1
|
Fei Y, Afzal SF, Chen Z, Zhao Y, Meng X, Ren J, Zhang S. Genome-wide identification of NAC transcription factors in Acer paxii, and their expression dynamics during leaf aging. Genes Genomics 2025:10.1007/s13258-025-01638-7. [PMID: 40167941 DOI: 10.1007/s13258-025-01638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND The NAC family (consisting of NAM, ATAF1/2, and CUC2) represents a crucial plant-specific transcription factor family, contributing significantly to various aspects of plant growth, development, and reactions to abiotic stresses. Yet, the underlying mechanism of NAC regulation in Acer paxii has not been discussed. OBJECTIVES Identification of NAC genes (ApNACs) in the genome of Acer paxii and exploring the regulatory network of NACs in mediating leaf senescence. METHODS A thorough genome-wide analysis of the NAC gene family in the Acer paxii genome was performed. RESULTS We identified 117 ApNACs from the Acer paxii genome database, which were irregularly distributed across 13 chromosomes. Phylogenetic analysis revealed that ApNAC genes were partitioned into 16 subgroups. There are four kinds of cis-regulatory elements in the promoter region of the ApNACs gene. We compared the expression levels of ApNAC genes at different times using transcriptome data and selected six ApNAC genes for qRT-PCR, which the results showed basic consistency with the transcriptome results. Six ApNACs and 187 TFs from different families were selected, and it was found that the TF families with the highest correlation were WRKY, MYB, bZIP, and ERF, and these TF families were reported to participate in the regulation function in senescence. CONCLUSION This study provides important data support for identifying the NAC gene family of Acer paxii and the regulatory function of the ApNAC genes on plant senescence, which will help to understand the NAC-mediated regulatory network in Acer paxii.
Collapse
Affiliation(s)
- Yuzhi Fei
- Department of Ornamental Horticulture, School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, China
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Shah Faheem Afzal
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yue Zhao
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xin Meng
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Shuiming Zhang
- Department of Ornamental Horticulture, School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
2
|
Chen J, Wang H, Wang J, Zheng X, Qu W, Fang H, Wang S, He L, Hao S, Dresselhaus T. Fertilization-induced synergid cell death by RALF12-triggered ROS production and ethylene signaling. Nat Commun 2025; 16:3059. [PMID: 40155397 PMCID: PMC11953305 DOI: 10.1038/s41467-025-58246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
Fertilization-dependent elimination of the persistent synergid cell is essential to block supernumerary pollen tubes and thus to avoid polyspermy in flowering plants. Little is known about the molecular mechanisms ensuring timely induction and execution of synergid cell death. We analyzed manually isolated maize synergid cells along their degeneration and show that they are gland cells expressing batteries of genes encoding small secreted proteins under control of the MYB98 transcription factor. This network is down-regulated after fertilization, while genes involved in reactive oxygen species (ROS) production, ethylene biosynthesis and response, senescence, and oxidative stress regulation are induced before synergid elimination and its ultimate fusion with the endosperm. We further show that the fertilization-induced RALF12 peptide specifically triggers mitochondrial ROS and apoptosis, while ethylene promotes synergid degeneration. In conclusion, this study sheds light on developmental programmed cell death (dPCD) in plants and provides a unique resource to discover unknown PCD regulators.
Collapse
Affiliation(s)
- Junyi Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China.
| | - Huan Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Jinlin Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Xixi Zheng
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Wantong Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Huijian Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Shuang Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Le He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Shuang Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Xiong H, He H, Chang Y, Miao B, Liu Z, Wang Q, Dong F, Xiong L. Multiple roles of NAC transcription factors in plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:510-538. [PMID: 39950532 DOI: 10.1111/jipb.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 03/29/2025]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are a family of plant-specific TFs that play crucial roles in various aspects of plant development and stress responses. Here, we provide an in-depth review of the structural characteristics, regulatory mechanisms, and functional roles of NACs in different plant species. One of the key features of NACs is their ability to regulate gene expression through a variety of mechanisms, including binding to DNA sequences in the promoter regions of target genes, interacting with other TFs, and modulating chromatin structure. We discuss these mechanisms in detail, providing insights into the complex regulatory networks that govern the activity of NACs. We explore the diverse functions of these TFs in plant growth and development processes, including embryogenesis, seed development, root and shoot development, floral development and fruit ripening, secondary cell wall formation, and senescence. We also discuss the diverse regulatory roles of NACs in response to various stresses, including drought, flooding, heat, cold, salinity, nutrient deficit, and diseases. Lastly, we emphasize the crosstalk role of NACs between developmental processes and stress responses. This integrated perspective highlights how NACs orchestrate plant growth and resilience. Overall, this review provides a comprehensive overview of the pivotal roles of NACs in plant development and stress responses, emphasizing their potential for engineering stress-resistant crops and enhancing agricultural productivity.
Collapse
Affiliation(s)
- Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haidong He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Binbin Miao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianqian Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Zhang N, Bitterli P, Oluoch P, Hermann M, Aichinger E, Groot EP, Laux T. Deciphering the molecular logic of WOX5 function in the root stem cell organizer. EMBO J 2025; 44:281-303. [PMID: 39558109 PMCID: PMC11696986 DOI: 10.1038/s44318-024-00302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
Plant and animal stem cells receive signals from their surrounding cells to stay undifferentiated. In the Arabidopsis root, the quiescent center (QC) acts as a stem cell organizer, signaling to the neighboring stem cells. WOX5 is a central transcription factor regulating QC function. However, due to the scarcity of QC cells, WOX5 functions in the QC are largely unexplored at a genomic scale. Here, we unveil the transcriptional and epigenetic landscapes of the QC and the role of WOX5 within them. We find that WOX5 functions both as a transcriptional repressor and activator, affecting histone modifications and chromatin accessibility. Our data expand on known WOX5 functions, such as the regulation of differentiation, cell division, and auxin biosynthesis. We also uncover unexpected WOX5-regulated pathways involved in nitrate transport and the regulation of basal expression levels of genes associated with mature root tissues. These data suggest a role for QC cells as reserve stem cells and primed cells for prospective progenitor fates. Taken together, these findings offer insights into the role of WOX5 at the QC and provide a basis for further analyses to advance our understanding of the nature of plant stem cell organizers.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, Shandong, China.
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
| | - Pamela Bitterli
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Peter Oluoch
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Marita Hermann
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Ernst Aichinger
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Edwin P Groot
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Thomas Laux
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
5
|
Dhar S, Kim SY, Shin HJ, Park J, Lee JY. The molecular framework balancing growth and defense in response to plant elicitor peptide-induced signals in Arabidopsis. THE PLANT CELL 2024; 37:koae327. [PMID: 39700410 DOI: 10.1093/plcell/koae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/24/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Elevated stress signaling compromises plant growth by suppressing proliferative and formative division in the meristem. Plant elicitor peptide, an endogenous danger signal triggered by biotic and abiotic stresses in Arabidopsis (Arabidopsis thaliana), suppresses proliferative division, alters xylem vessel organization, and disrupts cell-to-cell symplastic connections in roots. To gain insight into the dynamic molecular framework that modulates root development under elevated danger signals, we performed a time-course RNA-sequencing analysis of the root meristem after synthetic PEP1 treatment. Our analyses revealed that SALT TOLERANCE ZINC FINGER (STZ) and its homologs are a potential nexus between the stress response and proliferative cell cycle regulation. Through functional, phenotypic, and transcriptomic analyses, we observed that STZ differentially controls the cell cycle, cell differentiation, and stress response genes in various tissue layers of the root meristem. Moreover, we determined the STZ expression level critical for enabling the growth-defense tradeoff. These findings provide valuable information about the dynamic gene expression changes that occur upon perceiving danger signals in the root meristem and potential engineering strategies to generate stress-resilient plants.
Collapse
Affiliation(s)
- Souvik Dhar
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Soo Youn Kim
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hee-Ji Shin
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jongsung Park
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Plant Immunity Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
6
|
Charura N, Llamas E, De Quattro C, Vilchez D, Nowack MK, Zuccaro A. Root cap cell corpse clearance limits microbial colonization in Arabidopsis thaliana. eLife 2024; 13:RP96266. [PMID: 39531016 PMCID: PMC11556792 DOI: 10.7554/elife.96266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in Arabidopsis thaliana roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus Serendipita indica, primarily in the differentiation zone. smb-3 mutants additionally exhibit hypercolonization around the meristematic zone and a delay of S. indica-induced root-growth promotion. This demonstrates that root cap dPCD and rapid post-mortem clearance of cellular corpses represent a physical defense mechanism restricting microbial invasion of the root. Additionally, reporter lines and transcriptional analysis revealed that BFN1 expression is downregulated during S. indica colonization in mature root epidermal cells, suggesting a transcriptional control mechanism that facilitates the accommodation of beneficial microbes in the roots.
Collapse
Affiliation(s)
- Nyasha Charura
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of CologneCologneGermany
| | - Ernesto Llamas
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of CologneCologneGermany
| | - Concetta De Quattro
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of CologneCologneGermany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC), University of CologneCologneGermany
- Faculty of Medicine, University Hospital CologneCologneGermany
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Alga Zuccaro
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of CologneCologneGermany
| |
Collapse
|
7
|
Xu S, Zheng J, Du H, Du X, Li C, Duan Y, Cai Y, Wang J, Liu H, Yang L, Xin W, Jia Y, Zou D, Zheng H. GWAS combined with linkage analysis reveals major QTLs and candidate genes of salt tolerance in Japonica rice seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1462856. [PMID: 39554521 PMCID: PMC11563981 DOI: 10.3389/fpls.2024.1462856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 11/19/2024]
Abstract
Background Soil salinization is one of the significant factors limiting high crop yields and expansion of arable land, seriously affecting global agricultural production. Rice is an essential food crop throughout the world, and its seedlings are particularly susceptible to salt stress, which can directly affect the growth and development of rice and its final yield. We used the natural population as the material for genome-wide association study (GWAS) and the recombinant inbred line (RIL) population from CD (salt sensitive)/WD20342 (salt tolerant) hybridization as the material for linkage analysis. Results The degree of salt tolerance was evaluated by using the relative root length (RRL), relative root number (RRN), relative root fresh weight (RRFW), and relative root dry weight (RRDW) as indicators. Fifteen and six major quantitative trait loci (QTLs) were identified by GWAS and linkage analysis, respectively. Meanwhile, the GWAS identified the lead SNP (Chr2_22340368), which was located within qRRL2 and qRRDW2 identified by linkage analysis. GWAS, combined with linkage analysis, selected a 196-kb overlapping region on chromosome 2, including 22 candidate genes. LOC_Os02g36880 was discovered as the candidate gene involved in salt tolerance by haplotype analysis, qRT-PCR, and sequence analysis. The score of salinity toxicity (SST) and seedling survival rate (SSR) were determined for CRISPR/Cas9 mutants (CR-1 and CR-15) and wild-type (ZH11), respectively. Conclusion The phenotypic validation indicated that LOC_Os02g36880 negatively regulated the salt tolerance at the seedling stage. This study provides resources for breeding Japonica rice to improve its response to salt stress.
Collapse
Affiliation(s)
- Shanbin Xu
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jie Zheng
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Haoqiang Du
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaodong Du
- Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Chong Li
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yuxuan Duan
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yanan Cai
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yan Jia
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Liu Y, You H, Li H, Zhang C, Guo H, Huang X, Zhang Q, Zhang X, Ma C, Wang Y, Li T, Ji W, Kang Z, Zhang H. TaNAC1 boosts powdery mildew resistance by phosphorylation-dependent regulation of TaSec1a and TaCAMTA4 via PP2Ac/CDPK20. THE NEW PHYTOLOGIST 2024; 244:635-653. [PMID: 39183373 DOI: 10.1111/nph.20070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/01/2024] [Indexed: 08/27/2024]
Abstract
The integrity of wheat (Triticum aestivum) production is increasingly jeopardized by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), particularly amid the vicissitudes of climate change. Here, we delineated the role of a wheat transcription factor, TaNAC1, which precipitates cellular apoptosis and fortifies resistance against Bgt. Utilizing BiFC, co-immunoprecipitation, protein quantification, luciferase report assays, we determined that cytoplasmic TaNAC1-7A undergoes phosphorylation at the S184/S258 sites by TaCDPK20, facilitating its nuclear translocation. This migration appears to prime further phosphorylation by TaMPK1, thereby enhancing transcriptional regulatory activity. Notably, the apoptotic activity of phosphorylated TaNAC1-7A is negatively modulated by the nuclear protein phosphatase PP2Ac. Furthermore, activation of TaNAC1 phosphorylation initiates transcription of downstream genes TaSec1a and TaCAMTA4, through binding to the C[T/G]T[N7]A[A/C]G nucleic acid motif. Suppression of TaNAC1, TaCDPK20, and TaMPK1 in wheat compromises its resistance to Bgt strain E09, whereas overexpression of TaNAC1 and silencing of PP2Ac markedly elevate resistance levels. Our results reveal the pivotal role of TaNAC1 in basal resistance which is mediated by its effects on homotypic fusion, vacuolar protein sorting, and the expression of defense-related genes. The findings highlight the potential through targeting TaNAC1 and its regulators as a strategy for improving wheat's resistance to fungal pathogens.
Collapse
Affiliation(s)
- Yuanming Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongguang You
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanping Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chujun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xueling Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangyu Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajuan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingdong Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wanquan Ji
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
9
|
Sun Y, Dong L, Kang L, Zhong W, Jackson D, Yang F. Progressive meristem and single-cell transcriptomes reveal the regulatory mechanisms underlying maize inflorescence development and sex differentiation. MOLECULAR PLANT 2024; 17:1019-1037. [PMID: 38877701 DOI: 10.1016/j.molp.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Maize develops separate ear and tassel inflorescences with initially similar morphology but ultimately different architecture and sexuality. The detailed regulatory mechanisms underlying these changes still remain largely unclear. In this study, through analyzing the time-course meristem transcriptomes and floret single-cell transcriptomes of ear and tassel, we revealed the regulatory dynamics and pathways underlying inflorescence development and sex differentiation. We identified 16 diverse gene clusters with differential spatiotemporal expression patterns and revealed biased regulation of redox, programmed cell death, and hormone signals during meristem differentiation between ear and tassel. Notably, based on their dynamic expression patterns, we revealed the roles of two RNA-binding proteins in regulating inflorescence meristem activity and axillary meristem formation. Moreover, using the transcriptional profiles of 53 910 single cells, we uncovered the cellular heterogeneity between ear and tassel florets. We found that multiple signals associated with either enhanced cell death or reduced growth are responsible for tassel pistil suppression, while part of the gibberellic acid signal may act non-cell-autonomously to regulate ear stamen arrest during sex differentiation. We further showed that the pistil-protection gene SILKLESS 1 (SK1) functions antagonistically to the known pistil-suppression genes through regulating common molecular pathways, and constructed a regulatory network for pistil-fate determination. Collectively, our study provides a deep understanding of the regulatory mechanisms underlying inflorescence development and sex differentiation in maize, laying the foundation for identifying new regulators and pathways for maize hybrid breeding and improvement.
Collapse
Affiliation(s)
- Yonghao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Kang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; School of Agriculture, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
10
|
Zhou H, Wang X, Amar MH, Sheng Y, Shi P, Qiu K, Wang Y, Xie Q, Chen H, Pan H, Zhang J. Abscisic acid induces PpeKIL1 to terminate fruit growth and promote fruit abortion in peach (Prunus persica). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108761. [PMID: 38805756 DOI: 10.1016/j.plaphy.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Abnormal pollination from chance events or hybridization between species leads to unusual embryo development, resulting in fruit abortion. To elucidate the mechanism underlying fruit abortion, we conducted a comprehensive analysis of the transcriptome and hormone profiles in aborting fruits (AF) derived from an interspecific cross between the peach cultivar 'Huangjinmi 3' and the Prunus mume cultivar 'Jiangmei', as well as in normal-seeded fruits (NF) resulting from an intraspecific cross of 'Huangjinmi 3' with the 'Manyuanhong' peach cultivars. Growth of AF was inhibited during the exponential growth phase, with up-regulation of oxidative stress related genes and down-regulation of DNA replication and cell cycle genes. Accumulation of the tissue growth-related hormones auxin and cytokinin was reduced in AF, while levels of the growth inhibiting hormone abscisic acid (ABA) were higher compared to NF. The increased ABA concentration aligned with down-regulation of the ABA catabolism gene CYP707A2, which encodes abscisic acid 8'-hydroxylase. Correlation analysis showed ABA could explain the maximum proportion of differently expressed genes between NF and AF. We also showed that expression of KIRA1-LIKE1 (PpeKIL1), a peach ortholog of the Arabidopsis KIRA1 gene, was up-regulated in AF. PpeKIL1 promotes senescence or delays normal growth in tobacco and Arabidopsis, and its promoter activity increases with exogenous ABA treatment. Our study demonstrates a candidate mechanism where ABA induces expression of PpeKIL1, which further blocks normal fruit growth and triggers fruit abscission.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Xiao Wang
- Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | | | - Yu Sheng
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Pei Shi
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Keli Qiu
- School of Life Science, Anhui Agricultural University, No. 130, Changjiangxi Road, Hefei, 230036, China.
| | - Yunyun Wang
- School of Life Science, Anhui Agricultural University, No. 130, Changjiangxi Road, Hefei, 230036, China.
| | - Qingmei Xie
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Hongli Chen
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Haifa Pan
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Jinyun Zhang
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
11
|
Cao S, Zhao X, Li Z, Yu R, Li Y, Zhou X, Yan W, Chen D, He C. Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification. PLANT DIVERSITY 2024; 46:372-385. [PMID: 38798726 PMCID: PMC11119547 DOI: 10.1016/j.pld.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors (TFs) in intricate regulatory networks in a cell-type specific manner. Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings. This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets, addressing batch effects and conserving biological variance. This integration spans a broad spectrum of tissues, including both below- and above-ground parts. Utilizing a rigorous approach for cell type annotation, we identified 47 distinct cell types or states, largely expanding our current view of plant cell compositions. We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression. Taken together, our study not only offers extensive plant cell atlas exploration that serves as a valuable resource, but also provides molecular insights into gene-regulatory programs that varies from different cell types.
Collapse
Affiliation(s)
- Shanni Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Foresti C, Orduña L, Matus JT, Vandelle E, Danzi D, Bellon O, Tornielli GB, Amato A, Zenoni S. NAC61 regulates late- and post-ripening osmotic, oxidative, and biotic stress responses in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2330-2350. [PMID: 38159048 PMCID: PMC11016852 DOI: 10.1093/jxb/erad507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
During late- and post-ripening stages, grape berry undergoes profound biochemical and physiological changes whose molecular control is poorly understood. Here, we report the role of NAC61, a grapevine NAC transcription factor, in regulating different processes involved in berry ripening progression. NAC61 is highly expressed during post-harvest berry dehydration and its expression pattern is closely related to sugar concentration. The ectopic expression of NAC61 in Nicotiana benthamiana leaves resulted in low stomatal conductance, high leaf temperature, tissue collapse and a higher relative water content. Transcriptome analysis of grapevine leaves transiently overexpressing NAC61 and DNA affinity purification and sequencing analyses allowed us to narrow down a list of NAC61-regulated genes. Direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, the Botrytis cinerea susceptibility gene WRKY52, and NAC61 itself was validated. We also demonstrate that NAC61 interacts with NAC60, a proposed master regulator of grapevine organ maturation, in the activation of MYB14 and NAC61 expression. Overall, our findings establish NAC61 as a key player in a regulatory network that governs stilbenoid metabolism and osmotic, oxidative, and biotic stress responses that are the hallmark of late- and post-ripening grape stages.
Collapse
Affiliation(s)
- Chiara Foresti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Davide Danzi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Oscar Bellon
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Alessandra Amato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
13
|
Wang J, Bollier N, Buono RA, Vahldick H, Lin Z, Feng Q, Hudecek R, Jiang Q, Mylle E, Van Damme D, Nowack MK. A developmentally controlled cellular decompartmentalization process executes programmed cell death in the Arabidopsis root cap. THE PLANT CELL 2024; 36:941-962. [PMID: 38085063 PMCID: PMC7615778 DOI: 10.1093/plcell/koad308] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Programmed cell death (PCD) is a fundamental cellular process crucial to development, homeostasis, and immunity in multicellular eukaryotes. In contrast to our knowledge on the regulation of diverse animal cell death subroutines, information on execution of PCD in plants remains fragmentary. Here, we make use of the accessibility of the Arabidopsis (Arabidopsis thaliana) root cap to visualize the execution process of developmentally controlled PCD. We identify a succession of selective decompartmentalization events and ion fluxes as part of the terminal differentiation program that is orchestrated by the NO APICAL MERISTEM, ARABIDOPSIS THALIANA ACTIVATING FACTOR, CUP-SHAPED COTYLEDON (NAC) transcription factor SOMBRERO. Surprisingly, the breakdown of the large central vacuole is a relatively late and variable event, preceded by an increase of intracellular calcium levels and acidification, release of mitochondrial matrix proteins, leakage of nuclear and endoplasmic reticulum lumina, and release of fluorescent membrane reporters into the cytosol. In analogy to animal apoptosis, the plasma membrane remains impermeable for proteins during and after PCD execution. Elevated intracellular calcium levels and acidification are sufficient to trigger cell death execution specifically in terminally differentiated root cap cells, suggesting that these ion fluxes act as PCD-triggering signals. This detailed information on the cellular processes occurring during developmental PCD in plants is a pivotal prerequisite for future research into the molecular mechanisms of cell death execution.
Collapse
Affiliation(s)
- Jie Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Norbert Bollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hannah Vahldick
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Zongcheng Lin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Qiangnan Feng
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Roman Hudecek
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Qihang Jiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
14
|
Arshad W, Steinbrecher T, Wilhelmsson PK, Fernandez-Pozo N, Pérez M, Mérai Z, Rensing SA, Chandler JO, Leubner-Metzger G. Aethionema arabicum dimorphic seed trait resetting during transition to seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1358312. [PMID: 38525145 PMCID: PMC10957558 DOI: 10.3389/fpls.2024.1358312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
The transition from germinating seeds to emerging seedlings is one of the most vulnerable plant life cycle stages. Heteromorphic diaspores (seed and fruit dispersal units) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments. While the roles and mechanisms of seedling traits have been studied in monomorphic species, which produce one type of diaspore, very little is known about seedlings in heteromorphic species. Using the dimorphic diaspore model Aethionema arabicum (Brassicaceae), we identified contrasting mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained from IND fruits by pericarp (fruit coat) removal. What follows the completion of germination is the pre-emergence seedling growth phase, which we investigated by comparative growth assays of early seedlings derived from the M+ seeds, bare M- seeds, and IND fruits. The dimorphic seedlings derived from M+ and M- seeds did not differ in their responses to ambient temperature and water potential. The phenotype of seedlings derived from IND fruits differed in that they had bent hypocotyls and their shoot and root growth was slower, but the biomechanical hypocotyl properties of 15-day-old seedlings did not differ between seedlings derived from germinated M+ seeds, M- seeds, or IND fruits. Comparison of the transcriptomes of the natural dimorphic diaspores, M+ seeds and IND fruits, identified 2,682 differentially expressed genes (DEGs) during late germination. During the subsequent 3 days of seedling pre-emergence growth, the number of DEGs was reduced 10-fold to 277 root DEGs and 16-fold to 164 shoot DEGs. Among the DEGs in early seedlings were hormonal regulators, in particular for auxin, ethylene, and gibberellins. Furthermore, DEGs were identified for water and ion transporters, nitrate transporter and assimilation enzymes, and cell wall remodeling protein genes encoding enzymes targeting xyloglucan and pectin. We conclude that the transcriptomes of seedlings derived from the dimorphic diaspores, M+ seeds and IND fruits, undergo transcriptional resetting during the post-germination pre-emergence growth transition phase from germinated diaspores to growing seedlings.
Collapse
Affiliation(s)
- Waheed Arshad
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Tina Steinbrecher
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | | | - Noe Fernandez-Pozo
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- Department Plant Breeding and Physiology, Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), Málaga, Spain
| | - Marta Pérez
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Stefan A. Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Jake O. Chandler
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Gerhard Leubner-Metzger
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| |
Collapse
|
15
|
Cui X, Tang M, Li L, Chang J, Yang X, Chang H, Zhou J, Liu M, Wang Y, Zhou Y, Sun F, Chen Z. Expression Patterns and Molecular Mechanisms Regulating Drought Tolerance of Soybean [ Glycine max (L.) Merr.] Conferred by Transcription Factor Gene GmNAC19. Int J Mol Sci 2024; 25:2396. [PMID: 38397076 PMCID: PMC10889163 DOI: 10.3390/ijms25042396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
NAC transcription factors are commonly involved in the plant response to drought stress. A transcriptome analysis of root samples of the soybean variety 'Jiyu47' under drought stress revealed the evidently up-regulated expression of GmNAC19, consistent with the expression pattern revealed by quantitative real-time PCR analysis. The overexpression of GmNAC19 enhanced drought tolerance in Saccharomyces cerevisiae INVSc1. The seed germination percentage and root growth of transgenic Arabidopsis thaliana were improved in comparison with those of the wild type, while the transgenic soybean composite line showed improved chlorophyll content. The altered contents of physiological and biochemical indices (i.e., soluble protein, soluble sugar, proline, and malondialdehyde) related to drought stress and the activities of three antioxidant enzymes (i.e., superoxide dismutase, peroxidase, and catalase) revealed enhanced drought tolerance in both transgenic Arabidopsis and soybean. The expressions of three genes (i.e., P5CS, OAT, and P5CR) involved in proline synthesis were decreased in the transgenic soybean hairy roots, while the expression of ProDH involved in the breakdown of proline was increased. This study revealed the molecular mechanisms underlying drought tolerance enhanced by GmNAC19 via regulation of the contents of soluble protein and soluble sugar and the activities of antioxidant enzymes, providing a candidate gene for the molecular breeding of drought-tolerant crop plants.
Collapse
Affiliation(s)
- Xiyan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Minghao Tang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Lei Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Jiageng Chang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Xiaoqin Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Hongli Chang
- Shaanxi Key Laboratory for Animal Conservation, School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiayu Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Miao Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Yan Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Ying Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Zhanyu Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
16
|
Ma B, Zhang J, Guo S, Xie X, Yan L, Chen H, Zhang H, Bu X, Zheng L, Wang Y. RtNAC055 promotes drought tolerance via a stomatal closure pathway linked to methyl jasmonate/hydrogen peroxide signaling in Reaumuria trigyna. HORTICULTURE RESEARCH 2024; 11:uhae001. [PMID: 38419969 PMCID: PMC10901477 DOI: 10.1093/hr/uhae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 03/02/2024]
Abstract
The stomata regulate CO2 uptake and efficient water usage, thereby promoting drought stress tolerance. NAC proteins (NAM, ATAF1/2, and CUC2) participate in plant reactions following drought stress, but the molecular mechanisms underlying NAC-mediated regulation of stomatal movement are unclear. In this study, a novel NAC gene from Reaumuria trigyna, RtNAC055, was found to enhance drought tolerance via a stomatal closure pathway. It was regulated by RtMYC2 and integrated with jasmonic acid signaling and was predominantly expressed in stomata and root. The suppression of RtNAC055 could improve jasmonic acid and H2O2 production and increase the drought tolerance of transgenic R. trigyna callus. Ectopic expression of RtNAC055 in the Arabidopsis atnac055 mutant rescued its drought-sensitive phenotype by decreasing stomatal aperture. Under drought stress, overexpression of RtNAC055 in poplar promoted ROS (H2O2) accumulation in stomata, which accelerated stomatal closure and maintained a high photosynthetic rate. Drought upregulated the expression of PtRbohD/F, PtP5CS2, and PtDREB1.1, as well as antioxidant enzyme activities in heterologous expression poplars. RtNAC055 promoted H2O2 production in guard cells by directly binding to the promoter of RtRbohE, thus regulating stomatal closure. The stress-related genes RtDREB1.1/P5CS1 were directly regulated by RtNAC055. These results indicate that RtNAC055 regulates stomatal closure by maintaining the balance between the antioxidant system and H2O2 level, reducing the transpiration rate and water loss, and improving photosynthetic efficiency and drought resistance.
Collapse
Affiliation(s)
- Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Jie Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuyu Guo
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xinlei Xie
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lang Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Huijing Chen
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Hongyi Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiangqi Bu
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
17
|
Han K, Zhao Y, Sun Y, Li Y. NACs, generalist in plant life. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2433-2457. [PMID: 37623750 PMCID: PMC10651149 DOI: 10.1111/pbi.14161] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA-binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target-binding domain at the N-terminus and a highly versatile C-terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC-mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research.
Collapse
Affiliation(s)
- Kunjin Han
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Ye Zhao
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
18
|
Yang Q, Li Z, Wang X, Jiang C, Liu F, Nian Y, Fu X, Zhou G, Liu L, Wang H. Genome-Wide Identification and Characterization of the NAC Gene Family and Its Involvement in Cold Response in Dendrobium officinale. PLANTS (BASEL, SWITZERLAND) 2023; 12:3626. [PMID: 37896088 PMCID: PMC10609684 DOI: 10.3390/plants12203626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
The NAC (NAM, ATAF1/2 and CUC2) gene family is one of the largest plant-specific transcription factor families, functioning as crucial regulators in diverse biological processes such as plant growth and development as well as biotic and abiotic stress responses. Although it has been widely characterized in many plants, the significance of the NAC family in Dendrobium officinale remained elusive up to now. In this study, a genome-wide search method was conducted to identify NAC genes in Dendrobium officinale (DoNACs) and a total of 110 putative DoNACs were obtained. Phylogenetic analysis classified them into 15 subfamilies according to the nomenclature in Arabidopsis and rice. The members in the subfamilies shared more similar gene structures and conversed protein domain compositions. Furthermore, the expression profiles of these DoNACs were investigated in diverse tissues and under cold stress by RNA-seq data. Then, a total of five up-regulated and five down-regulated, cold-responsive DoNACs were validated through QRT-PCR analysis, demonstrating they were involved in regulating cold stress response. Additionally, the subcellular localization of two down-regulated candidates (DoNAC39 and DoNAC58) was demonstrated to be localized in the nuclei. This study reported the genomic organization, protein domain compositions and expression patterns of the NAC family in Dendrobium officinale, which provided targets for further functional studies of DoNACs and also contributed to the dissection of the role of NAC in regulating cold tolerance in Dendrobium officinale.
Collapse
Affiliation(s)
- Qianyu Yang
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
| | - Zhihui Li
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
| | - Xiao Wang
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chunqian Jiang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China (L.L.)
| | - Feihong Liu
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
| | - Yuxin Nian
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
| | - Xiaoyun Fu
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
| | - Guangzhu Zhou
- College of Forestry, Shenyang Agricultural University, Shenhe District, Shenyang 110866, China; (Q.Y.); (X.W.); (F.L.); (Y.N.)
| | - Lei Liu
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China (L.L.)
| | - Hui Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China (L.L.)
| |
Collapse
|
19
|
Li R, Wang Z, Wang JW, Li L. Combining single-cell RNA sequencing with spatial transcriptome analysis reveals dynamic molecular maps of cambium differentiation in the primary and secondary growth of trees. PLANT COMMUNICATIONS 2023; 4:100665. [PMID: 37491818 PMCID: PMC10504605 DOI: 10.1016/j.xplc.2023.100665] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
Primary and secondary growth of the tree stem are responsible for corresponding increases in trunk height and diameter. However, our molecular understanding of the biological processes that underlie these two types of growth is incomplete. In this study, we used single-cell RNA sequencing and spatial transcriptome sequencing to reveal the transcriptional landscapes of primary and secondary growth tissues in the Populus stem. Comparison between the cell atlas and differentiation trajectory of primary and secondary growth revealed different regulatory networks involved in cell differentiation from cambium to xylem precursors and phloem precursors. These regulatory networks may be controlled by auxin accumulation and distribution. Analysis of cell differentiation trajectories suggested that vessel and fiber development followed a sequential pattern of progressive transcriptional regulation. This research provides new insights into the processes of cell identity and differentiation that occur throughout primary and secondary growth of tree stems, increasing our understanding of the cellular differentiation dynamics that occur during stem growth in trees.
Collapse
Affiliation(s)
- Renhui Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifeng Wang
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
20
|
Doll NM, Van Hautegem T, Schilling N, De Rycke R, De Winter F, Fendrych M, Nowack MK. Endosperm cell death promoted by NAC transcription factors facilitates embryo invasion in Arabidopsis. Curr Biol 2023; 33:3785-3795.e6. [PMID: 37633282 PMCID: PMC7615161 DOI: 10.1016/j.cub.2023.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
In flowering plants, two fertilization products develop within the limited space of the seed: the embryo and the surrounding nutritive endosperm. The final size of the endosperm is modulated by the degree of embryo growth. In Arabidopsis thaliana, the endosperm expands rapidly after fertilization, but later gets invaded by the embryo that occupies most of the seed volume at maturity, surrounded by a single remaining aleurone-like endosperm layer.1,2,3,4 Embryo invasion is facilitated by the endosperm-expressed bHLH-type transcription factor ZHOUPI, which promotes weakening of endosperm cell walls.5,6 Endosperm elimination in zou mutants is delayed, and embryo growth is severely affected; the endosperm finally collapses around the dwarf embryo, causing the shriveled appearance of mature zou seeds.5,6,7 However, whether ZHOUPI facilitates mechanical endosperm destruction by the invading embryo or whether an active programmed cell death (PCD) process causes endosperm elimination has been subject to debate.2,8 Here we show that developmental PCD controlled by multiple NAC transcription factors in the embryo-adjacent endosperm promotes gradual endosperm elimination. Misexpressing the NAC transcription factor KIRA1 in the entire endosperm caused total endosperm elimination, generating aleurone-less mature seeds. Conversely, dominant and recessive higher-order NAC mutants led to delayed endosperm elimination and impaired cell corpse clearance. Promoting PCD in the zhoupi mutant partially rescued its embryo growth defects, while the endosperm in a zhoupi nac higher-order mutant persisted until seed desiccation. These data suggest that a combination of cell wall weakening and PCD jointly facilitates embryo invasion by an active auto-elimination of endosperm cells.
Collapse
Affiliation(s)
- Nicolas M Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB-UGENT Center of Plant Systems Biology, 9052 Ghent, Belgium.
| | - Tom Van Hautegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB-UGENT Center of Plant Systems Biology, 9052 Ghent, Belgium
| | - Neeltje Schilling
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB-UGENT Center of Plant Systems Biology, 9052 Ghent, Belgium; Institute of Biochemistry and Biology, Potsdam University, Potsdam, 14476 OT Golm, Germany
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; VIB Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium; VIB Bioimaging Core, Ghent University, 9052 Ghent, Belgium
| | - Freya De Winter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB-UGENT Center of Plant Systems Biology, 9052 Ghent, Belgium
| | - Matyáš Fendrych
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB-UGENT Center of Plant Systems Biology, 9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB-UGENT Center of Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
21
|
Sobri ZM, Gallois P. Characterising the Gene Expression, Enzymatic Activity and Subcellular Localisation of Arabidopsis thaliana Metacaspase 5 ( AtMCA-IIb). BIOLOGY 2023; 12:1155. [PMID: 37759555 PMCID: PMC10525968 DOI: 10.3390/biology12091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Metacaspases are a class of proteases found in plants that have gained attention in recent years due to their involvement in programmed cell death (PCD) and other essential cellular processes. Although structurally homologous to caspases found in animals, metacaspases have distinct properties and functions. There are nine metacaspase genes in the Arabidopsis thaliana genome; these can be type I or type II, and working out the function of each member of the gene family is challenging. In this study, we report the characterisation of one Arabidopsis type II metacaspase, metacaspase-5 (AtMC5; AtMCA-IIb). We detected the expression of AtMC5 only under specific conditions with a strong upregulation by ER stress and oxidative stress at a narrow 6 h time point. Recombinant AtMC5 was successfully purified from E. coli, with the recombinant AtMC5 working optimally at pH 7, using an optimised reaction buffer containing 10 mM calcium chloride together with 15% sucrose. Like other metacaspases, AtMC5 cleaved after arginine residue and demonstrated a substrate preference towards VRPR. Additionally, AtMC5-RFP was shown to be localised in the cytosol and nucleus of transfected cells. We found no evidence of a strong link between AtMC5 and PCD, and the data provide additional insights into the function of metacaspases in plants and will aid in future research toward further understanding their mode of action.
Collapse
Affiliation(s)
- Zulfazli M. Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Patrick Gallois
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
22
|
Zhang X, Wang H, Yang M, Liu R, Zhang X, Jia Z, Li P. Natural variation in ZmNAC087 contributes to total root length regulation in maize seedlings under salt stress. BMC PLANT BIOLOGY 2023; 23:392. [PMID: 37580686 PMCID: PMC10424409 DOI: 10.1186/s12870-023-04393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Soil salinity poses a significant challenge to crop growth and productivity, particularly affecting the root system, which is vital for water and nutrient uptake. To identify genetic factors that influence root elongation in stressful environments, we conducted a genome-wide association study (GWAS) to investigate the natural variation associated with total root length (TRL) under salt stress and normal conditions in maize seedlings. Our study identified 69 genetic variants associated with 38 candidate genes, among which a specific single nucleotide polymorphism (SNP) in ZmNAC087 was significantly associated with TRL under salt stress. Transient expression and transactivation assays revealed that ZmNAC087 encodes a nuclear-localized protein with transactivation activity. Further candidate gene association analysis showed that non-coding variations in ZmNAC087 promoter contribute to differential ZmNAC087 expression among maize inbred lines, potentially influencing the variation in salt-regulated TRL. In addition, through nucleotide diversity analysis, neutrality tests, and coalescent simulation, we demonstrated that ZmNAC087 underwent selection during maize domestication and improvement. These findings highlight the significance of natural variation in ZmNAC087, particularly the favorable allele, in maize salt tolerance, providing theoretical basis and valuable genetic resources for the development of salt-tolerant maize germplasm.
Collapse
Affiliation(s)
- Xiaomin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Mengling Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Runxiao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management (SKL-NUM), College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
23
|
Nguyen TT, Pham DT, Nguyen NH, Do PT, To HTM. The Germin-like protein gene OsGER4 is involved in heat stress response in rice root development. Funct Integr Genomics 2023; 23:271. [PMID: 37561192 DOI: 10.1007/s10142-023-01201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important dietary carbohydrate sources for half of the world's population. However, it is not well adapted to environmental stress conditions, necessitating to create new and improved varieties to help ensure sufficient rice production in the face of rising populations and shrinking arable land. Recently, the development of the CRISPR/Cas9 gene editing system has allowed researchers to study functional genomics and engineer new rice varieties with great efficiency compared to conventional methods. In this study, we investigate the involvement of OsGER4, a germin-like protein identified by a genome-wide association study that is associated with rice root development under a stress hormone jasmonic acids treatment. Analysis of the OsGER4 promoter region revealed a series of regulatory elements that connect this gene to ABA signaling and water stress response. Under heat stress, osger4 mutant lines produce a significantly lower crown root than wild-type Kitaake rice. The loss of OsGER4 also led to the reduction of lateral root development. Using the GUS promoter line, OsGER4 expression was detected in the epidermis of the crown root primordial, in the stele of the crown root, and subsequently in the primordial of the lateral root. Taken together, these results illustrated the involvement of OsGER4 in root development under heat stress by regulating auxin transport through plasmodesmata, under control by both ABA and auxin signaling.
Collapse
Affiliation(s)
- Trang Thi Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology. 100000, Hanoi, Vietnam
| | - Dan The Pham
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology. 100000, Hanoi, Vietnam
| | - Nhung Hong Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology. 100000, Hanoi, Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology. 100000, Hanoi, Vietnam
| | - Phat Tien Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology. 100000, Hanoi, Vietnam
| | - Huong Thi Mai To
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology. 100000, Hanoi, Vietnam.
| |
Collapse
|
24
|
Xia F, Liang X, Tan L, Sun W, Dai X, Yan H. Genome-Wide Identification, Evolution and Expression Profile Analysis of NAC Transcription Factor in Simmondsia chinensis. Curr Issues Mol Biol 2023; 45:5422-5436. [PMID: 37504260 PMCID: PMC10378596 DOI: 10.3390/cimb45070344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
NAC transcription factors (TFs) are one of the largest plant-specific gene families and play important roles in plant growth, development, and the biotic and abiotic stress response. Although the sequencing of Jojoba (Simmondsia chinensis) has been completed, the genome-wide identification and analysis of its NAC TFs has not been reported. In this study, a total of 57 genes were identified in Jojoba, which were divided into eight groups based on phylogenetic analysis. The genes clustered in the same groups have a similar gene structure and motif distribution. Based on the analysis of cis-elements in NAC TFs, nine cis-acting elements were identified in the promoter region that involved in light response, hormonal response, and stress response. Synteny analysis showed a greater collinearity between Jojoba and V. vinifera than Arabidopsis thaliana. The 24 genes in the Jojoba NAC TFs are derived from fragment replication, which may be the main source of NAC amplification. Gene expression analysis identified seven genes that were highly expressed in seeds. The differential expression analysis of NAC TFs in cotyledon and embryonic axis tissues showed that the expression of 10 genes was up-regulated and 1 gene was down-regulated. This study provides more information on the classification, gene structure, conserved motif, and evolution of NAC TFs in Jojoba, facilitating further exploration of their specific functional analysis in Jojoba seed development.
Collapse
Affiliation(s)
- Fan Xia
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Liang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Lina Tan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Wen Sun
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaogang Dai
- Key Laboratory of Tree Breeding & Germplasm Improvement, Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
25
|
Fleitas AL, Castro A, Blumwald E, Vidal S. Functional specialization of chloroplast vesiculation ( CV) duplicated genes from soybean shows partial overlapping roles during stress-induced or natural senescence. FRONTIERS IN PLANT SCIENCE 2023; 14:1184020. [PMID: 37346131 PMCID: PMC10280078 DOI: 10.3389/fpls.2023.1184020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Soybean is a globally important legume crop which is highly sensitive to drought. The identification of genes of particular relevance for drought responses provides an important basis to improve tolerance to environmental stress. Chloroplast Vesiculation (CV) genes have been characterized in Arabidopsis and rice as proteins participating in a specific chloroplast-degradation vesicular pathway (CVV) during natural or stress-induced leaf senescence. Soybean genome contains two paralogous genes encoding highly similar CV proteins, CV1 and CV2. In this study, we found that expression of CV1 was differentially upregulated by drought stress in soybean contrasting genotypes exhibiting slow-wilting (tolerant) or fast-wilting (sensitive) phenotypes. CV1 reached higher induction levels in fast-wilting plants, suggesting a negative correlation between CV1 gene expression and drought tolerance. In contrast, autophagy (ATG8) and ATI-PS (ATI1) genes were induced to higher levels in slow-wilting plants, supporting a pro-survival role for these genes in soybean drought tolerance responses. The biological function of soybean CVs in chloroplast degradation was confirmed by analyzing the effect of conditional overexpression of CV2-FLAG fusions on the accumulation of specific chloroplast proteins. Functional specificity of CV1 and CV2 genes was assessed by analyzing their specific promoter activities in transgenic Arabidopsis expressing GUS reporter gene driven by CV1 or CV2 promoters. CV1 promoter responded primarily to abiotic stimuli (hyperosmolarity, salinity and oxidative stress), while the promoter of CV2 was predominantly active during natural senescence. Both promoters were highly responsive to auxin but only CV1 responded to other stress-related hormones, such as ABA, salicylic acid and methyl jasmonate. Moreover, the dark-induced expression of CV2, but not of CV1, was strongly inhibited by cytokinin, indicating similarities in the regulation of CV2 to the reported expression of Arabidopsis and rice CV genes. Finally, we report the expression of both CV1 and CV2 genes in roots of soybean and transgenic Arabidopsis, suggesting a role for the encoded proteins in root plastids. Together, the results indicate differential roles for CV1 and CV2 in development and in responses to environmental stress, and point to CV1 as a potential target for gene editing to improve crop performance under stress without compromising natural development.
Collapse
Affiliation(s)
- Andrea Luciana Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
26
|
Feng Q, Cubría-Radío M, Vavrdová T, De Winter F, Schilling N, Huysmans M, Nanda AK, Melnyk CW, Nowack MK. Repressive ZINC FINGER OF ARABIDOPSIS THALIANA proteins promote programmed cell death in the Arabidopsis columella root cap. PLANT PHYSIOLOGY 2023; 192:1151-1167. [PMID: 36852889 PMCID: PMC10231456 DOI: 10.1093/plphys/kiad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Developmental programmed cell death (dPCD) controls a plethora of functions in plant growth and reproduction. In the root cap of Arabidopsis (Arabidopsis thaliana), dPCD functions to control organ size in balance with the continuous stem cell activity in the root meristem. Key regulators of root cap dPCD including SOMBRERO/ANAC033 (SMB) belong to the NAC family of transcription factors. Here, we identify the C2H2 zinc finger protein ZINC FINGER OF ARABIDOPSIS THALIANA 14 ZAT14 as part of the gene regulatory network of root cap dPCD acting downstream of SMB. Similar to SMB, ZAT14-inducible misexpression leads to extensive ectopic cell death. Both the canonical EAR motif and a conserved L-box motif of ZAT14 act as transcriptional repression motifs and are required to trigger cell death. While a single zat14 mutant does not show a cell death-related phenotype, a quintuple mutant knocking out 5 related ZAT paralogs shows a delayed onset of dPCD execution in the columella and the adjacent lateral root cap. While ZAT14 is co-expressed with established dPCD-associated genes, it does not activate their expression. Our results suggest that ZAT14 acts as a transcriptional repressor controlling a so far uncharacterized subsection of the dPCD gene regulatory network active in specific root cap tissues.
Collapse
Affiliation(s)
- Qiangnan Feng
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Marta Cubría-Radío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Tereza Vavrdová
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Freya De Winter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Neeltje Schilling
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam OT Golm, Germany
| | - Marlies Huysmans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Amrit K Nanda
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
27
|
Kumar N, Caldwell C, Iyer-Pascuzzi AS. The NIN-LIKE PROTEIN 7 transcription factor modulates auxin pathways to regulate root cap development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3047-3059. [PMID: 36787214 DOI: 10.1093/jxb/erad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/10/2023] [Indexed: 05/21/2023]
Abstract
The root cap is a small tissue located at the tip of the root with critical functions for root growth. Present in nearly all vascular plants, the root cap protects the root meristem, influences soil penetration, and perceives and transmits environmental signals that are critical for root branching patterns. To perform these functions, the root cap must remain relatively stable in size and must integrate endogenous developmental pathways with environmental signals, yet the mechanism is not clear. We previously showed that low pH conditions altered root cap development, and these changes are mediated by the NIN LIKE PROTEIN 7 (NLP7) transcription factor, a master regulator of nitrate signaling. Here we show that in Arabidopsis NLP7 integrates nitrate signaling with auxin pathways to regulate root cap development. We found that low nitrate conditions promote aberrant release of root cap cells. Nitrate deficiency impacts auxin pathways in the last layer of the root cap, and this is mediated in part by NLP7. Mutations in NLP7 abolish the auxin minimum in the last layer of the root cap and alter root cap expression of the auxin carriers PIN-LIKES 3 (PILS3) and PIN-FORMED 7 (PIN7) as well as transcription factors that regulate PIN expression. Together, our data reveal NLP7 as a link between endogenous auxin pathways and nitrate signaling in the root cap.
Collapse
Affiliation(s)
- Narender Kumar
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Chloe Caldwell
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
Chen X, MacGregor DR, Stefanato FL, Zhang N, Barros-Galvão T, Penfield S. A VEL3 histone deacetylase complex establishes a maternal epigenetic state controlling progeny seed dormancy. Nat Commun 2023; 14:2220. [PMID: 37072400 PMCID: PMC10113200 DOI: 10.1038/s41467-023-37805-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023] Open
Abstract
Mother plants play an important role in the control of dormancy and dispersal characters of their progeny. In Arabidopsis seed dormancy is imposed by the embryo-surrounding tissues of the endosperm and seed coat. Here we show that VERNALIZATION5/VIN3-LIKE 3 (VEL3) maintains maternal control over progeny seed dormancy by establishing an epigenetic state in the central cell that primes the depth of primary seed dormancy later established during seed maturation. VEL3 colocalises with MSI1 in the nucleolus and associates with a histone deacetylase complex. Furthermore, VEL3 preferentially associates with pericentromeric chromatin and is required for deacetylation and H3K27me3 deposition established in the central cell. The epigenetic state established by maternal VEL3 is retained in mature seeds, and controls seed dormancy in part through repression of programmed cell death-associated gene ORE1. Our data demonstrates a mechanism by which maternal control of progeny seed physiology persists post-shedding, maintaining parental control of seed behaviour.
Collapse
Affiliation(s)
- Xiaochao Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Dana R MacGregor
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Francesca L Stefanato
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Naichao Zhang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Henan University, Jinming Road, Kaifeng, Henan, China
| | - Thiago Barros-Galvão
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
29
|
Xiao Y, Zhang Y, Wang C, Ge Y, Gao J, Huang T. The use of multiple datasets to identify autophagy-related molecular mechanisms in intracerebral hemorrhage. Front Genet 2023; 14:1032639. [PMID: 37077541 PMCID: PMC10106621 DOI: 10.3389/fgene.2023.1032639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Intracerebral hemorrhage (ICH) is a stroke syndrome with high mortality and disability rates, but autophagy’s mechanism in ICH is still unclear. We identified key autophagy genes in ICH by bioinformatics methods and explored their mechanisms.Methods: We downloaded ICH patient chip data from the Gene Expression Omnibus (GEO) database. Based on the GENE database, differentially expressed genes (DEGs) for autophagy were identified. We identified key genes through protein–protein interaction (PPI) network analysis and analyzed their associated pathways in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene-motif rankings, miRWalk and ENCORI databases were used to analyze the key gene transcription factor (TF) regulatory network and ceRNA network. Finally, relevant target pathways were obtained by gene set enrichment analysis (GSEA).Results: Eleven autophagy-related DEGs in ICH were obtained, and IL-1B, STAT3, NLRP3 and NOD2 were identified as key genes with clinical predictive value by PPI and receiver operating characteristic (ROC) curve analysis. The candidate gene expression level was significantly correlated with the immune infiltration level, and most of the key genes were positively correlated with the immune cell infiltration level. The key genes are mainly related to cytokine and receptor interactions, immune responses and other pathways. The ceRNA network predicted 8,654 interaction pairs (24 miRNAs and 2,952 lncRNAs).Conclusion: We used multiple bioinformatics datasets to identify IL-1B, STAT3, NLRP3 and NOD2 as key genes that contribute to the development of ICH.
Collapse
Affiliation(s)
- Yinggang Xiao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
| | - Cunjin Wang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
| | - Yali Ge
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
| | - Ju Gao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
- *Correspondence: Ju Gao, ; Tianfeng Huang,
| | - Tianfeng Huang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
- *Correspondence: Ju Gao, ; Tianfeng Huang,
| |
Collapse
|
30
|
Chen Q, Yan J, Tong T, Zhao P, Wang S, Zhou N, Cui X, Dai M, Jiang YQ, Yang B. ANAC087 transcription factor positively regulates age-dependent leaf senescence through modulating the expression of multiple target genes in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:967-984. [PMID: 36519581 DOI: 10.1111/jipb.13434] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Leaf senescence is the final stage of leaf development and appropriate onset and progression of leaf senescence are critical for reproductive success and fitness. Although great progress has been made in identifying key genes regulating leaf senescence and elucidating the underlining mechanisms in the model plant Arabidopsis, there is still a gap to understanding the complex regulatory network. In this study, we discovered that Arabidopsis ANAC087 transcription factor (TF) positively modulated leaf senescence. Expression of ANAC087 was induced in senescing leaves and the encoded protein acted as a transcriptional activator. Both constitutive and inducible overexpression lines of ANAC087 showed earlier senescence than control plants, whereas T-DNA insertion mutation and dominant repression of the ANAC087 delayed senescence rate. A quantitative reverse transcription-polymerase chain reaction (qRT-PCR) profiling showed that the expression of an array of senescence-associated genes was upregulated in inducible ANAC087 overexpression plants including BFN1, NYE1, CEP1, RbohD, SAG13, SAG15, and VPEs, which are involved in programmed cell death (PCD), chlorophyll degradation and reactive oxygen species (ROS) accumulation. In addition, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) assays demonstrated that ANAC087 directly bound to the canonical NAC recognition sequence (NACRS) motif in promoters of its target genes. Moreover, mutation of two representative target genes, BFN1 or NYE1 alleviated the senescence rate of ANAC087-overexpression plants, suggesting their genetic regulatory relationship. Taken together, this study indicates that ANAC087 serves as an important regulator linking PCD, ROS, and chlorophyll degradation to leaf senescence.
Collapse
Affiliation(s)
- Qinqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tiantian Tong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Peiyu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Shuangshuang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Na Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Xing Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Moyu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| |
Collapse
|
31
|
Rui Z, Pan W, Zhao Q, Hu H, Li X, Xing L, Jia H, She K, Nie X. Genome-wide identification, evolution and expression analysis of NAC gene family under salt stress in wild emmer wheat (Triticum dicoccoides. L). Int J Biol Macromol 2023; 230:123376. [PMID: 36709820 DOI: 10.1016/j.ijbiomac.2023.123376] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/31/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
The NAC transcription factor (TF) family is one of the largest plant-specific gene families, playing the vital roles in plant growth and development as well as stress response. Although it has been extensively characterized in many plants, the significance of NAC family in wild emmer wheat is not well understood up to now. Here, a total of 200 NAC transcription factors were identified in wild emmer (TdNACs) through a genome-search method, which were classified into 12 subfamilies based on phylogenetic relationship. And the members in the subfamily shared similar exon-intron structure and conversed domain organization. Collinearity analysis revealed that segmental duplication and polyploidization contributed mainly to the expansion of TdNACs. Furthermore, the genetic variations of TdNACs were investigated using the re-sequencing data and genetic bottleneck has occurred on NAC genes when wild emmer domesticated to cultivated emmer wheat. Finally, the expression patterns of these TdNACs were investigated using RNA-seq data of the salt-tolerant genotype under salt stress to obtain salt-responsive TdNACs, and 10 out of which were further validated using QPCR analysis. This study provided the targets for further functional study of TdNAC genes, and also contributed to mine novel genes for improving the salt tolerance in wheat and other crops.
Collapse
Affiliation(s)
- Zesheng Rui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qinlong Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haibo Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiuhua Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liheng Xing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huining Jia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kuijun She
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China; ICARDA-NWSUAF Joint Research Centre, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
32
|
Ding N, Zhao Y, Wang W, Liu X, Shi W, Zhang D, Chen J, Ma S, Sun Q, Wang T, Lu M. Transcriptome analysis in contrasting maize inbred lines and functional analysis of five maize NAC genes under drought stress treatment. FRONTIERS IN PLANT SCIENCE 2023; 13:1097719. [PMID: 36743547 PMCID: PMC9892906 DOI: 10.3389/fpls.2022.1097719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Drought substantially influences crop growth and development. NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) have received much attention for their critical roles in drought stress responses. To explore the maize NAC genes in response to drought stress, the transcriptome sequencing data of NAC TFs in two maize inbred lines, the drought tolerance line H082183 and the sensitive line Lv28, were used to screen the differentially expressed genes (DEGs). There were 129 maize NAC protein-coding genes identified, of which 15 and 20 NAC genes were differentially expressed between the two genotypes under MD and SD treatments, respectively. Meanwhile, the phylogenetic relationship of 152 non-redundant NAC family TFs in maize was generated. The maize NAC family proteins were grouped into 13 distinct subfamilies. Five drought stress-responsive NAC family members, which were designed as ZmNAP, ZmNAC19, ZmNAC4, ZmJUB1(JUBGBRUNNEN1), and ZmNAC87, were selected for further study. The expression of ZmNAP, ZmNAC19, ZmNAC4, ZmJUB1, and ZmNAC87 were significantly induced by drought, dehydration, polyethylene glycol (PEG) stress, and abscisic acid (ABA) treatments. The overexpressing Arabidopsis of these five NAC genes was generated for functional characterization, respectively. Under different concentrations of NaCl, D-mannitol stress, and ABA treatments, the sensitivity of ZmNAP-, ZmNAC19-, ZmNAC4-, ZmJUB1-, and ZmNAC87-overexpressing lines was significantly increased at the germination stage compared to the wild-type lines. The overexpression of these five NAC members significantly improved the drought stress tolerance in transgenic Arabidopsis. Yeast two-hybrid screening analysis revealed that ZmNAP may cooperatively interact with 11 proteins including ZmNAC19 to activate the drought stress response. The above results inferred that ZmNAP, ZmNAC19, ZmNAC4, ZmJUB1, and ZmNAC87 may play important roles in the plant response to drought stress and may be useful in bioengineering breeding and drought tolerance improvement.
Collapse
Affiliation(s)
- Ning Ding
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ying Zhao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Weixiang Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xuyang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/the National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, China
| | - Wentong Shi
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Dengfeng Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/the National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, China
| | - Jiajie Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Shuo Ma
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qingpeng Sun
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/the National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, China
| | - Min Lu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
33
|
Feng D, Liang Z, Wang Y, Yao J, Yuan Z, Hu G, Qu R, Xie S, Li D, Yang L, Zhao X, Ma Y, Lohmann JU, Gu X. Chromatin accessibility illuminates single-cell regulatory dynamics of rice root tips. BMC Biol 2022; 20:274. [PMID: 36482454 PMCID: PMC9733338 DOI: 10.1186/s12915-022-01473-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Root development and function have central roles in plant adaptation to the environment. The modification of root traits has additionally been a major driver of crop performance since the green revolution; however, the molecular underpinnings and the regulatory programmes defining root development and response to environmental stress remain largely unknown. Single-cell reconstruction of gene regulatory programmes provides an important tool to understand the cellular phenotypic variation in complex tissues and their response to endogenous and environmental stimuli. While single-cell transcriptomes of several plant organs have been elucidated, the underlying chromatin landscapes associated with cell type-specific gene expression remain largely unexplored. RESULTS To comprehensively delineate chromatin accessibility during root development of an important crop, we applied single-cell ATAC-seq (scATAC-seq) to 46,758 cells from rice root tips under normal and heat stress conditions. Our data revealed cell type-specific accessibility variance across most of the major cell types and allowed us to identify sets of transcription factors which associate with accessible chromatin regions (ACRs). Using root hair differentiation as a model, we demonstrate that chromatin and gene expression dynamics during cell type differentiation correlate in pseudotime analyses. In addition to developmental trajectories, we describe chromatin responses to heat and identify cell type-specific accessibility changes to this key environmental stimulus. CONCLUSIONS We report chromatin landscapes during rice root development at single-cell resolution. Our work provides a framework for the integrative analysis of regulatory dynamics in this important crop organ at single-cell resolution.
Collapse
Affiliation(s)
- Dan Feng
- grid.418873.1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhe Liang
- grid.418873.1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yifan Wang
- grid.418873.1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jiaying Yao
- grid.459340.fAnnoroad Gene Technology, Beijing, 100176 China
| | - Zan Yuan
- grid.459340.fAnnoroad Gene Technology, Beijing, 100176 China
| | - Guihua Hu
- grid.418873.1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Ruihong Qu
- grid.418873.1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shang Xie
- grid.418873.1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dongwei Li
- grid.418873.1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Liwen Yang
- grid.418873.1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinai Zhao
- grid.7700.00000 0001 2190 4373Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Yanfei Ma
- grid.7700.00000 0001 2190 4373Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jan U. Lohmann
- grid.7700.00000 0001 2190 4373Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Xiaofeng Gu
- grid.418873.1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
34
|
Wen B, Gong X, Chen X, Tan Q, Li L, Wu H. Transcriptome analysis reveals candidate genes involved in nitrogen deficiency stress in apples. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153822. [PMID: 36244263 DOI: 10.1016/j.jplph.2022.153822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen is one of the macroelements required for plant growth and development and the identification of candidate genes involved in nitrogen deficiency stress is of great importance to the sustainable development of agriculture. Here, we found that the color of apple leaves changed from dark green to yellow-green, the malondialdehyde (MDA) content, soluble protein content, and proline content significantly increased, the chlorophyll content significantly decreased in response to nitrate deficiency stress. According to the physiological and biochemical changes of apple leaves during nitrate deficiency stress, nitrogen deficiency stress was divided into two stages: early nitrogen deficiency stage (ES) and late nitrogen deficiency stage (LS). Transcriptome sequencing was performed in these two stress stages. 5773 differential expression genes (DEGs) were identified in the early nitrogen deficiency stress stage and 6130 DEGs were identified in the late nitrogen deficiency stress stage. Functional analysis of these DEGs revealed that a large number of DEGs were enriched in 'porphyrin and chlorophyll metabolic' pathways, the 'photosynthesis' pathway, the 'photosynthesis-antenna protein' pathway, and the 'ABA', 'ETH', and 'JA' signal transduction pathways, and the metabolic networks of these pathways were constructed. In addition, overexpression of MdNAC4 weakened the tolerance of apple calli to nitrogen deficiency stress. Taken together, our results reveal possible pathways for apple adaptation to nitrogen deficiency stress and identify the function of MdNAC4, a key transcription factor regulating nitrogen deficiency stress, which enriches the molecular mechanism of apple adapting to a nitrogen deficiency environment.
Collapse
Affiliation(s)
- Binbin Wen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Xingyao Gong
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Xiude Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Qiuping Tan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Ling Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Hongyu Wu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271000, China.
| |
Collapse
|
35
|
Xie F, Vahldick H, Lin Z, Nowack M. Killing me softly - Programmed cell death in plant reproduction from sporogenesis to fertilization. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102271. [PMID: 35963096 PMCID: PMC7613566 DOI: 10.1016/j.pbi.2022.102271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Regulated or programmed cell death (RCD or PCD) is a fundamental biological principle integral to a considerable variety of functions in multicellular organisms. In plants, different PCD processes are part of biotic and abiotic stress responses, but also occur as an essential aspect of unperturbed plant development. PCD is particularly abundant during plant reproduction, eliminating unwanted or no longer needed cells, tissues, or organs in a precisely controlled manner. Failure in reproductive PCD can have detrimental consequences for plant reproduction. Here we shed a light on the latest research into PCD mechanisms in plant reproduction from sex determination over sporogenesis to pollination and fertilization.
Collapse
Affiliation(s)
- Fei Xie
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hannah Vahldick
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Zongcheng Lin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Moritz Nowack
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
36
|
Polyvinyl Chloride Nanoparticles Affect Cell Membrane Integrity by Disturbing the Properties of the Multicomponent Lipid Bilayer in Arabidopsis thaliana. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185906. [PMID: 36144641 PMCID: PMC9503312 DOI: 10.3390/molecules27185906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
The ubiquitous presence of nanoplastics (NPs) in natural ecosystems is a serious concern, as NPs are believed to threaten every life form on Earth. Micro- and nanoplastics enter living systems through multiple channels. Cell membranes function as the first barrier of entry to NPs, thus playing an important biological role. However, in-depth studies on the interactions of NPs with cell membranes have not been performed, and effective theoretical models of the underlying molecular details and physicochemical behaviors are lacking. In the present study, we investigated the uptake of polyvinyl chloride (PVC) nanoparticles by Arabidopsis thaliana root cells, which leads to cell membrane leakage and damage to membrane integrity. We performed all-atom molecular dynamics simulations to determine the effects of PVC NPs on the properties of the multicomponent lipid bilayer. These simulations revealed that PVCs easily permeate into model lipid membranes, resulting in significant changes to the membrane, including reduced density and changes in fluidity and membrane thickness. Our exploration of the interaction mechanisms between NPs and the cell membrane provided valuable insights into the effects of NPs on membrane structure and integrity.
Collapse
|
37
|
Ganesh A, Shukla V, Mohapatra A, George AP, Bhukya DPN, Das KK, Kola VSR, Suresh A, Ramireddy E. Root Cap to Soil Interface: A Driving Force Toward Plant Adaptation and Development. PLANT & CELL PHYSIOLOGY 2022; 63:1038-1051. [PMID: 35662353 DOI: 10.1093/pcp/pcac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Land plants have developed robust roots to grow in diverse soil ecosystems. The distal end of the root tip has a specialized organ called the 'root cap'. The root cap assists the roots in penetrating the ground, absorbing water and minerals, avoiding heavy metals and regulating the rhizosphere microbiota. Furthermore, root-cap-derived auxin governs the lateral root patterning and directs root growth under varying soil conditions. The root cap formation is hypothesized as one of the key innovations during root evolution. Morphologically diversified root caps in early land plant lineage and later in angiosperms aid in improving the adaptation of roots and, thereby, plants in diverse soil environments. This review article presents a retrospective view of the root cap's important morphological and physiological characteristics for the root-soil interaction and their response toward various abiotic and biotic stimuli. Recent single-cell RNAseq data shed light on root cap cell-type-enriched genes. We compiled root cap cell-type-enriched genes from Arabidopsis, rice, maize and tomato and analyzed their transcription factor (TF) binding site enrichment. Further, the putative gene regulatory networks derived from root-cap-enriched genes and their TF regulators highlight the species-specific biological functions of root cap genes across the four plant species.
Collapse
Affiliation(s)
- Alagarasan Ganesh
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Vishnu Shukla
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Ankita Mohapatra
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Abin Panackal George
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Durga Prasad Naik Bhukya
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Krishna Kodappully Das
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Vijaya Sudhakara Rao Kola
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Aparna Suresh
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Eswarayya Ramireddy
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
38
|
Du Q, Lv W, Guo Y, Yang J, Wang S, Li WX. MIR164b represses iron uptake by regulating the NAC domain transcription factor5-Nuclear Factor Y, Subunit A8 module in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:1095-1109. [PMID: 35285505 PMCID: PMC9157116 DOI: 10.1093/plphys/kiac114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Recent findings have revealed the important roles of microRNAs (miRNAs) in the secondary responses to oxidative damage caused by iron (Fe) excess. However, the functional importance of miRNAs in plant responses to Fe deficiency remains to be explored. Here, we show that the expression level of miR164 in Arabidopsis (Arabidopsis thaliana) roots was repressed by Fe deficiency. Primary root length, lateral root number, ferric reductase activity, and mRNA abundance of IRON-REGULATED TRANSPORTER1 (IRT1) and FERRIC REDUCTION OXIDASE2 (FRO2) were higher in the mir164b mutant than in the wild-type (WT) under Fe-deficient conditions. Analysis of the Fe concentrations and ferric reductase activities in the roots of miR164 knockdown transgenic plants showed that members of the miR164 family had different functions in Fe-deficiency responses. Promoter::GUS analysis showed that NAM/ATAF/CUC (NAC) domain transcription factor5 (NAC5) is regulated at both transcriptional and posttranscriptional levels under Fe-deficient conditions. Transgenic Arabidopsis plants overexpressing NAC5 were more tolerant of Fe deficiency than the WT. NAC5 has transactivation activity and directly transactivates the expression of Nuclear Factor Y, Subunit A8 (NFYA8), as demonstrated by chromatin immunoprecipitation followed by quantitative polymerase chain reaction, electrophoretic mobility shift assay (EMSA), and dual-luciferase reporter assay. Like overexpression of NAC5, overexpression of NFYA8 increases primary root length, lateral root number, ferric reductase activity, and mRNA abundance of IRT1 and FRO2 under Fe-deficient conditions. Thus, MIR164b is important for Fe-deficiency responses by its regulation of the NAC5-NFYA8 module.
Collapse
Affiliation(s)
- Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenshuai Lv
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Guo
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan Yang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shanhong Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
39
|
Feng Q, De Rycke R, Dagdas Y, Nowack MK. Autophagy promotes programmed cell death and corpse clearance in specific cell types of the Arabidopsis root cap. Curr Biol 2022; 32:2110-2119.e3. [PMID: 35390283 DOI: 10.1016/j.cub.2022.03.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
Abstract
Autophagy is a conserved quality control pathway that mediates the degradation of cellular components by targeting them to the lysosomes or vacuoles.1 Autophagy has been implicated in the regulation of some regulated cell death processes in animal systems.2 However, its function in developmentally controlled programmed cell death (dPCD) in plants remains little studied and controversial.3 Some studies have reported autophagy pro-survival roles,4,5 while others have suggested pro-death functions for autophagy,6,7 calling for further detailed investigations. Here, we investigated the role of autophagy in dPCD using the Arabidopsis root cap as an accessible and genetically tractable model system.8 In Arabidopsis, dPCD is an integral part of root cap differentiation, restricting root cap organ size to the root meristem.9 The root cap consists of two distinct tissues: the proximally positioned columella that is located at the very root tip and the lateral root cap (LRC) that flanks the root meristem up to its distal end at the start of the root elongation zone.10 We show that autophagic flux strongly increased prior to dPCD execution in both root cap tissues and depends on the key autophagy genes ATG2, ATG5, and ATG7. Systemic and organ-specific mutation of these genes shows delayed PCD execution and lack of postmortem corpse clearance in the columella but no defects in dPCD execution or corpse clearance in the distal LRC. Our results reveal a high degree of cell-type specificity in autophagy functions and suggest that autophagy roles in dPCD can considerably diverge between different cell types of the same plant organ.
Collapse
Affiliation(s)
- Qiangnan Feng
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Riet De Rycke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; VIB Bioimaging Core, Technologiepark 71, 9052 Ghent, Belgium
| | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
40
|
Liu S, Li L, Deng Y, Bai Y, Sun C, Huang S, Zhou J, Shi L, Yang X, Li L, Chen X, Tang Y. BrpNAC895 and BrpABI449 coregulate the transcription of the afflux-type Cd transporter BrpHMA2 in Brassica parachinensis. HORTICULTURE RESEARCH 2022; 9:uhac044. [PMID: 35184182 PMCID: PMC9045254 DOI: 10.1093/hr/uhac044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Brassica parachinensis is a popular leafy vegetable. It is able to accumulate high concentration of Cd, however, the molecular mechanism of Cd accumulation is unknown. This study investigated the function and regulatory mechanism of the Cd-responsive metal ion transporter gene BrpHMA2. BrpHMA2 was induced by Cd stress and specifically expressed in vascular tissues, and the protein was localized in the plasma membrane. Heterologous expression of BrpHMA2 enhanced Cd accumulation and Cd sensitivity in transgenic Arabidopsis and yeast. After Cd stress, the transcriptional factors BrpNAC895 and BrpABI449, which may recognize the ABREs in the BrpHMA2 promoter, were also differentially expressed. The transcriptional regulation of BrpHMA2 was further investigated using ChIP-qPCR, EMSA and LUC reporter activity analysis employing the transient expression system of Brassica parachinensis protoplasts and tobacco leaves and the E. coli expression system. By binding to the promoter, BrpNAC895 induced the transcription of BrpHMA2. BrpABI449 might bind to the BrpHMA2 promoter or interact with BrpNAC895 to interfere with the action of BrpNAC895. The findings suggest that BrpHMA2 is a membrane-based afflux-type Cd transporter involved in the Cd2+ uptake and long-distance transport in plants. BrpNAC895 and BrpABI449, which function as the transcription activator and repressor respectively, coregulate BrpHMA2 expression.
Collapse
Affiliation(s)
- Shuai Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, China
| | - Limei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Life Sciences College, Zhaoqing University, Zhaoqing, 526061, China
| | - Yanwu Deng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Yongsheng Bai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Chao Sun
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, 8210095 Nanjing, China
| | - Shili Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Jiajie Zhou
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Liyu Shi
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Xuewei Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| |
Collapse
|
41
|
Klein H, Gallagher J, Demesa-Arevalo E, Abraham-Juárez MJ, Heeney M, Feil R, Lunn JE, Xiao Y, Chuck G, Whipple C, Jackson D, Bartlett M. Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022. [PMID: 34996873 DOI: 10.1101/2021.09.03.458935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
Affiliation(s)
- Harry Klein
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Joseph Gallagher
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | | | - María Jazmín Abraham-Juárez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato 36821, Mexico
| | - Michelle Heeney
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Yuguo Xiao
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - George Chuck
- Plant Gene Expression Center, University of California, Berkeley, CA 94710
| | - Clinton Whipple
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - David Jackson
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Madelaine Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003;
| |
Collapse
|
42
|
Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022; 119:2115871119. [PMID: 34996873 PMCID: PMC8764674 DOI: 10.1073/pnas.2115871119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Floral morphology is immensely diverse. One developmental process acting to shape this diversity is growth suppression. For example, grass flowers exhibit extreme diversity in floral sexuality, arising through differential suppression of stamens or carpels. The genes regulating this growth suppression and how they have evolved remain largely unknown. We discovered that two classic developmental genes with ancient roles in controlling vegetative branching were recruited to suppress carpel development in maize. Our results highlight the power of forward genetics to reveal unpredictable genetic interactions and hidden pleiotropy of developmental genes. More broadly, our findings illustrate how ancient gene functions are recruited to new developmental contexts in the evolution of plant form. Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
|
43
|
Vargas-Hernández BY, Núñez-Muñoz L, Calderón-Pérez B, Xoconostle-Cázares B, Ruiz-Medrano R. The NAC Transcription Factor ANAC087 Induces Aerial Rosette Development and Leaf Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:818107. [PMID: 35283930 PMCID: PMC8905224 DOI: 10.3389/fpls.2022.818107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 05/22/2023]
Abstract
CmNACP1 mRNA has been shown to move long distance through the phloem in Cucurbita maxima (pumpkin) and through a graft junction. Whereas the phloem transport of several different mRNAs has been documented in other systems as well, its function remains, for most of these RNAs, largely unknown. To gain insight into the possible role of these RNAs, we searched for the closest homologs of CmNACP1 in Arabidopsis, a model plant much more amenable for analysis. A phylogenetic approach using the predicted NAC domain indicated that ANAC059, ANAC092, ANAC079, ANAC100, ANAC046, and ANAC087 form a single clade with CmNACP1. In the present work, we analyzed the possible function of the ANAC087 gene in more detail. The promoter region of this gene directed expression in the vasculature, and also in trichomes, stem, apexes, and developing flowers which supports the notion that ANAC087 and CmNACP1 are orthologs. Overexpression of the ANAC087 gene induced increased branching in inflorescence stem, and also development of ectopic or aerial rosettes in T1 and T2 plants. Furthermore, overexpression of ANAC087 leads to accelerated leaf senescence in 44 days post-germination (dpg). Interestingly, a similar phenotype was observed in plants expressing the ANAC087 gene upstream region, also showing an increase in ANAC087 transcript levels. Finally, the results shown in this work indicate a role for ANAC087 in leaf senescence and also in rosette development.
Collapse
|
44
|
Hoang NV, Park S, Park C, Suh H, Kim S, Chae E, Kang B, Lee J. Oxidative stress response and programmed cell death guided by NAC013 modulate pithiness in radish taproots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:144-163. [PMID: 34724278 PMCID: PMC9298717 DOI: 10.1111/tpj.15561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 05/10/2023]
Abstract
Radish, Raphanus sativus L., is an important root crop that is cultivated worldwide. Owing to its evolutionary proximity to Arabidopsis thaliana, radish can be used as a model root crop in research on the molecular basis of agronomic traits. Pithiness is a significant defect that reduces the production of radish with commercial value; however, traditional breeding to eliminate this trait has thus far been unsuccessful. Here, we performed transcriptomics and genotype-by-sequencing (GBS)-based quantitative trait locus (QTL) analyses of radish inbred lines to understand the molecular basis of pithiness in radish roots. The transcriptome data indicated that pithiness likely stems from the response to oxidative stress, leading to cell death of the xylem parenchyma during the root-thickening process. Subsequently, we narrowed down a list of candidates responsible for pithiness near a major QTL and found polymorphisms in a radish homologue of Arabidopsis ANAC013 (RsNAC013), an endoplasmic reticulum bound NAC transcription factor that is targeted to the nucleus to mediate the mitochondrial retrograde signal. We analysed the effects of polymorphisms in RsNAC013 using Arabidopsis transgenic lines overexpressing RsNAC013 alleles as well as in radish inbred lines bearing these alleles. This analysis indicated that non-synonymous variations within the coding sequence result in different levels of RsNAC013 activities, thereby providing a genetic condition for root pithiness. The elevated oxidative stress or hypoxia that activates RsNAC013 for mitochondrial signalling enhances this process. Collectively, this study serves as an exemplary case of translational research taking advantage of the extensive information available from a model organism.
Collapse
Affiliation(s)
- Nam V. Hoang
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Suhyoung Park
- National Institute of Horticultural & Herbal ScienceRural Development AdministrationWanju55365Korea
| | - Chulmin Park
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Hannah Suh
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Sang‐Tae Kim
- Department of Medical & Biological SciencesThe Catholic University of KoreaJibong‐roBucheon‐siGyeonggi‐do14662Korea
| | - Eunyoung Chae
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Byoung‐Cheorl Kang
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Ji‐Young Lee
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
- Plant Genomics and Breeding InstituteSeoul National UniversityGwanak‐roSeoul08826Korea
| |
Collapse
|
45
|
Yan H, Ma G, Teixeira da Silva JA, Qiu L, Xu J, Zhou H, Wei M, Xiong J, Li M, Zhou S, Wu J, Tang X. Genome-Wide Identification and Analysis of NAC Transcription Factor Family in Two Diploid Wild Relatives of Cultivated Sweet Potato Uncovers Potential NAC Genes Related to Drought Tolerance. Front Genet 2021; 12:744220. [PMID: 34899836 DOI: 10.3389/fgene.021.744220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) proteins play a pivotal role in modulating plant development and offer protection against biotic and abiotic stresses. Until now, no systematic knowledge of NAC family genes is available for the food security crop, sweet potato. Here, a comprehensive genome-wide survey of NAC domain-containing proteins identified 130 ItbNAC and 144 ItfNAC genes with full length sequences in the genomes of two diploid wild relatives of cultivated sweet potato, Ipomoea triloba and Ipomoea trifida, respectively. These genes were physically mapped onto 15 I. triloba and 16 I. trifida chromosomes, respectively. Phylogenetic analysis divided all 274 NAC proteins into 20 subgroups together with NAC transcription factors (TFs) from Arabidopsis. There were 9 and 15 tandem duplication events in the I. triloba and I. trifida genomes, respectively, indicating an important role of tandem duplication in sweet potato gene expansion and evolution. Moreover, synteny analysis suggested that most NAC genes in the two diploid sweet potato species had a similar origin and evolutionary process. Gene expression patterns based on RNA-Seq data in different tissues and in response to various hormone, biotic or abiotic treatments revealed their possible involvement in organ development and response to various biotic/abiotic stresses. The expression of 36 NAC TFs, which were upregulated in the five tissues and in response to mannitol treatment, was also determined by real-time quantitative polymerase chain reaction (RT-qPCR) in hexaploid cultivated sweet potato exposed to drought stress. Those results largely corroborated the expression profile of mannitol treatment uncovered by the RNA-Seq data. Some significantly up-regulated genes related to drought stress, such as ItbNAC110, ItbNAC114, ItfNAC15, ItfNAC28, and especially ItfNAC62, which had a conservative spatial conformation with a closely related paralogous gene, ANAC019, may be potential candidate genes for a sweet potato drought tolerance breeding program. This analysis provides comprehensive and systematic information about NAC family genes in two diploid wild relatives of cultivated sweet potato, and will provide a blueprint for their functional characterization and exploitation to improve the tolerance of sweet potato to abiotic stresses.
Collapse
Affiliation(s)
- Haifeng Yan
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | | | - Lihang Qiu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Juan Xu
- Biological Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Minzheng Wei
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Xiong
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mingzhi Li
- Biodata Biotechnology Co., Ltd, Hefei, China
| | - Shaohuan Zhou
- GuangXi Center for Disease Prevention and Control, Nanning, China
| | - Jianming Wu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Xiuhua Tang
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
46
|
Ye C, Zheng S, Jiang D, Lu J, Huang Z, Liu Z, Zhou H, Zhuang C, Li J. Initiation and Execution of Programmed Cell Death and Regulation of Reactive Oxygen Species in Plants. Int J Mol Sci 2021; 22:ijms222312942. [PMID: 34884747 PMCID: PMC8657872 DOI: 10.3390/ijms222312942] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death (PCD) plays crucial roles in plant development and defence response. Reactive oxygen species (ROS) are produced during normal plant growth, and high ROS concentrations can change the antioxidant status of cells, leading to spontaneous cell death. In addition, ROS function as signalling molecules to improve plant stress tolerance, and they induce PCD under different conditions. This review describes the mechanisms underlying plant PCD, the key functions of mitochondria and chloroplasts in PCD, and the relationship between mitochondria and chloroplasts during PCD. Additionally, the review discusses the factors that regulate PCD. Most importantly, in this review, we summarise the sites of production of ROS and discuss the roles of ROS that not only trigger multiple signalling pathways leading to PCD but also participate in the execution of PCD, highlighting the importance of ROS in PCD.
Collapse
Affiliation(s)
- Chanjuan Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingqin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zongna Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
47
|
Yan H, Ma G, Teixeira da Silva JA, Qiu L, Xu J, Zhou H, Wei M, Xiong J, Li M, Zhou S, Wu J, Tang X. Genome-Wide Identification and Analysis of NAC Transcription Factor Family in Two Diploid Wild Relatives of Cultivated Sweet Potato Uncovers Potential NAC Genes Related to Drought Tolerance. Front Genet 2021; 12:744220. [PMID: 34899836 PMCID: PMC8653416 DOI: 10.3389/fgene.2021.744220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) proteins play a pivotal role in modulating plant development and offer protection against biotic and abiotic stresses. Until now, no systematic knowledge of NAC family genes is available for the food security crop, sweet potato. Here, a comprehensive genome-wide survey of NAC domain-containing proteins identified 130 ItbNAC and 144 ItfNAC genes with full length sequences in the genomes of two diploid wild relatives of cultivated sweet potato, Ipomoea triloba and Ipomoea trifida, respectively. These genes were physically mapped onto 15 I. triloba and 16 I. trifida chromosomes, respectively. Phylogenetic analysis divided all 274 NAC proteins into 20 subgroups together with NAC transcription factors (TFs) from Arabidopsis. There were 9 and 15 tandem duplication events in the I. triloba and I. trifida genomes, respectively, indicating an important role of tandem duplication in sweet potato gene expansion and evolution. Moreover, synteny analysis suggested that most NAC genes in the two diploid sweet potato species had a similar origin and evolutionary process. Gene expression patterns based on RNA-Seq data in different tissues and in response to various hormone, biotic or abiotic treatments revealed their possible involvement in organ development and response to various biotic/abiotic stresses. The expression of 36 NAC TFs, which were upregulated in the five tissues and in response to mannitol treatment, was also determined by real-time quantitative polymerase chain reaction (RT-qPCR) in hexaploid cultivated sweet potato exposed to drought stress. Those results largely corroborated the expression profile of mannitol treatment uncovered by the RNA-Seq data. Some significantly up-regulated genes related to drought stress, such as ItbNAC110, ItbNAC114, ItfNAC15, ItfNAC28, and especially ItfNAC62, which had a conservative spatial conformation with a closely related paralogous gene, ANAC019, may be potential candidate genes for a sweet potato drought tolerance breeding program. This analysis provides comprehensive and systematic information about NAC family genes in two diploid wild relatives of cultivated sweet potato, and will provide a blueprint for their functional characterization and exploitation to improve the tolerance of sweet potato to abiotic stresses.
Collapse
Affiliation(s)
- Haifeng Yan
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | | | - Lihang Qiu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Juan Xu
- Biological Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Minzheng Wei
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Xiong
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mingzhi Li
- Biodata Biotechnology Co., Ltd, Hefei, China
| | - Shaohuan Zhou
- GuangXi Center for Disease Prevention and Control, Nanning, China,*Correspondence: Shaohuan Zhou, ; Jianming Wu, ; Xiuhua Tang,
| | - Jianming Wu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China,*Correspondence: Shaohuan Zhou, ; Jianming Wu, ; Xiuhua Tang,
| | - Xiuhua Tang
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China,*Correspondence: Shaohuan Zhou, ; Jianming Wu, ; Xiuhua Tang,
| |
Collapse
|
48
|
Kumar S, Huang X, Li G, Ji Q, Zhou K, Zhu G, Ke W, Hou H, Zhu H, Yang J. Comparative Transcriptomic Analysis Provides Novel Insights into the Blanched Stem of Oenanthe javanica. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112484. [PMID: 34834849 PMCID: PMC8625949 DOI: 10.3390/plants10112484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
In the agricultural field, blanching is a technique used to obtain tender, sweet, and delicious water dropwort stems by blocking sunlight. The physiological and nutritional parameters of blanched water dropwort have been previously investigated. However, the molecular mechanism of blanching remains unclear. In the present study, we investigated transcriptomic variations for different blanching periods in the stem of water dropwort (pre, mid, post-blanching, and control). The results showed that many genes in pathways, such as photosynthesis, carbon fixation, and phytohormone signal transduction as well as transcription factors (TFs) were significantly dysregulated. Blanched stems of water dropwort showed the higher number of downregulated genes in pathways, such as photosynthesis, antenna protein, carbon fixation in photosynthetic organisms, and porphyrin and chlorophyll metabolism, which ultimately affect the photosynthesis in water dropwort. The genes of hormone signal transduction pathways (ethylene, jasmonic acid, brassinosteroid, and indole-3-acetic acid) showed upregulation in the post-blanched water dropwort plants. Overall, a higher number of genes coding for TFs, such as ERF, BHLH, MYB, zinc-finger, bZIP, and WRKY were overexpressed in blanched samples in comparison with the control. These genes and pathways participate in inducing the length, developmental processes, pale color, and stress tolerance of the blanched stem. Overall, the genes responsive to blanching, which were identified in this study, provide an effective foundation for further studies on the molecular mechanisms of blanching and photosynthesis regulations in water dropwort and other species.
Collapse
Affiliation(s)
- Sunjeet Kumar
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (S.K.); (G.L.); (H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou 570228, China;
| | - Xinfang Huang
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (S.K.); (G.L.); (H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Ji
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Kai Zhou
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou 570228, China;
| | - Weidong Ke
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (S.K.); (G.L.); (H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglian Zhu
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (S.K.); (G.L.); (H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Zhang X, Huang Q, Wang P, Liu F, Luo M, Li X, Wang Z, Wan L, Yang G, Hong D. A 24,482-bp deletion is associated with increased seed weight in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2653-2669. [PMID: 34002254 DOI: 10.1007/s00122-021-03850-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
A major QTL for seed weight was fine-mapped in rapeseed, and a 24,482-bp deletion likely mediates the effect through multiple pathways. Exploration of the genes controlling seed weight is critical to the improvement of crop yield and elucidation of the mechanisms underlying seed formation in rapeseed (Brassica napus L.). We previously identified the quantitative trait locus (QTL) qSW.C9 for the thousand-seed weight (TSW) in a double haploid population constructed from F1 hybrids between the parental accessions HZ396 and Y106. Here, we confirmed the phenotypic effects associated with qSW.C9 in BC3F2 populations and fine-mapped the candidate causal locus to a 266-kb interval. Sequence and expression analyses revealed that a 24,482-bp deletion in HZ396 containing six predicted genes most likely underlies qSW.C9. Differential gene expression analysis and cytological observations suggested that qSW.C9 affects both cell proliferation and cell expansion through multiple signaling pathways. After genotyping of a rapeseed diversity panel to define the haplotype structure, it could be concluded that the selection of germplasm with two specific markers may be effective in improving the seed weight of rapeseed. This study provides a solid foundation for the identification of the causal gene of qSW.C9 and offers a promising target for the breeding of higher-yielding rapeseed.
Collapse
Affiliation(s)
- Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiyang Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Feiyang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mudan Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhuanrong Wang
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Lili Wan
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
50
|
Jiang C, Wang J, Leng HN, Wang X, Liu Y, Lu H, Lu MZ, Zhang J. Transcriptional Regulation and Signaling of Developmental Programmed Cell Death in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:702928. [PMID: 34394156 PMCID: PMC8358321 DOI: 10.3389/fpls.2021.702928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Developmental programmed cell death (dPCD) has multiple functions in plant growth and development, and is of great value for industrial production. Among them, wood formed by xylem dPCD is one of the most widely used natural materials. Therefore, it is crucial to explore the molecular mechanism of plant dPCD. The dPCD process is tightly regulated by genetic networks and is involved in the transduction of signaling molecules. Several key regulators have been identified in diverse organisms and individual PCD events. However, complex molecular networks controlling plant dPCD remain highly elusive, and the original triggers of this process are still unknown. This review summarizes the recent progress on the transcriptional regulation and signaling of dPCD during vegetative and reproductive development. It is hoped that this review will provide an overall view of the molecular regulation of dPCD in different developmental processes in plants and identify specific mechanisms for regulating these dPCD events. In addition, the application of plants in industrial production can be improved by manipulating dPCD in specific processes, such as xylogenesis.
Collapse
Affiliation(s)
- Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jiawei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hua-Ni Leng
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yijing Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Haiwen Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|