demonstrate that each sap-conducting vascular cell type distinctly controls their lignin biochemistry to adjust their biomechanics and hydraulic properties to face developmental and environmental constraints.
Collapse
Affiliation(s)
- Delphine Ménard
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Leonard Blaschek
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Konstantin Kriechbaum
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Cheng Choo Lee
- Umeå Core Facility for Electron Microscopy (UCEM), Umeå University, 901 87 Umeå, Sweden
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Chuantao Zhu
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Alexander Lyubartsev
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Nuoendagula
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Zoltán Bacsik
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Aji Mathew
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Edouard Pesquet
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Emonet A, Hay A. Development and diversity of lignin patterns. PLANT PHYSIOLOGY 2022; 190:31-43. [PMID: 35642915 PMCID: PMC9434266 DOI: 10.1093/plphys/kiac261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 05/27/2023]
Abstract
Different patterns of lignified cell walls are associated with diverse functions in a variety of plant tissues. These functions rely on the stiffness and hydrophobicity that lignin polymers impart to the cell wall. The precise pattern of subcellular lignin deposition is critical for the structure-function relationship in each lignified cell type. Here, we describe the role of xylem vessels as water pipes, Casparian strips as apoplastic barriers, and the role of asymmetrically lignified endocarp b cells in exploding seed pods. We highlight similarities and differences in the genetic mechanisms underpinning local lignin deposition in these diverse cell types. By bringing together examples from different developmental contexts and different plant species, we propose that comparative approaches can benefit our understanding of lignin patterning mechanisms.
Collapse
Affiliation(s)
- Aurélia Emonet
- Max Planck Institute for Plant Breeding Research, Cologne, North Rhine-Westphalia, 50829, Germany
| | | |
Collapse
|
14
|
Xu H, Giannetti A, Sugiyama Y, Zheng W, Schneider R, Watanabe Y, Oda Y, Persson S. Secondary cell wall patterning-connecting the dots, pits and helices. Open Biol 2022; 12:210208. [PMID: 35506204 PMCID: PMC9065968 DOI: 10.1098/rsob.210208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/07/2022] [Indexed: 01/04/2023] Open
Abstract
All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose-the load-bearing structure in cell walls-at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction-diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field.
Collapse
Affiliation(s)
- Huizhen Xu
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alessandro Giannetti
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Yuki Sugiyama
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Wenna Zheng
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - René Schneider
- Institute of Biochemistry and Biology, Plant Physiology Department, University of Potsdam, 14476 Potsdam, Germany
| | - Yoichiro Watanabe
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yoshihisa Oda
- Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Staffan Persson
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Shi Y, Man J, Huang Y, Zhang J, Zhang Z, Yin G, Wang X, Liu S, Chen Y, Wang X, Wei S. Overexpression of PnMYB2 from Panax notoginseng induces cellulose and lignin biosynthesis during cell wall formation. PLANTA 2022; 255:107. [PMID: 35445881 DOI: 10.1007/s00425-022-03891-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 05/22/2023]
Abstract
Panax notoginseng PnMYB2 is a transcriptional activator of primary and secondary cell wall formation by promoting the PCW-specific gene CesA3 and key lignin biosynthetic gene CCoAOMT1, respectively. R2R3-MYB transcription factors play important roles in regulation secondary cell wall (SCW) formation. However, there are few reports on the functions of MYB transcription factors which involved in both primary cell wall (PCW) and SCW formation. Here, we isolated an R2R3-MYB transcription factor, PnMYB2, from Panax notoginseng roots which are widely used in Chinese traditional medicines and contain abundant cellulose and lignin. The expression pattern of PnMYB2 was similar to the accumulation pattern of cellulose and lignin contents in different organs. PnMYB2 localized in the nucleus and may function as a transcriptional activator. Overexpression of PnMYB2 in Arabidopsis thaliana enhanced cellulose and lignin biosynthesis, and remarkably increased thickness of PCW and SCW in the stem of transgenic plants compared with wild-type plants. The expression levels of genes associated with PCW-specific cellulose synthase (CesA) genes and key SCW-specific lignin biosynthetic genes were significantly increased in PnMYB2-overexpressing plants compared to the wild type plants. Furthermore, yeast one-hybrid, dual-luciferase reporter assays and electrophoretic mobility shift assays (EMSA) results verified that PnMYB2 could bind and activate the promoters of AtCesA3 and PnCesA3, which are the PCW-specific cellulose biosynthetic genes, and AtCCoAOMT1 and PnCCoAOMT1, which are the key lignin biosynthetic genes. These results demonstrated the central role of PnMYB2 in PCW-specific cellulose formation and SCW-specific lignin biosynthesis.
Collapse
Affiliation(s)
- Yue Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Jinhui Man
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Yuying Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Jinghan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Zhifei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - GuangYao Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Xin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Shanhu Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Ying Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Xiaohui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| | - Shengli Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
| |
Collapse
|
16
|
Kunita I, Morita MT, Toda M, Higaki T. A Three-Dimensional Scanning System for Digital Archiving and Quantitative Evaluation of Arabidopsis Plant Architectures. PLANT & CELL PHYSIOLOGY 2021; 62:1975-1982. [PMID: 34021582 PMCID: PMC8711699 DOI: 10.1093/pcp/pcab068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
A plant's architecture contributes to its ability to acquire resources and reduce mechanical load. Arabidopsis thaliana is the most common model plant in molecular biology, and there are several mutants and transgenic lines with modified plant architecture regulation, such as lazy1 mutants, which have reversed angles of lateral branches. Although some phenotyping methods have been used in larger agricultural plants, limited suitable methods are available for three-dimensional reconstruction of Arabidopsis, which is smaller and has more uniform surface textures and structures. An inexpensive, easily adopted three-dimensional reconstruction system that can be used for Arabidopsis is needed so that researchers can view and quantify morphological changes over time. We developed a three-dimensional reconstruction system for A. thaliana using the visual volume intersection method, which uses a fixed camera to capture plant images from multiple directions while the plant slowly rotates. We then developed a script to autogenerate stack images from the obtained input movie and visualized the plant architecture by rendering the output stack image using the general bioimage analysis software. We successfully three-dimensionally and time-sequentially scanned wild-type and lazy1 mutant A. thaliana plants and measured the angles of the lateral branches. This non-contact, non-destructive method requires no specialized equipment and is space efficient, inexpensive and easily adopted by Arabidopsis researchers. Consequently, this system will promote three- and four-dimensional phenotyping of this model plant, and it can be used in combination with molecular genetics to further elucidate the molecular mechanisms that regulate Arabidopsis architecture.
Collapse
Affiliation(s)
- Itsuki Kunita
- Faculty of Engineering, University of the Ryukyus, Senbaru 1, Nishihara-cho, Nakagami-gun, Okinawa 903-0213, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masashi Toda
- Center for Management of Information Technologies, Kumamoto University, Kurokami 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
| | | |
Collapse
|
17
|
Ohtani M, Kotake T, Mortimer JC, Demura T. The Mechanics and Biology of Plant Cell Walls: Resilience and Sustainability for Our Future Society. PLANT & CELL PHYSIOLOGY 2021; 62:1787-1790. [PMID: 34958673 DOI: 10.1093/pcp/pcab168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Misato Ohtani
- Department of Integrated Sciences, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha,Kashiwa, Chiba, 277-8563 Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Jenny C Mortimer
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
18
|
Kamon E, Noda C, Higaki T, Demura T, Ohtani M. Calcium signaling contributes to xylem vessel cell differentiation via post-transcriptional regulation of VND7 downstream events. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:331-337. [PMID: 34782820 PMCID: PMC8562575 DOI: 10.5511/plantbiotechnology.21.0519a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Secondary cell walls (SCWs) accumulate in specific cell types of vascular plants, notably xylem vessel cells. Previous work has shown that calcium ions (Ca2+) participate in xylem vessel cell differentiation, but whether they function in SCW deposition remains unclear. In this study, we examined the role of Ca2+ in SCW deposition during xylem vessel cell differentiation using Arabidopsis thaliana suspension-cultured cells carrying the VND7-inducible system, in which VND7 activity can be post-translationally upregulated to induce transdifferentiation into protoxylem-type vessel cells. We observed that extracellular Ca2+ concentration was a crucial determinant of differentiation, although it did not have consistent effects on the transcription of VND7-downstream genes as a whole. Increasing the Ca2+ concentration reduced differentiation but the cells could generate the spiral patterning of SCWs. Exposure to a calcium-channel inhibitor partly restored differentiation but resulted in abnormal branched and net-like SCW patterning. These data suggest that Ca2+ signaling participates in xylem vessel cell differentiation via post-transcriptional regulation of VND7-downstream events, such as patterning of SCW deposition.
Collapse
Affiliation(s)
- Eri Kamon
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chihiro Noda
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Kumamoto 860-8555, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Misato Ohtani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
19
|
Marasinghe SD, Jo E, Hettiarachchi SA, Lee Y, Eom TY, Gang Y, Kang YH, Oh C. Characterization of glycoside hydrolase family 11 xylanase from Streptomyces sp. strain J103; its synergetic effect with acetyl xylan esterase and enhancement of enzymatic hydrolysis of lignocellulosic biomass. Microb Cell Fact 2021; 20:129. [PMID: 34238305 PMCID: PMC8265113 DOI: 10.1186/s12934-021-01619-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background Xylanase-containing enzyme cocktails are used on an industrial scale to convert xylan into value-added products, as they hydrolyse the β-1,4-glycosidic linkages between xylopyranosyl residues. In the present study, we focused on xynS1, the glycoside hydrolase (GH) 11 xylanase gene derived from the Streptomyces sp. strain J103, which can mediate XynS1 protein synthesis and lignocellulosic material hydrolysis. Results xynS1 has an open reading frame with 693 base pairs that encodes a protein with 230 amino acids. The predicted molecular weight and isoelectric point of the protein were 24.47 kDa and 7.92, respectively. The gene was cloned into the pET-11a expression vector and expressed in Escherichia coli BL21(DE3). Recombinant XynS1 (rXynS1) was purified via His-tag affinity column chromatography. rXynS1 exhibited optimal activity at a pH of 5.0 and temperature of 55 °C. Thermal stability was in the temperature range of 50–55 °C. The estimated Km and Vmax values were 51.4 mg/mL and 898.2 U/mg, respectively. One millimolar of Mn2+ and Na+ ions stimulated the activity of rXynS1 by up to 209% and 122.4%, respectively, and 1 mM Co2+ and Ni2+ acted as inhibitors of the enzyme. The mixture of rXynS1, originates from Streptomyces sp. strain J103 and acetyl xylan esterase (AXE), originating from the marine bacterium Ochrovirga pacifica, enhanced the xylan degradation by 2.27-fold, compared to the activity of rXynS1 alone when Mn2+ was used in the reaction mixture; this reflected the ability of both enzymes to hydrolyse the xylan structure. The use of an enzyme cocktail of rXynS1, AXE, and commercial cellulase (Celluclast® 1.5 L) for the hydrolysis of lignocellulosic biomass was more effective than that of commercial cellulase alone, thereby increasing the relative activity 2.3 fold. Conclusion The supplementation of rXynS1 with AXE enhanced the xylan degradation process via the de-esterification of acetyl groups in the xylan structure. Synergetic action of rXynS1 with commercial cellulase improved the hydrolysis of pre-treated lignocellulosic biomass; thus, rXynS1 could potentially be used in several industrial applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01619-x.
Collapse
Affiliation(s)
- Svini Dileepa Marasinghe
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Eunyoung Jo
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Sachithra Amarin Hettiarachchi
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.,Department of Fisheries and Aquaculture, Faculty of Fisheries and Marine Sciences and Technology, University of Ruhuna, Matara, Sri Lanka
| | - Youngdeuk Lee
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Tae-Yang Eom
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yehui Gang
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yoon-Hyeok Kang
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Chulhong Oh
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea. .,Department of Ocean Science, University of Science and Technology, (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
20
|
Hiraide H, Tobimatsu Y, Yoshinaga A, Lam PY, Kobayashi M, Matsushita Y, Fukushima K, Takabe K. Localised laccase activity modulates distribution of lignin polymers in gymnosperm compression wood. THE NEW PHYTOLOGIST 2021; 230:2186-2199. [PMID: 33570753 PMCID: PMC8252379 DOI: 10.1111/nph.17264] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 05/26/2023]
Abstract
The woody stems of coniferous gymnosperms produce specialised compression wood to adjust the stem growth orientation in response to gravitropic stimulation. During this process, tracheids develop a compression-wood-specific S2 L cell wall layer with lignins highly enriched with p-hydroxyphenyl (H)-type units derived from H-type monolignol, whereas lignins produced in the cell walls of normal wood tracheids are exclusively composed of guaiacyl (G)-type units from G-type monolignol with a trace amount of H-type units. We show that laccases, a class of lignin polymerisation enzymes, play a crucial role in the spatially organised polymerisation of H-type and G-type monolignols during compression wood formation in Japanese cypress (Chamaecyparis obtusa). We performed a series of chemical-probe-aided imaging analysis on C. obtusa compression wood cell walls, together with gene expression, protein localisation and enzymatic assays of C. obtusa laccases. Our data indicated that CoLac1 and CoLac3 with differential oxidation activities towards H-type and G-type monolignols were precisely localised to distinct cell wall layers in which H-type and G-type lignin units were preferentially produced during the development of compression wood tracheids. We propose that, not only the spatial localisation of laccases, but also their biochemical characteristics dictate the spatial patterning of lignin polymerisation in gymnosperm compression wood.
Collapse
Affiliation(s)
- Hideto Hiraide
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Arata Yoshinaga
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| | - Pui Ying Lam
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Masaru Kobayashi
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| | - Yasuyuki Matsushita
- Graduate School of Bioagricultural SciencesNagoya UniversityFuro‐choNagoya464‐8601Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural SciencesNagoya UniversityFuro‐choNagoya464‐8601Japan
| | - Keiji Takabe
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| |
Collapse
|
21
|
Saez-Aguayo S, Parra-Rojas JP, Sepúlveda-Orellana P, Celiz-Balboa J, Arenas-Morales V, Sallé C, Salinas-Grenet H, Largo-Gosens A, North HM, Ralet MC, Orellana A. Transport of UDP-rhamnose by URGT2, URGT4, and URGT6 modulates rhamnogalacturonan-I length. PLANT PHYSIOLOGY 2021; 185:914-933. [PMID: 33793913 PMCID: PMC8133686 DOI: 10.1093/plphys/kiaa070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 05/10/2023]
Abstract
Rhamnogalacturonan-I biosynthesis occurs in the lumen of the Golgi apparatus, a compartment where UDP-Rhamnose and UDP-Galacturonic Acid are the main substrates for synthesis of the backbone polymer of pectin. Recent studies showed that UDP-Rha is transported from the cytosol into the Golgi apparatus by a family of six UDP-rhamnose/UDP-galactose transporters (URGT1-6). In this study, analysis of adherent and soluble mucilage (SM) of Arabidopsis thaliana seeds revealed distinct roles of URGT2, URGT4, and URGT6 in mucilage biosynthesis. Characterization of SM polymer size showed shorter chains in the urgt2 urgt4 and urgt2 urgt4 urgt6 mutants, suggesting that URGT2 and URGT4 are mainly involved in Rhamnogalacturonan-I (RG-I) elongation. Meanwhile, mutants in urgt6 exhibited changes only in adherent mucilage (AM). Surprisingly, the estimated number of RG-I polymer chains present in urgt2 urgt4 and urgt2 urgt4 urgt6 mutants was higher than in wild-type. Interestingly, the increased number of shorter RG-I chains was accompanied by an increased amount of xylan. In the urgt mutants, expression analysis of other genes involved in mucilage biosynthesis showed some compensation. Studies of mutants of transcription factors regulating mucilage formation indicated that URGT2, URGT4, and URGT6 are likely part of a gene network controlled by these regulators and involved in RG-I synthesis. These results suggest that URGT2, URGT4, and URGT6 play different roles in the biosynthesis of mucilage, and the lack of all three affects the production of shorter RG-I polymers and longer xylan domains.
Collapse
Affiliation(s)
- Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
| | | | | | | | | | - Christine Sallé
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, F-78026 Versailles Cedex, France
| | | | - Asier Largo-Gosens
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Helen M North
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, F-78026 Versailles Cedex, France
| | | | - Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
- FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Author for communication:
| |
Collapse
|
22
|
Pramod S, Saha T, Rekha K, Kavi Kishor PB. Hevea brasiliensis coniferaldehyde-5-hydroxylase (HbCAld5H) regulates xylogenesis, structure and lignin chemistry of xylem cell wall in Nicotiana tabacum. PLANT CELL REPORTS 2021; 40:127-142. [PMID: 33068174 PMCID: PMC7811508 DOI: 10.1007/s00299-020-02619-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE The HbCAld5H1 gene cloned from Hevea brasiliensis regulates the cambial activity, xylem differentiation, syringyl-guaiacyl ratio, secondary wall structure, lignification pattern and xylan distribution in xylem fibres of transgenic tobacco plants. Molecular characterization of lignin biosynthesis gene coniferaldehyde-5-hydroxylase (CAld5H) from Hevea brasiliensis and its functional validation was performed. Both sense and antisense constructs of HbCAld5H1 gene were introduced into tobacco through Agrobacterium-mediated genetic transformation for over expression and down-regulation of this key enzyme to understand its role affecting structural and cell wall chemistry. The anatomical studies of transgenic tobacco plants revealed the increase of cambial activity leading to xylogenesis in sense lines and considerable reduction in antisense lines. The ultra-structural studies showed that the thickness of secondary wall (S2 layer) of fibre had been decreased with non-homogenous lignin distribution in antisense lines, while sense lines showed an increase in S2 layer thickness. Maule color reaction revealed that syringyl lignin distribution in the xylem elements was increased in sense and decreased in antisense lines. The immunoelectron microscopy revealed a reduction in LM 10 and LM 11 labelling in the secondary wall of antisense tobacco lines. Biochemical studies showed a radical increase in syringyl lignin in sense lines without any significant change in total lignin content, while S/G ratio decreased considerably in antisense lines. Our results suggest that CAld5H gene plays an important role in xylogenesis stages such as cambial cell division, secondary wall thickness, xylan and syringyl lignin distribution in tobacco. Therefore, CAld5H gene could be considered as a promising target for lignin modification essential for timber quality improvement in rubber.
Collapse
Affiliation(s)
- S Pramod
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board, Kottayam, Kerala, 686009, India.
- Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre, Swedish University of Agricultural Sciences, 901-87, Umea, Sweden.
| | - Thakurdas Saha
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board, Kottayam, Kerala, 686009, India
| | - K Rekha
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board, Kottayam, Kerala, 686009, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| |
Collapse
|
23
|
Ganguly A, Zhu C, Chen W, Dixit R. FRA1 Kinesin Modulates the Lateral Stability of Cortical Microtubules through Cellulose Synthase-Microtubule Uncoupling Proteins. THE PLANT CELL 2020; 32:2508-2524. [PMID: 32487563 PMCID: PMC7401024 DOI: 10.1105/tpc.19.00700] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 05/03/2023]
Abstract
Cell wall assembly requires harmonized deposition of cellulose and matrix polysaccharides. Cortical microtubules orient the deposition of cellulose by guiding the trajectory of cellulose synthase complexes. Vesicles containing matrix polysaccharides are thought to be transported by the FRAGILE FIBER1 (FRA1) kinesin to facilitate their secretion along cortical microtubules. The cortical microtubule cytoskeleton thus may provide a platform to coordinate the delivery of cellulose and matrix polysaccharides, but the underlying molecular mechanisms remain unknown. Here, we show that the tail region of the Arabidopsis (Arabidopsis thaliana) FRA1 kinesin physically interacts with cellulose synthase-microtubule uncoupling (CMU) proteins that are important for the microtubule-dependent guidance of cellulose synthase complexes. Interaction with CMUs did not affect microtubule binding or motility of the FRA1 kinesin but differentially affected the protein levels and microtubule localization of CMU1 and CMU2, thus regulating the lateral stability of cortical microtubules. Phosphorylation of the FRA1 tail region inhibited binding to CMUs and consequently reversed the extent of cortical microtubule decoration by CMU1 and CMU2. Genetic experiments demonstrated the significance of this interaction to the growth and reproduction of Arabidopsis plants. We propose that modulation of CMU protein levels and microtubule localization by FRA1 provides a mechanism that stabilizes the sites of deposition of both cellulose and matrix polysaccharides.
Collapse
Affiliation(s)
- Anindya Ganguly
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, Missouri 63130
| | - Chuanmei Zhu
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, Missouri 63130
| | - Weizu Chen
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, Missouri 63130
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, Missouri 63130
| |
Collapse
|
24
|
Cao JF, Zhao B, Huang CC, Chen ZW, Zhao T, Liu HR, Hu GJ, Shangguan XX, Shan CM, Wang LJ, Zhang TZ, Wendel JF, Guan XY, Chen XY. The miR319-Targeted GhTCP4 Promotes the Transition from Cell Elongation to Wall Thickening in Cotton Fiber. MOLECULAR PLANT 2020; 13:1063-1077. [PMID: 32422188 DOI: 10.1016/j.molp.2020.05.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/03/2020] [Accepted: 05/12/2020] [Indexed: 05/08/2023]
Abstract
Plant cell growth involves a complex interplay among cell-wall expansion, biosynthesis, and, in specific tissues, secondary cell wall (SCW) deposition, yet the coordination of these processes remains elusive. Cotton fiber cells are developmentally synchronous, highly elongated, and contain nearly pure cellulose when mature. Here, we report that the transcription factor GhTCP4 plays an important role in balancing cotton fiber cell elongation and wall synthesis. During fiber development the expression of miR319 declines while GhTCP4 transcript levels increase, with high levels of the latter promoting SCW deposition. GhTCP4 interacts with a homeobox-containing factor, GhHOX3, and repressing its transcriptional activity. GhTCP4 and GhHOX3 function antagonistically to regulate cell elongation, thereby establishing temporal control of fiber cell transition to the SCW stage. We found that overexpression of GhTCP4A upregulated and accelerated activation of the SCW biosynthetic pathway in fiber cells, as revealed by transcriptome and promoter activity analyses, resulting in shorter fibers with varied lengths and thicker walls. In contrast, GhTCP4 downregulation led to slightly longer fibers and thinner cell walls. The GhHOX3-GhTCP4 complex may represent a general mechanism of cellular development in plants since both are conserved factors in many species, thus providing us a potential molecular tool for the design of fiber traits.
Collapse
Affiliation(s)
- Jun-Feng Cao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Plant Stress Biology Center, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Chao-Chen Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Wen Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ting Zhao
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hong-Ru Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guan-Jing Hu
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Xiao-Xia Shangguan
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chun-Min Shan
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tian-Zhen Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Xue-Ying Guan
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Plant Science Research Center, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| |
Collapse
|
25
|
Zhou R, Liu H, Ju T, Dixit R. Quantifying the polymerization dynamics of plant cortical microtubules using kymograph analysis. Methods Cell Biol 2020; 160:281-293. [PMID: 32896322 DOI: 10.1016/bs.mcb.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The plant cortical microtubule array is a dynamic structure that confers cell shape and enables plants to alter their growth and development in response to internal and external cues. Cells use a variety of microtubule regulatory proteins to spatially and temporally modulate the intrinsic polymerization dynamics of cortical microtubules to arrange them into specific configurations and to reshape arrays to adapt to changing conditions. To obtain mechanistic insight into how particular microtubule regulatory proteins mediate the dynamic (re)structuring of cortical microtubule arrays, we need to measure their effect on the dynamics of cortical microtubules. In this chapter, we describe new ImageJ plugins to generate kymographs from time-lapse images and to analyze them to measure the parameters that quantitatively describe cortical microtubule dynamics.
Collapse
Affiliation(s)
- Rudy Zhou
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States; Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Han Liu
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States; Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Tao Ju
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States.
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
26
|
Yao D, Gonzales-Vigil E, Mansfield SD. Arabidopsis sucrose synthase localization indicates a primary role in sucrose translocation in phloem. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1858-1869. [PMID: 31805187 PMCID: PMC7242074 DOI: 10.1093/jxb/erz539] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 05/24/2023]
Abstract
Sucrose synthase (SuSy) is one of two enzyme families capable of catalyzing the first degradative step in sucrose utilization. Several earlier studies examining SuSy mutants in Arabidopsis failed to identify obvious phenotypic abnormalities compared with wild-type plants in normal growth environments, and as such a functional role for SuSy in the previously proposed cellulose biosynthetic process remains unclear. Our study systematically evaluated the precise subcellular localization of all six isoforms of Arabidopsis SuSy via live-cell imaging. We showed that yellow fluorescent protein (YFP)-labeled SuSy1 and SuSy4 were expressed exclusively in phloem companion cells, and the sus1/sus4 double mutant accumulated sucrose under hypoxic conditions. SuSy5 and SuSy6 were found to be parietally localized in sieve elements and restricted only to the cytoplasm. SuSy2 was present in the endosperm and embryo of developing seeds, and SuSy3 was localized to the embryo and leaf stomata. No single isoform of SuSy was detected in developing xylem tissue of elongating stem, the primary site of cellulose deposition in plants. SuSy1 and SuSy4 were also undetectable in the protoxylem tracheary elements, which were induced by the vascular-related transcription factor VND7 during secondary cell wall formation. These findings implicate SuSy in the biological events related to sucrose translocation in phloem.
Collapse
Affiliation(s)
- Danyu Yao
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Chan J, Coen E. Interaction between Autonomous and Microtubule Guidance Systems Controls Cellulose Synthase Trajectories. Curr Biol 2020; 30:941-947.e2. [DOI: 10.1016/j.cub.2019.12.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/14/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023]
|
28
|
Hirai R, Higaki T, Takenaka Y, Sakamoto Y, Hasegawa J, Matsunaga S, Demura T, Ohtani M. The Progression of Xylem Vessel Cell Differentiation is Dependent on the Activity Level of VND7 in Arabidopsis thaliana. PLANTS 2019; 9:plants9010039. [PMID: 31881731 PMCID: PMC7020236 DOI: 10.3390/plants9010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022]
Abstract
Xylem vessels are important for water conduction in vascular plants. The VASCULAR-RELATED NAC-DOMAIN (VND) family proteins, master regulators of xylem vessel cell differentiation in Arabidopsis thaliana, can upregulate a set of genes required for xylem vessel cell differentiation, including those involved in secondary cell wall (SCW) formation and programmed cell death (PCD); however, it is not fully understood how VND activity levels influence these processes. Here, we examined the Arabidopsis VND7-VP16-GR line, in which VND7 activity is post-translationally activated by treatments with different concentrations of dexamethasone (DEX), a synthetic glucocorticoid. Our observations showed that 1 nM DEX induced weak SCW deposition, but not PCD, whereas 10 or 100 nM DEX induced both SCW deposition and PCD. The decreased chlorophyll contents and SCW deposition were apparent after 24 h of 100 nM DEX treatment, but became evident only after 48 h of 10 nM DEX treatment. Moreover, the lower DEX concentrations delayed the upregulation of VND7 downstream genes, and decreased their induction levels. They collectively suggest that the regulation of VND activity is important not only to initiate xylem vessel cell differentiation, but also regulate the quality of the xylem vessels through VND-activity-dependent upregulation of the PCD- and SCW-related genes.
Collapse
Affiliation(s)
- Risaku Hirai
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (R.H.); (Y.T.)
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Yuto Takenaka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (R.H.); (Y.T.)
| | - Yuki Sakamoto
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan; (Y.S.); (J.H.); (S.M.)
| | - Junko Hasegawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan; (Y.S.); (J.H.); (S.M.)
| | - Sachihiro Matsunaga
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan; (Y.S.); (J.H.); (S.M.)
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (R.H.); (Y.T.)
- Correspondence: (T.D.); (M.O.); Tel.: +81-743-72-5460 (T.D.); +81-4-7136-3673 (M.O.)
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (R.H.); (Y.T.)
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Correspondence: (T.D.); (M.O.); Tel.: +81-743-72-5460 (T.D.); +81-4-7136-3673 (M.O.)
| |
Collapse
|
29
|
Pesquet E, Wagner A, Grabber JH. Cell culture systems: invaluable tools to investigate lignin formation and cell wall properties. Curr Opin Biotechnol 2019; 56:215-222. [DOI: 10.1016/j.copbio.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
|
30
|
Lyczakowski JJ, Bourdon M, Terrett OM, Helariutta Y, Wightman R, Dupree P. Structural Imaging of Native Cryo-Preserved Secondary Cell Walls Reveals the Presence of Macrofibrils and Their Formation Requires Normal Cellulose, Lignin and Xylan Biosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:1398. [PMID: 31708959 PMCID: PMC6819431 DOI: 10.3389/fpls.2019.01398] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/10/2019] [Indexed: 05/18/2023]
Abstract
The woody secondary cell walls of plants are the largest repository of renewable carbon biopolymers on the planet. These walls are made principally from cellulose and hemicelluloses and are impregnated with lignin. Despite their importance as the main load bearing structure for plant growth, as well as their industrial importance as both a material and energy source, the precise arrangement of these constituents within the cell wall is not yet fully understood. We have adapted low temperature scanning electron microscopy (cryo-SEM) for imaging the nanoscale architecture of angiosperm and gymnosperm cell walls in their native hydrated state. Our work confirms that cell wall macrofibrils, cylindrical structures with a diameter exceeding 10 nm, are a common feature of the native hardwood and softwood samples. We have observed these same structures in Arabidopsis thaliana secondary cell walls, enabling macrofibrils to be compared between mutant lines that are perturbed in cellulose, hemicellulose, and lignin formation. Our analysis indicates that the macrofibrils in Arabidopsis cell walls are dependent upon the proper biosynthesis, or composed, of cellulose, xylan, and lignin. This study establishes that cryo-SEM is a useful additional approach for investigating the native nanoscale architecture and composition of hardwood and softwood secondary cell walls and demonstrates the applicability of Arabidopsis genetic resources to relate fibril structure with wall composition and biosynthesis.
Collapse
Affiliation(s)
- Jan J. Lyczakowski
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Natural Material Innovation Centre, University of Cambridge, Cambridge, United Kingdom
| | - Matthieu Bourdon
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Oliver M. Terrett
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Institute of Biotechnology/Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Raymond Wightman, ; Paul Dupree,
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Natural Material Innovation Centre, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Raymond Wightman, ; Paul Dupree,
| |
Collapse
|
31
|
Tan TT, Demura T, Ohtani M. Creating vessel elements in vitro: Towards a comprehensive understanding of the molecular basis of xylem vessel element differentiation. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:1-6. [PMID: 31275042 PMCID: PMC6566013 DOI: 10.5511/plantbiotechnology.18.1119b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/19/2018] [Indexed: 05/30/2023]
Abstract
Xylem is an essential conductive tissue in vascular plants, and secondary cell wall polymers found in xylem vessel elements, such as cellulose, hemicellulose, and lignin, are promising sustainable bioresources. Thus, understanding the molecular mechanisms underlying xylem vessel element differentiation is an important step towards increasing woody biomass and crop yields. Establishing in vitro induction systems, in which vessel element differentiation is induced by phytohormonal stimuli or by overexpression of specific transcription factors, has been vital to this research. In this review, we present an overview of these in vitro induction systems, and describe two recently developed in vitro induction systems, VISUAL (Vascular cell Induction culture System Using Arabidopsis Leaves) and the KDB system. Furthermore, we discuss the potentials and limitations of each of these new in vitro induction systems for advancing our understanding of the molecular mechanisms driving xylem vessel element differentiation.
Collapse
Affiliation(s)
- Tian Tian Tan
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Taku Demura
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
32
|
The Casparian strip-one ring to bring cell biology to lignification? Curr Opin Biotechnol 2018; 56:121-129. [PMID: 30502636 DOI: 10.1016/j.copbio.2018.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022]
Abstract
Lignin research has long been motivated by the outstanding importance of wood for human societies. The annual, non-woody Arabidopsis thaliana, has nevertheless contributed greatly to our understanding of lignification, due to its unrivalled genetic resources. Arabidopsis is also great for cell and developmental biology, allowing precise imaging and tracking of cell types. Root endodermis differentiation involves the precise lignification of the Casparian Strip, as an apoplastic barrier; while barrier damage triggers a less localized, compensatory lignification. Transcriptional reprogramming and peptide-induced signalling emerge as promising tools for the study of endodermal lignification. We argue that endodermis lignification is an attractive model complementary to equally powerful, cellular xylem differentiation systems, as it might better represent the restricted - often localized - lignification seen in non-vascular cells.
Collapse
|
33
|
Farquharson KL. Microtubules Direct Lignin and Xylan Deposition in a Cellulose-Independent Manner. THE PLANT CELL 2018; 30:2644-2645. [PMID: 30373759 PMCID: PMC6305985 DOI: 10.1105/tpc.18.00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|