1
|
Wang Q, Tang L, He Y, Xu Y, Zhang J, Kong W, Hu K, Garcia-Mas J, Pujol M, Zhao G. Comprehensive analysis of transcriptome and metabolome identified the key gene networks regulating fruit length in melon. BMC PLANT BIOLOGY 2025; 25:442. [PMID: 40200143 PMCID: PMC11977916 DOI: 10.1186/s12870-025-06332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Melon is an ideal crop model for studying fruit development. Fruit shape is an important quality trait, and fruit length is a key indicator affecting fruit shape. However, studies on the genes regulating melon fruit length are still limited. RESULTS In this study, we investigated the gene network regulating fruit morphology in melons utilizing transcriptome profile and a co-expression pattern-based approach. Four co-expression modules/gene networks highly correlated with changes in endogenous plant hormone levels at different developmental stages were identified. We pinpointed 11 key genes associated with cell development, 4 genes related to microtubule development, and 16 genes involved in the auxin (IAA, indole-3-acetic acid) pathway. These genes were identified as module hubs, and their expression level correlated with phenotypic variation. Through rigorous screening methods, we enhanced the likelihood that these genes are genuine candidates in the regulation of the fruit morphology network. These genes play a significant role in controlling fruit length, providing crucial insights into the molecular mechanisms underlying melon fruit development. CONCLUSIONS Our findings revealed candidate genes that regulate melon fruit length, helping in the understanding of the molecular mechanisms underlying melon fruit development. These genes will be valuable for implementing marker-assisted breeding strategies.
Collapse
Affiliation(s)
- Qingtao Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lingli Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, Henan, China.
| | - Yuhua He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yongyang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jian Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Weihu Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Keyun Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Guangwei Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, Henan, China.
| |
Collapse
|
2
|
Xie X, Ling J, Dong S, Zhai M, Lu J, Zhao J, Yang X, Dong X, Li Y, Visser RGF, Bai Y, Mao Z, Zhang S, Xie B. Clade V MLO Genes Are Negative Modulators of Cucumber Defence Response to Meloidogyne incognita. MOLECULAR PLANT PATHOLOGY 2025; 26:e70078. [PMID: 40151055 PMCID: PMC11950635 DOI: 10.1111/mpp.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Cucumber production is seriously constrained by Meloidogyne incognita. Because no resistance resources to the pathogen have been reported, disabling susceptibility genes may represent a novel breeding strategy to introduce resistance against this nematode in cucumber. Here, we studied the clade V MLO genes for their involvement in the interaction between cucumber and M. incognita. Our results showed that Arabidopsis clade V MLO mutants were resistant to M. incognita. Cucumber has three clade V MLO genes, CsaMLO1, CsaMLO8 and CsaMLO11, with upregulated expression upon inoculation with M. incognita. Heterologous overexpression of CsaMLO1, CsaMLO8 and CsaMLO11 in Arabidopsis mutants restored susceptibility to varying degrees. Silencing and knockout of individual clade V MLO genes in cucumber reduced susceptibility to M. incognita. The cucumber CRISPR mutants produced similar fruits as the wild type (WT) did. Although the yields of two single mutants (M111 and M112) and two double mutants (M81 M111 and M81 M112) were reduced compared to WT, the yields of M81 and M82 were not decreased. In summary, clade V MLO genes function as susceptibility genes for M. incognita in cucumber. Among them, CsaMLO8 may be the most promising candidate for M. incognita resistance breeding in cucumber.
Collapse
Affiliation(s)
- Xiaoxiao Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
- Plant BreedingWageningen University & ResearchWageningenthe Netherlands
- Graduate School Experimental Plant SciencesWageningen University and ResearchWageningenthe Netherlands
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Mingjuan Zhai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Junru Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Xueyong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | | | - Yuling Bai
- Plant BreedingWageningen University & ResearchWageningenthe Netherlands
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
3
|
Rafiq M, Guo M, Shoaib A, Yang J, Fan S, Xiao H, Chen K, Xie Z, Cheng C. Unraveling the Hormonal and Molecular Mechanisms Shaping Fruit Morphology in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:974. [PMID: 40265904 PMCID: PMC11944449 DOI: 10.3390/plants14060974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
The importance of fruit shape studies extends beyond fundamental plant biology, as it holds significant implications for breeding. Understanding the genetic and hormonal regulation of fruit morphology can facilitate targeted breeding strategies to enhance yield, quality, and stress resistance, ultimately contributing to sustainable farming and nutrition security. The diversity in fruit shapes is the result of complex hormone regulation and molecular pathways that affect key traits, including carpel number, fruit length, and weight. Fruit shape is a quality attribute that directly influences consumer preference, marketability and the ease of post-harvest processing. This article focuses on investigations carried out on molecular, genetic and hormonal regulation mechanisms of fruit shape, color, maturation in fruit plants and key genetic pathways such as CLV-WUS and OVATE, as well as their roles in shaping non-climacteric fruits such as strawberries, grapes and raspberries. Plant hormones, especially abscisic acid (ABA) and indole-3-acetic acid (IAA), play a crucial role in enhancing desirable traits such as color and taste, while regulating anthocyanin synthesis and growth time. In addition, the dynamic interactions between auxin, gibberellin, and ethylene are crucial for the ripening process. Jasmonate enhances stress response, brassinosteroids promote ripening and cytokinins promote early fruit development. In addition, this review also studied the fruit morphology of species such as tomatoes and cucumbers, emphasizing the importance of the CLV-WUS pathway, which regulates the number of carpels through genes such as WUSCHEL (WUS), FRUITFULL1 (FUL1), and auxin response factor 14 (ARF14). The weight of fresh fruit is affected by microRNAs such as miRNA156, which emphasizes the importance of post transcriptional regulation. The involvement of transcription factors such as SISHN1, CaOvate, and CISUN25-26-27a further emphasizes the complexity of hormone regulation. Understanding these regulatory mechanisms can enhance our understanding of fruit development and have a profound impact on agricultural practices and crop improvement strategies aimed at meeting the growing global demand for high-quality agricultural products.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Min Guo
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Amna Shoaib
- Department of Plant Pathology, Faculty of Agriculture, University of the Punjab, Lahore 54590, Pakistan
| | - Jiaxin Yang
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Siqing Fan
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Haijing Xiao
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Kai Chen
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Zhaoqi Xie
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Chunsong Cheng
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| |
Collapse
|
4
|
Dai X, Wang Z, Bao Y, Jia C, Bai F, Hasi A, Che G. Identification and functional characterization of the C2H2 ZFP transcription factor CmSUP7 in regulating melon plant growth and fruit development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109513. [PMID: 39827705 DOI: 10.1016/j.plaphy.2025.109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The SUPERMAN (SUP) proteins, which belong to the single C2H2 zinc finger proteins (ZFP) subclass, participate in various aspects of gene regulation in plant morphogenesis and stress response, but their role in melon (Cucumis melo) is still largely unknown. We identified a total of 28 CmSUP genes in the melon genome, all containing QALGGH conserved domain. Collinearity analysis showed that melon had several homologous gene pairs with Arabidopsis and tomato, indicating the gene duplication events during the evolution. Expression analyses in RT-qPCR and transcriptomic data showed that CmSUPs can be divided into vegetative organ-expressed genes and reproductive organ-expressed genes. Through genetic transformation of melons, we found that overexpression of the CmSUP7 gene causes dwarfism, reduced internode length, as well as decreased leaf and fruit size. These findings indicate that the CmSUP7 gene significantly affects the melon plant growth and fruit development. Through yeast two-hybrid and BiFC assays, we found that CmSUP7 and CmMYB14 transcription factors directly interact in the nucleus. This study comprehensively analyzed the melon CmSUP family genes and revealed the function of the CmSUP7 gene in regulating melon development, which laid the foundation for further improvement in melon breeding.
Collapse
Affiliation(s)
- Xinyu Dai
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Zhiwei Wang
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yanfang Bao
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Chenchen Jia
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Fangfang Bai
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Agula Hasi
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Gen Che
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
5
|
Liu T, Sharif R, Shi Z, Guo K, Zhang Z, Bao X, Ali A. Transcriptomic analysis reveals the crucial role of YABBY genes family in hormonal induced parthenocarpy in Cucumis sativus L. BMC PLANT BIOLOGY 2025; 25:45. [PMID: 39794697 PMCID: PMC11724556 DOI: 10.1186/s12870-024-06018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The plant-specific YABBY transcription factor family plays several activities, including responding to abiotic stress, establishing dorsoventral polarity, and developing lateral organs. Cucumis sativus L. commonly referred to as cucumber and one of the first vegetable crops with a fully sequenced genome. RESULTS In this work, we examined the application of NAA, CPPU, and GA4 + 7 to inflict parthenocarpy in the cucumber ZK line. The expression pattern of YABBY genes throughout fruit development and performed a genomic census of cucumber (Cucumis sativus L.). Based on peptide classification, we discovered eight CsYABBY genes and divided them into five subfamilies. Similarities in motif composition and exon-intron structure were also observed. The cis-elements and gene ontology (GO) analysis revealed the involvement of CsYABBY genes in vegetative growth and the transition of vegetative to the reproductive phase. The expression analysis revealed the differential expression response to NAA, CPPU, and GA4 + 7. In particular, the CsYABBY1 was induced sharply by NAA and CPPU but not GA4 + 7. The transient expression of CsCRC disclosed that it is localized in the nucleus. CONCLUSION These findings point to the possibility that CsYABBY1 and CsCRC may positively affect fruit development and could be utilized to generate parthenocarpic cucumber fruits.
Collapse
Affiliation(s)
- Tingting Liu
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China.
- Department of Science and Technology, Shanxi Datong University, Datong, Shanxi, 037009, China.
| | - Rahat Sharif
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zetao Shi
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Kehong Guo
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Zhisen Zhang
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Xueping Bao
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Ahmad Ali
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sugarcane Research Center, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, Hainan, 571101, China.
| |
Collapse
|
6
|
Shen X, Yang T, Du Y, Hao N, Cao J, Wu T, Wang C. Research on the function of CsMYB36 based on an effective hair root transformation system. PLANT SIGNALING & BEHAVIOR 2024; 19:2345983. [PMID: 38686613 PMCID: PMC11062371 DOI: 10.1080/15592324.2024.2345983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
The hairy root induction system was used to efficiently investigate gene expression and function in plant root. Cucumber is a significant vegetable crop worldwide, with shallow roots, few lateral roots, and weak root systems, resulting in low nutrient absorption and utilization efficiency. Identifying essential genes related to root development and nutrient absorption is an effective way to improve the growth and development of cucumbers. However, genetic mechanisms underlying cucumber root development have not been explored. Here, we report a novel, rapid, effective hairy root transformation system. Compared to the in vitro cotyledon transformation method, this method shortened the time needed to obtain transgenic roots by 13 days. Furthermore, we combined this root transformation method with CRISPR/Cas9 technology and validated our system by exploring the expression and function of CsMYB36, a pivotal gene associated with root development and nutrient uptake. The hairy root transformation system established in this study provides a powerful method for rapidly identifying essential genes related to root development in cucumber and other horticultural crop species. This advancement holds promise for expediting research on root biology and molecular breeding strategies, contributing to the broader understanding and improvements crop growth and development.
Collapse
Affiliation(s)
- Xi Shen
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, China
| | - Ting Yang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, China
| | - Yalin Du
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, China
| | - Ning Hao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, China
| | - Jiajian Cao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, China
| | - Chunhua Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, China
| |
Collapse
|
7
|
Wang W, Xu Z, Qian L, Hang S, Niu Y, Shen C, Wei Y, Liu B. Genetic mapping and validation of QTL controlling fruit diameter in cucumber. BMC PLANT BIOLOGY 2024; 24:1271. [PMID: 39731005 DOI: 10.1186/s12870-024-06000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Fruit diameter is one of important agronomy traits that has greatly impacts fruit yield and commercial value in cucumber (Cucumis sativus L.). Hence, we preliminary mapping of fruit diameter was conducted to refine its genetic locus. In this study, to genetic mapping of QTLs that control cucumber fruit diameter, a F2 population with 120 individuals was developed by the East Asian line '9930' (known as narrow fruit diameter) and the European-type cucumber 'EU224' (known as wide fruit diameter). Then a Genotyping-by-Sequencing (GBS)-based genetic map with 5662 markers was constructed and the total length is 656.177 cM, with average marker interval of 0.116 cM. Based on this high-density genetic map, a major QTL qfd1.1 related to fruit diameter was detected with a markedly high LOD score 4.07 located approximately 300 kb interval on Chromosome 1 (located between Chr1:1654704-1958556). To confirm qfd1.1 that detected by F2 population, we performed genetic mapping of fruit diameter with an introgression line (IL) about fruit diameter. We developed two KASP markers (FD-1 and FD-2) related to the fruit diameter. Based on this, we inserted the European cucumber EU224 into the qfd1.1 range and targeted widening the fruit diameter of the 9930 cucumber variety, further indicating that qfd1.1 is a new locus regulating the fruit diameter of cucumber. Our findings will support breeders in their research on cucumber fruit diameter.
Collapse
Affiliation(s)
- Wenjiao Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Zhaoying Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
| | - Linna Qian
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
| | - Shuo Hang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
| | - Yijie Niu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Chengcheng Shen
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
| | - Yuping Wei
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China.
- Sanya Mingzhu Melon and Watermelon Variety Demonstration Evaluation and Research Center, Sanya, 572022, Hainan, China.
| |
Collapse
|
8
|
Zhao J, Song W, Zhang X. Genetic and molecular regulation of fruit development in cucumber. THE NEW PHYTOLOGIST 2024; 244:1742-1749. [PMID: 39400327 DOI: 10.1111/nph.20192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Fruit development can be generally classified into a set of biologically sequential stages including fruit initiation, growth, and ripening. Cucumber, a globally important vegetable crop, displays two important features during fruit development: parthenocarpy at fruit initiation and prematurity at harvest for consumption. Therefore, fruit growth plays essential role for cucumber yield and quality formation, and has become the research hot spot in cucumber fruit development. Here, we describe recent advances in molecular mechanisms underlying fruit growth in cucumber, include key players and regulatory networks controlling fruit length variation, fruit neck elongation, and locule development. We also provide insights into future directions for scientific research and breeding strategies in cucumber.
Collapse
Affiliation(s)
- Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Weiyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
9
|
Song W, Xie Y, Liu B, Huang Y, Cheng Z, Zhao Z, Tian D, Geng Y, Guo J, Li C, She D, Zhong Y, Li M, Liu L, Chen J, Sun C, Zhang X, Zhou Z, Lai J, Xin M, Yan L, Zhao J, Zhang X. Single nucleotide polymorphisms in SEPALLATA 2 underlie fruit length variation in cucurbits. THE PLANT CELL 2024; 36:4607-4621. [PMID: 39133577 PMCID: PMC11448892 DOI: 10.1093/plcell/koae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 10/05/2024]
Abstract
Complete disruption of critical genes is generally accompanied by severe growth and developmental defects, which dramatically hinder its utilization in crop breeding. Identifying subtle changes, such as single-nucleotide polymorphisms (SNPs), in critical genes that specifically modulate a favorable trait is a prerequisite to fulfill breeding potential. Here, we found 2 SNPs in the E-class floral organ identity gene cucumber (Cucumis sativus) SEPALLATA2 (CsSEP2) that specifically regulate fruit length. Haplotype (HAP) 1 (8G2667A) and HAP2 (8G2667T) exist in natural populations, whereas HAP3 (8A2667T) is induced by ethyl methanesulfonate mutagenesis. Phenotypic characterization of 4 near-isogenic lines and a mutant line showed that HAP2 fruits are significantly longer than those of HAP1, and those of HAP3 are 37.8% longer than HAP2 fruit. The increasing fruit length in HAP1-3 was caused by a decreasing inhibitory effect on CRABS CLAW (CsCRC) transcription (a reported positive regulator of fruit length), resulting in enhanced cell expansion. Moreover, a 7638G/A-SNP in melon (Cucumis melo) CmSEP2 modulates fruit length in a natural melon population via the conserved SEP2-CRC module. Our findings provide a strategy for utilizing essential regulators with pleiotropic effects during crop breeding.
Collapse
Affiliation(s)
- Weiyuan Song
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yang Xie
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Yuxiang Huang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zhihua Cheng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zilong Zhao
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Di Tian
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yan Geng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jingyu Guo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chuang Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Daixi She
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yanting Zhong
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Min Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Liu Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jiacai Chen
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chengzhen Sun
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jinsheng Lai
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Ming Xin
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin 150030, P. R.China
| | - Liying Yan
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| |
Collapse
|
10
|
Zhong M, Wang H, Hao X, Liu C, Hao J, Fan S, Han Y. LsFUL-LsSMU2 module positively controls bolting time in leaf lettuce (Lactuca sativa L.) under high temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112195. [PMID: 39002573 DOI: 10.1016/j.plantsci.2024.112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
High temperature (HT) is an environmental factor that considerably affects plant physiology, development, crop yield, and economic value. HT can cause diseases and early bolting of leaf lettuce, thereby reducing the yield and quality of leaf lettuce. Herein, we used two leaf lettuce (Lactuca sativa L.) cultivars (bolting-resistant 'S24' and bolting-sensitive 'S39') to investigate the key factors and molecular mechanism impacting bolting. We found that 14 MADS-box genes implicated in bolting and flowering, LsMADS54 (also referred to as L. sativa FRUITFULL, LsFUL), was significantly up-regulated 1000 times after 5-d HT treatment and that HT-induced up-regulation of LsFUL was higher in bolting-sensitive than in resistant cultivars. The overexpression lines of LsFUL exhibited an earlier bolting time than that in the non-transformed 'S39'(CK). However, the RNA interference, and CRISPR-Cas9-mediated knockout lines of LsFUL exhibited a later bolting time than that in CK. In addition, we found that L. sativa SUPPRESSORS OF MEC-8 AND UNC-52 PROTEIN 2 (LsSMU2) and L. sativa CONSTANS-LIKE PROTEIN 5 (LsCOL5) interact with LsFUL, and these interactions could stimulate or prevent bolting. We observed that elevated temperature stimulated the abundance of LsSMU2 in the stem, which collaborated with LsFUL to accelerate bolting. Conversely, room temperature (RT) condition led to relatively more stable LsCOL5, which worked with LsFUL to postpone bolting. In summary, our findings demonstrate a molecular regulatory module of LsSMU2-LsFUL associated with HT-induced premature bolting, which serves as a reference for understanding HT-induced premature bolting phenomenon in leaf lettuce.
Collapse
Affiliation(s)
- Mengjiang Zhong
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| | - Huiyu Wang
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| | - Xindi Hao
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| | - Chaojie Liu
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| | - Jinghong Hao
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| | - Shuangxi Fan
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| | - Yingyan Han
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
11
|
Zhang Z, Zhang H, Liu J, Chen K, Wang Y, Zhang G, Li L, Yue H, Weng Y, Li Y, Chen P. The mutation of CsSUN, an IQD family protein, is responsible for the short and fat fruit (sff) in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112177. [PMID: 38964612 DOI: 10.1016/j.plantsci.2024.112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
The fruit shape of cucumber is an important agronomic trait, and mining regulatory genes, especially dominant ones, is vital for cucumber breeding. In this study, we identified a short and fat fruit mutant, named sff, from an EMS mutagenized population. Compared to the CCMC (WT), sff (MT) exhibited reduced fruit length and increased dimeter. Segregation analysis revealed that the sff phenotype is controlled by a semi-dominant single gene with dosage effects. Through map-based cloning, the SFF locus was narrowed down to a 52.6 kb interval with two SNPs (G651A and C1072T) in the second and third exons of CsaV3_1G039870, which encodes an IQD family protein, CsSUN. The G651A within the IQ domain of CsSUN was identified as the unique SNP among 114 cucumber accessions, and it was the primary cause of the functional alteration in CsSUN. By generating CsSUN knockout lines in cucumber, we confirmed that CsSUN was responsible for sff mutant phenotype. The CsSUN is localized to the plasma membrane. CsSUN exhibited the highest expression in the fruit with lower expression in sff compared to WT. Histological observations suggest that the sff mutant phenotype is due to increased transverse cell division and inhibited longitudinal cell division. Transcriptome analysis revealed that CsSUN significantly affected the expression of genes related to cell division, expansion, and auxin signal transduction. This study unveils CsSUN's crucial role in shaping cucumber fruit and offers novel insights for cucumber breeding.
Collapse
Affiliation(s)
- Zhengao Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junyan Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kang Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yixin Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI 53706, USA
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Yang H, Zhou K, Wu Q, Jia X, Wang H, Yang W, Lin L, Hu X, Pan B, Li P, Huang T, Xu X, Li J, Jiang J, Du M. The tomato WRKY-B transcription factor modulates lateral branching by targeting BLIND, PIN4, and IAA15. HORTICULTURE RESEARCH 2024; 11:uhae193. [PMID: 39257542 PMCID: PMC11384121 DOI: 10.1093/hr/uhae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024]
Abstract
Lateral branching is a crucial agronomic trait that impacts crop yield. In tomato ( Solanum lycopersicum ), excessive lateral branching is unfavorable and results in substantial labor and management costs. Therefore, optimizing lateral branching is a primary objective in tomato breeding. Although many genes related to lateral branching have been reported in tomato, the molecular mechanism underlying their network remains elusive. In this study, we found that the expression profile of a WRKY gene, WRKY-B (for WRKY-BRANCING), was associated with the auxin-dependent axillary bud development process. Wrky-b mutants generated by the CRISPR/Cas9 editing system presented fewer lateral branches, while WRKY-B overexpression lines presented more lateral branches than did wild-type plants. Furthermore, WRKY-B can directly target the well-known branching gene BLIND (BL) and the auxin efflux carrier gene PIN4 to activate their expression. Both the bl and pin4 mutants exhibited reduced lateral branching, similar to the wrky-b mutant. The IAA contents in the axillary buds of the wrky-b, bl, and pin4 mutant plants were significantly higher than those in the wild-type plants. In addition, WRKY-B can also directly target the AUX/IAA gene IAA15 and repress its expression. In summary, WRKY-B works upstream of BL, PIN4, and IAA15 to regulate the development of lateral branches in tomato.
Collapse
Affiliation(s)
- Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ke Zhou
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Qingfei Wu
- College of Life Sciences, Yan'an University, Yan'an 716000, China
| | - Xinyi Jia
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hexuan Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lihao Lin
- College of Agriculture, Ningxia Universisty, Yinchuan 750002, China
| | - Xiaomeng Hu
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Bingqing Pan
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Ping Li
- Qingdao Academy of Agricultural Sciences, Qingdao City 266000, China
| | - Tingting Huang
- Qingdao Academy of Agricultural Sciences, Qingdao City 266000, China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Minmin Du
- College of Horticulture, China Agricultural University, Beijing 100083, China
| |
Collapse
|
13
|
Sun J, Liu Y, Zheng Y, Xue Y, Fan Y, Ma X, Ji Y, Liu G, Zhang X, Li Y, Wang S, Tian Z, Zhao L. The MADS-box transcription factor GmFULc promotes GmZTL4 gene transcription to modulate maturity in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1603-1619. [PMID: 38869305 DOI: 10.1111/jipb.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024]
Abstract
Flowering time and maturity are crucial agronomic traits that affect the regional adaptability of soybean plants. The development of soybean cultivars with early maturity adapted to longer days and colder climates of high latitudes is very important for ensuring normal ripening before frost begins. FUL belongs to the MADS-box transcription factor family and has several duplicated members in soybeans. In this study, we observed that overexpression of GmFULc in the Dongnong 50 cultivar promoted soybean maturity, while GmFULc knockout mutants exhibited late maturity. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that GmFULc could bind to the CArG, bHLH and homeobox motifs. Further investigation revealed that GmFULc could directly bind to the CArG motif in the promoters of the GmZTL3 and GmZTL4 genes. Overexpression of GmZTL4 promoted soybean maturity, whereas the ztl4 mutants exhibited delayed maturity. Moreover, we found that the cis element box 4 motif of the GmZTL4 promoter, a motif of light response elements, played an important role in controlling the growth period. Deletion of this motif shortened the growth period by increasing the expression levels of GmZTL4. Functional investigations revealed that short-day treatment promoted the binding of GmFULc to the promoter of GmZTL4 and inhibited the expression of E1 and E1Lb, ultimately resulting in the promotion of flowering and early maturation. Taken together, these findings suggest a novel photoperiod regulatory pathway in which GmFULc directly activates GmZTL4 to promote earlier maturity in soybean.
Collapse
Affiliation(s)
- Jingzhe Sun
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, The Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuhong Zheng
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, 130033, China
| | - Yongguo Xue
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yuhuan Fan
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaofei Ma
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Yujia Ji
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Gaoyuan Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoming Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Li
- Depatment of Environmental and Plant Biology, Ohio University, Athens, 45701, Ohio, USA
| | - Shuming Wang
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, 130033, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
14
|
Li R, Atarashi R, Kharisma AD, Arofatullah NA, Tashiro Y, Satitmunnaithum J, Tanabata S, Yamane K, Sato T. Search for Expression Marker Genes That Reflect the Physiological Conditions of Blossom End Enlargement Occurrence in Cucumber. Int J Mol Sci 2024; 25:8317. [PMID: 39125887 PMCID: PMC11312178 DOI: 10.3390/ijms25158317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Blossom end enlargement (BEE) is a postharvest deformation that may be related to the influx of photosynthetic assimilates before harvest. To elucidate the mechanism by which BEE occurs, expression marker genes that indicate the physiological condition of BEE-symptomatic fruit are necessary. First, we discovered that preharvest treatment with a synthetic cytokinin, N-(2-Chloro-4-pyridyl)-N'-phenylurea (CPPU), promoted fruit growth and suppressed BEE occurrence. This suggests that excessive assimilate influx is not a main cause of BEE occurrence. Subsequently, the expression levels of seven sugar-starvation marker genes, CsSEF1, AS, CsFDI1, CsPID, CsFUL1, CsETR1, and CsERF1B, were compared among symptomatic and asymptomatic fruits, combined with and without CPPU treatment. Only CsSEF1 showed a higher expression level in asymptomatic fruits than in symptomatic fruits, regardless of CPPU treatment. This was then tested using fruits stored via the modified-atmosphere packaging technique, which resulted in a lower occurrence of BEE, and the asymptomatic fruits showed a higher CsSEF1 expression level than symptomatic fruits, regardless of the packaging method. CsSEF1 codes a CCCH-type zinc finger protein, and an increase in the expression of CsSEF1 was correlated with a decrease in the fruit respiration rate. Thus, CsSEF1 may be usable as a BEE expression marker gene.
Collapse
Affiliation(s)
- Rui Li
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-8-1, Saiwaicho, Fuchu 183-0054, Japan; (R.L.)
| | - Runewa Atarashi
- Center for International Field Agriculture, Research and Education, College of Agriculture, Ibaraki University, Ami 4668-1, Ami, Inashiki 300-0331, Japan (S.T.)
| | - Agung Dian Kharisma
- Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur, Yogyakarta 55281, Indonesia; (A.D.K.); (N.A.A.)
| | - Nur Akbar Arofatullah
- Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur, Yogyakarta 55281, Indonesia; (A.D.K.); (N.A.A.)
| | - Yuki Tashiro
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-8-1, Saiwaicho, Fuchu 183-0054, Japan; (R.L.)
| | - Junjira Satitmunnaithum
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki 214-8571, Japan;
| | - Sayuri Tanabata
- Center for International Field Agriculture, Research and Education, College of Agriculture, Ibaraki University, Ami 4668-1, Ami, Inashiki 300-0331, Japan (S.T.)
| | - Kenji Yamane
- School of Agriculture, Utsunomiya University, Mine 350, Utsunomiya 321-8505, Japan;
| | - Tatsuo Sato
- Center for International Field Agriculture, Research and Education, College of Agriculture, Ibaraki University, Ami 4668-1, Ami, Inashiki 300-0331, Japan (S.T.)
| |
Collapse
|
15
|
Li H, Suo Y, Li H, Sun P, Li S, Yuan D, Han W, Fu J. Cytological and Transcriptome Analyses Provide Insights into Persimmon Fruit Size Formation ( Diospyros kaki Thunb.). Int J Mol Sci 2024; 25:7238. [PMID: 39000347 PMCID: PMC11241297 DOI: 10.3390/ijms25137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Persimmon (Diospyros kaki Thunb.) fruit size variation is abundant. Studying the size of the persimmon fruit is helpful in improving its economic value. At present, the regulatory mechanism of persimmon fruit size formation is still unclear. In this study, the mechanism of fruit size formation was investigated through morphological, cytological and transcriptomic analyses, as well as exogenous ethrel and aminoethoxyinylglycine (AVG: ethylene inhibitor) experiments using the large fruit and small fruit of 'Yaoxianwuhua'. The results showed that stages 3-4 (June 11-June 25) are the crucial morphological period for differentiation of large fruit and small fruit in persimmon. At this crucial morphological period, the cell number in large fruit was significantly more than that in small fruit, indicating that the difference in cell number is the main reason for the differentiation of persimmon fruit size. The difference in cell number was caused by cell division. CNR1, ANT, LAC17 and EB1C, associated with cell division, may be involved in regulating persimmon fruit size. Exogenous ethrel resulted in a decrease in fruit weight, and AVG treatment had the opposite effect. In addition, LAC17 and ERF114 were upregulated after ethrel treatment. These results indicated that high ethylene levels can reduce persimmon fruit size, possibly by inhibiting cell division. This study provides valuable information for understanding the regulation mechanism of persimmon fruit size and lays a foundation for subsequent breeding and artificial regulation of fruit size.
Collapse
Affiliation(s)
- Huawei Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, No. 498 Shaoshan South Road, Changsha 410004, China; (H.L.); (S.L.)
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.); (W.H.)
| | - Yujing Suo
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.); (W.H.)
| | - Hui Li
- Research Institute of Forestry Policy and Information, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China;
| | - Peng Sun
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.); (W.H.)
| | - Shuzhan Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, No. 498 Shaoshan South Road, Changsha 410004, China; (H.L.); (S.L.)
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, No. 498 Shaoshan South Road, Changsha 410004, China; (H.L.); (S.L.)
| | - Weijuan Han
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.); (W.H.)
| | - Jianmin Fu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.); (W.H.)
| |
Collapse
|
16
|
Xue W, Ding H, Jin T, Meng J, Wang S, Liu Z, Ma X, Li J. CucumberAI: Cucumber Fruit Morphology Identification System Based on Artificial Intelligence. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0193. [PMID: 39144674 PMCID: PMC11324094 DOI: 10.34133/plantphenomics.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/30/2024] [Indexed: 08/16/2024]
Abstract
Cucumber is an important vegetable crop that has high nutritional and economic value and is thus favored by consumers worldwide. Exploring an accurate and fast technique for measuring the morphological traits of cucumber fruit could be helpful for improving its breeding efficiency and further refining the development models for pepo fruits. At present, several sets of measurement schemes and standards have been proposed and applied for the characterization of cucumber fruits; however, these manual methods are time-consuming and inefficient. Therefore, in this paper, we propose a cucumber fruit morphological trait identification framework and software called CucumberAI, which combines image processing techniques with deep learning models to efficiently identify up to 51 cucumber features, including 32 newly defined parameters. The proposed tool introduces an algorithm for performing cucumber contour extraction and fruit segmentation based on image processing techniques. The identification framework comprises 6 deep learning models that combine fruit feature recognition rules with MobileNetV2 to construct a decision tree for fruit shape recognition. Additionally, the framework employs U-Net segmentation models for fruit stripe and endocarp segmentation, a MobileNetV2 model for carpel classification, a ResNet50 model for stripe classification and a YOLOv5 model for tumor identification. The relationships between the image-based manual and algorithmic traits are highly correlated, and validation tests were conducted to perform correlation analyses of fruit surface smoothness and roughness, and a fruit appearance cluster analysis was also performed. In brief, CucumberAI offers an efficient approach for extracting and analyzing cucumber phenotypes and provides valuable information for future cucumber genetic improvements.
Collapse
Affiliation(s)
- Wei Xue
- College of Artificial Intelligence,
Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture,
Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Tao Jin
- College of Artificial Intelligence,
Nanjing Agricultural University, Nanjing 210095, China
| | - Jialing Meng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture,
Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Shiyou Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture,
Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Zuo Liu
- College of Artificial Intelligence,
Nanjing Agricultural University, Nanjing 210095, China
| | - Xiupeng Ma
- College of Foreign Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture,
Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| |
Collapse
|
17
|
Sun Y, Yang H, Ren T, Zhao J, Lang X, Nie L, Zhao W. CmERF1 acts as a positive regulator of fruits and leaves growth in melon (Cucumis melo L.). PLANT MOLECULAR BIOLOGY 2024; 114:70. [PMID: 38842600 DOI: 10.1007/s11103-024-01468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.
Collapse
Affiliation(s)
- Yufan Sun
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Haiming Yang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Tiantian Ren
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jiateng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xinmei Lang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Lanchun Nie
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, 071000, China.
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding, Hebei, 071000, China.
| | - Wensheng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, 071000, China.
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding, Hebei, 071000, China.
| |
Collapse
|
18
|
Wang C, Yao H, Wang C, Gao L, Chai X, Fang K, Du Y, Hao N, Cao J, Wu T. Transcription factor CsMYB36 regulates fruit neck length via mediating cell expansion in cucumber. PLANT PHYSIOLOGY 2024; 195:958-969. [PMID: 38447074 DOI: 10.1093/plphys/kiae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/08/2024]
Abstract
The fruit neck is an important agronomic trait of cucumber (Cucumis sativus). However, the underlying genes and regulatory mechanisms involved in fruit neck development are poorly understood. We previously identified a cucumber yellow-green peel (ygp) mutant, whose causal gene is MYB DOMAIN PROTEIN 36 (CsMYB36). This study showed that the ygp mutant exhibited a shortened fruit neck and repressed cell expansion in the fruit neck. Further functional analysis showed that CsMYB36 was also a target gene, and its expression was enriched in the fruit neck. Overexpression of CsMYB36 in the ygp mutant rescued shortened fruit necks. Furthermore, transcriptome analysis and reverse transcription quantitative PCR (RT-qPCR) assays revealed that CsMYB36 positively regulates the expression of an expansin-like A3 (CsEXLA3) in the fruit neck, which is essential for cell expansion. Yeast 1-hybrid and dual-luciferase assays revealed that CsMYB36 regulates fruit neck elongation by directly binding to the promoter of CsEXLA3. Collectively, these findings demonstrate that CsMYB36 is an important gene in the regulation of fruit neck length in cucumber plants.
Collapse
Affiliation(s)
- Chunhua Wang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Hongxin Yao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Chen Wang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Luyao Gao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Xingwen Chai
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Kai Fang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Yalin Du
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Ning Hao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Jiajian Cao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Tao Wu
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| |
Collapse
|
19
|
Xin H, Liu X, Chai S, Yang X, Li H, Wang B, Xu Y, Lin S, Zhong X, Liu B, Lu Z, Zhang Z. Identification and functional characterization of conserved cis-regulatory elements responsible for early fruit development in cucurbit crops. THE PLANT CELL 2024; 36:2272-2288. [PMID: 38421027 PMCID: PMC11132967 DOI: 10.1093/plcell/koae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
A number of cis-regulatory elements (CREs) conserved during evolution have been found to be responsible for phenotypic novelty and variation. Cucurbit crops such as cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), and squash (Cucurbita maxima) develop fruits from an inferior ovary and share some similar biological processes during fruit development. Whether conserved regulatory sequences play critical roles in fruit development of cucurbit crops remains to be explored. In six well-studied cucurbit species, we identified 392,438 conserved noncoding sequences (CNSs), including 82,756 that are specific to cucurbits, by comparative genomics. Genome-wide profiling of accessible chromatin regions (ACRs) and gene expression patterns mapped 20,865 to 43,204 ACRs and their potential target genes for two fruit tissues at two key developmental stages in six cucurbits. Integrated analysis of CNSs and ACRs revealed 4,431 syntenic orthologous CNSs, including 1,687 cucurbit-specific CNSs that overlap with ACRs that are present in all six cucurbit crops and that may regulate the expression of 757 adjacent orthologous genes. CRISPR mutations targeting two CNSs present in the 1,687 cucurbit-specific sequences resulted in substantially altered fruit shape and gene expression patterns of adjacent NAC1 (NAM, ATAF1/2, and CUC2) and EXT-like (EXTENSIN-like) genes, validating the regulatory roles of these CNSs in fruit development. These results not only provide a number of target CREs for cucurbit crop improvement, but also provide insight into the roles of CREs in plant biology and during evolution.
Collapse
Affiliation(s)
- Hongjia Xin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Sen Chai
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xueyong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongbo Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bowen Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yuanchao Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengnan Lin
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiaoyun Zhong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091China
| | - Zefu Lu
- National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhonghua Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
20
|
Zhou Y, Zhao M, Shen Q, Zhang M, Wang C, Zhang Y, Yang Q, Bo Y, Hu Z, Yang J, Zhang M, Lyu X. Genetic mapping reveals a candidate gene CmoFL1 controlling fruit length in pumpkin. FRONTIERS IN PLANT SCIENCE 2024; 15:1408602. [PMID: 38867882 PMCID: PMC11168575 DOI: 10.3389/fpls.2024.1408602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
Fruit length (FL) is an important economical trait that affects fruit yield and appearance. Pumpkin (Cucurbita moschata Duch) contains a wealth genetic variation in fruit length. However, the natural variation underlying differences in pumpkin fruit length remains unclear. In this study, we constructed a F2 segregate population using KG1 producing long fruit and MBF producing short fruit as parents to identify the candidate gene for fruit length. By bulked segregant analysis (BSA-seq) and Kompetitive Allele-Specific PCR (KASP) approach of fine mapping, we obtained a 50.77 kb candidate region on chromosome 14 associated with the fruit length. Then, based on sequence variation, gene expression and promoter activity analyses, we identified a candidate gene (CmoFL1) encoding E3 ubiquitin ligase in this region may account for the variation of fruit length. One SNP variation in promoter of CmoFL1 changed the GT1CONSENSUS, and DUAL-LUC assay revealed that this variation significantly affected the promoter activity of CmoFL1. RNA-seq analysis indicated that CmoFL1 might associated with the cell division process and negatively regulate fruit length. Collectively, our work identifies an important allelic affecting fruit length, and provides a target gene manipulating fruit length in future pumpkin breeding.
Collapse
Affiliation(s)
- Yimei Zhou
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meng Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qinghui Shen
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengyi Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Chenhao Wang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yutong Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qinrong Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Jiang Q, Wang P, Xu Y, Zou B, Huang S, Wu Y, Li Y, Zhong C, Yu W. Fine mapping of TFL, a major gene regulating fruit length in snake gourd (Trichosanthes anguina L). BMC PLANT BIOLOGY 2024; 24:286. [PMID: 38627660 PMCID: PMC11020775 DOI: 10.1186/s12870-024-04952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Fruit length is a crucial agronomic trait of snake gourd (Trichosanthes anguina L); however, genes associated with fruit length have not been characterised. In this study, F2 snake gourd populations were generated by crossing the inbred lines, S1 and S2 (fruit lengths: 110 and 20 cm, respectively). Subsequently, bulk segregant analysis, sequencing, and fine-mapping were performed on the F2 population to identify target genes. Our findings suggest that the fruit length of snake gourd is regulated by a major-effect regulatory gene. Mining of genes regulating fruit length in snake gourd to provide a basis for subsequent selection and breeding of new varieties. Genotype-phenotype association analysis was performed on the segregating F2 population comprising 6,000 plants; the results indicate that the target gene is located on Chr4 (61,846,126-61,865,087 bp, 18.9-kb interval), which only carries the annotated candidate gene, Tan0010544 (designated TFL). TFL belongs to the MADS-box family, one of the largest transcription factor families. Sequence analysis revealed a non-synonymous mutation of base C to G at position 202 in the coding sequence of TFL, resulting in the substitution of amino acid Gln to Glu at position 68 in the protein sequence. Subsequently, an InDel marker was developed to aid the marker-assisted selection of TFL. The TFL in the expression parents within the same period was analysed using quantitative real-time PCR; the TFL expression was significantly higher in short fruits than long fruits. Therefore, TFL can be a candidate gene for determining the fruit length in snake gourd. Collectively, these findings improve our understanding of the genetic components associated with fruit length in snake gourds, which could aid the development of enhanced breeding strategies for plant species.
Collapse
Affiliation(s)
- Qingwei Jiang
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Yulin Normal College, Yulin, Guangxi, 537000, China
| | - Peng Wang
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yuanchao Xu
- Shenzhen Key Laboratory of Agricultural Synthetic Biology, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bingying Zou
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Shishi Huang
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yuancai Wu
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yongqiang Li
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chuan Zhong
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
22
|
Wei X, Chen M, Zhang X, Wang Y, Li L, Xu L, Wang H, Jiang M, Wang C, Zeng L, Xu J. The haplotype-resolved autotetraploid genome assembly provides insights into the genomic evolution and fruit divergence in wax apple ( Syzygium samarangense (Blume) Merr. and Perry). HORTICULTURE RESEARCH 2023; 10:uhad214. [PMID: 38077494 PMCID: PMC10709546 DOI: 10.1093/hr/uhad214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/16/2023] [Indexed: 01/19/2025]
Abstract
Wax apple (Syzygium samarangense) is an economically important fruit crop with great potential value to human health because of its richness in antioxidant substances. Here, we present a haplotype-resolved autotetraploid genome assembly of the wax apple with a size of 1.59 Gb. Comparative genomic analysis revealed three rounds of whole-genome duplication (WGD) events, including two independent WGDs after WGT-γ. Resequencing analysis of 35 accessions partitioned these individuals into two distinct groups, including 28 landraces and seven cultivated species, and several genes subject to selective sweeps possibly contributed to fruit growth, including the KRP1-like, IAA17-like, GME-like, and FLACCA-like genes. Transcriptome analysis of three different varieties during flower and fruit development identified key genes related to fruit size, sugar content, and male sterility. We found that AP2 also affected fruit size by regulating sepal development in wax apples. The expression of sugar transport-related genes (SWEETs and SUTs) was high in 'ZY', likely contributing to its high sugar content. Male sterility in 'Tub' was associated with tapetal abnormalities due to the decreased expression of DYT1, TDF1, and AMS, which affected early tapetum development. The chromosome-scale genome and large-scale transcriptome data presented in this study offer new valuable resources for biological research on S. samarangense and shed new light on fruit size control, sugar metabolism, and male sterility regulatory metabolism in wax apple.
Collapse
Affiliation(s)
- Xiuqing Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Min Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xijuan Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Yinghao Wang
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Liang Li
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Ling Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Huanhuan Wang
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Mengwei Jiang
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Caihui Wang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Lihui Zeng
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jiahui Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| |
Collapse
|
23
|
Gao L, Cao J, Gong S, Hao N, Du Y, Wang C, Wu T. The COPII subunit CsSEC23 mediates fruit glossiness in cucumber. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:524-540. [PMID: 37460197 DOI: 10.1111/tpj.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
To improve our understanding of the mechanism underlying cucumber glossiness regulation, a novel cucumber mutant with a glossy peel (Csgp) was identified. MutMap, genotyping, and gene editing results demonstrated that CsSEC23, which is the core component of COPII vesicles, mediates the glossiness of cucumber fruit peel. CsSEC23 is functionally conserved and located in the Golgi and endoplasmic reticulum. CsSEC23 could interact with CsSEC31, but this interaction was absent in the Csgp mutant, which decreased the efficiency of COPII vesicle transportation. Genes related to wax and cutin transport were upregulated in the Csgp mutant, and the cuticle structure of the Csgp-mutant peel became thinner. Moreover, the wax and cutin contents were also changed due to CsSEC23 mutation. Taken together, the results obtained from this study revealed that CsSEC23 mediates cucumber glossiness, and this mediating might be affected by COPII vesicle transportation.
Collapse
Affiliation(s)
- Luyao Gao
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
| | - Jiajian Cao
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
- Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, 410128, China
| | - Siyu Gong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Hao
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Laboratory of Plant Nutrition and Fertilizers, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yalin Du
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
- Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, 410128, China
| | - Chunhua Wang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
- Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, 410128, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
- Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
24
|
Xing Y, Cao Y, Ma Y, Wang F, Xin S, Zhu W. QTL mapping and transcriptomic analysis of fruit length in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1208675. [PMID: 37670860 PMCID: PMC10475832 DOI: 10.3389/fpls.2023.1208675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/21/2023] [Indexed: 09/07/2023]
Abstract
A total of 151 recombinant inbred lines (RILs) were derived from the cross between 'Cucumis sativus L. hardwickii' (HW) and a cultivated Northern Chinese inbred line 'XinTaiMiCi' (XTMC). We used resequencing to construct the genetic map and analyze the genetic background of RIL population, and combined with the phenotypes of RIL population and the analysis of RNA-seq data, we located the major loci controlling the fruit length of cucumber and related analysis. A genetic map containing 600 bin markers was constructed via re-sequencing. Based on the phenotype data collected in two different seasons (spring 2021 and autumn 2022), the major quantitative trait loci (QTLs) controlling cucumber fruit length were located and their transcriptomic analysis carried out. The results revealed three QTLs (Fl2.1, Fl4.1, and Fl6.1) detected repeatedly in the two seasons, of which Fl4.1 was the dominant QTL. From the functional annotation of corresponding genes there, we discovered the gene Csa4G337340 encoding an auxin efflux carrier family protein. The expression of that gene was significantly lower in XTMC and the long-fruit RIL lines than in HW and the short-fruit RIL lines; hence, we speculated the gene could be negatively correlated with the fruit length of cucumber. Transcriptomic analysis showed that 259 differentially expressed genes (DEGs) were enriched in the plant hormone signal transduction pathway. In addition, among those DEGs, 509 transcription factors were detected, these distributed in several transcription factor gene families, such as bHLH, AP2/ErF -ERF, C2H2, and NAC. Therefore, we concluded that the major gene controlling the fruit length of cucumber is located in the interval of Fl4.1, whose gene Csa4G337340 may be involved in the negative regulation of fruit length. Further, genes related to plant hormone signal transduction and several transcription factors were also found involved in the regulation of cucumber fruit length. Our results provide a reference for the fine mapping of major genes and analyzing the mechanism of cucumber fruit length.
Collapse
Affiliation(s)
- Yanan Xing
- Qingdao Agricultural University, Qingdao, China
| | - Yilin Cao
- Qingdao Agricultural University, Qingdao, China
| | - Yanan Ma
- Qingdao Agricultural University, Qingdao, China
| | - Fu Wang
- Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Shijie Xin
- Yantai Yeda Investment Development Group Co., Ltd, Yantai, China
| | - Wenying Zhu
- Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| |
Collapse
|
25
|
Zhao J, Bo K, Pan Y, Li Y, Yu D, Li C, Chang J, Wu S, Wang Z, Zhang X, Gu X, Weng Y. Phytochrome-interacting factor PIF3 integrates phytochrome B and UV-B signaling pathways to regulate gibberellin- and auxin-dependent growth in cucumber hypocotyls. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4520-4539. [PMID: 37201922 DOI: 10.1093/jxb/erad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the photoreceptors phytochrome B (PhyB) and UV-B resistance 8 (UVR8) mediate light responses that play a major role in regulating photomorphogenic hypocotyl growth, but how they crosstalk to coordinate this process is not well understood. Here we report map-based cloning and functional characterization of an ultraviolet (UV)-B-insensitive, long-hypocotyl mutant, lh1, and a wild-type-like mutant, lh2, in cucumber (Cucumis sativus), which show defective CsPhyB and GA oxidase2 (CsGA20ox-2), a key gibberellic acid (GA) biosynthesis enzyme, respectively. The lh2 mutation was epistatic to lh1 and partly suppressed the long-hypocotyl phenotype in the lh1lh2 double mutant. We identified phytochrome interacting factor (PIF) CsPIF3 as playing a critical role in integrating the red/far-red and UV-B light responses for hypocotyl growth. We show that two modules, CsPhyB-CsPIF3-CsGA20ox-2-DELLA and CsPIF3-auxin response factor 18 (CsARF18), mediate CsPhyB-regulated hypocotyl elongation through GA and auxin pathways, respectively, in which CsPIF3 binds to the G/E-box motifs in the promoters of CsGA20ox-2 and CsARF18 to regulate their expression. We also identified a new physical interaction between CsPIF3 and CsUVR8 mediating CsPhyB-dependent, UV-B-induced hypocotyl growth inhibition. Our work suggests that hypocotyl growth in cucumber involves a complex interplay of multiple photoreceptor- and phytohormone-mediated signaling pathways that show both conservation with and divergence from those in Arabidopsis.
Collapse
Affiliation(s)
- Jianyu Zhao
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
| | - Kailiang Bo
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
- College of Horticulture, Northwest A& F University, Yangling 712100, China
| | - Yuhong Li
- College of Horticulture, Northwest A& F University, Yangling 712100, China
| | - Daoliang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Chang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongyi Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaolan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
- USDA-ARS Vegetable Crops Research Unit, Madison, WI 53705, USA
| |
Collapse
|
26
|
Aparna, Skarzyńska A, Pląder W, Pawełkowicz M. Impact of Climate Change on Regulation of Genes Involved in Sex Determination and Fruit Production in Cucumber. PLANTS (BASEL, SWITZERLAND) 2023; 12:2651. [PMID: 37514264 PMCID: PMC10385340 DOI: 10.3390/plants12142651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Environmental changes, both natural and anthropogenic, mainly related to rising temperatures and water scarcity, are clearly visible around the world. Climate change is important for crop production and is a major issue for the growth and productivity of cucumbers. Processes such as sex determination, flower morphogenesis and fruit development in cucumbers are highly sensitive to various forms of stress induced by climatic changes. It is noteworthy that many factors, including genetic factors, transcription factors, phytohormones and miRNAs, are crucial in regulating these processes and are themselves affected by climate change. Changes in the expression and activity of these factors have been observed as a consequence of climatic conditions. This review focuses primarily on exploring the effects of climate change and abiotic stresses, such as increasing temperature and drought, on the processes of sex determination, reproduction, and fruit development in cucumbers at the molecular level. In addition, it highlights the existing research gaps that need to be addressed in order to improve our understanding of the complex interactions between climate change and cucumber physiology. This, in turn, may lead to strategies to mitigate the adverse effects and enhance cucumber productivity in a changing climate.
Collapse
Affiliation(s)
- Aparna
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| |
Collapse
|
27
|
Li Q, Luo S, Zhang L, Feng Q, Song L, Sapkota M, Xuan S, Wang Y, Zhao J, van der Knaap E, Chen X, Shen S. Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. HORTICULTURE RESEARCH 2023; 10:uhad108. [PMID: 37577396 PMCID: PMC10419822 DOI: 10.1093/hr/uhad108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/12/2023] [Indexed: 08/15/2023]
Abstract
Fleshy fruit shape is an important external quality trait influencing the usage of fruits and consumer preference. Thus, modification of fruit shape has become one of the major objectives for crop improvement. However, the underlying mechanisms of fruit shape regulation are poorly understood. In this review we summarize recent progress in the genetic basis of fleshy fruit shape regulation using tomato, cucumber, and peach as examples. Comparative analyses suggest that the OFP-TRM (OVATE Family Protein - TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathways are probably conserved in regulating fruit shape by primarily modulating cell division patterns across fleshy fruit species. Interestingly, cucumber homologs of FRUITFULL (FUL1), CRABS CLAW (CRC) and 1-aminocyclopropane-1-carboxylate synthase 2 (ACS2) were found to regulate fruit elongation. We also outline the recent progress in fruit shape regulation mediated by OFP-TRM and IQD pathways in Arabidopsis and rice, and propose that the OFP-TRM pathway and IQD pathway coordinate regulate fruit shape through integration of phytohormones, including brassinosteroids, gibberellic acids, and auxin, and microtubule organization. In addition, functional redundancy and divergence of the members of each of the OFP, TRM, and IQD families are also shown. This review provides a general overview of current knowledge in fruit shape regulation and discusses the possible mechanisms that need to be addressed in future studies.
Collapse
Affiliation(s)
- Qiang Li
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuangxia Luo
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Liying Zhang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qian Feng
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Lijun Song
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Manoj Sapkota
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Shuxin Xuan
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yanhua Wang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jianjun Zhao
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Xueping Chen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuxing Shen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| |
Collapse
|
28
|
Zhang K, Yao D, Chen Y, Wen H, Pan J, Xiao T, Lv D, He H, Pan J, Cai R, Wang G. Mapping and identification of CsSF4, a gene encoding a UDP-N-acetyl glucosamine-peptide N-acetylglucosaminyltransferase required for fruit elongation in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:54. [PMID: 36912991 DOI: 10.1007/s00122-023-04246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/20/2022] [Indexed: 06/18/2023]
Abstract
The short fruit length phenotype in sf4 is caused by a SNP in Csa1G665390, which encodes an O-linked N-acetylglucosamine (GlcNAc) transferase in cucumber. Cucumber fruit is an excellent resource for studying fruit morphology due to its fast growth rate and naturally abundant morphological variations. The regulatory mechanisms underlying plant organ size and shape are important and fundamental biological questions. In this study, a short-fruit length mutant, sf4, was identified from an ethyl methanesulfonate (EMS) mutagenesis population derived from the North China-type cucumber inbred line WD1. Genetic analysis indicated that the short fruit length phenotype of sf4 was controlled by a recessive nuclear gene. The SF4 locus was located in a 116.7-kb genomic region between the SNP markers GCSNP75 and GCSNP82 on chromosome 1. Genomic and cDNA sequences analysis indicated that a single G to A transition at the last nucleotide of Csa1G665390 intron 21 in sf4 changed the splice site from GT-AG to GT-AA, resulting in a 42-bp deletion in exon 22. Csa1G665390 is presumed to be a candidate gene, CsSF4 that encodes an O-linked N-acetylglucosamine (GlcNAc) transferase (OGT). CsSF4 was highly expressed in the leaves and male flowers of wild-type cucumbers. Transcriptome analysis indicated that sf4 had alterations in expression of many genes involved in hormone response pathways, cell cycle regulation, DNA replication, and cell division, suggesting that cell proliferation-associated gene networks regulate fruit development in cucumber. Identification of CsSF4 will contribute to elucidating the function of OGT in cell proliferation and to understanding fruit elongation mechanisms in cucumber.
Collapse
Affiliation(s)
- Keyan Zhang
- Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Danqing Yao
- Shanghai Agricultural Technology Extension and Service Center, Shanghai, 201103, China
| | - Yue Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Haifan Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Tingting Xiao
- Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Duo Lv
- Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Huanle He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300384, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
29
|
Xie Y, Liu X, Sun C, Song X, Li X, Cui H, Guo J, Liu L, Ying A, Zhang Z, Zhu X, Yan L, Zhang X. CsTRM5 regulates fruit shape via mediating cell division direction and cell expansion in cucumber. HORTICULTURE RESEARCH 2023; 10:uhad007. [PMID: 36960430 PMCID: PMC10028494 DOI: 10.1093/hr/uhad007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Fruit shape and size are important appearance and yield traits in cucumber, but the underlying genes and their regulatory mechanisms remain poorly understood. Here we identified a mutant with spherical fruits from an Ethyl Methane Sulfonate (EMS)-mutagenized library, named the qiu mutant. Compared with the cylindrical fruit shape in 32X (wild type), the fruit shape in qiu was round due to reduced fruit length and increased fruit diameter. MutMap analysis narrowed the candidate gene in the 6.47 MB range on Chr2, harboring the FS2.1 locus reported previously. A single-nucleotide polymorphism (SNP) (11359603) causing a truncated protein of CsaV3_2G013800, the homolog of tomato fruit shape gene SlTRM5, may underlie the fruit shape variation in the qiu mutant. Knockout of CsTRM5 by the CRISPR-Cas9 system confirmed that CsaV3_2G013800/CsTRM5 was the causal gene responsible for qiu. Sectioning analysis showed that the spherical fruit in qiu resulted mainly from increased and reduced cell division along the transverse and longitudinal directions, respectively. Meanwhile, the repressed cell expansion contributed to the decreased fruit length in qiu. Transcriptome profiling showed that the expression levels of cell-wall-related genes and abscisic acid (ABA) pathway genes were significantly upregulated in qiu. Hormone measurements indicated that ABA content was greatly increased in the qiu mutant. Exogenous ABA application reduced fruit elongation by inhibiting cell expansion in cucumber. Taken together, these data suggest that CsTRM5 regulates fruit shape by affecting cell division direction and cell expansion, and that ABA participates in the CsTRM5-mediated cell expansion during fruit elongation in cucumber.
Collapse
Affiliation(s)
| | | | | | - Xiaofei Song
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Xiaoli Li
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Haonan Cui
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Jingyu Guo
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Liu Liu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Ao Ying
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zeqin Zhang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xueyun Zhu
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | | | | |
Collapse
|
30
|
Che G, Pan Y, Liu X, Li M, Zhao J, Yan S, He Y, Wang Z, Cheng Z, Song W, Zhou Z, Wu T, Weng Y, Zhang X. Natural variation in CRABS CLAW contributes to fruit length divergence in cucumber. THE PLANT CELL 2023; 35:738-755. [PMID: 36427253 PMCID: PMC9940877 DOI: 10.1093/plcell/koac335] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Fruit length is a key domestication trait that affects crop yield and appearance. Cucumber (Cucumis sativus) fruits vary from 5 to 60 cm in length. Despite the identification of several regulators and multiple quantitative trait loci (QTLs) underlying fruit length, the natural variation, and molecular mechanisms underlying differences in fruit length are poorly understood. Through map-based cloning, we identified a nonsynonymous polymorphism (G to A) in CRABS CLAW (CsCRC) as underlying the major-effect fruit size/shape QTL FS5.2 in cucumber. The short-fruit allele CsCRCA is a rare allele that has only been found in round-fruited semi-wild Xishuangbanna cucumbers. A near-isogenic line (NIL) homozygous for CsCRCA exhibited a 34∼39% reduction in fruit length. Introducing CsCRCG into this NIL rescued the short-fruit phenotype, and knockdown of CsCRCG resulted in shorter fruit and smaller cells. In natural cucumber populations, CsCRCG expression was positively correlated with fruit length. Further, CsCRCG, but not CsCRCA, targets the downstream auxin-responsive protein gene CsARP1 to regulate its expression. Knockout of CsARP1 produced shorter fruit with smaller cells. Hence, our work suggests that CsCRCG positively regulates fruit elongation through transcriptional activation of CsARP1 and thus enhances cell expansion. Using different CsCRC alleles provides a strategy to manipulate fruit length in cucumber breeding.
Collapse
Affiliation(s)
- Gen Che
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
- School of Life Science, Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot 010070, China
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin-Madison, 1575 Linden Drive, Madison, Wisconsin 53706, USA
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Min Li
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shuangshuang Yan
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yuting He
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin-Madison, 1575 Linden Drive, Madison, Wisconsin 53706, USA
- USDA-ARS, Vegetable Crops Research Unit, 1575 Linden Drive, Madison, Wisconsin 53706, USA
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
31
|
Vegetable biology and breeding in the genomics era. SCIENCE CHINA. LIFE SCIENCES 2023; 66:226-250. [PMID: 36508122 DOI: 10.1007/s11427-022-2248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Vegetable crops provide a rich source of essential nutrients for humanity and represent critical economic values to global rural societies. However, genetic studies of vegetable crops have lagged behind major food crops, such as rice, wheat and maize, thereby limiting the application of molecular breeding. In the past decades, genome sequencing technologies have been increasingly applied in genetic studies and breeding of vegetables. In this review, we recapitulate recent progress on reference genome construction, population genomics and the exploitation of multi-omics datasets in vegetable crops. These advances have enabled an in-depth understanding of their domestication and evolution, and facilitated the genetic dissection of numerous agronomic traits, which jointly expedites the exploitation of state-of-the-art biotechnologies in vegetable breeding. We further provide perspectives of further directions for vegetable genomics and indicate how the ever-increasing omics data could accelerate genetic, biological studies and breeding in vegetable crops.
Collapse
|
32
|
Pollen tube emergence is mediated by ovary-expressed ALCATRAZ in cucumber. Nat Commun 2023; 14:258. [PMID: 36650145 PMCID: PMC9845374 DOI: 10.1038/s41467-023-35936-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Pollen tube guidance within female tissues of flowering plants can be divided into preovular guidance, ovular guidance and a connecting stage called pollen tube emergence. As yet, no female factor has been identified to positively regulate this transition process. In this study, we show that an ovary-expressed bHLH transcription factor Cucumis sativus ALCATRAZ (CsALC) functions in pollen tube emergence in cucumber. CsALC knockout mutants showed diminished pollen tube emergence, extremely reduced entry into ovules, and a 95% reduction in female fertility. Further examination showed two rapid alkalinization factors CsRALF4 and CsRALF19 were less expressed in Csalc ovaries compared to WT. Besides the loss of male fertility derived from precocious pollen tube rupture as in Arabidopsis, Csralf4 Csralf19 double mutants exhibited a 60% decrease in female fertility due to reduced pollen tube distribution and decreased ovule targeting efficiency. In brief, CsALC regulates female fertility and promotes CsRALF4/19 expression in the ovary during pollen tube guidance in cucumber.
Collapse
|
33
|
Feng Z, Wu X, Wang J, Wu X, Wang B, Lu Z, Ye Z, Li G, Wang Y. Identification of Bottle Gourd ( Lagenaria siceraria) OVATE Family Genes and Functional Characterization of LsOVATE1. Biomolecules 2022; 13:biom13010085. [PMID: 36671470 PMCID: PMC9855390 DOI: 10.3390/biom13010085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The OVATE gene family is a class of conserved transcription factors that play significant roles in plant growth, development, and abiotic stress, and also affect fruit shape in vegetable crops. Bottle gourd (Lagenaria siceraria), commonly known as calabash or gourd, is an annual climber belonging to the Cucurbitaceae family. Studies on bottle gourd OVATE genes are limited. In this study, we performed genome-wide identification of the OVATE gene family in bottle gourd, and identified a total of 20 OVATE family genes. The identified genes were unevenly distributed across 11 bottle gourd chromosomes. We also analyzed the gene homology, amino acid sequence conservation, and three-dimensional protein structure (via prediction) of the 20 OVATE family genes. We used RNA-seq data to perform expression analysis, which found 20 OVATE family genes to be differentially expressed based on spatial and temporal characteristics, suggesting that they have varying functions in the growth and development of bottle gourd. In situ hybridization and subcellular localization analysis showed that the expression characteristics of the LsOVATE1 gene, located on chromosome 7 homologous to OVATE, is a candidate gene for affecting the fruit shape of bottle gourd. In addition, RT-qPCR data from bottle gourd roots, stems, leaves, and flowers showed different spatial expression of the LsOVATE1 gene. The ectopic expression of LsOVATE1 in tomato generated a phenotype with a distinct fruit shape and development. Transgenic-positive plants that overexpressed LsOVATE1 had cone-shaped fruit, calyx hypertrophy, petal degeneration, and petal retention after flowering. Our results indicate that LsOVATE1 could serve important roles in bottle gourd development and fruit shape determination, and provide a basis for future research into the function of LsOVATE1.
Collapse
Affiliation(s)
- Zishan Feng
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Jian Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Zihong Ye
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
- Correspondence: ; Tel.: +86-0571-8640-3050
| |
Collapse
|
34
|
Grumet R, Lin YC, Rett-Cadman S, Malik A. Morphological and Genetic Diversity of Cucumber ( Cucumis sativus L.) Fruit Development. PLANTS (BASEL, SWITZERLAND) 2022; 12:23. [PMID: 36616152 PMCID: PMC9824707 DOI: 10.3390/plants12010023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/03/2023]
Abstract
Cucumber (Cucumis sativus L.) fruits, which are eaten at an immature stage of development, can vary extensively in morphological features such as size, shape, waxiness, spines, warts, and flesh thickness. Different types of cucumbers that vary in these morphological traits are preferred throughout the world. Numerous studies in recent years have added greatly to our understanding of cucumber fruit development and have identified a variety of genetic factors leading to extensive diversity. Candidate genes influencing floral organ establishment, cell division and cell cycle regulation, hormone biosynthesis and response, sugar transport, trichome development, and cutin, wax, and pigment biosynthesis have all been identified as factors influencing cucumber fruit morphology. The identified genes demonstrate complex interplay between structural genes, transcription factors, and hormone signaling. Identification of genetic factors controlling these traits will facilitate breeding for desired characteristics to increase productivity, improve shipping, handling, and storage traits, and enhance consumer-desired qualities. The following review examines our current understanding of developmental and genetic factors driving diversity of cucumber fruit morphology.
Collapse
Affiliation(s)
- Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ying-Chen Lin
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie Rett-Cadman
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ajaz Malik
- Department of Horticulture-Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190 025, India
| |
Collapse
|
35
|
Ji T, Ma S, Liang M, Wang X, Gao L, Tian Y. Reference genes identification for qRT-PCR normalization of gene expression analysis in Cucumis sativus under Meloidogyne incognita infection and Pseudomonas treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:1061921. [PMID: 36589116 PMCID: PMC9799720 DOI: 10.3389/fpls.2022.1061921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
qRT-PCR is a common and key technical means to study gene expression in biological research. However, reliability and accuracy of quantification by qRT-PCR is entirely dependent on the identification of appropriate reference genes. Cucumber as an economical vegetable is widely cultivated worldwide and is subject to serious nematode infection, especially from M. incognita. Plant could employ beneficial soil bacteria in the rhizosphere to enhance plant adaptability to various stresses. In this study, the optimal reference genes in cucumber under M. incognita stress and Pseudomonas treatment were calculated and confirmed. A total of thirteen candidate reference genes were identified across three different treatments. Of these, geNorm, NormFinder and BestKeeper programs combined RefFinder software identified EF1 and UBI are the most suitable reference gene in the root knot and whole root of cucumber infected M. incognita, respectively, and CACS is the most suitable reference gene in the whole root of cucumber treated by Pseudomonas. The work first validated the most suitable reference genes for the normalization gene expression in cucumber by nematode infected or Pseudomonas inoculated, and these results would facilitate the further research on M. incognita or Pseudomonas soil rhizosphere microbe interaction with cucumber.
Collapse
Affiliation(s)
| | | | | | | | - Lihong Gao
- *Correspondence: Yongqiang Tian, ; Lihong Gao,
| | | |
Collapse
|
36
|
Gong C, Lu X, Zhu H, Anees M, He N, Liu W. Genome-wide association study provides genetic insights into natural variation in watermelon rind thickness and single fruit weight. FRONTIERS IN PLANT SCIENCE 2022; 13:1074145. [PMID: 36561452 PMCID: PMC9763438 DOI: 10.3389/fpls.2022.1074145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Rind thickness and fruit weight are agronomic traits closely related to quality and yield, which have attracted much attention from consumers and breeders. However, the genetic mechanism of these two traits is still not well understood in natural populations. In this study, rind thickness and single fruit weight in 151 watermelon accessions were determined in 2019 and 2020, and genome-wide association analysis was performed by integrating phenotypic and genotype data. Abundant phenotypic variation was found in the test population, and the watermelon with thinner rind thickness tended to have smaller fruit weights. Five significant SNPs were closely associated with rind thickness on chromosome 2 by Genome-wide association study (GWAS), i.e., 32344170, 32321308, 32304738, 32328501, and 32311192. And there were 21 genes were annotated in the candidate interval, most notably, Cla97C02G044160 belonged to the MADS family, and part of the genes in this family played an important role in regulating organ size, further analysis of gene structure, gene expression level, and phylogenetic tree showed that Cla97C02G044160 was a candidate gene for regulating target traits. In conclusion, our study provides molecular insights into the natural variation of watermelon rind thickness and single fruit weight, meanwhile, providing data support for molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Chengsheng Gong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongju Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Muhammad Anees
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
37
|
Fan X, Li H, Guo Y, Sun H, Wang S, Qi Q, Jiang X, Wang Y, Xu X, Qiu C, Li W, Han Z. Integrated multi-omics analysis uncovers roles of mdm-miR164b-MdORE1 in strigolactone-mediated inhibition of adventitious root formation in apple. PLANT, CELL & ENVIRONMENT 2022; 45:3582-3603. [PMID: 36000454 DOI: 10.1111/pce.14422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Apple is one of the most important fruit crops in temperate regions and largely relies on cutting propagation. Adventitious root formation is crucial for the success of cutting propagation. Strigolactones have been reported to function in rooting of woody plants. In this study, we determined that strigolactones have inhibitory effects on adventitious root formation in apple. Transcriptome analysis identified 12 051 differentially expressed genes over the course of adventitious root initiation, with functions related to organogenesis, cell wall biogenesis or plant development. Further analysis indicated that strigolactones might inhibit adventitious root formation through repressing two core hub genes, MdLAC3 and MdORE1. Combining small RNA and degradome sequencing, as well as dual-luciferase sensor assays, we identified and validated three negatively correlated miRNA-mRNA pairs, including mdm-miR397-MdLAC3 and mdm-miR164a/b-MdORE1. Overexpression of mdm-miR164b and silencing MdORE1 exhibited enhanced adventitious root formation in tobacco and apple, respectively. Finally, we verified the role of mdm-miR164b-MdORE1 in strigolactone-mediated repression of rooting ability. Overall, the identified comprehensive regulatory network in apple not only provides insight into strigolactone-mediated adventitious root formation in other woody plants, but also points to a potential strategy for genetic improvement of rooting capacity in woody plants.
Collapse
Affiliation(s)
- Xingqiang Fan
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Hui Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Yushuang Guo
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Haochen Sun
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Shiyao Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Qi Qi
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiangning Jiang
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Changpeng Qiu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Wei Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Liu L, Gan Y, Luo J, Li J, Zheng X, Gong H, Liu X, Deng L, Zhao G, Wu H. QTL mapping reveals candidate genes for main agronomic traits in Luffa based on a high-resolution genetic map. FRONTIERS IN PLANT SCIENCE 2022; 13:1069618. [PMID: 36466279 PMCID: PMC9716215 DOI: 10.3389/fpls.2022.1069618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Luffa is an important medicinal and edible vegetable crop of Cucurbitaceae. Strong heterosis effects and strikingly complementary characteristics were found between the two domesticated Luffa cultivars, Luffa acutangula and Luffa cylindrica. To explore the genetic basis underlying their important agronomic traits, we constructed the first interspecific high-density genetic linkage map using a BC1 population of 110 lines derived from a cross between S1174 (Luffa acutangula) and P93075 (Luffa cylindrica). The map spanned a total of 2246.74 cM with an average distance of 0.48 cM between adjacent markers. Thereafter, a large-scale field-based quantitative trait loci (QTLs) mapping was conducted for 25 important agronomic traits and 40 significant genetic loci distributed across 11 chromosomes were detected. Notably, a vital QTL (qID2) located on chromosome 9 with a minimum distance of 23 kb was identified to be responsible for the internode diameter and explained 11% of the phenotypic variation. Lac09g006860 (LacCRWN3), encoding a nuclear lamina protein involved in the control of nuclear morphology, was the only gene harbored in qID2. Sequence alignment showed completely different promoter sequences between the two parental alleles of LacCRWN3 except for some nonsynonymous single nucleotide polymorphisms (SNPs) in exons, and the expression level in thick-stem P93075 was distinctively higher than that in thin-stem S1174. According to the natural variation analysis of a population of 183 inbred lines, two main haplotypes were found for LacCRWN3: the P93075-like and S1174-like, with the former haplotype lines exhibiting significantly thicker internode diameters than those of the latter haplotype lines. It showed that LacCRWN3, as the only CRWN3 gene in Cucurbitaceae, was the most likely candidate gene regulating the internode diameter of Luffa. Our findings will be beneficial for deciphering the molecular mechanism of key phenotypic traits and promoting maker-assisted breeding in Luffa.
Collapse
Affiliation(s)
- Lili Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yaqin Gan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jianning Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Junxing Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoming Zheng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Gong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoxi Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Liting Deng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gangjun Zhao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haibin Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
39
|
Zhang T, Hong Y, Zhang X, Yuan X, Chen S. Relationship between Key Environmental Factors and the Architecture of Fruit Shape and Size in Near-Isogenic Lines of Cucumber ( Cucumis sativus L.). Int J Mol Sci 2022; 23:ijms232214033. [PMID: 36430508 PMCID: PMC9697376 DOI: 10.3390/ijms232214033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit shape and size are complex traits influenced by numerous factors, especially genetics and environment factors. To explore the mechanism of fruit shape and size development in cucumber, a pair of near-isogenic lines (NIL) Ln35 and Ln37 were used. The fruit length and diameter, cell length and diameter, and related gene expression were measured. Both the fruit length, diameter, and cell length and diameter showed sigmate curves in the two lines. The cell length and diameter were significantly positively correlated with fruit length and diameter both in two lines. The expression of CsACS2 and CsLNG showed significant positive correlations with fruit length and diameter increment in Ln35, and there was no correlation in Ln37. Furthermore, there were significant positive correlations between fruit size and thermal effectiveness (TE), as well as between fruit size and photosynthetic active radiation (PAR), both in two lines. Two models using logistic regression were formulated to assess the relationships among fruit length and diameter in Ln35 and Ln37, respectively, based on thermal effectiveness and photosynthetic active radiation (TEP). The coefficient R2 values of the models were 0.977 and 0.976 in Ln35, and 0.987 and 0.981 in Ln37, respectively. The root mean square error (RMSE) was 12.012 mm and 4.338 mm in Ln35, and 5.17 mm and 7.082 mm in Ln37, respectively, which illustrated the accurate and efficient of these models. These biologically interpreted parameters will provide precision management for monitoring fruit growth and forecasting the time of harvesting under different temperatures and light conditions.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Yuanyuan Hong
- College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Xuan Zhang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Xin Yuan
- College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Shuxia Chen
- College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Shaanxi Engineering Research Center for Vegetables, Xianyang 712100, China
- Correspondence: ; Tel./Fax: +86-29-8708-2613
| |
Collapse
|
40
|
Pan Y, Chen B, Qiao L, Chen F, Zhao J, Cheng Z, Weng Y. Phenotypic Characterization and Fine Mapping of a Major-Effect Fruit Shape QTL FS5.2 in Cucumber, Cucumis sativus L., with Near-Isogenic Line-Derived Segregating Populations. Int J Mol Sci 2022; 23:13384. [PMID: 36362172 PMCID: PMC9653860 DOI: 10.3390/ijms232113384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 04/21/2025] Open
Abstract
Cucumber (Cucumis sativus L.) fruit size/shape (FS) is an important yield and quality trait that is quantitatively inherited. Many quantitative trait loci (QTLs) for fruit size/shape have been identified, but very few have been fine-mapped or cloned. In this study, through marker-assisted foreground and background selections, we developed near-isogenic lines (NILs) for a major-effect fruit size/shape QTL FS5.2 in cucumber. Morphological and microscopic characterization of NILs suggests that the allele of fs5.2 from the semi-wild Xishuangbanna (XIS) cucumber (C. s. var. xishuangbannesis) reduces fruit elongation but promotes radial growth resulting in shorter but wider fruit, which seems to be due to reduced cell length, but increased cellular layers. Consistent with this, the NIL carrying the homozygous XIS allele (fs5.2) had lower auxin/IAA contents in both the ovary and the developing fruit. Fine genetic mapping with NIL-derived segregating populations placed FS5.2 into a 95.5 kb region with 15 predicted genes, and a homolog of the Arabidopsis CRABS CLAW (CsCRC) appeared to be the most possible candidate for FS5.2. Transcriptome profiling of NIL fruits at anthesis identified differentially expressed genes enriched in the auxin biosynthesis and signaling pathways, as well as genes involved in cell cycle, division, and cell wall processes. We conclude that the major-effect QTL FS5.2 controls cucumber fruit size/shape through regulating auxin-mediated cell division and expansion for the lateral and longitudinal fruit growth, respectively. The gibberellic acid (GA) signaling pathway also plays a role in FS5.2-mediated fruit elongation.
Collapse
Affiliation(s)
- Yupeng Pan
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Birong Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Lijun Qiao
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Feifan Chen
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jianyu Zhao
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI 53706, USA
| |
Collapse
|
41
|
The CsHEC1-CsOVATE module contributes to fruit neck length variation via modulating auxin biosynthesis in cucumber. Proc Natl Acad Sci U S A 2022; 119:e2209717119. [PMID: 36122223 PMCID: PMC9522363 DOI: 10.1073/pnas.2209717119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fruit neck is the proximal portion of the fruit with undesirable taste that has detrimental effects on fruit shape and commercial value in cucumber. Despite the dramatic variations in fruit neck length of cucumber germplasms, the genes and regulatory mechanisms underlying fruit neck elongation remain mysterious. In this study, we found that Cucumis sativus HECATE1 (CsHEC1) was highly expressed in fruit neck. Knockout of CsHEC1 resulted in shortened fruit neck and decreased auxin accumulation, whereas overexpression of CsHEC1 displayed the opposite effects, suggesting that CsHEC1 positively regulated fruit neck length by modulating local auxin level. Further analysis showed that CsHEC1 directly bound to the promoter of the auxin biosynthesis gene YUCCA4 (CsYUC4) and activated its expression. Enhanced expression of CsYUC4 resulted in elongated fruit neck and elevated auxin content. Moreover, knockout of CsOVATE resulted in longer fruit neck and higher auxin. Genetic and biochemical data showed that CsOVATE physically interacted with CsHEC1 to antagonize its function by attenuating the CsHEC1-mediated CsYUC4 transcriptional activation. In cucumber germplasms, the expression of CsHEC1 and CsYUC4 positively correlated with fruit neck length, while that of CsOVATE showed a negative correlation. Together, our results revealed a CsHEC1-CsOVATE regulatory module that confers fruit neck length variation via CsYUC4-mediated auxin biosynthesis in cucumber.
Collapse
|
42
|
Roles of Auxin in the Growth, Development, and Stress Tolerance of Horticultural Plants. Cells 2022; 11:cells11172761. [PMID: 36078168 PMCID: PMC9454831 DOI: 10.3390/cells11172761] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Auxin, a plant hormone, regulates virtually every aspect of plant growth and development. Many current studies on auxin focus on the model plant Arabidopsis thaliana, or on field crops, such as rice and wheat. There are relatively few studies on what role auxin plays in various physiological processes of a range of horticultural plants. In this paper, recent studies on the role of auxin in horticultural plant growth, development, and stress response are reviewed to provide novel insights for horticultural researchers and cultivators to improve the quality and application of horticultural crops.
Collapse
|
43
|
Ectopic Expression of CsSUN in Tomato Results in Elongated Fruit Shape via Regulation of Longitudinal Cell Division. Int J Mol Sci 2022; 23:ijms23179973. [PMID: 36077369 PMCID: PMC9456224 DOI: 10.3390/ijms23179973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Fruit shape, an important agronomic trait of cucumber (Cucumis sativus L.), is tightly controlled by a series of genes such as CsSUN, a homologue of SlSUN that is responsible for the tomato (Solanum lycopersicum) fruit shape via the modulation of cell division. However, the direct genetic evidence about the CsSUN-mediated regulation of fruit shape is still scarce, limiting our mechanistic understanding of the biological functions of CsSUN. Here, we introduced CsSUN into the round-fruited tomato inbred line ‘SN1′ (wild type, WT) via the Agrobacterium tumefaciens-mediated method. The high and constitutive expression of CsSUN was revealed by real-time PCR in all the tested tissues of the transgenic plants, especially in the fruits and ovaries. Phenotypic analyses showed that the ectopic expression of CsSUN increased fruit length while it decreased fruit diameter, thus leading to the enhanced fruit shape index in the transgenic tomato lines relative to the WT. Additionally, the reduction in the seed size and seed-setting rate and the stimulation of seed germination were observed in the CsSUN-expressed tomato. A histological survey demonstrated that the elongated fruits were mainly derived from the significant increasing of the longitudinal cell number, which compensated for the negative effects of decreased cell area in the central columellae. These observations are different from action mode of SlSUN, thus shedding new insights into the SUN-mediated regulation of fruit shape.
Collapse
|
44
|
Research Progress on the Leaf Morphology, Fruit Development and Plant Architecture of the Cucumber. PLANTS 2022; 11:plants11162128. [PMID: 36015432 PMCID: PMC9415855 DOI: 10.3390/plants11162128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Cucumber (Cucumis sativus L.) is an annual climbing herb that belongs to the Cucurbitaceae family and is one of the most important economic crops in the world. The breeding of cucumber varieties with excellent agronomic characteristics has gained more attention in recent years. The size and shape of the leaves or fruit and the plant architecture are important agronomic traits that influence crop management and productivity, thus determining the crop yields and consumer preferences. The growth of the plant is precisely regulated by both environmental stimuli and internal signals. Although significant progress has been made in understanding the plant morphological regulation of Arabidopsis, rice, and maize, our understanding of the control mechanisms of the growth and development of cucumber is still limited. This paper reviews the regulation of phytohormones in plant growth and expounds the latest progress in research regarding the genetic regulation pathways in leaf development, fruit size and shape, branching, and plant type in cucumber, so as to provide a theoretical basis for improving cucumber productivity and cultivation efficiency.
Collapse
|
45
|
Recent Progress in the Regeneration and Genetic Transformation System of Cucumber. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cucumber (Cucumis sativus L.), belonging to the gourd family (Cucurbitaceae), is one of the major vegetable crops in China. Conventional genetic breeding methods are ineffective for improving the tolerance of cucumber to various environmental stresses, diseases, and pests in the short term, but bio-engineering technologies can be applied to cucumber breeding to produce new cultivars with high yield and quality. Regeneration and genetic transformation systems are key technologies in modern cucumber breeding. Compared with regeneration systems, genetic transformation systems are not yet fully effective, and the low efficiency of genetic transformation is a bottleneck in cucumber cultivation. Here, we systematically review the key factors influencing the regeneration and genetic transformation of cucumber plants, including the selection of genotype, source of explants and forms of exogenous hormones added to the medium, the methods of transgene introduction and co-cultivation, and selection methods. In addition, we also focus on recent advances in the study of molecular mechanisms underlying important agronomic traits using genetic transformation technology, such as fruit length, fruit warts, and floral development. This review provides reference information for future research on improvements in cucumber varieties.
Collapse
|
46
|
Boualem A, Berthet S, Devani RS, Camps C, Fleurier S, Morin H, Troadec C, Giovinazzo N, Sari N, Dogimont C, Bendahmane A. Ethylene plays a dual role in sex determination and fruit shape in cucurbits. Curr Biol 2022; 32:2390-2401.e4. [PMID: 35525245 DOI: 10.1016/j.cub.2022.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Shapes of vegetables and fruits are the result of adaptive evolution and human selection. Modules controlling organ shape have been identified. However, little is known about signals coordinating organ development and shape. Here, we describe the characterization of a melon mutation rf1, leading to round fruit. Histological analysis of rf1 flower and fruits revealed fruit shape is determined at flower stage 8, after sex determination and before flower fertilization. Using positional cloning, we identified the causal gene as the monoecy sex determination gene CmACS7, and survey of melon germplasms showed strong association between fruit shape and sexual types. We show that CmACS7-mediated ethylene production in carpel primordia enhances cell expansion and represses cell division, leading to elongated fruit. Cell size is known to rise as a result of endoreduplication. At stage 8 and anthesis, we found no variation in ploidy levels between female and hermaphrodite flowers, ruling out endoreduplication as a factor in fruit shape determination. To pinpoint the gene networks controlling elongated versus round fruit phenotype, we analyzed the transcriptomes of laser capture microdissected carpels of wild-type and rf1 mutant. These high-resolution spatiotemporal gene expression dynamics revealed the implication of two regulatory modules. The first module implicates E2F-DP transcription factors, controlling cell elongation versus cell division. The second module implicates OVATE- and TRM5-related proteins, controlling cell division patterns. Our finding highlights the dual role of ethylene in the inhibition of the stamina development and the elongation of ovary and fruit in cucurbits.
Collapse
Affiliation(s)
- Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Serge Berthet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Ravi Sureshbhai Devani
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Celine Camps
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Sebastien Fleurier
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Nathalie Giovinazzo
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Nebahat Sari
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Catherine Dogimont
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| |
Collapse
|
47
|
Feng T, Wang L, Li L, Liu Y, Chong K, Theißen G, Meng Z. OsMADS14 and NF-YB1 cooperate in the direct activation of OsAGPL2 and Waxy during starch synthesis in rice endosperm. THE NEW PHYTOLOGIST 2022; 234:77-92. [PMID: 35067957 DOI: 10.1111/nph.17990] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/03/2022] [Indexed: 05/02/2023]
Abstract
Starch synthesis makes a dramatic contribution to the yield and nutritional value of cereal crops. Although several starch synthesis enzymes and related regulators have been reported, the underlying regulatory mechanisms of starch synthesis remain largely unknown. OsMADS14 is a FRUITFULL (FUL)-like MADS-box gene in rice (Oryza sativa). Here we show that two null mutations of OsMADS14 result in a shrunken and chalky grain phenotype. It is caused by obviously defective compound starch granules and a significantly reduced content of both total starch and amylose in the endosperm. Transcriptomic profiling analyses revealed that the loss-of-function of OsMADS14 leads to significantly downregulated expression of many core starch synthesis genes, including OsAGPL2 and Waxy. Both in vitro and in vivo assays demonstrate that the OsMADS14 protein directly binds to stretches of DNA with a CArG-box consensus in the putative regulatory regions of OsAGPL2 and Waxy. Protein-protein interaction experiments also suggest that OsMADS14 interacts with nuclear factor NF-YB1 to promote the transcription of OsAGPL2 and Waxy. Our study thus demonstrates that OsMADS14 plays an essential role in the synthesis of storage starch and provides novel insights into the underlying molecular mechanism that may be used to improve rice cultivars by molecular breeding.
Collapse
Affiliation(s)
- Tingting Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Laiyun Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, D-07743, Germany
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
48
|
Liu X, Yang X, Xie Q, Miao H, Bo K, Dong S, Xin T, Gu X, Sun J, Zhang S. NS encodes an auxin transporter that regulates the 'numerous spines' trait in cucumber (Cucumis sativus) fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:325-336. [PMID: 35181968 DOI: 10.1111/tpj.15710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Fruit spine is an important agronomic trait in cucumber and the "numerous spines (ns)" cucumber varieties are popular in Europe and West Asia. Although the classical genetic locus of ns was reported more than two decades ago, the NS gene has not been cloned yet. In this study, nine genetic loci for the different densities of fruit spines were identified by a genome-wide association study. Among the nine loci, fsdG2.1 was closely associated with the classical genetic locus ns, which harbors a candidate gene Csa2G264590. Overexpression of Csa2G264590 resulted in lower fruit spine density, and the knockout mutant generated by CRISPR/Cas9 displayed an increased spine density, demonstrating that the Csa2G264590 gene is NS. NS is specifically expressed in the fruit peel and spine. Genetic analysis showed that NS regulates fruit spine development independently of the tuberculate gene, Tu, which regulates spine development on tubercules; the cucumber glabrous mutants csgl1 and csgl3 are epistatic to ns. Furthermore, we found that auxin levels in the fruit peel and spine were significantly lower in the knockout mutant ns-cr. Moreover, RNA-sequencing showed that the plant hormone signal transduction pathway was enriched. Notably, most of the auxin responsive Aux/IAA family genes were downregulated in ns-cr. Haplotype analysis showed that the non-functional haplotype of NS exists exclusively in the Eurasian cucumber backgrounds. Taken together, the cloning of NS gene provides new insights into the regulatory network of fruit spine development.
Collapse
Affiliation(s)
- Xiaoping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qing Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tongxu Xin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
49
|
Takahashi H, Nishihara M, Yoshida C, Itoh K. Gentian FLOWERING LOCUS T orthologs regulate phase transitions: floral induction and endodormancy release. PLANT PHYSIOLOGY 2022; 188:1887-1899. [PMID: 35026009 PMCID: PMC8968275 DOI: 10.1093/plphys/kiac007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/22/2021] [Indexed: 05/17/2023]
Abstract
Perennial plants undergo a dormant period in addition to the growth and flowering phases that are commonly observed in annuals and perennials. Consequently, the regulation of these phase transitions in perennials is believed to be complicated. Previous studies have proposed that orthologs of FLOWERING LOCUS T (FT) regulate not only floral initiation but also dormancy. We, therefore, investigated the involvement of FT orthologs (GtFT1 and GtFT2) during the phase transitions of the herbaceous perennial gentian (Gentiana triflora). Analysis of seasonal fluctuations in the expression of these genes revealed that GtFT1 expression increased prior to budbreak and flowering, whereas GtFT2 expression was induced by chilling temperatures with the highest expression occurring when endodormancy was released. The expression of FT-related transcription factors, reportedly involved in flowering, also fluctuated during each phase transition. These results suggested the involvement of GtFT1 in budbreak and floral induction and GtFT2 in dormancy regulation, implying that the two gentian FT orthologs activated a different set of transcription factors. Gentian ft2 mutants generated by CRISPR/Cas9-mediated genome editing had a lower frequency of budbreak and budbreak delay in overwintering buds caused by an incomplete endodormancy release. Our results highlighted that the gentian orthologs of FRUITFULL (GtFUL) and SHORT VEGETATIVE PHASE-like 1 (GtSVP-L1) act downstream of GtFT2, probably to prevent untimely budbreak during ecodormancy. These results suggest that each gentian FT ortholog regulates a different phase transition by having variable responses to endogenous or environmental cues, leading to their ability to induce the expression of distinct downstream genes.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Liberal Arts Education Center, Tokai University, Kumamoto 862-8652, Japan
| | | | - Chiharu Yoshida
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | | |
Collapse
|
50
|
Gao L, Hao N, Wu T, Cao J. Advances in Understanding and Harnessing the Molecular Regulatory Mechanisms of Vegetable Quality. FRONTIERS IN PLANT SCIENCE 2022; 13:836515. [PMID: 35371173 PMCID: PMC8964363 DOI: 10.3389/fpls.2022.836515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The quality of vegetables is facing new demands in terms of diversity and nutritional health. Given the improvements in living standards and the quality of consumed products, consumers are looking for vegetable products that maintain their nutrition, taste, and visual qualities. These requirements are directing scientists to focus on vegetable quality in breeding research. Thus, in recent years, research on vegetable quality has been widely carried out, and many applications have been developed via gene manipulation. In general, vegetable quality traits can be divided into three parts. First, commodity quality, which is most related to the commerciality of plants, refers to the appearance of the product. The second is flavor quality, which usually represents the texture and flavor of vegetables. Third, nutritional quality mainly refers to the contents of nutrients and health ingredients such as soluble solids (sugar), vitamin C, and minerals needed by humans. With biotechnological development, researchers can use gene manipulation technologies, such as molecular markers, transgenes and gene editing to improve the quality of vegetables. This review attempts to summarize recent studies on major vegetable crops species, with Brassicaceae, Solanaceae, and Cucurbitaceae as examples, to analyze the present situation of vegetable quality with the development of modern agriculture.
Collapse
Affiliation(s)
- Luyao Gao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Ning Hao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Jiajian Cao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|