1
|
Nadal Bigas J, Fiers M, van der Wal F, Willems LAJ, Willemsen V, Nijveen H, Angenent GC, Immink RGH. The PEBP genes FLOWERING LOCUS T and TERMINAL FLOWER 1 modulate seed dormancy and size. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1049-1067. [PMID: 39827301 PMCID: PMC11850975 DOI: 10.1093/jxb/erae466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
The phosphatidylethanolamine-binding protein (PEBP) family members FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) are major regulators of plant reproduction. In Arabidopsis, the FT/TFL1 balance defines the timing of floral transition and the determination of inflorescence meristem identity. However, emerging studies have elucidated a plethora of previously unknown functions for these genes in various physiological processes. Here, we characterized potential roles in seed size and dormancy of FT and TFL1 in Arabidopsis thaliana using CRISPR mutants and reporter analysis. Our findings unveiled a role for TFL1 in seed dormancy while confirming the role of FT in regulating this trait. We showed that the interplay between these two genes in seed dormancy is antagonistic, mirroring their roles in flowering time and inflorescence architecture. Analysis of reporter lines demonstrated that FT and TFL1 are partly co-expressed in seeds. Finally, we showed that total seed yield is affected in these mutants. Together, our results highlight the versatility of these two genes beyond their canonical functions. The impact of FT and TFL1 on seed characteristics emphasizes the significance of approaching gene studies from various perspectives, enabling the identification of multifaceted molecular factors that could play a major role in shaping the future of agriculture.
Collapse
Affiliation(s)
- Judit Nadal Bigas
- Laboratory of Molecular Biology, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Martijn Fiers
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Froukje van der Wal
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Leo A J Willems
- Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Viola Willemsen
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
2
|
Fan X, Gao F, Liu Y, Huang W, Yang Y, Luo Z, Zhang J, Qi F, Lv J, Su X, Wang L, Song S, Ren G, Xing Y. The transcription factor CCT30 promotes rice preharvest sprouting by regulating sugar signalling to inhibit the ABA-mediated pathway. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:579-591. [PMID: 39622700 PMCID: PMC11772322 DOI: 10.1111/pbi.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 01/29/2025]
Abstract
Seed dormancy is an important adaptive trait in plants. Proper seed dormancy enables the avoidance of preharvest sprouting in the undesirable conditions like rainfall frequently. In this study, qPSR8, a major QTL for preharvest sprouting, was isolated, and a previously reported heading-date gene, CCT30, was verified as the candidate gene. The CCT30 knockout mutants (CCT30-CR) enhanced seed dormancy and ABA sensitivity as compared with the wild-type ZH11. Conversely, CCT30 overexpressing plants had opposite phenotype changes and had a decreased ABA content. The expression of ABA synthesis genes such as OsNCEDs and ABA signalling genes such as ABI3 and ABI5 were upregulated and sugar metabolism-related genes such as amylase genes were downregulated in CCT30-CR. Correspondingly, fewer free sugars, such as monosaccharides and oligosaccharides, accumulated in CCT30-CR. The freshly harvested seeds from CCT30-CR had no ability to transmit sugar signals when treated with 1% exogenous glucose. In addition, CCT30 interacted with the transcription factor OsbZIP37, which negatively regulates seed dormancy. Overall, CCT30 promotes preharvest sprouting by enhancing sugar signals that inhibit the ABA-mediated pathway, and CCT30 is a good gene for breeding rice varieties resistant to preharvest sprouting.
Collapse
Affiliation(s)
- Xiaowei Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Fangyuan Gao
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Yuexin Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wen Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Ying Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Zhengliang Luo
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Jia Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Feixiang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Jianqun Lv
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Xiangwen Su
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Song Song
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Henan Agricultural UniversityZhengzhouChina
| | - Guangjun Ren
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Yazhouwan National LaboratorySanyaChina
| |
Collapse
|
3
|
Jing H, Liu W, Qu GP, Niu D, Jin JB. SUMOylation of AL6 regulates seed dormancy and thermoinhibition in Arabidopsis. THE NEW PHYTOLOGIST 2025; 245:1040-1055. [PMID: 39562527 DOI: 10.1111/nph.20270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
DELAY OF GERMINATION1 (DOG1) is a critical regulator of seed dormancy and seed thermoinhibition. However, how DOG1 expression is regulated by post-translational modifications and how seeds transmit the high-temperature signal to DOG1 remain largely unknown. ALFIN1-like 6/7 (AL6/7) was previously found to repress DOG1 expression during seed imbibition. Here, we found that AL6/7 represses seed dormancy partly by downregulating DOG1 expression. AtSIZ1, a SUMO E3 ligase, interacts with AL6 and mediates its SUMOylation mainly at the lysine 181 residue. SIZ1-mediated SUMOylation of AL6 is required for repression of DOG1 transcription and seed dormancy. SUMOylation of AL6 is required for its association with the DOG1 locus and protects it from ubiquitination and subsequent 26S proteasome-mediated protein degradation. High temperatures decrease SUMOylation levels of AL6, resulting in downregulation of AL6 protein levels and an increase in DOG1 transcription, which consequently causes reduced seed germination. Taken together, these results demonstrate that reversible SUMOylation of AL6 fine-tunes DOG1 expression, which is required for precise establishment of seed dormancy and inhibition of seed germination under high-temperature conditions in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hua Jing
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wei Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Gao-Ping Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De Niu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, 257000, China
| |
Collapse
|
4
|
Go D, Lu B, Alizadeh M, Gazzarrini S, Song L. Voice from both sides: a molecular dialogue between transcriptional activators and repressors in seed-to-seedling transition and crop adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1416216. [PMID: 39166233 PMCID: PMC11333834 DOI: 10.3389/fpls.2024.1416216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024]
Abstract
High-quality seeds provide valuable nutrients to human society and ensure successful seedling establishment. During maturation, seeds accumulate storage compounds that are required to sustain seedling growth during germination. This review focuses on the epigenetic repression of the embryonic and seed maturation programs in seedlings. We begin with an extensive overview of mutants affecting these processes, illustrating the roles of core proteins and accessory components in the epigenetic machinery by comparing mutants at both phenotypic and molecular levels. We highlight how omics assays help uncover target-specific functional specialization and coordination among various epigenetic mechanisms. Furthermore, we provide an in-depth discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family, comparing and contrasting their regulation of seed germination in the dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and wheat. Finally, we compare the similarities in the activation and repression of the embryonic and seed maturation programs through a shared set of cis-regulatory elements and discuss the challenges in applying knowledge largely gained in model species to crops.
Collapse
Affiliation(s)
- Dongeun Go
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Gazzarrini
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
6
|
Gao H, Xue J, Yuan L, Sun Y, Song Y, Zhang C, Li R, Jia X. Systematic characterization of CsbZIP transcription factors in Camelina sativa and functional analysis of CsbZIP-A12 mediating regulation of unsaturated fatty acid-enriched oil biosynthesis. Int J Biol Macromol 2024; 270:132273. [PMID: 38734348 DOI: 10.1016/j.ijbiomac.2024.132273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The basic leucine zipper (bZIP) transcription factors (TFs) function importantly in numerous life processes in plants. However, bZIP members and their biological roles remain unknown in Camelina sativa, a worldwide promising oil crop. Here, 220 CsbZIP proteins were identified in camelina and classified into thirteen groups. Two and 347 pairs of tandem and segmental duplication genes were detected to be underwent purification selection, with segmental duplication as the main driven-force of CsbZIP gene family expansion. Most CsbZIP genes displayed a tissue-specific expression pattern. Particularly, CsbZIP-A12 significantly positively correlated with many FA/oil biosynthesis-related genes, indicating CsbZIP-A12 may regulate lipid biosynthesis. Notably, yeast one-hybrid (Y1H), β-Glucuronidase (GUS), dual-luciferase (LUC) and EMSA assays evidenced that CsbZIP-A12 located in nucleus interacted with the promoters of CsSAD2-3 and CsFAD3-3 genes responsible for unsaturated fatty acid (UFA) synthesis, thus activating their transcriptions. Overexpression of CsbZIP-A12 led to an increase of total lipid by 3.275 % compared to the control, followed with oleic and α-linolenic acid levels enhanced by 3.4 % and 5.195 %, and up-regulated the expressions of CsSAD2-3, CsFAD3-3 and CsPDAT2-3 in camelina seeds. Furthermore, heterogeneous expression of CsbZIP-A12 significantly up-regulated the expressions of NtSAD2, NtFAD3 and NtPDAT genes in tobacco plants, thereby improving the levels of total lipids and UFAs in both leaves and seeds without negative effects on other agronomic traits. Together, our findings suggest that CsbZIP-A12 upregulates FA/oil biosynthesis by activating CsSAD2-3 and CsFAD3-3 as well as possible other related genes. These data lay a foundation for further functional analyses of CsbZIPs, providing new insights into the TF-based lipid metabolic engineering to increase vegetable oil yield and health-beneficial quality in oilseeds.
Collapse
Affiliation(s)
- Huiling Gao
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Jinai Xue
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Lixia Yuan
- College of Biological Science and Technology, Jinzhong University, Jinzhong, Shanxi, China
| | - Yan Sun
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Yanan Song
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Chunhui Zhang
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China
| | - Runzhi Li
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China.
| | - Xiaoyun Jia
- College of Agronomy/Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, Taigu, Shanxi, China.
| |
Collapse
|
7
|
Carrera-Castaño G, Mira S, Fañanás-Pueyo I, Sánchez-Montesino R, Contreras Á, Weiste C, Dröge-Laser W, Gómez L, Oñate-Sánchez L. Complex control of seed germination timing by ERF50 involves RGL2 antagonism and negative feedback regulation of DOG1. THE NEW PHYTOLOGIST 2024; 242:2026-2042. [PMID: 38494681 DOI: 10.1111/nph.19681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Seed dormancy governs germination timing, with both evolutionary and applied consequences. Despite extensive studies on the hormonal and genetic control of these processes, molecular mechanisms directly linking dormancy and germination remain poorly understood. By screening a collection of lines overexpressing Arabidopsis transcription factors, we identified ERF50 as a key gene to control dormancy and germination. To study its regulation, we measured seed-related physiological parameters in loss-of-function mutants and carried out transactivation, protein interaction and ChIP-PCR analyses. We found direct ERF50-mediated repression of DOG1 and activation of EXPA2 transcription, which results in enhanced seed germination. Although ERF50 expression is increased by DOG1 in dormant seeds, ERF50 germination-promoting activity is blocked by RGL2. The physiological, genetic and molecular evidence gathered here supports that ERF50 controls germination timing by regulating DOG1 levels to leverage its role as enhancer of seed germination, via RGL2 antagonism on EXPA2 expression. Our results highlight the central role of ERF50 as a feedback regulator to couple and fine-tune seed dormancy and germination.
Collapse
Affiliation(s)
- Gerardo Carrera-Castaño
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Sara Mira
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Rocío Sánchez-Montesino
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Ángela Contreras
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Luis Gómez
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, 28040, Madrid, Spain
- Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| |
Collapse
|
8
|
Fu Z, Yuan X, Zhao Y, Wang X, Lu L, Wang H, Li Y, Gao J, Wang L, Zhang H. Identification of ARF Genes and Elucidation of the Regulatory Effects of PsARF16a on the Dormancy of Tree Peony Plantlets. Genes (Basel) 2024; 15:666. [PMID: 38927602 PMCID: PMC11203063 DOI: 10.3390/genes15060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The low survival rate of transplanted plantlets, which has limited the utility of tissue-culture-based methods for the rapid propagation of tree peonies, is due to plantlet dormancy after rooting. We previously determined that the auxin response factor PsARF may be a key regulator of tree peony dormancy. To clarify the mechanism mediating tree peony plantlet dormancy, PsARF genes were systematically identified and analyzed. Additionally, PsARF16a was transiently expressed in the leaves of tree peony plantlets to examine its regulatory effects on a downstream gene network. Nineteen PsARF genes were identified and divided into four classes. All PsARF genes encoded proteins with conserved B3 and ARF domains. The number of motifs, exons, and introns varied between PsARF genes in different classes. The overexpression of PsARF16a altered the expression of NCED, ZEP, PYL, GA2ox1, GID1, and other key genes in abscisic acid (ABA) and gibberellin (GA) signal transduction pathways, thereby promoting ABA synthesis and decreasing GA synthesis. Significant changes to the expression of some key genes contributing to starch and sugar metabolism (e.g., AMY2A, BAM3, BGLU, STP, and SUS2) may be associated with the gradual conversion of sugar into starch. This study provides important insights into PsARF functions in tree peonies.
Collapse
Affiliation(s)
- Zhenzhu Fu
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xin Yuan
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yinge Zhao
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaohui Wang
- Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471022, China
| | - Lin Lu
- Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471022, China
| | - Huijuan Wang
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanmin Li
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jie Gao
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Limin Wang
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hechen Zhang
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
9
|
Luo X, Dai Y, Xian B, Xu J, Zhang R, Rehmani MS, Zheng C, Zhao X, Mao K, Ren X, Wei S, Wang L, He J, Tan W, Du J, Liu W, Yuan S, Shu K. PIF4 interacts with ABI4 to serve as a transcriptional activator complex to promote seed dormancy by enhancing ABA biosynthesis and signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:909-927. [PMID: 38328870 DOI: 10.1111/jipb.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024]
Abstract
Transcriptional regulation plays a key role in the control of seed dormancy, and many transcription factors (TFs) have been documented. However, the mechanisms underlying the interactions between different TFs within a transcriptional complex regulating seed dormancy remain largely unknown. Here, we showed that TF PHYTOCHROME-INTERACTING FACTOR4 (PIF4) physically interacted with the abscisic acid (ABA) signaling responsive TF ABSCISIC ACID INSENSITIVE4 (ABI4) to act as a transcriptional complex to promote ABA biosynthesis and signaling, finally deepening primary seed dormancy. Both pif4 and abi4 single mutants exhibited a decreased primary seed dormancy phenotype, with a synergistic effect in the pif4/abi4 double mutant. PIF4 binds to ABI4 to form a heterodimer, and ABI4 stabilizes PIF4 at the protein level, whereas PIF4 does not affect the protein stabilization of ABI4. Subsequently, both TFs independently and synergistically promoted the expression of ABI4 and NCED6, a key gene for ABA anabolism. The genetic evidence is also consistent with the phenotypic, physiological and biochemical analysis results. Altogether, this study revealed a transcriptional regulatory cascade in which the PIF4-ABI4 transcriptional activator complex synergistically enhanced seed dormancy by facilitating ABA biosynthesis and signaling.
Collapse
Affiliation(s)
- Xiaofeng Luo
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development, Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Yujia Dai
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development, Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Baoshan Xian
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development, Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Jiahui Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ranran Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Muhammad Saad Rehmani
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Chuan Zheng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiaoting Zhao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Kaitao Mao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiaotong Ren
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shaowei Wei
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development, Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Lei Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development, Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Juan He
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development, Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Weiming Tan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Junbo Du
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weiguo Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Shu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development, Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| |
Collapse
|
10
|
Sajeev N, Koornneef M, Bentsink L. A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination. THE PLANT CELL 2024; 36:1358-1376. [PMID: 38215009 PMCID: PMC11062444 DOI: 10.1093/plcell/koad328] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Seeds are unique time capsules that can switch between 2 complex and highly interlinked stages: seed dormancy and germination. Dormancy contributes to the survival of plants because it allows to delay germination to optimal conditions. The switch between dormancy and germination occurs in response to developmental and environmental cues. In this review we provide a comprehensive overview of studies that have helped to unravel the molecular mechanisms underlying dormancy and germination over the last decades. Genetic and physiological studies provided a strong foundation for this field of research and revealed the critical role of the plant hormones abscisic acid and gibberellins in the regulation of dormancy and germination, and later natural variation studies together with quantitative genetics identified previously unknown genetic components that control these processes. Omics technologies like transcriptome, proteome, and translatomics analysis allowed us to mechanistically dissect these processes and identify new components in the regulation of seed dormancy and germination.
Collapse
Affiliation(s)
- Nikita Sajeev
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, 6708PB Wageningen, the Netherlands
- Max Planck Institute for Plant Breeding Research, Former Department of Plant Breeding and Genetics, Koeln 50829, Germany
| | - Leónie Bentsink
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| |
Collapse
|
11
|
Sánchez-Vicente I, Albertos P, Sanz C, Wybouw B, De Rybel B, Begara-Morales JC, Chaki M, Mata-Pérez C, Barroso JB, Lorenzo O. Reversible S-nitrosylation of bZIP67 by peroxiredoxin IIE activity and nitro-fatty acids regulates the plant lipid profile. Cell Rep 2024; 43:114091. [PMID: 38607914 PMCID: PMC11063630 DOI: 10.1016/j.celrep.2024.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/30/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Nitric oxide (NO) is a gasotransmitter required in a broad range of mechanisms controlling plant development and stress conditions. However, little is known about the specific role of this signaling molecule during lipid storage in the seeds. Here, we show that NO is accumulated in developing embryos and regulates the fatty acid profile through the stabilization of the basic/leucine zipper transcription factor bZIP67. NO and nitro-linolenic acid target and accumulate bZIP67 to induce the downstream expression of FAD3 desaturase, which is misregulated in a non-nitrosylable version of the protein. Moreover, the post-translational modification of bZIP67 is reversible by the trans-denitrosylation activity of peroxiredoxin IIE and defines a feedback mechanism for bZIP67 redox regulation. These findings provide a molecular framework to control the seed fatty acid profile caused by NO, and evidence of the in vivo functionality of nitro-fatty acids during plant developmental signaling.
Collapse
Affiliation(s)
- Inmaculada Sánchez-Vicente
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, 37185 Salamanca, Spain.
| | - Carlos Sanz
- Department Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa-CSIC, Campus Universidad Pablo de Olavide, Ctra Utrera km 1, 41013 Sevilla, Spain
| | - Brecht Wybouw
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Juan C Begara-Morales
- Department of Experimental Biology, Facultad de Ciencias Experimentales, Campus Universitario "Las Lagunillas" s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Mounira Chaki
- Department of Experimental Biology, Facultad de Ciencias Experimentales, Campus Universitario "Las Lagunillas" s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Capilla Mata-Pérez
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, 37185 Salamanca, Spain
| | - Juan B Barroso
- Department of Experimental Biology, Facultad de Ciencias Experimentales, Campus Universitario "Las Lagunillas" s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, 37185 Salamanca, Spain.
| |
Collapse
|
12
|
Otani M, Zheng L, Kawakami N. Genetic, Epigenetic, and Environmental Control of Seed Dormancy and Germination. Methods Mol Biol 2024; 2830:3-12. [PMID: 38977563 DOI: 10.1007/978-1-0716-3965-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Seed germination is controlled by a combination of the seed dormancy level and environmental conditions such as light, temperature, moisture, and nitrate levels. Seed dormancy is programed genetically, but it is also sensitive to maternal environmental conditions before and after anthesis. Recent developments in molecular genetics and bioinformatics have greatly enhanced our understanding of the molecular mechanisms of seed dormancy and germination in model plants and economically important crop species. This chapter focuses on temperature as an environmental factor and discusses the genetic and epigenetic mechanisms of dormancy and germination.
Collapse
Affiliation(s)
- Masahiko Otani
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki, Japan
| | - Lipeng Zheng
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan.
| |
Collapse
|
13
|
Chen X, Li Q, Ding L, Zhang S, Shan S, Xiong X, Jiang W, Zhao B, Zhang L, Luo Y, Lian Y, Kong X, Ding X, Zhang J, Li C, Soppe WJJ, Xiang Y. The MKK3-MPK7 cascade phosphorylates ERF4 and promotes its rapid degradation to release seed dormancy in Arabidopsis. MOLECULAR PLANT 2023; 16:1743-1758. [PMID: 37710960 DOI: 10.1016/j.molp.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/18/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Seeds establish dormancy to delay germination until the arrival of a favorable growing season. In this study, we identify a fate switch comprised of the MKK3-MPK7 kinase cascade and the ethylene response factor ERF4 that is responsible for the seed state transition from dormancy to germination. We show that dormancy-breaking factors activate the MKK3-MPK7 module, which affects the expression of some α-EXPANSIN (EXPA) genes to control seed dormancy. Furthermore, we identify a direct downstream substrate of this module, ERF4, which suppresses the expression of these EXPAs by directly binding to the GCC boxes in their exon regions. The activated MKK3-MPK7 module phosphorylates ERF4, leading to its rapid degradation and thereby releasing its inhibitory effect on the expression of these EXPAs. Collectively, our work identifies a signaling chain consisting of protein phosphorylation, degradation, and gene transcription , by which the germination promoters within the embryo sense and are activated by germination signals from ambient conditions.
Collapse
Affiliation(s)
- Xi Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiujia Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ling Ding
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengnan Zhang
- Center for Crop Science, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Siyao Shan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiong Xiong
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wenhui Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bo Zhao
- Hou Ji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Liying Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ying Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yiming Lian
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiuqin Kong
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiali Ding
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jun Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chunli Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | | | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
14
|
Han Y, Georgii E, Priego-Cubero S, Wurm CJ, Hüther P, Huber G, Koller R, Becker C, Durner J, Lindermayr C. Arabidopsis histone deacetylase HD2A and HD2B regulate seed dormancy by repressing DELAY OF GERMINATION 1. FRONTIERS IN PLANT SCIENCE 2023; 14:1124899. [PMID: 37313253 PMCID: PMC10258333 DOI: 10.3389/fpls.2023.1124899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/06/2023] [Indexed: 06/15/2023]
Abstract
Seed dormancy is a crucial developmental transition that affects the adaption and survival of plants. Arabidopsis DELAY OF GERMINATION 1 (DOG1) is known as a master regulator of seed dormancy. However, although several upstream factors of DOG1 have been reported, the exact regulation of DOG1 is not fully understood. Histone acetylation is an important regulatory layer, controlled by histone acetyltransferases and histone deacetylases. Histone acetylation strongly correlates with transcriptionally active chromatin, whereas heterochromatin is generally characterized by hypoacetylated histones. Here we describe that loss of function of two plant-specific histone deacetylases, HD2A and HD2B, resulted in enhanced seed dormancy in Arabidopsis. Interestingly, the silencing of HD2A and HD2B caused hyperacetylation of the DOG1 locus and promoted the expression of DOG1 during seed maturation and imbibition. Knockout of DOG1 could rescue the seed dormancy and partly rescue the disturbed development phenotype of hd2ahd2b. Transcriptomic analysis of the hd2ahd2b line shows that many genes involved in seed development were impaired. Moreover, we demonstrated that HSI2 and HSL1 interact with HD2A and HD2B. In sum, these results suggest that HSI2 and HSL1 might recruit HD2A and HD2B to DOG1 to negatively regulate DOG1 expression and to reduce seed dormancy, consequently, affecting seed development during seed maturation and promoting seed germination during imbibition.
Collapse
Affiliation(s)
- Yongtao Han
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | | | - Christoph J. Wurm
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Patrick Hüther
- Genetics, LMU Biocenter, Ludwig-Maximilians-Universität München, München, Germany
| | - Gregor Huber
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Robert Koller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Claude Becker
- Genetics, LMU Biocenter, Ludwig-Maximilians-Universität München, München, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research, München, Germany
| |
Collapse
|
15
|
Li Y, Chen F, Yang Y, Han Y, Ren Z, Li X, Soppe WJJ, Cao H, Liu Y. The Arabidopsis pre-mRNA 3' end processing related protein FIP1 promotes seed dormancy via the DOG1 and ABA pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37035898 DOI: 10.1111/tpj.16239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Seed dormancy is an important adaptive trait to prevent germination occurring at an inappropriate time. The mechanisms governing seed dormancy and germination are complex. Here, we report that FACTOR INTERACTING WITH POLY(A) POLYMERASE 1 (FIP1), a component of the pre-mRNA 3' end processing machinery, is involved in seed dormancy and germination processes in Arabidopsis thaliana. FIP1 is mainly expressed in seeds and the knockout of FIP1 causes reduced seed dormancy, indicating that FIP1 positively influences seed dormancy. Meanwhile, fip1 mutants are insensitive to exogenous ABA during seed germination and early seedling establishment. The terms 'seed maturation' and 'response to ABA stimulus' are significantly enriched in a gene ontology analysis based on genes differentially expressed between fip1-1 and the wild type. Several of these genes, including ABI5, DOG1 and PYL12, show significantly decreased transcript levels in fip1. Genetic analysis showed that either cyp707a2 or dog1-5 partially, but in combination completely, represses the reduced seed dormancy of fip1, indicating that the double mutant cyp707a2 dog1-5 is epistatic to fip1. Moreover, FIP1 is required for CFIM59, another component of pre-mRNA 3' end processing machinery, to govern seed dormancy and germination. Overall, we identified FIP1 as a regulator of seed dormancy and germination that plays a crucial role in governing these processes through the DOG1 and ABA pathways.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Yue Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Yi Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Ziyun Ren
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wim J J Soppe
- Rijk Zwaan Breeding B.V., De Lier, 2678 ZG, the Netherlands
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| |
Collapse
|
16
|
Deng G, Sun H, Hu Y, Yang Y, Li P, Chen Y, Zhu Y, Zhou Y, Huang J, Neill SJ, Hu X. A transcription factor WRKY36 interacts with AFP2 to break primary seed dormancy by progressively silencing DOG1 in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:688-704. [PMID: 36653950 DOI: 10.1111/nph.18750] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The phytohormones abscisic acid (ABA) and gibberellic acid (GA) antagonistically control the shift between seed dormancy and its alleviation. DELAY OF GERMINATION1 (DOG1) is a critical regulator that determines the intensity of primary seed dormancy, but its underlying regulatory mechanism is unclear. In this study, we combined physiological, biochemical, and genetic approaches to reveal that a bHLH transcriptional factor WRKY36 progressively silenced DOG1 expression to break seed dormancy through ABI5-BINDING PROTEIN 2 (AFP2) as the negative regulator of ABA signal. AFP2 interacted with WRKY36, which recognizes the W-BOX in the DOG1 promoter to suppress its expression; Overexpressing WRKY36 broke primary seed dormancy, whereas wrky36 mutants showed strong primary seed dormancy. In addition, AFP2 recruited the transcriptional corepressor TOPLESS-RELATED PROTEIN2 (TPR2) to reduce histone acetylation at the DOG1 locus, ultimately mediating WRKY36-dependent inhibition of DOG1 expression to break primary seed dormancy. Our result proposes that the WRKY36-AFP2-TPR2 module progressively silences DOG1 expression epigenetically, thereby fine-tuning primary seed dormancy.
Collapse
Affiliation(s)
- Guoli Deng
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Haiqing Sun
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yulan Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yaru Yang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yilin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, Zhejiang, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jinling Huang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Steven J Neill
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| |
Collapse
|
17
|
Baud S, Corso M, Debeaujon I, Dubreucq B, Job D, Marion-Poll A, Miquel M, North H, Rajjou L, Lepiniec L. Recent progress in molecular genetics and omics-driven research in seed biology. C R Biol 2023; 345:61-110. [PMID: 36847120 DOI: 10.5802/crbiol.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.
Collapse
|
18
|
Impact of climate perturbations on seeds and seed quality for global agriculture. Biochem J 2023; 480:177-196. [PMID: 36749123 DOI: 10.1042/bcj20220246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
In agriculture, seeds are the most basic and vital input on which croplands productivity depends. These implies a good starting material, good production lines and good storage options. High-quality seed lots must be free of pests and pathogens and contain a required degree of genetic purity. Seeds need also to be stored in good condition between harvest and later sowing, to insure later on the field a good plant density and higher crop yield. In general, these parameters are already widely accepted and considered in many countries where advanced technologies evaluate them. However, the more and more frequently devastating climate changes observed around the world has put seed quality under threat, and current seeds may not be adapted to hazardous and unpredictable conditions. Climate-related factors such as temperature and water availability directly affect seed development and later germination. For these reasons, investigating seed quality in response to climate changes is a step to propose new crop varieties and practices that will bring solutions for our future.
Collapse
|
19
|
Ye F, Zhu X, Wu S, Du Y, Pan X, Wu Y, Qian Z, Li Z, Lin W, Fan K. Conserved and divergent evolution of the bZIP transcription factor in five diploid Gossypium species. PLANTA 2022; 257:26. [PMID: 36571656 DOI: 10.1007/s00425-022-04059-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
495 bZIP members with 12 subfamilies were identified in the five diploid cottons. Segmental duplication events in cotton ancestor might have led to primary expansion of the cotton bZIP members. The basic leucine zipper (bZIP) transcription factor is one of the largest and most diverse families in plants. The evolutionary history of the bZIP family is still unclear in cotton. In this study, a total of 495 bZIP members were identified in five diploid Gossypium species, including 100 members in Gossypium arboreum, 104 members in Gossypium herbaceum, 95 members in Gossypium raimondii, 96 members in Gossypium longicalyx, and 100 members in Gossypium turneri. The bZIP members could be divided into 12 subfamilies with biased gene proportions, gene structures, conserved motifs, expansion rates, gene loss rates, and cis-regulatory elements. A total of 239 duplication events were identified in the five Gossypium species, and mainly occurred in their common ancestor. Furthermore, some GabZIPs and GhebZIPs could be regarded as important candidates in cotton breeding. The bZIP members had a conserved and divergent evolution in the five diploid Gossypium species. The current study laid an important foundation on the evolutionary history of the bZIP family in cotton.
Collapse
Affiliation(s)
- Fangting Ye
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Xiaogang Zhu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Shaofang Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Yunyue Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Xinfeng Pan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Yuchen Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Zhengyi Qian
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Zhaowei Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Wenxiong Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China
| | - Kai Fan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, China.
| |
Collapse
|
20
|
DELAY OF GERMINATION 1, the Master Regulator of Seed Dormancy, Integrates the Regulatory Network of Phytohormones at the Transcriptional Level to Control Seed Dormancy. Curr Issues Mol Biol 2022; 44:6205-6217. [PMID: 36547084 PMCID: PMC9777134 DOI: 10.3390/cimb44120423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Seed dormancy, an important adaptive trait that governs germination timing, is endogenously controlled by phytohormones and genetic factors. DELAY OF GERMINATION 1 (DOG1) is the vital genetic regulator of dormancy, significantly affecting the expression of numerous ABA and GA metabolic genes. However, whether DOG1 could influence the expression of other phytohormone-related genes is still unknown. Here, we comprehensively investigated all well-documented hormone-related genes which might be affected in dog1-2 dry or imbibed seeds by using whole-transcriptome sequencing (RNA-seq). We found that DOG1 could systematically control the expression of phytohormone-related genes. An evident decrease was observed in the endogenous signal intensity of abscisic acid (ABA) and indole-3-acetic acid (IAA), while a dramatic increase appeared in that of gibberellins (GA), brassinosteroids (BR), and cytokinin (CK) in the dog1-2 background, which may contribute considerably to its dormancy-deficient phenotype. Collectively, our data highlight the role of DOG1 in balancing the expression of phytohormone-related genes and provide inspirational evidence that DOG1 may integrate the phytohormones network to control seed dormancy.
Collapse
|
21
|
Wu T, Alizadeh M, Lu B, Cheng J, Hoy R, Bu M, Laqua E, Tang D, He J, Go D, Gong Z, Song L. The transcriptional co-repressor SEED DORMANCY 4-LIKE (AtSDR4L) promotes the embryonic-to-vegetative transition in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2075-2096. [PMID: 36083579 DOI: 10.1111/jipb.13360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Repression of embryonic traits during the seed-to-seedling phase transition requires the inactivation of master transcription factors associated with embryogenesis. How the timing of such inactivation is controlled is unclear. Here, we report on a novel transcriptional co-repressor, Arabidopsis thaliana SDR4L, that forms a feedback inhibition loop with the master transcription factors LEC1 and ABI3 to repress embryonic traits post-imbibition. LEC1 and ABI3 regulate their own expression by inducing AtSDR4L during mid to late embryogenesis. AtSDR4L binds to sites upstream of LEC1 and ABI4, and these transcripts are upregulated in Atsdr4l seedlings. Atsdr4l seedlings phenocopy a LEC1 overexpressor. The embryonic traits of Atsdr4l can be partially rescued by impairing LEC1 or ABI3. The penetrance and expressivity of the Atsdr4l phenotypes depend on both developmental and external cues, demonstrating the importance of AtSDR4L in seedling establishment under suboptimal conditions.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Ryan Hoy
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Miaoyu Bu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Emma Laqua
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Dongxue Tang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Junna He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Dongeun Go
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
22
|
Zheng L, Otani M, Kanno Y, Seo M, Yoshitake Y, Yoshimoto K, Sugimoto K, Kawakami N. Seed dormancy 4 like1 of Arabidopsis is a key regulator of phase transition from embryo to vegetative development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:460-475. [PMID: 36036886 DOI: 10.1111/tpj.15959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy is an adaptive trait that enables plants to survive adverse conditions and restart growth in a season and location suitable for vegetative and reproductive growth. Control of seed dormancy is also important for crop production and food quality because it can help induce uniform germination and prevent preharvest sprouting. Rice preharvest sprouting quantitative trait locus analysis has identified Seed dormancy 4 (Sdr4) as a positive regulator of dormancy development. Here, we analyzed the loss-of-function mutant of the Arabidopsis ortholog, Sdr4 Like1 (SFL1), and found that the sfl1-1 seeds showed precocious germination at the mid- to late-maturation stage similar to rice sdr4 mutant, but converted to become more dormant than the wild type during maturation drying. Coordinated with the dormancy levels, expression levels of the seed maturation and dormancy master regulator genes, ABI3, FUS3, and DOG1 in sfl1-1 seeds were lower than in wild type at early- and mid-maturation stages, but higher at the late-maturation stage. In addition to the seed dormancy phenotype, sfl1-1 seedlings showed a growth arrest phenotype and heterochronic expression of LAFL (LEC1, ABI3, FUS3, LEC2) and DOG1 in the seedlings. These data suggest that SFL1 is a positive regulator of initiation and termination of the seed dormancy program. We also found genetic interaction between SFL1 and the SFL2, SFL3, and SFL4 paralogs of SFL1, which impacts on the timing of the phase transition from embryo maturation to seedling growth.
Collapse
Affiliation(s)
- Lipeng Zheng
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Masahiko Otani
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yushi Yoshitake
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kohki Yoshimoto
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kazuhiko Sugimoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
23
|
Zaretskaya MV, Lebedeva ON, Fedorenko OM. Role of DOG1 and FT, Key Regulators of Seed Dormancy, in Adaptation of Arabidopsis thaliana from the Northern Natural Populations. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422070158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Zhao B, Zhang H, Chen T, Ding L, Zhang L, Ding X, Zhang J, Qian Q, Xiang Y. Sdr4 dominates pre-harvest sprouting and facilitates adaptation to local climatic condition in Asian cultivated rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1246-1263. [PMID: 35442537 DOI: 10.1111/jipb.13266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Pre-harvest sprouting (PHS), which reduces grain yield and quality, is controlled by seed dormancy genes. Because few dormancy-related genes have been cloned, the genetic basis of seed dormancy in rice (Oryza sativa L.) remains unclear. Here, we performed a genome-wide association study and linkage mapping to dissect the genetic basis of seed dormancy in rice. Our findings suggest that Seed Dormancy4 (Sdr4), a central modulator of seed dormancy, integrates the abscisic acid and gibberellic acid signaling pathways at the transcriptional level. Haplotype analysis revealed that three Sdr4 alleles in rice cultivars already existed in ancestral Oryza rufipogon accessions. Furthermore, like the semi-dwarf 1 (SD1) and Rc loci, Sdr4 underwent selection during the domestication and improvement of Asian cultivated rice. The distribution frequency of the Sdr4-n allele in different locations in Asia is negatively associated with local annual temperature and precipitation. Finally, we developed functional molecular markers for Sdr4, SD1, and Rc for use in molecular breeding. Our results provide clues about the molecular basis of Sdr4-regulated seed dormancy. Moreover, these findings provide guidance for utilizing the favorable alleles of Sdr4 and Rc to synergistically boost PHS resistance, yield, and quality in modern rice varieties.
Collapse
Affiliation(s)
- Bo Zhao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hui Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Tianxiao Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ling Ding
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Liying Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xiali Ding
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jun Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
25
|
Iwasaki M, Penfield S, Lopez-Molina L. Parental and Environmental Control of Seed Dormancy in Arabidopsis thaliana. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:355-378. [PMID: 35138879 DOI: 10.1146/annurev-arplant-102820-090750] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In Arabidopsis, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.
Collapse
Affiliation(s)
- Mayumi Iwasaki
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Luis Lopez-Molina
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Bhunia RK, Menard GN, Eastmond PJ. A native promoter–gene fusion created by CRISPR/Cas9‐mediated genomic deletion offers a transgene‐free method to drive oil accumulation in leaves. FEBS Lett 2022; 596:1865-1870. [PMID: 35490366 PMCID: PMC9545981 DOI: 10.1002/1873-3468.14365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
Abstract
Achieving gain‐of‐function phenotypes without inserting foreign DNA is an important challenge for plant biotechnologists. Here, we show that a gene can be brought under the control of a promoter from an upstream gene by deleting the intervening genomic sequence using dual‐guide CRISPR/Cas9. We fuse the promoter of a nonessential photosynthesis‐related gene to DIACYLGLYCEROL ACYLTRANSFERASE 2 (DGAT2) in the lipase‐deficient sugar‐dependent 1 mutant of Arabidopsis thaliana to drive ectopic oil accumulation in leaves. DGAT2 expression is enhanced more than 20‐fold and the triacylglycerol content increases by around 30‐fold. This deletion strategy offers a transgene‐free route to engineering traits that rely on transcriptional gain‐of‐function, such as producing high lipid forage to increase the productivity and sustainability of ruminant farming.
Collapse
Affiliation(s)
- Rupam Kumar Bhunia
- Department of Plant Science Rothamsted Research Harpenden, Hertfordshire AL5 2JQ UK
- National Agri‐Food Biotechnology Institute (NABI) Mohali, Punjab 140306 India
| | - Guillaume N. Menard
- Department of Plant Science Rothamsted Research Harpenden, Hertfordshire AL5 2JQ UK
| | - Peter J. Eastmond
- Department of Plant Science Rothamsted Research Harpenden, Hertfordshire AL5 2JQ UK
| |
Collapse
|
27
|
Hourston JE, Steinbrecher T, Chandler JO, Pérez M, Dietrich K, Turečková V, Tarkowská D, Strnad M, Weltmeier F, Meinhard J, Fischer U, Fiedler‐Wiechers K, Ignatz M, Leubner‐Metzger G. Cold-induced secondary dormancy and its regulatory mechanisms in Beta vulgaris. PLANT, CELL & ENVIRONMENT 2022; 45:1315-1332. [PMID: 35064681 PMCID: PMC9305896 DOI: 10.1111/pce.14264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
The dynamic behaviour of seeds in soil seed banks depends on their ability to act as sophisticated environmental sensors to adjust their sensitivity thresholds for germination by dormancy mechanisms. Here we show that prolonged incubation of sugar beet fruits at low temperature (chilling at 5°C, generally known to release seed dormancy of many species) can induce secondary nondeep physiological dormancy of an apparently nondormant crop species. The physiological and biophysical mechanisms underpinning this cold-induced secondary dormancy include the chilling-induced accumulation of abscisic acid in the seeds, a reduction in the embryo growth potential and a block in weakening of the endosperm covering the embryonic root. Transcriptome analysis revealed distinct gene expression patterns in the different temperature regimes and upon secondary dormancy induction and maintenance. The chilling caused reduced expression of cell wall remodelling protein genes required for embryo cell elongation growth and endosperm weakening, as well as increased expression of seed maturation genes, such as for late embryogenesis abundant proteins. A model integrating the hormonal signalling and master regulator expression with the temperature-control of seed dormancy and maturation programmes is proposed. The revealed mechanisms of the cold-induced secondary dormancy are important for climate-smart agriculture and food security.
Collapse
Affiliation(s)
- James E. Hourston
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Tina Steinbrecher
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Jake O. Chandler
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Marta Pérez
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | | | - Veronika Turečková
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | | | | | | | | | - Michael Ignatz
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Gerhard Leubner‐Metzger
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| |
Collapse
|
28
|
Kim I, Lee K, Park M, Kim HU. The seed-specific transcription factor DPBF2 modulates the fatty acid composition in seeds. PLANT DIRECT 2022; 6:e395. [PMID: 35388372 PMCID: PMC8977579 DOI: 10.1002/pld3.395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 06/01/2023]
Abstract
Triacylglycerol (TAG), an ester derived from glycerol and three fatty acids (FAs), is synthesized during seed development and controlled by transcriptional regulation. We examined the mechanism regulating the FA composition of developing Arabidopsis thaliana seeds. The seed-specific DC3 PROMOTER-BINDING FACTOR2 (DPBF2) transcription factor was upregulated by LEAFY COTYLEDON2 (LEC2). DPBF2 showed transcriptional activity in yeast and localized to the nucleus in Arabidopsis protoplast cells. The Arabidopsis dpbf2-1 homozygous T-DNA mutant and transgenic lines overexpressing of DPBF2 using a seed-specific phaseolin promoter in wild-type (WT) Arabidopsis and in dpbf2-1 showed similar FA composition profiles in their seeds. Their 18:2 and 20:1 FA contents were higher, but 18:1 and 18:3 contents were lower than that of WT. Transcript levels of FATTY ACID DESATURASE2 (FAD2), FAD3, LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASE1 (LPCAT1), LPCAT2, PHOSPHATIDYLCHOLINE DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE (PDCT), and FATTY ACID ELONGASE 1 (FAE1) are increased in DPBF2-overexpressing seeds. Besides, PDCT and FAE1 were upregulated by DPBF2, LEC1-LIKE (L1L), and NUCLEAR FACTOR-YC2 (NF-YC2) transcriptional complex based on tobacco protoplast transcriptional activation assay. These results suggest that DPBF2 effectively modulates the expression of genes encoding FA desaturases, elongase, and acyl-editing enzymes for modifying the unsaturated FA composition in seeds.
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Molecular BiologySejong UniversitySeoulRepublic of Korea
| | - Kyeong‐Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural SciencesRural Development AdministrationJeonjuRepublic of Korea
| | - Mid‐Eum Park
- Department of Molecular BiologySejong UniversitySeoulRepublic of Korea
| | - Hyun Uk Kim
- Department of Molecular BiologySejong UniversitySeoulRepublic of Korea
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research InstituteSejong UniversitySeoulRepublic of Korea
| |
Collapse
|
29
|
Verma S, Attuluri VPS, Robert HS. Transcriptional control of Arabidopsis seed development. PLANTA 2022; 255:90. [PMID: 35318532 PMCID: PMC8940821 DOI: 10.1007/s00425-022-03870-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
The entire process of embryo development is under the tight control of various transcription factors. Together with other proteins, they act in a combinatorial manner and control distinct events during embryo development. Seed development is a complex process that proceeds through sequences of events regulated by the interplay of various genes, prominent among them being the transcription factors (TFs). The members of WOX, HD-ZIP III, ARF, and CUC families have a preferential role in embryonic patterning. While WOX TFs are required for initiating body axis, HD-ZIP III TFs and CUCs establish bilateral symmetry and SAM. And ARF5 performs a major role during embryonic root, ground tissue, and vasculature development. TFs such as LEC1, ABI3, FUS3, and LEC2 (LAFL) are considered the master regulators of seed maturation. Furthermore, several new TFs involved in seed storage reserves and dormancy have been identified in the last few years. Their association with those master regulators has been established in the model plant Arabidopsis. Also, using chromatin immunoprecipitation (ChIP) assay coupled with transcriptomics, genome-wide target genes of these master regulators have recently been proposed. Many seed-specific genes, including those encoding oleosins and albumins, have appeared as the direct target of LAFL. Also, several other TFs act downstream of LAFL TFs and perform their function during maturation. In this review, the function of different TFs in different phases of early embryogenesis and maturation is discussed in detail, including information about their genetic and molecular interactors and target genes. Such knowledge can further be leveraged to understand and manipulate the regulatory mechanisms involved in seed development. In addition, the genomics approaches and their utilization to identify TFs aiming to study embryo development are discussed.
Collapse
Affiliation(s)
- Subodh Verma
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Venkata Pardha Saradhi Attuluri
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hélène S. Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
30
|
Ali F, Qanmber G, Li F, Wang Z. Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res 2022; 35:199-214. [PMID: 35003801 PMCID: PMC8721241 DOI: 10.1016/j.jare.2021.03.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Functional ABA biosynthesis genes show specific roles for ABA accumulation at different stages of seed development and seedling establishment. De novo ABA biosynthesis during embryogenesis is required for late seed development, maturation, and induction of primary dormancy. ABA plays multiple roles with the key LAFL hub to regulate various downstream signaling genes in seed and seedling development. Key ABA signaling genes ABI3, ABI4, and ABI5 play important multiple functions with various cofactors during seed development such as de-greening, desiccation tolerance, maturation, dormancy, and seed vigor. The crosstalk between ABA and other phytohormones are complicated and important for seed development and seedling establishment.
Background Seed is vital for plant survival and dispersion, however, its development and germination are influenced by various internal and external factors. Abscisic acid (ABA) is one of the most important phytohormones that influence seed development and germination. Until now, impressive progresses in ABA metabolism and signaling pathways during seed development and germination have been achieved. At the molecular level, ABA biosynthesis, degradation, and signaling genes were identified to play important roles in seed development and germination. Additionally, the crosstalk between ABA and other hormones such as gibberellins (GA), ethylene (ET), Brassinolide (BR), and auxin also play critical roles. Although these studies explored some actions and mechanisms by which ABA-related factors regulate seed morphogenesis, dormancy, and germination, the complete network of ABA in seed traits is still unclear. Aim of review Presently, seed faces challenges in survival and viability. Due to the vital positive roles in dormancy induction and maintenance, as well as a vibrant negative role in the seed germination of ABA, there is a need to understand the mechanisms of various ABA regulators that are involved in seed dormancy and germination with the updated knowledge and draw a better network for the underlying mechanisms of the ABA, which would advance the understanding and artificial modification of the seed vigor and longevity regulation. Key scientific concept of review Here, we review functions and mechanisms of ABA in different seed development stages and seed germination, discuss the current progresses especially on the crosstalk between ABA and other hormones and signaling molecules, address novel points and key challenges (e.g., exploring more regulators, more cofactors involved in the crosstalk between ABA and other phytohormones, and visualization of active ABA in the plant), and outline future perspectives for ABA regulating seed associated traits.
Collapse
Affiliation(s)
- Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
31
|
Duan W, Shi-Mei Y, Zhi-Wei S, Jing X, De-Gang Z, Hong-Bin W, Qi S. Genome-Wide Analysis of the Fatty Acid Desaturase Gene Family Reveals the Key Role of PfFAD3 in α-Linolenic Acid Biosynthesis in Perilla Seeds. Front Genet 2021; 12:735862. [PMID: 34899834 PMCID: PMC8652209 DOI: 10.3389/fgene.2021.735862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/28/2021] [Indexed: 12/01/2022] Open
Abstract
Perilla (Perilla frutescens), a traditional medicinal and oilseed crop in Asia, contains extremely high levels of polyunsaturated α-linolenic acid (ALA) (up to 60.9%) in its seeds. ALA biosynthesis is a multistep process catalyzed by fatty acid desaturases (FADs), but the FAD gene family in perilla has not been systematically characterized. Here, we identified 42 PfFADs in the perilla genome and classified them into five subfamilies. Subfamily members of PfFADs had similar exon/intron structures, conserved domain sequences, subcellular localizations, and cis-regulatory elements in their promoter regions. PfFADs also possessed various expression patterns. PfFAD3.1 was highly expressed in the middle stage of seed development, whereas PfFAD7/8.3 and PfFAD7/8.5 were highly expressed in leaf and later stages of seed development, respectively. Phylogenetic analysis revealed that the evolutionary features coincided with the functionalization of different subfamilies of PUFA desaturase. Heterologous overexpression of PfFAD3.1 in Arabidopsis thaliana seeds increased ALA content by 17.68%–37.03%. These findings provided insights into the characteristics and functions of PfFAD genes in perilla.
Collapse
Affiliation(s)
- Wu Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yang Shi-Mei
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shang Zhi-Wei
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xu Jing
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhao De-Gang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, College of Life Sciences, Guizhou University, Guiyang, China.,Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wang Hong-Bin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shen Qi
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
32
|
Chen X, Yoong FY, O'Neill CM, Penfield S. Temperature during seed maturation controls seed vigour through ABA breakdown in the endosperm and causes a passive effect on DOG1 mRNA levels during entry into quiescence. THE NEW PHYTOLOGIST 2021; 232:1311-1322. [PMID: 34314512 DOI: 10.1111/nph.17646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 05/08/2023]
Abstract
Temperature variation during seed set is an important modulator of seed dormancy and impacts the performance of crop seeds through effects on establishment rate. It remains unclear how changing temperature during maturation leads to dormancy and growth vigour differences in nondormant seedlings. Here we take advantage of the large seed size in Brassica oleracea to analyse effects of temperature on individual seed tissues. We show that warm temperature during seed maturation promotes seed germination, while removal of the endosperm from imbibed seeds abolishes temperature-driven effects on germination. We demonstrate that cool temperatures during early seed maturation lead to abscisic acid (ABA) retention specifically in the endosperm at desiccation. During this time temperature affects ABA dynamics in individual seed tissues and regulates ABA catabolism. We also show that warm-matured seeds preinduce a subset of germination-related programmes in the endosperm, whereas cold-matured seeds continue to store maturation-associated transcripts including DOG1 because of effects on mRNA degradation before quiescence, rather than because of the effect of temperature on transcription. We propose that effects of temperature on seed vigour are explained by endospermic ABA breakdown and the divergent relationships between temperature and mRNA breakdown and between temperature, seed moisture and the glass transition.
Collapse
Affiliation(s)
- Xiaochao Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Fei-Yian Yoong
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Carmel M O'Neill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
33
|
Alizadeh M, Hoy R, Lu B, Song L. Team effort: Combinatorial control of seed maturation by transcription factors. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102091. [PMID: 34343847 DOI: 10.1016/j.pbi.2021.102091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/07/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Seed development is under tight spatiotemporal regulation. Here, we summarize how transcriptional regulation helps shape the major traits during seed maturation, which include storage reserve accumulation, dormancy, desiccation tolerance, and longevity. The regulation is rarely a solo task by an individual transcription factor (TF). Rather, it often involves coordinated recruitment or replacement of multiple TFs to achieve combinatorial regulation. We highlight recent progress on the transcriptional integration of activation and repression of seed maturation genes, and discuss potential research directions to further understand the TF networks of seed maturation.
Collapse
Affiliation(s)
- Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ryan Hoy
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
34
|
Xu S, Wu Z, Hou H, Zhao J, Zhang F, Teng R, Ding L, Chen F, Teng N. The transcription factor CmLEC1 positively regulates the seed-setting rate in hybridization breeding of chrysanthemum. HORTICULTURE RESEARCH 2021; 8:191. [PMID: 34376645 PMCID: PMC8355372 DOI: 10.1038/s41438-021-00625-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Distant hybridization is widely used to develop crop cultivars, whereas the hybridization process of embryo abortion often severely reduces the sought-after breeding effect. The LEAFY COTYLEDON1 (LEC1) gene has been extensively investigated as a central regulator of seed development, but it is far less studied in crop hybridization breeding. Here we investigated the function and regulation mechanism of CmLEC1 from Chrysanthemum morifolium during its seed development in chrysanthemum hybridization. CmLEC1 encodes a nucleic protein and is specifically expressed in embryos. CmLEC1's overexpression significantly promoted the seed-setting rate of the cross, while the rate was significantly decreased in the amiR-CmLEC1 transgenic chrysanthemum. The RNA-Seq analysis of the developing hybrid embryos revealed that regulatory genes involved in seed development, namely, CmLEA (late embryogenesis abundant protein), CmOLE (oleosin), CmSSP (seed storage protein), and CmEM (embryonic protein), were upregulated in the OE (overexpressing) lines but downregulated in the amiR lines vs. wild-type lines. Future analysis demonstrated that CmLEC1 directly activated CmLEA expression and interacted with CmC3H, and this CmLEC1-CmC3H interaction could enhance the transactivation ability of CmLEC1 for the expression of CmLEA. Further, CmLEC1 was able to induce several other key genes related to embryo development. Taken together, our results show that CmLEC1 plays a positive role in the hybrid embryo development of chrysanthemum plants, which might involve activating CmLEA's expression and interacting with CmC3H. This may be a new pathway in the LEC1 regulatory network to promote seed development, one perhaps leading to a novel strategy to not only overcome embryo abortion during crop breeding but also increase the seed yield.
Collapse
Affiliation(s)
- Sujuan Xu
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Ze Wu
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Huizhong Hou
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Jingya Zhao
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Fengjiao Zhang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Renda Teng
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Liping Ding
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China.
| |
Collapse
|
35
|
Tognacca RS, Botto JF. Post-transcriptional regulation of seed dormancy and germination: Current understanding and future directions. PLANT COMMUNICATIONS 2021; 2:100169. [PMID: 34327318 PMCID: PMC8299061 DOI: 10.1016/j.xplc.2021.100169] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 02/13/2021] [Indexed: 05/06/2023]
Abstract
Seed dormancy is a developmental checkpoint that prevents mature seeds from germinating under conditions that are otherwise favorable for germination. Temperature and light are the most relevant environmental factors that regulate seed dormancy and germination. These environmental cues can trigger molecular and physiological responses including hormone signaling, particularly that of abscisic acid and gibberellin. The balance between the content and sensitivity of these hormones is the key to the regulation of seed dormancy. Temperature and light tightly regulate the transcription of thousands of genes, as well as other aspects of gene expression such as mRNA splicing, translation, and stability. Chromatin remodeling determines specific transcriptional outputs, and alternative splicing leads to different outcomes and produces transcripts that encode proteins with altered or lost functions. Proper regulation of chromatin remodeling and alternative splicing may be highly relevant to seed germination. Moreover, microRNAs are also critical for the control of gene expression in seeds. This review aims to discuss recent updates on post-transcriptional regulation during seed maturation, dormancy, germination, and post-germination events. We propose future prospects for understanding how different post-transcriptional processes in crop seeds can contribute to the design of genotypes with better performance and higher productivity.
Collapse
Affiliation(s)
- Rocío Soledad Tognacca
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CP1428 Buenos Aires, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, CP1417 Buenos Aires, Argentina
| | - Javier Francisco Botto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, CP1417 Buenos Aires, Argentina
| |
Collapse
|
36
|
Srivastava AK, Suresh Kumar J, Suprasanna P. Seed 'primeomics': plants memorize their germination under stress. Biol Rev Camb Philos Soc 2021; 96:1723-1743. [PMID: 33961327 DOI: 10.1111/brv.12722] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Seed priming is a pre-germination treatment administered through various chemical, physical and biological agents, which induce mild stress during the early phases of germination. Priming facilitates synchronized seed germination, better seedling establishment, improved plant growth and enhanced yield, especially in stressful environments. In parallel, the phenomenon of 'stress memory' in which exposure to a sub-lethal stress leads to better responses to future or recurring lethal stresses has gained widespread attention in recent years. The versatility and realistic yield gains associated with seed priming and its connection with stress memory make a critical examination useful for the design of robust approaches for maximizing future yield gains. Herein, a literature review identified selenium, salicylic acid, poly-ethylene glycol, CaCl2 and thiourea as the seed priming agents (SPRs) for which the most studies have been carried out. The average priming duration for SPRs generally ranged from 2 to 48 h, i.e. during phase I/II of germination. The major signalling events for regulating early seed germination, including the DOG1 (delay of germination 1)-abscisic acid (ABA)-heme regulatory module, ABA-gibberellic acid antagonism and nucleus-organelle communication are detailed. We propose that both seed priming and stress memory invoke a 'bet-hedging' strategy in plants, wherein their growth under optimal conditions is compromised in exchange for better growth under stressful conditions. The molecular basis of stress memory is explained at the level of chromatin reorganization, alternative transcript splicing, metabolite accumulation and autophagy. This provides a useful framework to study similar mechanisms operating during seed priming. In addition, we highlight the potential for merging findings on seed priming with those of stress memory, with the dual benefit of advancing fundamental research and boosting crop productivity. Finally, a roadmap for future work, entailing identification of SPR-responsive varieties and the development of dual/multiple-benefit SPRs, is proposed for enhancing SPR-mediated agricultural productivity worldwide.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Jisha Suresh Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
37
|
Bizouerne E, Buitink J, Vu BL, Vu JL, Esteban E, Pasha A, Provart N, Verdier J, Leprince O. Gene co-expression analysis of tomato seed maturation reveals tissue-specific regulatory networks and hubs associated with the acquisition of desiccation tolerance and seed vigour. BMC PLANT BIOLOGY 2021; 21:124. [PMID: 33648457 PMCID: PMC7923611 DOI: 10.1186/s12870-021-02889-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND During maturation seeds acquire several physiological traits to enable them to survive drying and disseminate the species. Few studies have addressed the regulatory networks controlling acquisition of these traits at the tissue level particularly in endospermic seeds such as tomato, which matures in a fully hydrated environment and does not undergo maturation drying. Using temporal RNA-seq analyses of the different seed tissues during maturation, gene network and trait-based correlations were used to explore the transcriptome signatures associated with desiccation tolerance, longevity, germination under water stress and dormancy. RESULTS During maturation, 15,173 differentially expressed genes were detected, forming a gene network representing 21 expression modules, with 3 being specific to seed coat and embryo and 5 to the endosperm. A gene-trait significance measure identified a common gene module between endosperm and embryo associated with desiccation tolerance and conserved with non-endospermic seeds. In addition to genes involved in protection such LEA and HSP and ABA response, the module included antioxidant and repair genes. Dormancy was released concomitantly with the increase in longevity throughout fruit ripening until 14 days after the red fruit stage. This was paralleled by an increase in SlDOG1-2 and PROCERA transcripts. The progressive increase in seed vigour was captured by three gene modules, one in common between embryo and endosperm and two tissue-specific. The common module was enriched with genes associated with mRNA processing in chloroplast and mitochondria (including penta- and tetratricopeptide repeat-containing proteins) and post-transcriptional regulation, as well several flowering genes. The embryo-specific module contained homologues of ABI4 and CHOTTO1 as hub genes associated with seed vigour, whereas the endosperm-specific module revealed a diverse set of processes that were related to genome stability, defence against pathogens and ABA/GA response genes. CONCLUSION The spatio-temporal co-expression atlas of tomato seed maturation will serve as a valuable resource for the in-depth understanding of the dynamics of gene expression associated with the acquisition of seed vigour at the tissue level.
Collapse
Affiliation(s)
- Elise Bizouerne
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Julia Buitink
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Benoît Ly Vu
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Joseph Ly Vu
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Eddi Esteban
- Department of Cell and Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jérôme Verdier
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Olivier Leprince
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.
| |
Collapse
|
38
|
Chen N, Wang H, Abdelmageed H, Veerappan V, Tadege M, Allen RD. HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. THE NEW PHYTOLOGIST 2020; 227:840-856. [PMID: 32201955 PMCID: PMC7383879 DOI: 10.1111/nph.16559] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
DELAY OF GERMINATION1 (DOG1) is a primary regulator of seed dormancy. Accumulation of DOG1 in seeds leads to deep dormancy and delayed germination in Arabidopsis. B3 domain-containing transcriptional repressors HSI2/VAL1 and HSL1/VAL2 silence seed dormancy and enable the subsequent germination and seedling growth. However, the roles of HSI2 and HSL1 in regulation of DOG1 expression and seed dormancy remain elusive. Seed dormancy was analysed by measurement of maximum germination percentage of freshly harvested Arabidopsis seeds. In vivo protein-protein interaction analysis, ChIP-qPCR and EMSA were performed and suggested that HSI2 and HSL1 can form dimers to directly regulate DOG1. HSI2 and HSL1 dimers interact with RY elements at DOG1 promoter. Both B3 and PHD-like domains are required for enrichment of HSI2 and HSL1 at the DOG1 promoter. HSI2 and HSL1 recruit components of polycomb-group proteins, including CURLY LEAF (CLF) and LIKE HETERCHROMATIN PROTEIN 1 (LHP1), for consequent deposition of H3K27me3 marks, leading to repression of DOG1 expression. Our findings suggest that HSI2- and HSL1-dependent histone methylation plays critical roles in regulation of seed dormancy during seed germination and early seedling growth.
Collapse
Affiliation(s)
- Naichong Chen
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwater74078OKUSA
| | - Hui Wang
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
| | - Haggag Abdelmageed
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Agricultural BotanyFaculty of AgricultureCairo UniversityGiza12613Egypt
| | | | - Million Tadege
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Randy D. Allen
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwater74078OKUSA
| |
Collapse
|
39
|
Tanaka T, Nishii Y, Matsuo H, Takahashi T. Easy-to-Use InDel Markers for Genetic Mapping between Col-0 and L er-0 Accessions of Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9060779. [PMID: 32580428 PMCID: PMC7355782 DOI: 10.3390/plants9060779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Map-based gene cloning has played a key role in many genetic studies using the model plant, Arabidopsis thaliana. In the post- next generation sequencing era, identification of point mutations and their corresponding genes is increasingly becoming a powerful and important approach to define plant gene function. To perform initial mapping experiments efficiently on Arabidopsis mutants, enrichment of easy-to-use and reliable polymorphic DNA markers would be desirable. We present here a list of InDel polymorphic markers between Col-0 and Ler-0 accessions that can be detected in standard agarose gel electrophoresis.
Collapse
|
40
|
Liu F, Zhang H, Ding L, Soppe WJJ, Xiang Y. REVERSAL OF RDO5 1, a Homolog of Rice Seed Dormancy4, Interacts with bHLH57 and Controls ABA Biosynthesis and Seed Dormancy in Arabidopsis. THE PLANT CELL 2020; 32:1933-1948. [PMID: 32213638 PMCID: PMC7268807 DOI: 10.1105/tpc.20.00026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/06/2020] [Accepted: 03/18/2020] [Indexed: 05/23/2023]
Abstract
The control of seed dormancy by abscisic acid (ABA) has been extensively studied, but the underlying mechanism is not fully understood. Here, we report the characterization of two ABA-related seed dormancy regulators in Arabidopsis (Arabidopsis thaliana): ODR1 (for reversal of rdo5), an ortholog of the rice (Oryza sativa) Seed dormancy4 (Sdr4), and the basic helix-loop-helix transcription factor bHLH57. ODR1, whose transcript levels are directly suppressed by the transcription factor ABA INSENSITIVE3 (ABI3), negatively regulates seed dormancy by affecting ABA biosynthesis and ABA signaling. By contrast, bHLH57 positively regulates seed dormancy by inducing the expression of the genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE6 (NCED6) and NCED9, which encode ABA biosynthetic enzymes, and thus leads to higher ABA levels. ODR1 interacts with bHLH57 and inhibits bHLH57-modulated NCED6 and NCED9 expression in the nucleus. bhlh57 loss-of-function alleles can partially counteract the enhanced NCED6 and NCED9 expression seen in odr1 mutants and can therefore rescue their associated hyper-dormancy phenotype. Thus, we identified a novel ABI3-ODR1-bHLH57-NCED6/9 network that provides insights into the regulation of seed dormancy by ABA biosynthesis and signaling.
Collapse
Affiliation(s)
- Fei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hui Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ling Ding
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wim J J Soppe
- Rijk Zwaan, De Lier 2678 ZG, The Netherlands
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
41
|
Nonogaki H. A repressor complex silencing ABA signaling in seeds? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2847-2853. [PMID: 32004374 DOI: 10.1093/jxb/eraa062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Seed dormancy is induced primarily by abscisic acid (ABA) and maintained through elevated levels of ABA sensitivity in seeds. The core mechanisms of ABA-imposed seed dormancy are emerging, but it is still unclear how these blockages in seeds are eliminated during after-ripening, or what molecular events in imbibed seeds are responsible for the initial stages of germination induction. Some pieces of evidence suggest that a repressor complex, which potentially triggers seed germination through the suppression of ABA signaling components, might be present in seeds. The usual suspect, protein phosphatase 2C, which inactivates kinases and shuts down ABA signaling in the major dormancy pathway, is possibly associated with this complex. Other members, such as WD40 proteins and histone deacetylase subunits, homologs of which are found in the flowering repressor complex, perhaps constitute this complex in seeds. The repressor activity could counteract the dormancy mechanisms in an overwhelming manner, through well-coordinated inactivation and turnover of germination-suppressing transcription factors, which is probably accompanied by chromatin silencing and transcriptional repression of the transcription factor target genes. This review provides a perspective on a putative seed germination-inducing repressor complex, including its possible modes of action and upstream regulators.
Collapse
Affiliation(s)
- Hiroyuki Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
42
|
Ostria-Gallardo E, Larama G, Berríos G, Fallard A, Gutiérrez-Moraga A, Ensminger I, Manque P, Bascuñán-Godoy L, Bravo LA. Decoding Gene Networks Modules That Explain the Recovery of Hymenoglossum cruentum Cav. After Extreme Desiccation. FRONTIERS IN PLANT SCIENCE 2020; 11:574. [PMID: 32499805 PMCID: PMC7243127 DOI: 10.3389/fpls.2020.00574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/17/2020] [Indexed: 05/17/2023]
Abstract
Hymenoglossum cruentum (Hymenophyllaceae) is a poikilohydric, homoiochlorophyllous desiccation-tolerant (DT) epiphyte fern. It can undergo fast and frequent dehydration-rehydration cycles. This fern is highly abundant at high-humidity/low-light microenvironments within the canopy, although rapid changes in humidity and light intensity are frequent. The objective of this research is to identify genes associated to desiccation-rehydration cycle in the transcriptome of H. cruentum to better understand the genetic dynamics behind its desiccation tolerance mechanism. H. cruentum plants were subjected to a 7 days long desiccation-rehydration process and then used to identify key expressed genes associated to its capacity to dehydrate and rehydrate. The relative water content (RWC) and maximum quantum efficiency (F v/F m) of H. cruentum fronds decayed to 6% and 0.04, respectively, at the end of the desiccation stage. After re-watering, the fern showed a rapid recovery of RWC and F v/F m (ca. 73% and 0.8, respectively). Based on clustering and network analysis, our results reveal key genes, such as UBA/TS-N, DYNLL, and LHC, orchestrating intracellular motility and photosynthetic metabolism; strong balance between avoiding cell death and defense (CAT3, AP2/ERF) when dehydrated, and detoxifying pathways and stabilization of photosystems (GST, CAB2, and ELIP9) during rehydration. Here we provide novel insights into the genetic dynamics behind the desiccation tolerance mechanism of H. cruentum.
Collapse
Affiliation(s)
- Enrique Ostria-Gallardo
- Laboratorio de Fisiología Vegetal, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Giovanni Larama
- Centro de Excelencia de Modelación y Computación Científica, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Graciela Berríos
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Ana Fallard
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Cs. Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Instituto de Agroindustria, Universidad de La Frontera, Temuco, Chile
| | - Ana Gutiérrez-Moraga
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ingo Ensminger
- Department of Biology, University of Toronto, Toronto, ON, Canada
| | - Patricio Manque
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | | | - León A. Bravo
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Cs. Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Instituto de Agroindustria, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
43
|
Identifying genetic variants underlying phenotypic variation in plants without complete genomes. Nat Genet 2020; 52:534-540. [PMID: 32284578 PMCID: PMC7610390 DOI: 10.1038/s41588-020-0612-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
Structural variants and presence/absence polymorphisms are common in plant genomes, yet they are routinely overlooked in genome-wide association studies (GWAS). Here, we expand the type of genetic variants detected in GWAS to include major deletions, insertions and rearrangements. We first use raw sequencing data directly to derive short sequences, k-mers, that mark a broad range of polymorphisms independently of a reference genome. We then link k-mers associated with phenotypes to specific genomic regions. Using this approach, we reanalyzed 2,000 traits in Arabidopsis thaliana, tomato and maize populations. Associations identified with k-mers recapitulate those found with SNPs, but with stronger statistical support. Importantly, we discovered new associations with structural variants and with regions missing from reference genomes. Our results demonstrate the power of performing GWAS before linking sequence reads to specific genomic regions, which allows the detection of a wider range of genetic variants responsible for phenotypic variation.
Collapse
|
44
|
Carrillo-Barral N, Rodríguez-Gacio MDC, Matilla AJ. Delay of Germination-1 (DOG1): A Key to Understanding Seed Dormancy. PLANTS 2020; 9:plants9040480. [PMID: 32283717 PMCID: PMC7238029 DOI: 10.3390/plants9040480] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/19/2023]
Abstract
DELAY OF GERMINATION-1 (DOG1), is a master regulator of primary dormancy (PD) that acts in concert with ABA to delay germination. The ABA and DOG1 signaling pathways converge since DOG1 requires protein phosphatase 2C (PP2C) to control PD. DOG1 enhances ABA signaling through its binding to PP2C ABA HYPERSENSITIVE GERMINATION (AHG1/AHG3). DOG1 suppresses the AHG1 action to enhance ABA sensitivity and impose PD. To carry out this suppression, the formation of DOG1-heme complex is essential. The binding of DOG1-AHG1 to DOG1-Heme is an independent processes but essential for DOG1 function. The quantity of active DOG1 in mature and viable seeds is correlated with the extent of PD. Thus, dog1 mutant seeds, which have scarce endogenous ABA and high gibberellin (GAs) content, exhibit a non-dormancy phenotype. Despite being studied extensively in recent years, little is known about the molecular mechanism underlying the transcriptional regulation of DOG1. However, it is well-known that the physiological function of DOG1 is tightly regulated by a complex array of transformations that include alternative splicing, alternative polyadenylation, histone modifications, and a cis-acting antisense non-coding transcript (asDOG1). The DOG1 becomes modified (i.e., inactivated) during seed after-ripening (AR), and its levels in viable seeds do not correlate with germination potential. Interestingly, it was recently found that the transcription factor (TF) bZIP67 binds to the DOG1 promoter. This is required to activate DOG1 expression leading to enhanced seed dormancy. On the other hand, seed development under low-temperature conditions triggers DOG1 expression by increasing the expression and abundance of bZIP67. Together, current data indicate that DOG1 function is not strictly limited to PD process, but that it is also required for other facets of seed maturation, in part by also interfering with the ethylene signaling components. Otherwise, since DOG1 also affects other processes such us flowering and drought tolerance, the approaches to understanding its mechanism of action and control are, at this time, still inconclusive.
Collapse
Affiliation(s)
- Néstor Carrillo-Barral
- Departamento de Biología, Facultad de Ciencias, Universidad de A Coruña, Campus Zapateira, 15071-A Coruña, Spain;
| | - María del Carmen Rodríguez-Gacio
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Angel Jesús Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Correspondence: ; Tel.: +34-981-563-100
| |
Collapse
|
45
|
Zha P, Liu S, Li Y, Ma T, Yang L, Jing Y, Lin R. The Evening Complex and the Chromatin-Remodeling Factor PICKLE Coordinately Control Seed Dormancy by Directly Repressing DOG1 in Arabidopsis. PLANT COMMUNICATIONS 2020; 1:100011. [PMID: 33404551 PMCID: PMC7748002 DOI: 10.1016/j.xplc.2019.100011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 05/22/2023]
Abstract
Primary seed dormancy is acquired during seed development and maturation, which is important for plant fitness and survival. DELAY OF GERMINATION1 (DOG1) plays a critical role in inducing seed dormancy. DOG1 expression increases rapidly during seed development, but the precise mechanism underlying this process remains elusive. In this study, we showed that mutants with a loss or reduced function of the chromatin-remodeling factor PICKLE (PKL) exhibit increased seed dormancy. PKL associates with DOG1 chromatin and inhibits its transcription. We found that PKL physically interacts with LUX ARRHYTHMO (LUX), a member of the evening complex (EC) of the circadian clock. Furthermore, LUX directly binds to a specific coding sequence of DOG1, and DOG1 acts genetically downstream of PKL and LUX. Mutations in either LUX or EARLY FLOWERING3 (ELF3) encoding another member of the EC led to increased DOG1 expression and enhanced seed dormancy. Surprisingly, these phenotypes were abolished when the parent plants were grown under continuous light. In addition, we observed that loss of function of either PKL or LUX decreased H3K27me3 levels at the DOG1 locus. Taken together, our study reveals a regulatory mechanism in which EC proteins coordinate with PKL to transmit circadian signals for directly regulating DOG1 expression and seed dormancy during seed development.
Collapse
Affiliation(s)
- Ping Zha
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuangrong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Liwen Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Corresponding author
| |
Collapse
|
46
|
Footitt S, Walley PG, Lynn JR, Hambidge AJ, Penfield S, Finch‐Savage WE. Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing. THE NEW PHYTOLOGIST 2020; 225:2035-2047. [PMID: 31359436 PMCID: PMC7027856 DOI: 10.1111/nph.16081] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/20/2019] [Indexed: 05/22/2023]
Abstract
Seedling emergence timing is crucial in competitive plant communities and so contributes to species fitness. To understand the mechanistic basis of variation in seedling emergence timing, we exploited the contrasting behaviour of two Arabidopsis thaliana ecotypes: Cape Verde Islands (Cvi) and Burren (Bur-0). We used RNA-Seq analysis of RNA from exhumed seeds and quantitative trait loci (QTL) analyses on a mapping population from crossing the Cvi and Bur-0 ecotypes. We determined genome-wide expression patterns over an annual dormancy cycle in both ecotypes, identifying nine major clusters based on the seasonal timing of gene expression, and variation in behaviour between them. QTL were identified for depth of seed dormancy and seedling emergence timing (SET). Both analyses showed a key role for DOG1 in determining depth of dormancy, but did not support a direct role for DOG1 in generating altered seasonal patterns of seedling emergence. The principle QTL determining SET (SET1: dormancy cycling) is physically close on chromosome 5, but is distinct from DOG1. We show that SET1 and two other SET QTLs each contain a candidate gene (AHG1, ANAC060, PDF1 respectively) closely associated with DOG1 and abscisic acid signalling and suggest a model for the control of SET in the field.
Collapse
Affiliation(s)
- Steven Footitt
- School of Life SciencesUniversity of WarwickWellesbourne CampusWarwickshireCV35 9EFUK
| | - Peter G. Walley
- Functional and Comparative GenomicsInstitute of Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
| | - James R. Lynn
- Applied Statistical SolutionsBishops TachbrookLeamingtonCV33 9RJUK
| | - Angela J. Hambidge
- School of Life SciencesUniversity of WarwickWellesbourne CampusWarwickshireCV35 9EFUK
| | - Steven Penfield
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | |
Collapse
|
47
|
Jo L, Pelletier JM, Hsu SW, Baden R, Goldberg RB, Harada JJ. Combinatorial interactions of the LEC1 transcription factor specify diverse developmental programs during soybean seed development. Proc Natl Acad Sci U S A 2020; 117:1223-1232. [PMID: 31892538 PMCID: PMC6969526 DOI: 10.1073/pnas.1918441117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The LEAFY COTYLEDON1 (LEC1) transcription factor is a central regulator of seed development, because it controls diverse biological programs during seed development, such as embryo morphogenesis, photosynthesis, and seed maturation. To understand how LEC1 regulates different gene sets during development, we explored the possibility that LEC1 acts in combination with other transcription factors. We identified and compared genes that are directly transcriptionally regulated by ABA-RESPONSIVE ELEMENT BINDING PROTEIN3 (AREB3), BASIC LEUCINE ZIPPER67 (bZIP67), and ABA INSENSITIVE3 (ABI3) with those regulated by LEC1. We showed that LEC1 operates with specific sets of transcription factors to regulate different gene sets and, therefore, distinct developmental processes. Thus, LEC1 controls diverse processes through its combinatorial interactions with other transcription factors. DNA binding sites for the transcription factors are closely clustered in genomic regions upstream of target genes, defining cis-regulatory modules that are enriched for DNA sequence motifs that resemble sequences known to be bound by these transcription factors. Moreover, cis-regulatory modules for genes regulated by distinct transcription factor combinations are enriched for different sets of DNA motifs. Expression assays with embryo cells indicate that the enriched DNA motifs are functional cis elements that regulate transcription. Together, the results suggest that combinatorial interactions between LEC1 and other transcription factors are mediated by cis-regulatory modules containing clustered cis elements and by physical interactions that are documented to occur between the transcription factors.
Collapse
Affiliation(s)
- Leonardo Jo
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Julie M Pelletier
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Ssu-Wei Hsu
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Russell Baden
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Robert B Goldberg
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - John J Harada
- Department of Plant Biology, University of California, Davis, CA 95616;
| |
Collapse
|
48
|
Dai X, Wang Y, Chen Y, Li H, Xu S, Yang T, Zhang X, Su X, Xia Z. Overexpression of NtDOG1L-T Improves Heat Stress Tolerance by Modulation of Antioxidant Capability and Defense-, Heat-, and ABA-Related Gene Expression in Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:568489. [PMID: 33193495 PMCID: PMC7661468 DOI: 10.3389/fpls.2020.568489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/08/2020] [Indexed: 05/09/2023]
Abstract
Drought and heat stresses are two major environmental stress factors that severely threaten crop growth and productivity. Plant delay of germination 1-like (DOG1L) family genes play important roles in various developmental processes and stress responses. In our previous study, a tobacco DOG1L gene (NtDOG1L-T) was found to regulate seedling growth and drought response. Unfortunately, the role of DOG1L genes in heat stress response is yet to be studied. Here, we present data supporting the role of DOG1L genes in heat stress and possible underlying molecular mechanisms. Transcript levels of NtDOG1L-T were rapidly induced by heat or abscisic acid (ABA) treatment. Furthermore, NtDOG1L-T promoter activity was markedly activated by ABA or heat stress, as revealed by histochemical staining in transgenic tobacco seedlings. Overexpression of NtDOG1L-T in transgenic lines improved heat stress tolerance. The NtDOG1L-T-transgenic plants exhibited lower levels of reactive oxygen species (ROS) and lipid peroxidation but higher antioxidant enzyme activities in response to heat stress. Furthermore, transcript abundance of some defense-, heat-, and ABA-responsive marker genes was significantly upregulated, as shown by reverse transcription quantitative PCR (qPCR) in these transgenic plants. In conclusion, NtDOG1L-T positively regulates heat stress tolerance possibly by modulation of antioxidant capability and defense-, heat-, and ABA-related gene expression in tobacco. This study may provide valuable resource for the potential exploitation of DOG1Ls in genetic improvement of heat stress tolerance in crops.
Collapse
Affiliation(s)
- Xiaoyan Dai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yingfeng Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | | | | | - Shixiao Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Tiezhao Yang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Xiaoquan Zhang,
| | - Xinhong Su
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- Sanmenxia Tobacco Company, Sanmenxia, China
- Xinhong Su,
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, China
- Zongliang Xia,
| |
Collapse
|
49
|
Nonogaki H. The Long-Standing Paradox of Seed Dormancy Unfolded? TRENDS IN PLANT SCIENCE 2019; 24:989-998. [PMID: 31327698 DOI: 10.1016/j.tplants.2019.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 05/28/2023]
Abstract
There has been a long-standing question in seed research, why cyanide, a respiration inhibitor, breaks seed dormancy. While the alternative respiratory pathway and reactive oxygen species have been suggested to be part of the mechanism, the cell biological and mechanistic significance of this paradox remains unclear. The outcomes of recent research on mitochondrial RNA processing for the subunits of the electron transport chain complexes seem to offer a logical explanation. This opinion article attempts to integrate the accumulating evidence of mitochondrial involvement in ABA signaling with the frontier of seed research on DELAY OF GERMINATION1, a master regulator of dormancy, to present a coherent model for ABA signaling in seeds, which could also address the old paradox in seed research.
Collapse
Affiliation(s)
- Hiroyuki Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
50
|
Zhang X, Wei X, Wang M, Zhu X, Zhao Y, Wei F, Xia Z. Overexpression of NtabDOG1L promotes plant growth and enhances drought tolerance in Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110186. [PMID: 31481202 DOI: 10.1016/j.plantsci.2019.110186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 05/02/2023]
Abstract
Drought is one of the major environmental stresses limiting crop growth and production. It is very important to exploit and utilize drought-tolerance genes to improve crop drought-resistance. In this study, we identified two homoeologs of a Nicotiana tabacum (Ntab) DELAY OF GERMINATION (DOG) 1 like gene, named as NtabDOG1L-T and NtabDOG1L-S, respectively. The NtabDOG1L genes were preferentially expressed in roots and their expression levels were induced by polyethylene glycol, high salt, cold, and abscisic acid treatments. Subcellular localization results indicated that NtabDOG1L-T was localized in the nucleus, cytoplasm and cell membrane. Overexpression of NtabDOG1L-T in tobacco resulted in roots growth enhancement in transgenic plants. Furthermore, overexpression of NtabDOG1L-T enhanced drought stress tolerance in transgenic tobacco. The transgenic tobacco lines exhibited lower leaf water loss and electrolyte leakage, lower content of malondialdehyde and reactive oxygen species (ROS), and higher antioxidant enzymes activities after drought treatment when compared with wild type (WT) plants. In addition, the expression levels of several genes encoding key antioxidant enzymes and drought-related proteins were higher in the transgenic plants than in the WT plants under drought stress. Taken together, our results showed that NtabDOG1L functions as a novel regulator that improves plant growth and drought tolerance in tobacco.
Collapse
Affiliation(s)
- Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xing Wei
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Meiping Wang
- Library of Henan Agricultural University, Zhengzhou 450002, China
| | - Xianfeng Zhu
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yue Zhao
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Fengjie Wei
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; Henan Institute of Tobacco Science, Zhengzhou 450002, China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|