1
|
Tiozon RN, Pasion-Uy E, Alseekh S, Sartagoda KJD, Gempesaw S, Tolentino JHG, Fernie AR, Sreenivasulu N. Lipidomics-based association study reveals genomic signatures of anti-cancer qualities of pigmented rice sprouts. FRONTIERS IN PLANT SCIENCE 2025; 16:1533442. [PMID: 39935946 PMCID: PMC11810972 DOI: 10.3389/fpls.2025.1533442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025]
Abstract
Introduction The genetic wealth present in pigmented rice varieties offer abundant variation in different sources of antioxidants to meet nutritional security targets among rice-consuming communities. There is limited knowledge of the dynamic changes in the lipidome of rice during germination and the corresponding genes associated with the antioxidant and anti-cancerous properties of lipophilic fractions of pigmented rice sprouts (PRS). Methods In this study, we profiled the lipidome of diverse pigmented rice collections of germinated sprouts. Further, we employed Genome-wide association studies (GWAS), gene-set analysis, and targeted association analysis to identify the candidate genes linked to these lipids. Results The genetic analyses revealed 72 candidate genes involved in the regulation of these accumulating lipids in PRS. Marker trait associations (MTA) analysis shown that the combination GGTAAC/ACAAGCTGGGCCC was associated with increased levels of unsaturated lipids and carotenoids, which likely underlie these beneficial effects. This superior MTA combination exhibited potent inhibitory activity against HCT116 and A549 cell lines, with average 1/IC50 values of 0.03 and 0.02 (mL/μg), respectively, compared to the inferior MTAs. Discussion Collectively, our findings demonstrate that MTAs linked to selected GDSL esterase/lipase (GELP) genes, OsACP1, and lecithin-cholesterol acyltransferase significantly enhance antioxidant and anti-cancer properties, potentially through the mobilization of unsaturated lipids and carotenoids during germination. This study offers valuable insights into the health-promoting potential of germinated rice sprouts as a rich dietary source of antioxidants beneficial to human health.
Collapse
Affiliation(s)
- Rhowell Navarro Tiozon
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Erstelle Pasion-Uy
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Kristel June D. Sartagoda
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Shem Gempesaw
- Department of Food Science and Chemistry, College of Science and Mathematics, University of the Philippines Mindanao, Davao City, Philippines
| | - Joel H. G. Tolentino
- Department of Food Science and Chemistry, College of Science and Mathematics, University of the Philippines Mindanao, Davao City, Philippines
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Nese Sreenivasulu
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
2
|
Hačkuličová D, Labancová E, Vivodová Z, Danchenko M, Holeková K, Bajus M, Kučerová D, Baráth P, Kollárová K. Modification of peroxidase activity and proteome in maize exposed to cadmium in the presence of galactoglucomannan oligosaccharides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117732. [PMID: 39823677 DOI: 10.1016/j.ecoenv.2025.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 01/19/2025]
Abstract
We tested the effects of galactoglucomannan oligosaccharides (GGMOs) and/or cadmium (Cd) on peroxidase activity and the proteome in maize (Zea mays L.) roots and leaves. Our previous work confirmed that GGMOs ameliorate the symptoms of Cd stress in seedlings. Here, the plants were hydroponically cultivated for 7 days, and the protein content and peroxidase activity were estimated in intracellular, neutral cell wall, and acidic cell wall protein fractions. The peroxidase activity varied between the plant organs as well as among the fractions and treatments. The GGMOs in the presence of Cd did not significantly influence content of peroxidases but modulated their activity, which implies posttranslational regulation. The changes in the content of various proteins (e.g., related to the defence reactions, cell wall structure/metabolism, and activation of plant hormones) caused by GGMOs and Cd indicate possible protective mechanisms that improve the vitality of maize seedlings exposed to metal stress. GGMOs partially reverted Cd-induced protein disbalance, which was a reoccurring phenomenon of mitigation in leaves.
Collapse
Affiliation(s)
- Diana Hačkuličová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Eva Labancová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Zuzana Vivodová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Kristína Holeková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Marko Bajus
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Danica Kučerová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Karin Kollárová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia.
| |
Collapse
|
3
|
Xing S, Xie W, Hu G, Luo C, Zhu H, He L, Li C, Wang X, Zeng X. The synthesis of cinnamyl acetate and deacetyl-7-aminocephalosporanic acid by a GDSL-type esterase and its substrate specificity analysis. Enzyme Microb Technol 2024; 182:110532. [PMID: 39471645 DOI: 10.1016/j.enzmictec.2024.110532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
GDSL-type esterases are promising biocatalysts for the food and pharmaceutical industries. Here, a GDSL-type esterase from Aspergillus niger CCTCC No. M2012538 (INANE1) was expressed and purified in Pichia pastoris GS115, and its catalytic performances were evaluated, including the synthesis of cinnamyl acetate and deacetyl-7-aminocephalosporanic acid (D-7-ACA). In addition, molecular docking and molecular dynamics simulations analyzed INANE1's substrate specificity. The substrate specificity profile indicated the recombinant esterase (rINANE1) was an acetylesterase with high specificity for p-nitrophenyl acetate (p-NPA). The rINANE1 exhibited maximum activity at pH 8.0 and 35 °C, where Km and Vmax were calculated as 0.13±0.03 mM and 22.56 ± 0.32 μmoL/min/mg, respectively. The yield of cinnamyl acetate of about 85 % was achieved in 24 h. The conversion rate of 7-aminocephalosporanic acid (7-ACA) could reach 92.71 ± 1.78 % at 25 °C and 2.5 h. Moreover, the INANE1 structure model, molecular docking, and molecular dynamics simulation demonstrated that the pocket of the catalytic triad Ser34, Asn267, and His270 could only accommodate p-NPA. INANE1 may be the first fungi esterase with cinnamyl acetate synthetic activity and 7-ACA hydrolysis activity. Therefore, INANE1 would be a promising enzyme with industrial values.
Collapse
Affiliation(s)
- Shuqi Xing
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Wei Xie
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Guangli Hu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Chaocheng Luo
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Hong Zhu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Laping He
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
4
|
Yahia EM, Hernández-Oñate MA, Ojeda-Contreras AJ, Mercado-Ruiz J, Cordero-Chávez L, Trillo-Hernández EA, Tiznado-Hernández ME. Changes in the expression of genes encoding xanthophyl acyltransferases during the postharvest ripening of avocado (Persea americana) fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5860-5868. [PMID: 38385790 DOI: 10.1002/jsfa.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Avocado fruit is rich in xanthophylls, which have been related to positive effects on human health. Xanthophyl acetyltransferases (XATs) are enzymes catalyzing the esterification of carboxylic acids to the hydroxyl group of the xanthophyll molecule. This esterification is thought to increase the lipophilic nature of the xanthophyll and its stability in a lipophilic environment. Studies on XATs in fruits are very scarce, and no studies had been carried out in avocado fruit during postharvest. The objective of this work was to investigate the changes in the expression of genes encoding XAT, during avocado fruit ripening. RESULTS Avocado fruits were obtained from a local market and stored at 15 °C for 8 days. The fruit respiration rate, ethylene production, and fruit peel's color space parameters (L*, a*, b*) were measured during storage. Fruit mesocarp samples were taken after 1, 3, 5, and 7 days of storage and frozen with liquid nitrogen. Total RNA was extracted from fruit mesocarp, and the quantification of the two genes designated as COGE_ID: 936743791 and COGE_ID: 936800185 encoding XATs was performed with real-time quantitative reverse transcription polymerase chain reaction using actin as a reference gene. The presence of a climacteric peak and large changes in color were recorded during postharvest. The two genes studied showed a large expression after 3 days of fruit storage. CONCLUSIONS We conclude that during the last stages of ripening in avocado fruit there was an active esterification of xanthophylls with carboxylic acids, which suggests the presence of esterified xanthophylls in the fruit mesocarp. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elhadi-M Yahia
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | | | | | - Jorge Mercado-Ruiz
- Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Mexico
| | | | - Eduardo-Antonio Trillo-Hernández
- Unidad de Tecnología de Alimentos-Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Mexico
- Estancias Posdoctorales-Consejo Nacional de Ciencia y Tecnología, Coordinación de Apoyos a Becarios e Investigadores, Dirección de Posgrado, Ciudad de Mexico, Mexico
| | | |
Collapse
|
5
|
Zhu M, Tang Y, Xie Y, He B, Ding G, Zhou X. Research progress on differentiation and regulation of plant chromoplasts. Mol Biol Rep 2024; 51:810. [PMID: 39001942 DOI: 10.1007/s11033-024-09753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Carotenoids, natural tetraterpenoids found abundantly in plants, contribute to the diverse colors of plant non-photosynthetic tissues and provide fragrance through their cleavage products, which also play crucial roles in plant growth and development. Understanding the synthesis, degradation, and storage pathways of carotenoids and identifying regulatory factors represents a significant strategy for enhancing plant quality. Chromoplasts serve as the primary plastids responsible for carotenoid accumulation, and their differentiation is linked to the levels of carotenoids, rendering them a subject of substantial research interest. The differentiation of chromoplasts involves alterations in plastid structure and protein import machinery. Additionally, this process is influenced by factors such as the ORANGE (OR) gene, Clp proteases, xanthophyll esterification, and environmental factors. This review shows the relationship between chromoplast and carotenoid accumulation by presenting recent advances in chromoplast structure, the differentiation process, and key regulatory factors, which can also provide a reference for rational exploitation of chromoplasts to enhance plant quality.
Collapse
Affiliation(s)
- Mengyao Zhu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunxia Tang
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiqing Xie
- Institute of Economic Forestry, Fujian Academy of Forestry, Fuzhou, 350012, China
| | - BingBing He
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guochang Ding
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xingwen Zhou
- College of Architecture and Planning, Fujian University of Technology, Fuzhou, 350118, China.
| |
Collapse
|
6
|
Ortega-Regules AE, Martínez-Thomas JA, Schürenkämper-Carrillo K, de Parrodi CA, López-Mena ER, Mejía-Méndez JL, Lozada-Ramírez JD. Recent Advances in the Therapeutic Potential of Carotenoids in Preventing and Managing Metabolic Disorders. PLANTS (BASEL, SWITZERLAND) 2024; 13:1584. [PMID: 38931016 PMCID: PMC11207240 DOI: 10.3390/plants13121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Carotenoids constitute compounds of significant biological interest due to their multiple biological activities, such as antimicrobial, anticancer, antiadipogenic, antidiabetic, and antioxidant properties. Metabolic syndrome (MetS) comprehends a series of metabolic abnormalities (e.g., hypertension, obesity, and atherogenic dyslipidemia) that can affect children, adolescents, and the elderly. The treatment of MetS involves numerous medications, which, despite their efficacy, pose challenges due to prolonged use, high costs, and various side effects. Carotenoids and their derivatives have been proposed as alternative treatments to MetS because they reduce serum triglyceride concentrations, promote insulin response, inhibit adipogenesis, and downregulate angiotensin-converting enzyme activity. However, carotenoids are notably sensitive to pH, light exposure, and temperature. This review addresses the activity of carotenoids such as lycopene, lutein, fucoxanthin, astaxanthin, crocin, and β-carotene towards MetS. It includes a discussion of sources, extraction methods, and characterization techniques for analyzing carotenoids. Encapsulation approaches are critically reviewed as alternatives to prevent degradation and improve the biological performance of carotenoids. A brief overview of the physiopathology and epidemiology of the diseases, including MetS, is also provided.
Collapse
Affiliation(s)
- Ana E. Ortega-Regules
- Departamento de Ciencias de la Salud, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico;
| | - Juan Alonso Martínez-Thomas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Karen Schürenkämper-Carrillo
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Cecilia Anaya de Parrodi
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Zapopan 45121, Colonia Nuevo México, Mexico;
| | - Jorge L. Mejía-Méndez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - J. Daniel Lozada-Ramírez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| |
Collapse
|
7
|
Requena-Ramírez MD, Rodríguez-Suárez C, Hornero-Méndez D, Atienza SG. Lutein esterification increases carotenoid retention in durum wheat grain. A step further in breeding and improving the commercial and nutritional quality during grain storage. Food Chem 2024; 435:137660. [PMID: 37832338 DOI: 10.1016/j.foodchem.2023.137660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Carotenoid esterification is a common mechanism for carotenoid sequestration, accumulation and storage in plants. Carotenoids are responsible for the bright yellow colour of pasta. Therefore, carotenoid retention during storage is of great importance in the durum wheat food chain. In this work, we investigated the role of carotenoid esterification on carotenoid retention in durum wheat using two consecutive storage experiments. Firstly, we compared two landraces and two durum wheat varieties as a preliminary work. We then compared individuals derived from the BGE047535×'Athoris' cross contrasting for esterification ability. Our results show that carotenoid esterification leads to a higher carotenoid retention during storage in durum wheat. Thus, the use of the carotenoid esterification would be useful as an extra strategy to ongoing efforts to improve carotenoid retention in the durum wheat food chain.
Collapse
Affiliation(s)
| | | | - Dámaso Hornero-Méndez
- Department of Food Phytochemistry, Instituto de la Grasa, CSIC, Campus Universidad Pablo de Olavide, Edificio 46, Ctra de Utrera, Km 1, E-41013 Sevilla, Spain.
| | - Sergio G Atienza
- Instituto de Agricultura Sostenible, CSIC, Alameda del Obispo, s/n, E-14004 Córdoba, Spain.
| |
Collapse
|
8
|
Liu Y, Ye J, Zhu M, Atkinson RG, Zhang Y, Zheng X, Lu J, Cao Z, Peng J, Shi C, Xie Z, Larkin RM, Nieuwenhuizen NJ, Ampomah-Dwamena C, Chen C, Wang R, Luo X, Cheng Y, Deng X, Zeng Y. Multi-omics analyses reveal the importance of chromoplast plastoglobules in carotenoid accumulation in citrus fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:924-943. [PMID: 37902994 DOI: 10.1111/tpj.16519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Chromoplasts act as a metabolic sink for carotenoids, in which plastoglobules serve as versatile lipoprotein particles. PGs in chloroplasts have been characterized. However, the features of PGs from non-photosynthetic plastids are poorly understood. We found that the development of chromoplast plastoglobules (CPGs) in globular and crystalloid chromoplasts of citrus is associated with alterations in carotenoid storage. Using Nycodenz density gradient ultracentrifugation, an efficient protocol for isolating highly purified CPGs from sweet orange (Citrus sinensis) pulp was established. Forty-four proteins were defined as likely comprise the core proteome of CPGs using comparative proteomics analysis. Lipidome analysis of different chromoplast microcompartments revealed that the nonpolar microenvironment within CPGs was modified by 35 triacylglycerides, two sitosterol esters, and one stigmasterol ester. Manipulation of the CPG-localized gene CsELT1 (esterase/lipase/thioesterase) in citrus calli resulted in increased lipids and carotenoids, which is further evidence that the nonpolar microenvironment of CPGs contributes to carotenoid accumulation and storage in the chromoplasts. This multi-feature analysis of CPGs sheds new light on the role of chromoplasts in carotenoid metabolism, paving the way for manipulating carotenoid content in citrus fruit and other crops.
Collapse
Affiliation(s)
- Yun Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Man Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Yingzi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiongjie Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jiao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zhen Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jun Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops/Guangxi Engineering Research Center of Citrus Breeding and Culture, Guilin, 541004, P.R. China
| | - Rui Wang
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233, P.R. China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
9
|
Pahal S, Srivastava H, Saxena S, Tribhuvan KU, Kaila T, Sharma S, Grewal S, Singh NK, Gaikwad K. Comparative transcriptome analysis of two contrasting genotypes provides new insights into the drought response mechanism in pigeon pea (Cajanus cajan L. Millsp.). Genes Genomics 2024; 46:65-94. [PMID: 37985548 DOI: 10.1007/s13258-023-01460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Despite plant's ability to adapt and withstand challenging environments, drought poses a severe threat to their growth and development. Although pigeon pea is already quite resistant to drought, the prolonged dehydration induced by the aberrant climate poses a serious threat to their survival and productivity. OBJECTIVE Comparative physiological and transcriptome analyses of drought-tolerant (CO5) and drought-sensitive (CO1) pigeon pea genotypes subjected to drought stress were carried out in order to understand the molecular basis of drought tolerance in pigeon pea. METHODS The transcriptomic analysis allowed us to examine how drought affects the gene expression of C. cajan. Using bioinformatics tools, the unigenes were de novo assembled, annotated, and functionally evaluated. Additionally, a homology-based sequence search against the droughtDB database was performed to identify the orthologs of the DEGs. RESULTS 1102 potential drought-responsive genes were found to be differentially expressed genes (DEGs) between drought-tolerant and drought-sensitive genotypes. These included Abscisic acid insensitive 5 (ABI5), Nuclear transcription factor Y subunit A-7 (NF-YA7), WD40 repeat-containing protein 55 (WDR55), Anthocyanidin reductase (ANR) and Zinc-finger homeodomain protein 6 (ZF-HD6) and were highly expressed in the tolerant genotype. Further, GO analysis revealed that the most enriched classes belonged to biosynthetic and metabolic processes in the biological process category, binding and catalytic activity in the molecular function category and nucleus and protein-containing complex in the cellular component category. Results of KEGG pathway analysis revealed that the DEGs were significantly abundant in signalling pathways such as plant hormone signal transduction and MAPK signalling pathways. Consequently, in our investigation, we have identified and validated by qPCR a group of genes involved in signal reception and propagation, stress-specific TFs, and basal regulatory genes associated with drought response. CONCLUSION In conclusion, our comprehensive transcriptome dataset enabled the discovery of candidate genes connected to pathways involved in pigeon pea drought response. Our research uncovered a number of unidentified genes and transcription factors that could be used to understand and improve susceptibility to drought.
Collapse
Affiliation(s)
- Suman Pahal
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | | | - Swati Saxena
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sapna Grewal
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India.
| | - Nagendra K Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.
| |
Collapse
|
10
|
Yarden O, Zhang J, Marcus D, Changwal C, Mabjeesh SJ, Lipzen A, Zhang Y, Savage E, Ng V, Grigoriev IV, Hadar Y. Altered Expression of Two Small Secreted Proteins ( ssp4 and ssp6) Affects the Degradation of a Natural Lignocellulosic Substrate by Pleurotus ostreatus. Int J Mol Sci 2023; 24:16828. [PMID: 38069150 PMCID: PMC10705924 DOI: 10.3390/ijms242316828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Pleurotus ostreatus is a white-rot fungus that can degrade lignin in a preferential manner using a variety of extracellular enzymes, including manganese and versatile peroxidases (encoded by the vp1-3 and mnp1-6 genes, respectively). This fungus also secretes a family of structurally related small secreted proteins (SSPs) encoded by the ssp1-6 genes. Using RNA sequencing (RNA-seq), we determined that ssp4 and ssp6 are the predominant members of this gene family that were expressed by P. ostreatus during the first three weeks of growth on wheat straw. Downregulation of ssp4 in a strain harboring an ssp RNAi construct (KDssp1) was then confirmed, which, along with an increase in ssp6 transcript levels, coincided with reduced lignin degradation and the downregulation of vp2 and mnp1. In contrast, we observed an increase in the expression of genes related to pectin and side-chain hemicellulose degradation, which was accompanied by an increase in extracellular pectin-degrading capacity. Genome-wide comparisons between the KDssp1 and the wild-type strains demonstrated that ssp silencing conferred accumulated changes in gene expression at the advanced cultivation stages in an adaptive rather than an inductive mode of transcriptional response. Based on co-expression networking, crucial gene modules were identified and linked to the ssp knockdown genotype at different cultivation times. Based on these data, as well as previous studies, we propose that P. ostreatus SSPs have potential roles in modulating the lignocellulolytic and pectinolytic systems, as well as a variety of fundamental biological processes related to fungal growth and development.
Collapse
Affiliation(s)
- Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Dor Marcus
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| | - Chunoti Changwal
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| | - Sameer J. Mabjeesh
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Yu Zhang
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Emily Savage
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Vivian Ng
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Igor V. Grigoriev
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| |
Collapse
|
11
|
Liu P, Xu X, Bai X, Gao X, Liu K, Xu Y, Li A, Song X. Improvements of Solubility and Bioavailability of Lutein Through Grafting with Hydrophilic Polyacrylic Acid. J Pharm Sci 2023; 112:2811-2819. [PMID: 37211314 DOI: 10.1016/j.xphs.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
In this study, polyacrylic acid grafted lutein (PAA-g-lutein) was prepared by hydrophilic modification of lutein with polyacrylic acid (PAA) through Steglish esterification method. The unreacted lutein was loaded in micelles formed by self-assembly of graft copolymers in water to form composite nanoparticles. The bioaccessibility and bioavailability of lutein nanoparticles were studied by in vitro and in vivo digestion experiments. Compared with free lutein, the saturated solubility and bioaccessibility of lutein nanoparticles were increased by 78 times and 3.6 times, respectively. The pharmacokinetics results in the mice model showed that the maximum concentration (Cmax) and area under concentration-time curve (AUC) of plasma of mice were increased by 3.05 and 6.07 times with lutein nanoparticles compared with free lutein. Meanwhile, the prepared lutein nanoparticles also promoted the accumulation of lutein in the liver, mesenteric adipose, and eyeballs. These results indicate that graft copolymerization of lutein with water-soluble polymers to form nanoparticles is an effective method to promote the bioavailability of lutein in vivo. Moreover, this method is simple and applicable, and can also be used for the modification of other bioactive molecules.
Collapse
Affiliation(s)
- Peng Liu
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Xiaoxue Xu
- College of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Xiaoyu Bai
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Xingtong Gao
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Kai Liu
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Yiming Xu
- College of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Aixiang Li
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China.
| | - Xinhua Song
- College of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China; Shandong Tianyin Biotechnology Co., Ltd., Zibo, 255000, People's Republic of China
| |
Collapse
|
12
|
Li H, Zhang P, Luo M, Hoque M, Chakraborty S, Brooks B, Li J, Singh S, Forest K, Binney A, Zhang L, Mather D, Ayliffe M. Introgression of the bread wheat D genome encoded Lr34/Yr18/Sr57/Pm38/Ltn1 adult plant resistance gene into Triticum turgidum (durum wheat). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:226. [PMID: 37847385 PMCID: PMC10581953 DOI: 10.1007/s00122-023-04466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
KEY MESSAGE Lack of function of a D-genome adult plant resistance gene upon introgression into durum wheat. The wheat Lr34/Yr18/Sr57/Pm38/Ltn1 adult plant resistance gene (Lr34), located on chromosome arm 7DS, provides broad spectrum, partial, adult plant resistance to leaf rust, stripe rust, stem rust and powdery mildew. It has been used extensively in hexaploid bread wheat (AABBDD) and conferred durable resistance for many decades. These same diseases also occur on cultivated tetraploid durum wheat and emmer wheat but transfer of D genome sequences to those subspecies is restricted due to very limited intergenomic recombination. Herein we have introgressed the Lr34 gene into chromosome 7A of durum wheat. Durum chromosome substitution line Langdon 7D(7A) was crossed to Cappelli ph1c, a mutant derivative of durum cultivar Cappelli homozygous for a deletion of the chromosome pairing locus Ph1. Screening of BC1F2 plants and their progeny by KASP and PCR markers, 90 K SNP genotyping and cytology identified 7A chromosomes containing small chromosome 7D fragments encoding Lr34. However, in contrast to previous transgenesis experiments in durum wheat, resistance to wheat stripe rust was not observed in either Cappelli/Langdon 7D(7A) or Bansi durum plants carrying this Lr34 encoding segment due to low levels of Lr34 gene expression. KEY MESSAGE
Collapse
Affiliation(s)
- Hongyu Li
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Ming Luo
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Mohammad Hoque
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Soma Chakraborty
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Brenton Brooks
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Jianbo Li
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Smriti Singh
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Kerrie Forest
- Agriculture Victoria, Department of Energy, Environment and Climate Action, AgriBio Centre for AgriBioscience, 5 Ring Rd, Bundoora, VIC, 3083, Australia
| | - Allan Binney
- School of Agriculture, Food & Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Diane Mather
- School of Agriculture, Food & Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Michael Ayliffe
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia.
| |
Collapse
|
13
|
Li R, Zeng Q, Zhang X, Jing J, Ge X, Zhao L, Yi B, Tu J, Fu T, Wen J, Shen J. Xanthophyll esterases in association with fibrillins control the stable storage of carotenoids in yellow flowers of rapeseed (Brassica juncea). THE NEW PHYTOLOGIST 2023; 240:285-301. [PMID: 37194444 DOI: 10.1111/nph.18970] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Biosynthesis, stabilization, and storage of carotenoids are vital processes in plants that collectively contribute to the vibrant colors observed in flowers and fruits. Despite its importance, the carotenoid storage pathway remains poorly understood and lacks thorough characterization. We identified two homologous genes, BjA02.PC1 and BjB04.PC2, belonging to the esterase/lipase/thioesterase (ELT) family of acyltransferases. We showed that BjPCs in association with fibrillin gene BjFBN1b control the stable storage of carotenoids in yellow flowers of Brassica juncea. Through genetic, high-resolution mass spectrometry and transmission electron microscopy analyses, we demonstrated that both BjA02.PC1 and BjB04.PC2 can promote the accumulation of esterified xanthophylls, facilitating the formation of carotenoid-enriched plastoglobules (PGs) and ultimately producing yellow pigments in flowers. The elimination of BjPCs led to the redirection of metabolic flux from xanthophyll ester biosynthesis to lipid biosynthesis, resulting in white flowers for B. juncea. Moreover, we genetically verified the function of two fibrillin genes, BjA01.FBN1b and BjB05.FBN1b, in mediating PG formation and demonstrated that xanthophyll esters must be deposited in PGs for stable storage. These findings identified a previously unknown carotenoid storage pathway that is regulated by BjPCs and BjFBN1b, while offering unique opportunities for improving the stability, deposition, and bioavailability of carotenoids.
Collapse
Affiliation(s)
- Rihui Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinyu Zeng
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangxiang Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jing Jing
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyu Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
14
|
Watkins JL. Uncovering the secrets to vibrant flowers: the role of carotenoid esters and their interaction with plastoglobules in plant pigmentation. THE NEW PHYTOLOGIST 2023; 240:7-9. [PMID: 37547993 DOI: 10.1111/nph.19185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
This article is a Commentary on Li et al. (2023), 240: 285–301.
Collapse
Affiliation(s)
- Jacinta L Watkins
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Qld, Australia
| |
Collapse
|
15
|
Rodríguez-Suárez C, Requena-Ramírez MD, Hornero-Méndez D, Atienza SG. Towards carotenoid biofortification in wheat: identification of XAT-7A1, a multicopy tandem gene responsible for carotenoid esterification in durum wheat. BMC PLANT BIOLOGY 2023; 23:412. [PMID: 37674126 PMCID: PMC10481513 DOI: 10.1186/s12870-023-04431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Yellow pigment content, mainly due to the accumulation of carotenoids, is a quality trait in durum wheat grain as it confers the bright yellow color to pasta preferred by consumers. Also, carotenoids are essential nutrients exerting important biological functions in human health. Consequently, biofortification strategies have been developed in many crops to increase carotenoid content. In this context, carotenoid esterification is emerging as a new breeding target for wheat biofortification, as carotenoid esters have been found to promote both carotenoid accumulation and stability. Until recently, no carotenoid esters have been identified in significant proportions in durum wheat grains, and interspecific breeding programs have been started to transfer esterification ability from common wheat and Hordeum chilense.In this work, XAT-7A1 is identified as the gene responsible for carotenoid esterification in durum wheat. Sequencing, copy number variation and mapping results show that XAT-7A1 is organized as tandem or proximal GDSL esterase/lipase copies in chromosome 7A. Three XAT-7A1 haplotypes are described: Type 1 copies, associated with high levels of carotenoid esters (diesters and monoesters) production and high expression in grain development; Type 2 copies, present in landraces with low levels of carotenoid esters (monoesters) or no esters; and Type 3 copies, without the signal peptide, resulting in zero-ester phenotypes.The identification of XAT-7A1 is a necessary step to make the carotenoid esterification ability available for durum and bread wheat breeding, which should be focused on the Type 1 XAT-7A1 haplotype, which may be assessed as a single gene since XAT-7A1 copies are inherited together.
Collapse
Affiliation(s)
- C Rodríguez-Suárez
- Institute for Sustainable Agriculture, CSIC, Avda, Menéndez Pidal s/n, E-14004, Córdoba, Spain
| | - M D Requena-Ramírez
- Institute for Sustainable Agriculture, CSIC, Avda, Menéndez Pidal s/n, E-14004, Córdoba, Spain
| | - D Hornero-Méndez
- Department of Food Phytochemistry, Instituto de la Grasa, CSIC. Campus Universidad Pablo de Olavide, Edificio 46. Ctra. de Utrera, Km 1, E-41013, Sevilla, Spain
| | - S G Atienza
- Institute for Sustainable Agriculture, CSIC, Avda, Menéndez Pidal s/n, E-14004, Córdoba, Spain.
| |
Collapse
|
16
|
Luo C, Hu Y, Xing S, Xie W, Li C, He L, Wang X, Zeng X. Adsorption-precipitation-cross-linking immobilization of GDSL-type esterase from Aspergillus niger GZUF36 by polydopamine-modified magnetic clarity tetroxide nanocouplings and its enzymatic characterization. Int J Biol Macromol 2023:125533. [PMID: 37355062 DOI: 10.1016/j.ijbiomac.2023.125533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Recombinant INANE1 (rINANE1), a recombinant intracellular GDSL-type esterase from Aspergillus niger GZUF36, has high acetate substrate specificity. Here, rINANE1 was successfully immobilized on polydopamine (PDA)-modified magnetic ferric oxide nanoparticles (Fe3O4NPs) by adsorption-precipitation-cross-linking to obtain cross-linked enzyme aggregate (CLEA)-rINANE1-Fe3O4@PDA. Fe3O4, Fe3O4@PDA, and CLEA-rINANE1-Fe3O4@PDA were characterized by scanning electron microscopy, X-ray diffraction, vibrating-sample magnetometry, Fourier transform infrared (FTIR) spectroscopy, and zeta potential analysis. Upon immobilization, CLEA-rINANE1-Fe3O4@PDA, with a protein loading of 72.72 ± 1.01 mg/g, reached optimal activity recovery of 104.40 % ± 1.14 %. FTIR analysis showed that immobilization increased the relative content of β-folding in rINANE1 by 12.25 % and reduced irregular curl by 4.16 %, rendering the structure more orderly. Specifically, under an alkaline condition (pH 10), CLEA-rINANE1-Fe3O4@PDA performed over 100 % of initial activity. The optimum temperature increased by 5 °C, and over 55 % of the initial activity was observed after 12 h at 55 °C. CLEA-rINANE1-Fe3O4@PDA showed over 40 % of its relative activity, whereas free rINANE1 showed <10 % in acetonitrile. In addition, the relative activity of CLEA-rINANE1-Fe3O4@PDA was retained at about 80 % after eight cycles and maintained at 109 % after 45 days. The PDA-modified magnetic ferrite nanoparticles exhibited excellent stability and recyclability, providing a new avenue for developing industrial biocatalysts.
Collapse
Affiliation(s)
- Chaocheng Luo
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yuedan Hu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Wei Xie
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China; Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China.
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
17
|
Guo W, Luo H, Cao Y, Jiang Z, Liu H, Zou J, Sheng C, Xi Y. Multi-omics research on common allergens during the ripening of pollen and poplar flocs of Populus deltoides. FRONTIERS IN PLANT SCIENCE 2023; 14:1136613. [PMID: 37396639 PMCID: PMC10313134 DOI: 10.3389/fpls.2023.1136613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023]
Abstract
Background Populus deltoides is widely cultivated in China and produces a large number of pollen and poplar flocs from March to June per year. Previous studies have found that the pollen of P. deltoides contains allergens. However, studies on the ripening mechanism of pollen/poplar flocs and their common allergens are very limited. Methods Proteomics and metabolomics were used to study the changes of proteins and metabolites in pollen and poplar flocs of P. deltoides at different developmental stages. Allergenonline database was used to identify common allergens in pollen and poplar flocs at different developmental stages. Western blot (WB) was used to detect the biological activity of common allergens between mature pollen and poplar flocs. Results In total, 1400 differently expressed proteins (DEPs) and 459 different metabolites (DMs) were identified from pollen and poplar flocs at different developmental stages. KEGG enrichment analysis showed that DEPs in pollen and poplar flocs were significantly enriched in ribosome and oxidative phosphorylation signaling pathways. The DMs in pollen are mainly involved in aminoacyl-tRNA biosynthesis and arginine biosynthesis, while the DMs in poplar flocs are mainly involved in glyoxylate and dicarboxylate metabolism. Additionally, 72 common allergens were identified in pollen and poplar flocs at different developmental stages. WB showed that there were distinct binding bands between 70 and 17KD at the two groups of allergens. Conclusions A multitude of proteins and metabolites are closely related to the ripening of pollen and poplar flocs of Populus deltoides, and they contain common allergens between mature pollen and poplar flocs.
Collapse
Affiliation(s)
- Wei Guo
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Hui Luo
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Yi Cao
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Ziyun Jiang
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Hui Liu
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Jie Zou
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Changle Sheng
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
| |
Collapse
|
18
|
Tan X, Li H, Huang W, Ma W, Lu Y, Yan R. Enzymatic acylation improves the stability and bioactivity of lutein: Protective effects of acylated lutein derivatives on L-O2 cells upon H 2O 2-induced oxidative stress. Food Chem 2023; 410:135393. [PMID: 36621337 DOI: 10.1016/j.foodchem.2023.135393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
The instability of lutein has limited its wide application especially in the food industry. In this study, enzymatic acylation of lutein with divinyl adipate was investigated. Three new acylated lutein derivatives, lutein-3-O-adipate (compound 1), lutein-3'-O-adipate (compound 2) and lutein-di-adipate (compound 3), were identified and their stabilities and bioactivates were evaluated. Notably, compounds 1-3 showed better thermal, light stability and stronger scavenging capacity to ABTS radical cation (ABTS+) and hydroxyl radical (OH). Most importantly, these acylated lutein derivatives exhibited excellent protective effects on L-O2 cells upon hydrogen peroxide (H2O2)-induced oxidative stress. In particular, the acylated lutein derivative termed compound 3 prevented cellular oxidative stress via restraining the overproduction of reactive oxygen species (ROS), thereby increasing related antioxidant enzymes activity and inhibiting apoptosis by mitochondria pathway. Our research provides important insights into the application of acylated lutein derivatives in food, cosmetic, and pharmaceutical products.
Collapse
Affiliation(s)
- Xinjia Tan
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Haimei Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China; College of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
| | - Wenjing Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Wenwen Ma
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, 117542, Singapore.
| | - Rian Yan
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China; College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
19
|
Abulfaraj AA. Relationships between some transcription factors and concordantly expressed drought stress-related genes in bread wheat. Saudi J Biol Sci 2023; 30:103652. [PMID: 37206446 PMCID: PMC10189290 DOI: 10.1016/j.sjbs.2023.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/18/2023] [Accepted: 04/09/2023] [Indexed: 05/21/2023] Open
Abstract
The challenge of climate change makes it mandatory to improve tolerance to drought stress in bread wheat (Triticum aestivum) via biotechnological approaches. Drought stress experiment was conducted followed by RNA-Seq analysis for leaves of two wheat cultivars namely Giza 168 and Gemmiza 10 with contrasting genotypes. Expression patterns of the regulated stress-related genes and concordantly expressed TFs were detected, then, validated via qPCR for two loss-of-function mutants in Arabidopsis background harboring mutated genes analogue to those in wheat. Drought-stress related genes were searched for concordantly expressed TFs and a total of eight TFs were shown to coexpress with 14 stress-related genes. Among these genes, one TF belongs to the zinc finger protein CONSTANS family and proved via qPCR to drive expression of a gene encoding a speculative TF namely zinc transporter 3-like and two other stress related genes encoding tryptophan synthase alpha chain and asparagine synthetase. Known functions of the two TFs under drought stress complement those of the two concordantly expressed stress-related genes, thus, it is likely that they are related. This study highlights the possibility to utilize metabolic engineering approaches to decipher and incorporate existing regulatory frameworks under drought stress in future breeding programs of bread wheat.
Collapse
|
20
|
Requena-Ramírez MD, Rodríguez-Suárez C, Ávila CM, Palomino C, Hornero-Méndez D, Atienza SG. Bread Wheat Biofortification for Grain Carotenoid Content by Inter-Specific Breeding. Foods 2023; 12:foods12071365. [PMID: 37048186 PMCID: PMC10092970 DOI: 10.3390/foods12071365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Bread wheat has traditionally been selected for whitish derived flours. As a consequence, the current varieties carry carotenogenic alleles associated with low grain carotenoid. In contrast, high grain yellow pigment content (YPC) has been a major target in durum wheat programs since yellow colour is an important aesthetic factor for pasta production. Phytoene synthase 1 (Psy1) genes have an important role in the determination of the carotenoid content in wheat. In this work, we have transferred the genes Psy1-A1 and Psy1-B1 from durum to bread wheat by inter-specific hybridization in order to evaluate the combined effect of these genes for the improvement of grain carotenoid content, as well as the development of carotenoid-enriched bread wheat lines. Inter-specific breeding coupled with a MAS approach based on Psy1-A1 and Psy1-B1 alleles has allowed the development of bread wheat pre-breeding lines with enhanced grain carotenoid content (16-23% mean). These biofortified lines have the potential to become new varieties or to be used as recurrent parents in bread wheat breeding programs.
Collapse
Affiliation(s)
| | | | - Carmen M Ávila
- Área Mejora y Biotecnología, IFAPA-Centro Alameda del Obispo, Apdo. 3092, E-14080 Córdoba, Spain
| | - Carmen Palomino
- Instituto de Agricultura Sostenible (CSIC), Alameda del Obispo, s/n, E-14004 Córdoba, Spain
| | - Dámaso Hornero-Méndez
- Department of Food Phytochemistry, Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Ctra de Utrera, Km 1, E-41013 Sevilla, Spain
| | - Sergio G Atienza
- Instituto de Agricultura Sostenible (CSIC), Alameda del Obispo, s/n, E-14004 Córdoba, Spain
| |
Collapse
|
21
|
Yang C, Qin J, Xie F, Zhou K, Xi W. Red light-transmittance bagging promotes carotenoid accumulation through xanthophylls esterification during the ripening of blood orange fruit. Food Chem 2023; 404:134578. [DOI: 10.1016/j.foodchem.2022.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/15/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
22
|
Genome-wide association study of lipase and esterase in wholegrain wheat flour (Triticum aestivum L.). PLoS One 2023; 18:e0282510. [PMID: 36893202 PMCID: PMC9997868 DOI: 10.1371/journal.pone.0282510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 02/16/2023] [Indexed: 03/10/2023] Open
Abstract
Lipase activity is one of the main causes of the lipid rancidity in wholegrain wheat flour, leading to its short shelf life. Genetically diverse wheat germplasm offers potential for the selection of wheat cultivars with low lipase activity for stable wholegrain end use. This study evaluated 300 European wheat cultivars harvested in 2015 and 2016 on the genetic association of lipase and esterase activities in wholegrain wheat flour. Esterase and lipase activities in wholegrain flour were measured photometrically with p-nitrophenyl butyrate and p-nitrophenyl palmitate as substrates, respectively. Both enzyme activities showed wide ranges among all cultivars within each year, with differences up to 2.5-fold. The two years showed low correlations between each other, indicating a large environmental impact on the enzyme activities. Cultivars 'Julius' and 'Bueno' were suggested to be better suited for stable wholegrain products, as they had consistently low esterase and lipase activities compared to the other cultivars. A genome-wide association study revealed associations with single nucleotide polymorphisms in genes located on the high-quality wheat genome sequence of the International Wheat Genome Sequencing Consortium. Eight and four candidate genes were tentatively proposed to be associated to esterase and lipase activity, respectively, in wholegrain flour. Our work shows esterase and lipase activities from a new perspective, that combines reverse genetics to understand the underlying causes. This study outlines the possibilities and limitations to improve lipid stability of wholegrain wheat by genomics-assisted breeding methods, thereby offering new opportunities to optimize the quality of wholegrain wheat flour and wholegrain products.
Collapse
|
23
|
Rose T, Wilkinson M, Lowe C, Xu J, Hughes D, Hassall KL, Hassani‐Pak K, Amberkar S, Noleto‐Dias C, Ward J, Heuer S. Novel molecules and target genes for vegetative heat tolerance in wheat. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:264-289. [PMID: 37284432 PMCID: PMC10168084 DOI: 10.1002/pei3.10096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 06/08/2023]
Abstract
To prevent yield losses caused by climate change, it is important to identify naturally tolerant genotypes with traits and related pathways that can be targeted for crop improvement. Here we report on the characterization of contrasting vegetative heat tolerance in two UK bread wheat varieties. Under chronic heat stress, the heat-tolerant cultivar Cadenza produced an excessive number of tillers which translated into more spikes and higher grain yield compared to heat-sensitive Paragon. RNAseq and metabolomics analyses revealed that over 5000 genotype-specific genes were differentially expressed, including photosynthesis-related genes, which might explain the observed ability of Cadenza to maintain photosynthetic rate under heat stress. Around 400 genes showed a similar heat-response in both genotypes. Only 71 genes showed a genotype × temperature interaction. As well as known heat-responsive genes such as heat shock proteins (HSPs), several genes that have not been previously linked to the heat response, particularly in wheat, have been identified, including dehydrins, ankyrin-repeat protein-encoding genes, and lipases. Contrary to primary metabolites, secondary metabolites showed a highly differentiated heat response and genotypic differences. These included benzoxazinoid (DIBOA, DIMBOA), and phenylpropanoids and flavonoids with known radical scavenging capacity, which was assessed via the DPPH assay. The most highly heat-induced metabolite was (glycosylated) propanediol, which is widely used in industry as an anti-freeze. To our knowledge, this is the first report on its response to stress in plants. The identified metabolites and candidate genes provide novel targets for the development of heat-tolerant wheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sandeep Amberkar
- Rothamsted ResearchHarpendenUK
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | | | | | - Sigrid Heuer
- Rothamsted ResearchHarpendenUK
- National Institute of Agricultural Botany (NIAB)CambridgeUK
| |
Collapse
|
24
|
Yamashiro T, Shiraishi A, Nakayama K, Satake H. Key Amino Acids for Transferase Activity of GDSL Lipases. Int J Mol Sci 2022; 23:ijms232315141. [PMID: 36499468 PMCID: PMC9736205 DOI: 10.3390/ijms232315141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The Gly-Asp-Ser-Leu (GDSL) motif of esterase/lipase family proteins (GELPs) generally exhibit esterase activity, whereas transferase activity is markedly preferred in several GELPs, including the Tanacetum cinerariifolium GDSL lipase TciGLIP, which is responsible for the biosynthesis of the natural insecticide, pyrethrin I. This transferase activity is due to the substrate affinity regulated by the protein structure and these features are expected to be conserved in transferase activity-exhibiting GELPs (tr-GELPs). In this study, we identified two amino acid residues, [N/R]208 and D484, in GELP sequence alignments as candidate key residues for the transferase activity of tr-GELPs by two-entropy analysis. Molecular phylogenetic analysis demonstrated that each tr-GELP is located in the clusters for non-tr-GELPs, and most GELPs conserve at least one of the two residues. These results suggest that the two conserved residues are required for the acquisition of transferase activity in the GELP family. Furthermore, substrate docking analyses using ColabFold-generated structure models of both natives and each of the two amino acids-mutated TciGLIPs also revealed numerous docking models for the proper access of substrates to the active site, indicating crucial roles of these residues of TciGLIP in its transferase activity. This is the first report on essential residues in tr-GELPs for the transferase activity.
Collapse
Affiliation(s)
- Takanori Yamashiro
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka 561-0827, Osaka, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Hyogo, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Souraku 619-0284, Kyoto, Japan
| | - Koji Nakayama
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka 561-0827, Osaka, Japan
| | - Honoo Satake
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Hyogo, Japan
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Souraku 619-0284, Kyoto, Japan
- Correspondence: ; Tel.: +81-5031820704
| |
Collapse
|
25
|
Sierra J, McQuinn RP, Leon P. The role of carotenoids as a source of retrograde signals: impact on plant development and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7139-7154. [PMID: 35776102 DOI: 10.1093/jxb/erac292] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Communication from plastids to the nucleus via retrograde signal cascades is essential to modulate nuclear gene expression, impacting plant development and environmental responses. Recently, a new class of plastid retrograde signals has emerged, consisting of acyclic and cyclic carotenoids and/or their degradation products, apocarotenoids. Although the biochemical identity of many of the apocarotenoid signals is still under current investigation, the examples described herein demonstrate the central roles that these carotenoid-derived signals play in ensuring plant development and survival. We present recent advances in the discovery of apocarotenoid signals and their role in various plant developmental transitions and environmental stress responses. Moreover, we highlight the emerging data exposing the highly complex signal transduction pathways underlying plastid to nucleus apocarotenoid retrograde signaling cascades. Altogether, this review summarizes the central role of the carotenoid pathway as a major source of retrograde signals in plants.
Collapse
Affiliation(s)
- Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, Ciudada de México, México
| | - Ryan P McQuinn
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Patricia Leon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, Ciudada de México, México
| |
Collapse
|
26
|
Cohen M, Hertweck K, Itkin M, Malitsky S, Dassa B, Fischer AM, Fluhr R. Enhanced proteostasis, lipid remodeling, and nitrogen remobilization define barley flag leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6816-6837. [PMID: 35918065 DOI: 10.1093/jxb/erac329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is a developmental process allowing nutrient remobilization to sink organs. We characterized flag leaf senescence at 7, 14, and 21 d past anthesis in two near-isogenic barley lines varying in the allelic state of the HvNAM1 transcription factor gene, which influences senescence timing. Metabolomics and microscopy indicated that, as senescence progressed, thylakoid lipids were transiently converted to neutral lipids accumulating in lipid droplets. Senescing leaves also exhibited an accumulation of sugars including glucose, while nitrogen compounds (nucleobases, nucleotides, and amino acids) decreased. RNA-Seq analysis suggested lipid catabolism via β-oxidation and the glyoxylate cycle, producing carbon skeletons and feeding respiration as a replacement of the diminished carbon supply from photosynthesis. Comparison of the two barley lines highlighted a more prominent up-regulation of heat stress transcription factor- and chaperone-encoding genes in the late-senescing line, suggesting a role for these genes in the control of leaf longevity. While numerous genes with putative roles in nitrogen remobilization were up-regulated in both lines, several peptidases, nucleases, and nitrogen transporters were more highly induced in the early-senescing line; this finding identifies processes and specific candidates which may affect nitrogen remobilization from senescing barley leaves, downstream of the HvNAM1 transcription factor.
Collapse
Affiliation(s)
- Maja Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Kendra Hertweck
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas M Fischer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
27
|
Cenci A, Concepción-Hernández M, Guignon V, Angenon G, Rouard M. Genome-Wide Classification and Phylogenetic Analyses of the GDSL-Type Esterase/Lipase (GELP) Family in Flowering Plants. Int J Mol Sci 2022; 23:ijms232012114. [PMID: 36292971 PMCID: PMC9602515 DOI: 10.3390/ijms232012114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
GDSL-type esterase/lipase (GELP) enzymes have key functions in plants, such as developmental processes, anther and pollen development, and responses to biotic and abiotic stresses. Genes that encode GELP belong to a complex and large gene family, ranging from tens to more than hundreds of members per plant species. To facilitate functional transfer between them, we conducted a genome-wide classification of GELP in 46 plant species. First, we applied an iterative phylogenetic method using a selected set of representative angiosperm genomes (three monocots and five dicots) and identified 10 main clusters, subdivided into 44 orthogroups (OGs). An expert curation for gene structures, orthogroup composition, and functional annotation was made based on a literature review. Then, using the HMM profiles as seeds, we expanded the classification to 46 plant species. Our results revealed the variable evolutionary dynamics between OGs in which some expanded, mostly through tandem duplications, while others were maintained as single copies. Among these, dicot-specific clusters and specific amplifications in monocots and wheat were characterized. This approach, by combining manual curation and automatic identification, was effective in characterizing a large gene family, allowing the establishment of a classification framework for gene function transfer and a better understanding of the evolutionary history of GELP.
Collapse
Affiliation(s)
- Alberto Cenci
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
- Correspondence: (A.C.); (M.R.)
| | - Mairenys Concepción-Hernández
- Instituto de Biotecnología de las Plantas, Universidad Central “Marta Abreu” de Las Villas (UCLV), Carretera a Camajuaní km 5.5, Santa Clara C.P. 54830, Villa Clara, Cuba
- Research Group Plant Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Valentin Guignon
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | - Geert Angenon
- Research Group Plant Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
- Correspondence: (A.C.); (M.R.)
| |
Collapse
|
28
|
Requena-Ramírez MD, Rodríguez-Suárez C, Flores F, Hornero-Méndez D, Atienza SG. Marker-Trait Associations for Total Carotenoid Content and Individual Carotenoids in Durum Wheat Identified by Genome-Wide Association Analysis. PLANTS 2022; 11:plants11152065. [PMID: 35956543 PMCID: PMC9370666 DOI: 10.3390/plants11152065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022]
Abstract
Yellow pigment content is one of the main traits considered for grain quality in durum wheat (Triticum turgidum L.). The yellow color is mostly determined by carotenoid pigments, lutein being the most abundant in wheat endosperm, although zeaxanthin, α-carotene and β-carotene are present in minor quantities. Due to the importance of carotenoids in human health and grain quality, modifying the carotenoid content and profile has been a classic target. Landraces are then a potential source for the variability needed for wheat breeding. In this work, 158 accessions of the Spanish durum wheat collection were characterized for carotenoid content and profile and genotyped using the DArTSeq platform for association analysis. A total of 28 marker-trait associations were identified and their co-location with previously described QTLs and candidate genes was studied. The results obtained confirm the importance of the widely described QTL in 7B and validate the QTL regions recently identified by haplotype analysis for the semolina pigment. Additionally, copies of the Zds and Psy genes on chromosomes 7B and 5B, respectively, may have a putative role in determining zeaxanthin content. Finally, genes for the methylerythritol 4-phosphate (MEP) and isopentenyl diphosphate (IPPI) carotenoid precursor pathways were revealed as additional sources of untapped variation for carotenoid improvement.
Collapse
Affiliation(s)
| | | | - Fernando Flores
- Departamento de Ciencias Agroforestales, E.T.S.I. Campus El Carmen, Universidad de Huelva, Avda. Fuerzas Armadas, S/N, 21007 Huelva, Spain
| | - Dámaso Hornero-Méndez
- Departamento de Fitoquímica de los Alimentos, Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Ctra de Utrera, Km 1, 41013 Sevilla, Spain
| | - Sergio G. Atienza
- Instituto de Agricultura Sostenible (CSIC), Alameda del Obispo, S/N, 14004 Córdoba, Spain
- Correspondence:
| |
Collapse
|
29
|
Transgenic manipulation of triacylglycerol biosynthetic enzymes in B. napus alters lipid-associated gene expression and lipid metabolism. Sci Rep 2022; 12:3352. [PMID: 35233071 PMCID: PMC8888550 DOI: 10.1038/s41598-022-07387-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/17/2022] [Indexed: 12/18/2022] Open
Abstract
Oilseed rape (Brassica napus) is an important crop that is cultivated for the oil (mainly triacylglycerol; TAG) it produces in its seeds. TAG synthesis is controlled mainly by key enzymes in the Kennedy pathway, such as glycerol 3-phosphate acyltransferase (GPAT), lysophosphatidate acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) but can also be produced from phosphoglycerides such as phosphatidylcholine (PC) by the activity of the enzyme phospholipid: diacylglycerol acyltransferase (PDAT). To evaluate the potential for these enzymes to alter oil yields or composition, we analysed transgenic B. napus lines which overexpressed GPAT, LPAT or PDAT using heterologous transgenes from Arabidopsis and Nasturtium and examined lipid profiles and changes in gene expression in these lines compared to WT. Distinct changes in PC and TAG abundance and spatial distribution in embryonic tissues were observed in some of the transgenic lines, together with altered expression of genes involved generally in acyl-lipid metabolism. Overall our results show that up-regulation of these key enzymes differentially affects lipid composition and distribution as well as lipid-associated gene expression, providing important information which could be used to improve crop properties by metabolic engineering.
Collapse
|
30
|
Shen G, Sun W, Chen Z, Shi L, Hong J, Shi J. Plant GDSL Esterases/Lipases: Evolutionary, Physiological and Molecular Functions in Plant Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040468. [PMID: 35214802 PMCID: PMC8880598 DOI: 10.3390/plants11040468] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/02/2022] [Accepted: 02/04/2022] [Indexed: 05/14/2023]
Abstract
GDSL esterases/lipases (GELPs), present throughout all living organisms, have been a very attractive research subject in plant science due mainly to constantly emerging properties and functions in plant growth and development under both normal and stressful conditions. This review summarizes the advances in research on plant GELPs in several model plants and crops, including Arabidopsis, rice, maize and tomato, while focusing on the roles of GELPs in regulating plant development and plant-environment interactions. In addition, the possible regulatory network and mechanisms of GELPs have been discussed.
Collapse
|
31
|
Kapoor L, Simkin AJ, George Priya Doss C, Siva R. Fruit ripening: dynamics and integrated analysis of carotenoids and anthocyanins. BMC PLANT BIOLOGY 2022; 22:27. [PMID: 35016620 PMCID: PMC8750800 DOI: 10.1186/s12870-021-03411-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/21/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Fruits are vital food resources as they are loaded with bioactive compounds varying with different stages of ripening. As the fruit ripens, a dynamic color change is observed from green to yellow to red due to the biosynthesis of pigments like chlorophyll, carotenoids, and anthocyanins. Apart from making the fruit attractive and being a visual indicator of the ripening status, pigments add value to a ripened fruit by making them a source of nutraceuticals and industrial products. As the fruit matures, it undergoes biochemical changes which alter the pigment composition of fruits. RESULTS The synthesis, degradation and retention pathways of fruit pigments are mediated by hormonal, genetic, and environmental factors. Manipulation of the underlying regulatory mechanisms during fruit ripening suggests ways to enhance the desired pigments in fruits by biotechnological interventions. Here we report, in-depth insight into the dynamics of a pigment change in ripening and the regulatory mechanisms in action. CONCLUSIONS This review emphasizes the role of pigments as an asset to a ripened fruit as they augment the nutritive value, antioxidant levels and the net carbon gain of fruits; pigments are a source for fruit biofortification have tremendous industrial value along with being a tool to predict the harvest. This report will be of great utility to the harvesters, traders, consumers, and natural product divisions to extract the leading nutraceutical and industrial potential of preferred pigments biosynthesized at different fruit ripening stages.
Collapse
Affiliation(s)
- Leepica Kapoor
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Andrew J Simkin
- School of Biosciences, University of Kent, United Kingdom, Canterbury, CT2 7NJ, UK
| | - C George Priya Doss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ramamoorthy Siva
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
32
|
Understanding carotenoid biosynthetic pathway control points using metabolomic analysis and natural genetic variation. Methods Enzymol 2022; 671:127-151. [DOI: 10.1016/bs.mie.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Rodríguez-Suárez C, Requena-Ramírez MD, Hornero-Méndez D, Atienza SG. The breeder's tool-box for enhancing the content of esterified carotenoids in wheat: From extraction and profiling of carotenoids to marker-assisted selection of candidate genes. Methods Enzymol 2022; 671:99-125. [DOI: 10.1016/bs.mie.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Lewis ER, Nogueira M, Enfissi EMA, Fraser PD. The esterification of xanthophylls in Solanum lycopersicum (tomato) chromoplasts; the role of a non-specific acyltransferase. PHYTOCHEMISTRY 2021; 191:112912. [PMID: 34450419 DOI: 10.1016/j.phytochem.2021.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The esterification of carotenoids has been associated with high-level accumulation, greater stability and potentially improved dietary bioavailability. Engineering the formation of ketocarotenoids into tomato fruit has resulted in the esterification of these non-endogenous metabolites. A genotype of tomato was created that contains; (i) the mutant pale yellow petal (pyp)1-1 allele, which is responsible for the absence of carotenoid esters in tomato flowers and (ii) the heterologous enzymes for ketocarotenoid formation. Analysis of the resulting progeny showed altered quantitative and qualitative differences in esterified carotenoids. For example, in ripe fruit tissues, in the presence of the pyp mutant allele, non-endogenous ketocarotenoid esters were absent while their free forms accumulated. These data demonstrate the involvement of the PYP gene product in the esterification of diverse xanthophylls.
Collapse
Affiliation(s)
- Esther R Lewis
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Marilise Nogueira
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Eugenia M A Enfissi
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
35
|
Zafar J, Aqeel A, Shah FI, Ehsan N, Gohar UF, Moga MA, Festila D, Ciurea C, Irimie M, Chicea R. Biochemical and Immunological implications of Lutein and Zeaxanthin. Int J Mol Sci 2021; 22:10910. [PMID: 34681572 PMCID: PMC8535525 DOI: 10.3390/ijms222010910] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 12/21/2022] Open
Abstract
Throughout history, nature has been acknowledged for being a primordial source of various bioactive molecules in which human macular carotenoids are gaining significant attention. Among 750 natural carotenoids, lutein, zeaxanthin and their oxidative metabolites are selectively accumulated in the macular region of living beings. Due to their vast applications in food, feed, pharmaceutical and nutraceuticals industries, the global market of lutein and zeaxanthin is continuously expanding but chemical synthesis, extraction and purification of these compounds from their natural repertoire e.g., plants, is somewhat costly and technically challenging. In this regard microbial as well as microalgal carotenoids are considered as an attractive alternative to aforementioned challenges. Through the techniques of genetic engineering and gene-editing tools like CRISPR/Cas9, the overproduction of lutein and zeaxanthin in microorganisms can be achieved but the commercial scale applications of such procedures needs to be done. Moreover, these carotenoids are highly unstable and susceptible to thermal and oxidative degradation. Therefore, esterification of these xanthophylls and microencapsulation with appropriate wall materials can increase their shelf-life and enhance their application in food industry. With their potent antioxidant activities, these carotenoids are emerging as molecules of vital importance in chronic degenerative, malignancies and antiviral diseases. Therefore, more research needs to be done to further expand the applications of lutein and zeaxanthin.
Collapse
Affiliation(s)
- Javaria Zafar
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Naureen Ehsan
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Marius Alexandru Moga
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (M.A.M.); (M.I.)
| | - Dana Festila
- Radiology and Maxilo Facial Surgery Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (M.A.M.); (M.I.)
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (M.A.M.); (M.I.)
| | - Radu Chicea
- Faculty of Medicine, “Lucian Blaga” University, 550169 Sibiu, Romania;
| |
Collapse
|
36
|
Xie Y, Chen S, Xiong X. Metabolic Engineering of Non-carotenoid-Producing Yeast Yarrowia lipolytica for the Biosynthesis of Zeaxanthin. Front Microbiol 2021; 12:699235. [PMID: 34690947 PMCID: PMC8529107 DOI: 10.3389/fmicb.2021.699235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/30/2021] [Indexed: 01/29/2023] Open
Abstract
Zeaxanthin is vital to human health; thus, its production has received much attention, and it is also an essential precursor for the biosynthesis of other critical carotenoids such as astaxanthin and crocetin. Yarrowia lipolytica is one of the most intensively studied non-conventional yeasts and has been genetically engineered as a cell factory to produce carotenoids such as lycopene and β-carotene. However, zeaxanthin production by Y. lipolytica has not been well investigated. To fill this gap, β-carotene biosynthesis pathway has been first constructed in this study by the expression of genes, including crtE, crtB, crtI, and carRP. Three crtZ genes encoding β-carotene hydroxylase from different organisms were individually introduced into β-carotene-producing Y. lipolytica to evaluate their performance for producing zeaxanthin. The expression of crtZ from the bacterium Pantoea ananatis (formerly Erwinia uredovora, Eu-crtZ) resulted in the highest zeaxanthin titer and content on the basis of dry cell weight (DCW). After verifying the function of Eu-crtZ for producing zeaxanthin, the high-copy-number integration into the ribosomal DNA of Y. lipolytica led to a 4.02-fold increase in the titer of zeaxanthin and a 721% increase in the content of zeaxanthin. The highest zeaxanthin titer achieved 21.98 ± 1.80 mg/L by the strain grown on a yeast extract peptone dextrose (YPD)-rich medium. In contrast, the highest content of DCW reached 3.20 ± 0.11 mg/g using a synthetic yeast nitrogen base (YNB) medium to culture the cells. Over 18.0 g/L of citric acid was detected in the supernatant of the YPD medium at the end of cultivation. Furthermore, the zeaxanthin-producing strains still accumulated a large amount of lycopene and β-carotene. The results demonstrated the potential of a cell factory for zeaxanthin biosynthesis and opened up an avenue to engineer this host for the overproduction of carotenoids.
Collapse
Affiliation(s)
| | | | - Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| |
Collapse
|
37
|
Xiao C, Guo H, Tang J, Li J, Yao X, Hu H. Expression Pattern and Functional Analyses of Arabidopsis Guard Cell-Enriched GDSL Lipases. FRONTIERS IN PLANT SCIENCE 2021; 12:748543. [PMID: 34621289 PMCID: PMC8490726 DOI: 10.3389/fpls.2021.748543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 05/27/2023]
Abstract
There are more than 100 GDSL lipases in Arabidopsis, but only a few members have been functionally investigated. Moreover, no reports have ever given a comprehensive analysis of GDSLs in stomatal biology. Here, we systematically investigated the expression patterns of 19 putative Guard-cell-enriched GDSL Lipases (GGLs) at various developmental stages and in response to hormone and abiotic stress treatments. Gene expression analyses showed that these GGLs had diverse expression patterns. Fifteen GGLs were highly expressed in guard cells, with seven preferentially in guard cells. Most GGLs were localized in endoplasmic reticulum, and some were also localized in lipid droplets and nucleus. Some closely homologous GGLs exhibited similar expression patterns at various tissues and in response to hormone and abiotic stresses, or similar subcellular localization, suggesting the correlation of expression pattern and biological function, and the functional redundancy of GGLs in plant development and environmental adaptations. Further phenotypic identification of ggl mutants revealed that GGL7, GGL14, GGL22, and GGL26 played unique and redundant roles in stomatal dynamics, stomatal density and morphology, and plant water relation. The present study provides unique resources for functional insights into these GGLs to control stomatal dynamics and development, plant growth, and adaptation to the environment.
Collapse
Affiliation(s)
- Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huimin Guo
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Tang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaying Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuan Yao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
38
|
Torres-Montilla S, Rodriguez-Concepcion M. Making extra room for carotenoids in plant cells: New opportunities for biofortification. Prog Lipid Res 2021; 84:101128. [PMID: 34530006 DOI: 10.1016/j.plipres.2021.101128] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022]
Abstract
Plant carotenoids are essential for photosynthesis and photoprotection and provide colors in the yellow to red range to non-photosynthetic organs such as petals and ripe fruits. They are also the precursors of biologically active molecules not only in plants (including hormones and retrograde signals) but also in animals (including retinoids such as vitamin A). A carotenoid-rich diet has been associated with improved health and cognitive capacity in humans, whereas the use of carotenoids as natural pigments is widespread in the agrofood and cosmetic industries. The nutritional and economic relevance of carotenoids has spurred a large number of biotechnological strategies to enrich plant tissues with carotenoids. Most of such approaches to alter carotenoid contents in plants have been focused on manipulating their biosynthesis or degradation, whereas improving carotenoid sink capacity in plant tissues has received much less attention. Our knowledge on the molecular mechanisms influencing carotenoid storage in plants has substantially grown in the last years, opening new opportunities for carotenoid biofortification. Here we will review these advances with a particular focus on those creating extra room for carotenoids in plant cells either by promoting the differentiation of carotenoid-sequestering structures within plastids or by transferring carotenoid production to the cytosol.
Collapse
Affiliation(s)
- Salvador Torres-Montilla
- Institute for Plant Molecular and Cell Biology (IBMCP), Agencia Estatal Consejo Superior de Investigaciones Cientificas - Universitat Politècnica de València, 46022 Valencia, Spain
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), Agencia Estatal Consejo Superior de Investigaciones Cientificas - Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
39
|
Sun T, Zhu Q, Wei Z, Owens LA, Fish T, Kim H, Thannhauser TW, Cahoon EB, Li L. Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Arabidopsis seeds. ABIOTECH 2021; 2:191-214. [PMID: 36303886 PMCID: PMC9590580 DOI: 10.1007/s42994-021-00046-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023]
Abstract
Staple grains with low levels of provitamin A carotenoids contribute to the global prevalence of vitamin A deficiency and therefore are the main targets for provitamin A biofortification. However, carotenoid stability during both seed maturation and postharvest storage is a serious concern for the full benefits of carotenoid biofortified grains. In this study, we utilized Arabidopsis as a model to establish carotenoid biofortification strategies in seeds. We discovered that manipulation of carotenoid biosynthetic activity by seed-specific expression of Phytoene synthase (PSY) increases both provitamin A and total carotenoid levels but the increased carotenoids are prone to degradation during seed maturation and storage, consistent with previous studies of provitamin A biofortified grains. In contrast, stacking with Orange (OR His ), a gene that initiates chromoplast biogenesis, dramatically enhances provitamin A and total carotenoid content and stability. Up to 65- and 10-fold increases of β-carotene and total carotenoids, respectively, with provitamin A carotenoids composing over 63% were observed in the seeds containing OR His and PSY. Co-expression of Homogentisate geranylgeranyl transferase (HGGT) with OR His and PSY further increases carotenoid accumulation and stability during seed maturation and storage. Moreover, knocking-out of β-carotene hydroxylase 2 (BCH2) by CRISPR/Cas9 not only potentially facilitates β-carotene accumulation but also minimizes the negative effect of carotenoid over production on seed germination. Our findings provide new insights into various processes on carotenoid accumulation and stability in seeds and establish a multiplexed strategy to simultaneously target carotenoid biosynthesis, turnover, and stable storage for carotenoid biofortification in crop seeds. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00046-1.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA.,Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Qinlong Zhu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Ziqing Wei
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Lauren A Owens
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Hyojin Kim
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA.,Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
40
|
Menkir A, Dieng I, Mengesha W, Meseka S, Maziya-Dixon B, Alamu OE, Bossey B, Muhyideen O, Ewool M, Coulibaly MM. Unravelling the Effect of Provitamin A Enrichment on Agronomic Performance of Tropical Maize Hybrids. PLANTS 2021; 10:plants10081580. [PMID: 34451625 PMCID: PMC8398423 DOI: 10.3390/plants10081580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 07/29/2021] [Indexed: 01/15/2023]
Abstract
Maize is consumed in different traditional diets as a source of macro- and micro-nutrients across Africa. Significant investment has thus been made to develop maize with high provitamin A content to complement other interventions for alleviating vitamin A deficiencies. The current breeding focus on increasing β-carotene levels to develop biofortified maize may affect the synthesis of other beneficial carotenoids. The changes in carotenoid profiles, which are commonly affected by environmental factors, may also lead to a trade-off with agronomic performance. The present study was therefore conducted to evaluate provitamin A biofortified maize hybrids across diverse field environments. The results showed that the difference in accumulating provitamin A and other beneficial carotenoids across variable growing environments was mainly regulated by the genetic backgrounds of the hybrids. Many hybrids, accumulating more than 10 µg/g of provitamin A, produced higher grain yields (>3600 kg/ha) than the orange commercial maize hybrid (3051 kg/ha). These hybrids were also competitive, compared to the orange commercial maize hybrid, in accumulating lutein and zeaxanthins. Our study showed that breeding for enhanced provitamin A content had no adverse effect on grain yield in the biofortified hybrids evaluated in the regional trials. Furthermore, the results highlighted the possibility of developing broadly adapted hybrids containing high levels of beneficial carotenoids for commercialization in areas with variable maize growing conditions in Africa.
Collapse
Affiliation(s)
- Abebe Menkir
- International Institute of Tropical Agriculture, Oyo Road, Ibadan PMP 5320, Nigeria; (I.D.); (W.M.); (S.M.); (B.M.-D.); (O.E.A.); (B.B.)
- Correspondence:
| | - Ibnou Dieng
- International Institute of Tropical Agriculture, Oyo Road, Ibadan PMP 5320, Nigeria; (I.D.); (W.M.); (S.M.); (B.M.-D.); (O.E.A.); (B.B.)
| | - Wende Mengesha
- International Institute of Tropical Agriculture, Oyo Road, Ibadan PMP 5320, Nigeria; (I.D.); (W.M.); (S.M.); (B.M.-D.); (O.E.A.); (B.B.)
| | - Silvestro Meseka
- International Institute of Tropical Agriculture, Oyo Road, Ibadan PMP 5320, Nigeria; (I.D.); (W.M.); (S.M.); (B.M.-D.); (O.E.A.); (B.B.)
| | - Bussie Maziya-Dixon
- International Institute of Tropical Agriculture, Oyo Road, Ibadan PMP 5320, Nigeria; (I.D.); (W.M.); (S.M.); (B.M.-D.); (O.E.A.); (B.B.)
| | - Oladeji Emmanuel Alamu
- International Institute of Tropical Agriculture, Oyo Road, Ibadan PMP 5320, Nigeria; (I.D.); (W.M.); (S.M.); (B.M.-D.); (O.E.A.); (B.B.)
| | - Bunmi Bossey
- International Institute of Tropical Agriculture, Oyo Road, Ibadan PMP 5320, Nigeria; (I.D.); (W.M.); (S.M.); (B.M.-D.); (O.E.A.); (B.B.)
| | - Oyekunle Muhyideen
- Institute for Agricultural Research, Ahmadu Bello University, Zaria PMB 1044, Nigeria;
| | - Manfred Ewool
- Crop Research Institute, Kumasi P.O. Box 3789, Ghana;
| | | |
Collapse
|
41
|
Chen J, Xue M, Liu H, Fernie AR, Chen W. Exploring the genic resources underlying metabolites through mGWAS and mQTL in wheat: From large-scale gene identification and pathway elucidation to crop improvement. PLANT COMMUNICATIONS 2021; 2:100216. [PMID: 34327326 PMCID: PMC8299079 DOI: 10.1016/j.xplc.2021.100216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 05/23/2023]
Abstract
Common wheat (Triticum aestivum L.) is a leading cereal crop, but has lagged behind with respect to the interpretation of the molecular mechanisms of phenotypes compared with other major cereal crops such as rice and maize. The recently available genome sequence of wheat affords the pre-requisite information for efficiently exploiting the potential molecular resources for decoding the genetic architecture of complex traits and identifying valuable breeding targets. Meanwhile, the successful application of metabolomics as an emergent large-scale profiling methodology in several species has demonstrated this approach to be accessible for reaching the above goals. One such productive avenue is combining metabolomics approaches with genetic designs. However, this trial is not as widespread as that for sequencing technologies, especially when the acquisition, understanding, and application of metabolic approaches in wheat populations remain more difficult and even arguably underutilized. In this review, we briefly introduce the techniques used in the acquisition of metabolomics data and their utility in large-scale identification of functional candidate genes. Considerable progress has been made in delivering improved varieties, suggesting that the inclusion of information concerning these metabolites and genes and metabolic pathways enables a more explicit understanding of phenotypic traits and, as such, this procedure could serve as an -omics-informed roadmap for executing similar improvement strategies in wheat and other species.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyun Xue
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
42
|
Metabolic Control of Gametophore Shoot Formation through Arginine in the Moss Physcomitrium patens. Cell Rep 2021; 32:108127. [PMID: 32905770 DOI: 10.1016/j.celrep.2020.108127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/20/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Shoot formation is accompanied by active cell proliferation and expansion, requiring that metabolic state adapts to developmental control. Despite the importance of such metabolic reprogramming, it remains unclear how development and metabolism are integrated. Here, we show that disruption of ANGUSTIFOLIA3 orthologs (PpAN3s) compromises gametophore shoot formation in the moss Physcomitrium patens due to defective cell proliferation and expansion. Trans-omics analysis reveals that the downstream activity of PpAN3 is linked to arginine metabolism. Elevating arginine level by chemical treatment leads to stunted gametophores and causes Ppan3 mutant-like transcriptional changes in the wild-type plant. Furthermore, ectopic expression of AtAN3 from Arabidopsis thaliana ameliorates the defective arginine metabolism and promotes gametophore formation in Ppan3 mutants. Together, these findings indicate that arginine metabolism is a key pathway associated with gametophore formation and provide evolutionary insights into the establishment of the shoot system in land plants through the integration of developmental and metabolic processes.
Collapse
|
43
|
Ávila CM, Rodríguez-Suárez C, Atienza SG. Tritordeum: Creating a New Crop Species-The Successful Use of Plant Genetic Resources. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10051029. [PMID: 34065483 PMCID: PMC8161160 DOI: 10.3390/plants10051029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 05/09/2023]
Abstract
Hexaploid tritordeum is the amphiploid derived from the cross between the wild barley Hordeum chilense and durum wheat. This paper reviews the main advances and achievements in the last two decades that led to the successful development of tritordeum as a new crop. In particular, we summarize the progress in breeding for agronomic performance, including the potential of tritordeum as a genetic bridge for wheat breeding; the impact of molecular markers in genetic studies and breeding; and the progress in quality and development of innovative food products. The success of tritordeum as a crop shows the importance of the effective utilization of plant genetic resources for the development of new innovative products for agriculture and industry. Considering that wild plant genetic resources have made possible the development of this new crop, the huge potential of more accessible resources, such as landraces conserved in gene banks, goes beyond being sources of resistance to biotic and abiotic stresses. In addition, the positive result of tritordeum also shows the importance of adequate commercialization strategies and demonstrative experiences aimed to integrate the whole food chain, from producers to end-point sellers, in order to develop new products for consumers.
Collapse
Affiliation(s)
- Carmen M. Ávila
- Área Genómica y Biotecnología, IFAPA—Centro Alameda del Obispo, Apdo 3092, 14080 Córdoba, Spain;
| | | | - Sergio G. Atienza
- Instituto de Agricultura Sostenible (CSIC), Alameda del Obispo, s/n, E-14004 Córdoba, Spain;
- Correspondence:
| |
Collapse
|
44
|
Lipoxygenase in Wheat: Genetic Control and Impact on Stability of Lutein and Lutein Esters. Foods 2021; 10:foods10051149. [PMID: 34065461 PMCID: PMC8160724 DOI: 10.3390/foods10051149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Preservation of lutein concentrations in wheat-based end-products during processing is important both for product quality and nutritional value. A key constituent involved in lutein degradation is endogenous lipoxygenase. Lutein and lutein ester concentrations were compared at intervals during storage of noodle sheets prepared from flour of wheat varieties representing a range in lipoxygenase activity, as well as in different mill streams and in different grain tissues. Higher lipoxygenase concentration was associated with an increased loss of free lutein and lutein mono-esters whereas lutein diesters appeared to be more resistant to degradation. Lutein degradation was reduced in the presence of a lipoxygenase inhibitor, when noodle sheets were heated to destroy enzyme activity or when pH was increased. In addition, three populations were used to investigate the genetic control of lipoxygenase. A previously reported mutation of Lpx-B1.1 was associated with a reduction in activity from high to intermediate whilst a new locus on chromosome 4D was associated with variation between intermediate and near-zero. The gene underlying the 4D locus is a putative lipoxygenase. Stability of lutein could be improved by deployment of the mutations at the 4B and 4D loci and/or by post-harvest storage of grain under conditions that promote esterification.
Collapse
|
45
|
Zhang Y, Ye Y, Bai F, Liu J. The oleaginous astaxanthin-producing alga Chromochloris zofingiensis: potential from production to an emerging model for studying lipid metabolism and carotenogenesis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:119. [PMID: 33992124 PMCID: PMC8126118 DOI: 10.1186/s13068-021-01969-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 05/05/2023]
Abstract
The algal lipids-based biodiesel, albeit having advantages over plant oils, still remains high in the production cost. Co-production of value-added products with lipids has the potential to add benefits and is thus believed to be a promising strategy to improve the production economics of algal biodiesel. Chromochloris zofingiensis, a unicellular green alga, has been considered as a promising feedstock for biodiesel production because of its robust growth and ability of accumulating high levels of triacylglycerol under multiple trophic conditions. This alga is also able to synthesize high-value keto-carotenoids and has been cited as a candidate producer of astaxanthin, the strongest antioxidant found in nature. The concurrent accumulation of triacylglycerol and astaxanthin enables C. zofingiensis an ideal cell factory for integrated production of the two compounds and has potential to improve algae-based production economics. Furthermore, with the advent of chromosome-level whole genome sequence and genetic tools, C. zofingiensis becomes an emerging model for studying lipid metabolism and carotenogenesis. In this review, we summarize recent progress on the production of triacylglycerol and astaxanthin by C. zofingiensis. We also update our understanding in the distinctive molecular mechanisms underlying lipid metabolism and carotenogenesis, with an emphasis on triacylglycerol and astaxanthin biosynthesis and crosstalk between the two pathways. Furthermore, strategies for trait improvements are discussed regarding triacylglycerol and astaxanthin synthesis in C. zofingiensis.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Ying Ye
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Fan Bai
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
46
|
Challenges and Potential in Increasing Lutein Content in Microalgae. Microorganisms 2021; 9:microorganisms9051068. [PMID: 34063406 PMCID: PMC8156089 DOI: 10.3390/microorganisms9051068] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
Research on enhancing lutein content in microalgae has made significant progress in recent years. However, strategies are needed to address the possible limitations of microalgae as practical lutein producers. The capacity of lutein sequestration may determine the upper limit of cellular lutein content. The preliminary estimation presented in this work suggests that the lutein sequestration capacity of the light-harvesting complex (LHC) of microalgae is most likely below 2% on the basis of dry cell weight (DCW). Due to its nature as a structural pigment, higher lutein content might interfere with the LHC in fulfilling photosynthetic functions. Storing lutein in a lipophilic environment is a mechanism for achieving high lutein content but several critical barriers must be overcome such as lutein degradation and access to lipid droplet to be stored through esterification. Understanding the mechanisms underlying lipid droplet biogenesis in chloroplasts, as well as carotenoid trafficking through chloroplast membranes and carotenoid esterification, may provide insight for new approaches to achieve high lutein contents in algae. In the meantime, building the machinery for esterification and sequestration of lutein and other hydroxyl-carotenoids in model microorganisms, such as yeast, with synthetic biology technology provides a promising option.
Collapse
|
47
|
Integrative Analysis of Transcriptome and Metabolome Reveals Salt Stress Orchestrating the Accumulation of Specialized Metabolites in Lycium barbarum L. Fruit. Int J Mol Sci 2021; 22:ijms22094414. [PMID: 33922536 PMCID: PMC8122869 DOI: 10.3390/ijms22094414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Salt stress seriously affects yield and quality of crops. The fruit of Lycium barbarum (LBF) is extensively used as functional food due to its rich nutrient components. It remains unclear how salt stress influences the quality of LBF. In this study, we identified 71 differentially accumulated metabolites (DAMs) and 1396 differentially expressed genes (DEGs) among ripe LBF with and without 300 mM of NaCl treatment. Pearson correlation analysis indicated that the metabolomic changes caused by salt stress were strongly related to oxidoreductases; hydrolases; and modifying enzymes, in particular, acyltransferases, methyltransferases and glycosyltransferases. Further analysis revealed that salt stress facilitated flavonoid glycosylation and carotenoid esterification by boosting the expression of structural genes in the biosynthetic pathways. These results suggested that salt stress prompts the modification of flavonoids and carotenoids to alleviate ROS damage, which in turn improves the quality of LBF. Our results lay a solid foundation for uncovering the underlying molecular mechanism of salt stress orchestrating LBF quality, and the candidate genes identified will be a valuable gene resource for genetic improvement of L. barbarum.
Collapse
|
48
|
Requena-Ramírez MD, Hornero-Méndez D, Rodríguez-Suárez C, Atienza SG. Durum Wheat ( Triticum durum L.) Landraces Reveal Potential for the Improvement of Grain Carotenoid Esterification in Breeding Programs. Foods 2021; 10:foods10040757. [PMID: 33918139 PMCID: PMC8067221 DOI: 10.3390/foods10040757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Carotenoids are essential in the human diet for their important functions in health. Besides, they are responsible for the yellow pigments desirable for industrial quality in durum wheat. The remarkable carotenoid content of durum wheat endosperm is mostly due to lutein. However, lutein esters have not been previously detected in durum wheat as in other cereals such as common wheat, tritordeum or Hordeum chilense. Esterification increases carotenoid stability and allows greater retention and accumulation through the food chain. Therefore, carotenoid esterification is revealed as a new key target in breeding. We characterized the carotenoid profile of 156 accessions of the Spanish durum wheat collection, searching for landraces with esterification ability. Interestingly, four accessions produced lutein monoesters and diesters. Also, traces of lutein monoesters were detected in eleven accessions. The identification of the first durum wheat accessions with esterification ability reported herein is a remarkable advance for carotenoid biofortification. Furthermore, variation for the relative content of zeaxanthin, α-carotene and β-carotene was also observed. This diversity for the β,ε and β,β branches of the carotenogenic pathway also represents a new opportunity for breeding for specific carotenoids in biofortification programs.
Collapse
Affiliation(s)
| | - Dámaso Hornero-Méndez
- Department of Food Phytochemistry, Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Ctra de Utrera, Km 1, E-41013 Sevilla, Spain;
| | - Cristina Rodríguez-Suárez
- Instituto de Agricultura Sostenible (CSIC), Alameda del Obispo, s/n, E-14004 Córdoba, Spain; (M.D.R.-R.); (C.R.-S.)
| | - Sergio G. Atienza
- Instituto de Agricultura Sostenible (CSIC), Alameda del Obispo, s/n, E-14004 Córdoba, Spain; (M.D.R.-R.); (C.R.-S.)
- Correspondence:
| |
Collapse
|
49
|
Requena-Ramírez MD, Atienza SG, Hornero-Méndez D, Rodríguez-Suárez C. Mediation of a GDSL Esterase/Lipase in Carotenoid Esterification in Tritordeum Suggests a Common Mechanism of Carotenoid Esterification in Triticeae Species. FRONTIERS IN PLANT SCIENCE 2020; 11:592515. [PMID: 33746990 PMCID: PMC7971304 DOI: 10.3389/fpls.2020.592515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/24/2020] [Indexed: 05/24/2023]
Abstract
Carotenoids are essential in human diet, so that the development of programs toward carotenoid enhancement has been promoted in several crops. The cereal tritordeum, the amphiploid derived from the cross between Hordeum chilense Roem. et Schulz. and durum wheat has a remarkable carotenoid content in the endosperm. Besides, a high proportion of these carotenoids are esterified with fatty acids. The identification of the gene(s) responsible for xanthophyll esterification would be useful for breeding as esterified carotenoids show an increased ability to accumulate within plant cells and have a higher stability during post-harvest storage. In this work, we analyzed five genes identified as candidates for coding the xanthophyll acyltransferase (XAT) enzyme responsible for lutein esterification in H. chilense genome. All these genes were expressed during grain development in tritordeum, but only HORCH7HG021460 was highly upregulated. Sequence analysis of HORCH7HG021460 revealed a G-to-T transversion, causing a Glycine to Cysteine substitution in the protein of H290 (the only accession not producing quantifiable amounts of lutein esters, hereinafter referred as zero-ester) of H. chilense compared to the esterifying genotypes. An allele-specific marker was designed for the SNP detection in the H. chilense diversity panel. From the 93 accessions, only H290 showed the T allele and the zero-ester phenotype. Furthermore, HORCH7HG021460 is the orthologue of XAT-7D, which encodes a XAT enzyme responsible for carotenoid esterification in wheat. Thus, HORCH7HG021460 (XAT-7Hch) is a strong candidate for lutein esterification in H. chilense and tritordeum, suggesting a common mechanism of carotenoid esterification in Triticeae species. The transference of XAT-7Hch to wheat may be useful for the enhancement of lutein esters in biofortification programs.
Collapse
Affiliation(s)
| | - Sergio G. Atienza
- Instituto de Agricultura Sostenible ‐ Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - Dámaso Hornero-Méndez
- Department of Food Phytochemistry, Instituto de la Grasa ‐ Consejo Superior de Investigaciones Científicas, Campus Universidad Pablo de Olavide, Seville, Spain
| | - Cristina Rodríguez-Suárez
- Instituto de Agricultura Sostenible ‐ Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| |
Collapse
|
50
|
Zacarías-García J, Lux PE, Carle R, Schweiggert RM, Steingass CB, Zacarías L, Rodrigo MJ. Characterization of the Pale Yellow Petal/Xanthophyll Esterase gene family in citrus as candidates for carotenoid esterification in fruits. Food Chem 2020; 342:128322. [PMID: 33092926 DOI: 10.1016/j.foodchem.2020.128322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
Abstract
In orange-pigmented citrus fruits, the xanthophyll esters are the predominant carotenoids, but their biosynthetic origin is currently unknown. In this work, seven PYP/XES (Pale Yellow Petal/ Xanthophyll esterase) genes were identified in Citrus genomes, but only PYP1-4 and 6 contained the structural domains essential for activity. The PYP/XES expression profiles in sweet orange and in other Citrus species such as lemon, mandarin and pummelo with marked differences in fruit pigmentation and content of xanthophylls esters, showed the upregulation of PYP1,2 and 6 genes during ripening only in orange-pigmented fruits. Moreover, transcript levels of PYP1, 2 and 6 genes in peel and pulp of sweet orange were accompanied by the accumulation of xanthophyll esters during ripening. This work reports for the first time the PYP/XES gene family in Citrus and strongly suggests its involvement in xanthophyll esterification in citrus fruit tissues and its influence in carotenoid accumulation and fruit pigmentation.
Collapse
Affiliation(s)
- Jaime Zacarías-García
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Catedrático Agustín Escardino 7, Paterna, 46980 Valencia, Spain.
| | - Peter E Lux
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Garbenstrasse 25, 70599 Stuttgart, Germany; Institute of Nutritional Sciences, University of Hohenheim, Chair Food Biofunctionality, Garbenstrasse 28, 70599 Stuttgart, Germany.
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Garbenstrasse 25, 70599 Stuttgart, Germany; Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia.
| | - Ralf M Schweiggert
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany.
| | - Christof B Steingass
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Garbenstrasse 25, 70599 Stuttgart, Germany; Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany.
| | - Lorenzo Zacarías
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Catedrático Agustín Escardino 7, Paterna, 46980 Valencia, Spain.
| | - María J Rodrigo
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Catedrático Agustín Escardino 7, Paterna, 46980 Valencia, Spain.
| |
Collapse
|