1
|
Huh H, Jayachandran D, Sun J, Irfan M, Lam E, Chundawat SPS, Lee SH. Time-resolved tracking of cellulose biosynthesis and assembly during cell wall regeneration in live Arabidopsis protoplasts. SCIENCE ADVANCES 2025; 11:eads6312. [PMID: 40117364 PMCID: PMC11927630 DOI: 10.1126/sciadv.ads6312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Cellulose, the most abundant polysaccharide on earth composing plant cell walls, is synthesized by coordinated action of multiple enzymes in cellulose synthase complexes embedded within the plasma membrane. Multiple chains of cellulose fibrils form intertwined extracellular matrix networks. It remains largely unknown how newly synthesized cellulose is assembled into an intricate fibril network on cell surfaces. Here, we have established an in vivo time-resolved imaging platform to continuously visualize cellulose biosynthesis and fibril network assembly on Arabidopsis thaliana protoplast surfaces as the primary cell wall regenerates. Our observations provide the basis for a model of cellulose fibril network development in protoplasts driven by an interplay of multiscale dynamics that includes rapid diffusion and coalescence of nascent cellulose fibrils, processive elongation of single fibrils, and cellulose fibrillar network rearrangement during maturation. This study provides fresh insights into the dynamic and mechanistic aspects of cell wall synthesis at the single-cell level.
Collapse
Affiliation(s)
- Hyun Huh
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Dharanidaran Jayachandran
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd, Piscataway, NJ 08854, USA
| | - Junhong Sun
- Department of Plant Biology, Rutgers University, 59 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Mohammad Irfan
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd, Piscataway, NJ 08854, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers University, 59 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Shishir P. S. Chundawat
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd, Piscataway, NJ 08854, USA
| | - Sang-Hyuk Lee
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Rd, Piscataway, NJ 08854, USA
- Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Zhao Y, Wang X, Gao J, Rehman Rashid MA, Wu H, Hu Q, Sun X, Li J, Zhang H, Xu P, Qian Q, Chen C, Li Z, Zhang Z. The MYB61-STRONG2 module regulates culm diameter and lodging resistance in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:243-257. [PMID: 39760479 DOI: 10.1111/jipb.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
Lodging reduces grain yield and quality in cereal crops. Lodging resistance is affected by the strength of the culm, which is influenced by the culm diameter, culm wall thickness, and cell wall composition. To explore the genetic architecture of culm diameter in rice (Oryza sativa), we conducted a genome-wide association study (GWAS). We identified STRONG CULM 2 (STRONG2), which encodes the mannan synthase CSLA5, and showed that plants that overexpressed this gene had increased culm diameter and improved lodging resistance. STRONG2 appears to increase the levels of cell wall components, such as mannose and cellulose, thereby enhancing sclerenchyma development in stems. SNP14931253 in the STRONG2 promoter contributes to variation in STRONG2 expression in natural germplasms and the transcription factor MYB61 directly activates STRONG2 expression. Furthermore, STRONG2 overexpressing plants produced significantly more grains per panicle and heavier grains than the wild-type plants. These results demonstrate that the MYB61-STRONG2 module positively regulates culm diameter and lodging resistance, information that could guide breeding efforts for improved yield in rice.
Collapse
Affiliation(s)
- Yong Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Hainan Seed Industry Laboratory, Sanya, 572024, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xianpeng Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jie Gao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Muhammad Abdul Rehman Rashid
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hui Wu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qianfeng Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xingming Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
| | - Qian Qian
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Chao Chen
- State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, Life Science and Technology Center, China National Seed Group Co., Ltd, Wuhan, 430073, China
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572024, China
| | - Zhanying Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
3
|
Roberts EM, Yuan K, Chaves AM, Pierce ET, Cresswell R, Dupree R, Yu X, Blanton RL, Wu SZ, Bezanilla M, Dupree P, Haigler CH, Roberts AW. An alternate route for cellulose microfibril biosynthesis in plants. SCIENCE ADVANCES 2024; 10:eadr5188. [PMID: 39671498 PMCID: PMC11641006 DOI: 10.1126/sciadv.adr5188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Similar to cellulose synthases (CESAs), cellulose synthase-like D (CSLD) proteins synthesize β-1,4-glucan in plants. CSLDs are important for tip growth and cytokinesis, but it was unknown whether they form membrane complexes in vivo or produce microfibrillar cellulose. We produced viable CESA-deficient mutants of the moss Physcomitrium patens to investigate CSLD function without interfering CESA activity. Microscopy and spectroscopy showed that CESA-deficient mutants synthesize cellulose microfibrils that are indistinguishable from those in vascular plants. Correspondingly, freeze-fracture electron microscopy revealed rosette-shaped particle assemblies in the plasma membrane that are indistinguishable from CESA-containing rosette cellulose synthesis complexes (CSCs). Our data show that proteins other than CESAs, most likely CSLDs, produce cellulose microfibrils in P. patens protonemal filaments. The data suggest that the specialized roles of CSLDs in cytokinesis and tip growth are based on differential expression and different interactions with microtubules and possibly Ca2+, rather than structural differences in the microfibrils they produce.
Collapse
Affiliation(s)
- Eric M. Roberts
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | - Kai Yuan
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Arielle M. Chaves
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Ethan T. Pierce
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Ray Dupree
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Richard L. Blanton
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Shu-Zon Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Candace H. Haigler
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Alison W. Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
4
|
Yang J, Wang J, Yang D, Xia W, Wang L, Wang S, Zhao H, Chen L, Hu H. Genome-Wide Analysis of CSL Family Genes Involved in Petiole Elongation, Floral Petalization, and Response to Salinity Stress in Nelumbo nucifera. Int J Mol Sci 2024; 25:12531. [PMID: 39684243 DOI: 10.3390/ijms252312531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Lotus (Nelumbo nucifera), a perennial aquatic plant, endures various environmental stresses. Its diverse ornamental traits make it an ideal model for studying multigene family functional differentiation and abiotic stress responses. The cellulose synthase-like (CSL) gene family includes multiple subfamilies and holds potentially pivotal roles in plant growth, development, and stress responses. Thus, understanding this family is essential for uncovering the attributes of ancient dicotyledonous lotus species and offering new genetic resources for targeted genetic improvement. Herein, we conducted a genome-wide NnCSL gene identification study, integrating tissue-specific expression analysis, RNA-seq, and qRT-PCR validation. We identified candidate NnCSL genes linked to petiole elongation, floral petalization, salinity stress responses, and potential co-expressed TFs. 22 NnCSL genes were categorized into six subfamilies: NnCSLA, NnCSLB, NnCSLC, NnCSLD, NnCSLE, and NnCSLG. Promoter regions contain numerous cis-acting elements related to growth, development, stress responses, and hormone regulation. Nineteen NnCSL genes showed specific differential expression in LPA (large plant architecture) versus SPA (small plant architecture): petioles, petalized carpels (CP) and normal carpels (C), and petalized stamens (SP) and normal stamens (S). Notably, most NnCSLC, NnCSLA, and NnCSLB subfamily genes play diverse roles in various aspects of lotus growth and development, while NnCSLE and NnCSLG are specifically involved in carpel petalization and petiole elongation, respectively. Additionally, 11 candidate NnCSL genes responsive to salinity stress were identified, generally exhibiting antagonistic effects on growth and developmental processes. These findings provide an important theoretical foundation and novel insights for the functional study of NnCSL genes in growth, development, and stress resistance in lotus.
Collapse
Affiliation(s)
- Jie Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Juan Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Dongmei Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Wennian Xia
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Li Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Sha Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Hanqian Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Huizhen Hu
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
5
|
Wang M, Pan J, Xiang W, You Z, Zhang Y, Wang J, Zhang A. β-glucan: a potent adjuvant in immunotherapy for digestive tract tumors. Front Immunol 2024; 15:1424261. [PMID: 39100668 PMCID: PMC11294916 DOI: 10.3389/fimmu.2024.1424261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
The immunotherapy for gastrointestinal tumors, as a significant research direction in the field of oncology treatment in recent years, has garnered extensive attention due to its potential therapeutic efficacy and promising clinical application prospects. Recent advances in immunotherapy notwithstanding, challenges persist, such as side effects, the complexity of the tumor immune microenvironment, variable patient responses, and drug resistance. Consequently, there is a pressing need to explore novel adjunctive therapeutic modalities. β-glucan, an immunomodulatory agent, has exhibited promising anti-tumor efficacy in preclinical studies involving colorectal cancer, pancreatic cancer, and gastric cancer, while also mitigating the adverse reactions associated with chemotherapy and enhancing patients' quality of life. However, further clinical and fundamental research is warranted to comprehensively evaluate its therapeutic potential and underlying biological mechanisms. In the future, β-glucan holds promise as an adjunctive treatment for gastrointestinal tumors, potentially bringing significant benefits to patients.
Collapse
Affiliation(s)
- Meiyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jinhua Pan
- Department of Ophthalmology, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Wu Xiang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zilong You
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yue Zhang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Sinclair R, Wang M, Jawaid MZ, Longkumer T, Aaron J, Rossetti B, Wait E, McDonald K, Cox D, Heddleston J, Wilkop T, Drakakaki G. Four-dimensional quantitative analysis of cell plate development in Arabidopsis using lattice light sheet microscopy identifies robust transition points between growth phases. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2829-2847. [PMID: 38436428 PMCID: PMC11282576 DOI: 10.1093/jxb/erae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodelling, and timely deposition of polysaccharides, such as callose. Understanding such a dynamic process requires dissection in time and space; this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM), we studied cell plate development in four dimensions, through the behavior of yellow fluorescent protein (YFP)-tagged cytokinesis-specific GTPase RABA2a vesicles. We monitored the entire duration of cell plate development, from its first emergence, with the aid of YFP-RABA2a, in both the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis pipeline, we identified distinct behavioral patterns, allowing the identification of three easily trackable cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material. We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited the phase transitions, establishing the critical role and timing of the polysaccharide deposition in cell plate expansion and maturation. This study exemplifies the power of combining LLSM with quantitative analysis to decode and untangle such a complex process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Minmin Wang
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Muhammad Zaki Jawaid
- Department of Physics and Astronomy, University of California Davis, Davis, CA, USA
| | | | | | | | - Eric Wait
- Janelia Research Campus, Ashburn, VA, USA
| | - Kent McDonald
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Daniel Cox
- Department of Physics and Astronomy, University of California Davis, Davis, CA, USA
| | | | - Thomas Wilkop
- Department of Molecular and Cellular Biology, Light Microscopy Imaging Facility, University of California Davis, Davis, CA, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
7
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Abstract
Plant cells build nanofibrillar walls that are central to plant growth, morphogenesis and mechanics. Starting from simple sugars, three groups of polysaccharides, namely, cellulose, hemicelluloses and pectins, with very different physical properties are assembled by the cell to make a strong yet extensible wall. This Review describes the physics of wall growth and its regulation by cellular processes such as cellulose production by cellulose synthase, modulation of wall pH by plasma membrane H+-ATPase, wall loosening by expansin and signalling by plant hormones such as auxin and brassinosteroid. In addition, this Review discusses the nuanced roles, properties and interactions of cellulose, matrix polysaccharides and cell wall proteins and describes how wall stress and wall loosening cooperatively result in cell wall growth.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
9
|
Moy A, Nkongolo K. Decrypting Molecular Mechanisms Involved in Counteracting Copper and Nickel Toxicity in Jack Pine ( Pinus banksiana) Based on Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1042. [PMID: 38611570 PMCID: PMC11013723 DOI: 10.3390/plants13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
The remediation of copper and nickel-afflicted sites is challenged by the different physiological effects imposed by each metal on a given plant system. Pinus banksiana is resilient against copper and nickel, providing an opportunity to build a valuable resource to investigate the responding gene expression toward each metal. The objectives of this study were to (1) extend the analysis of the Pinus banksiana transcriptome exposed to nickel and copper, (2) assess the differential gene expression in nickel-resistant compared to copper-resistant genotypes, and (3) identify mechanisms specific to each metal. The Illumina platform was used to sequence RNA that was extracted from seedlings treated with each of the metals. There were 449 differentially expressed genes (DEGs) between copper-resistant genotypes (RGs) and nickel-resistant genotypes (RGs) at a high stringency cut-off, indicating a distinct pattern of gene expression toward each metal. For biological processes, 19.8% of DEGs were associated with the DNA metabolic process, followed by the response to stress (13.15%) and the response to chemicals (8.59%). For metabolic function, 27.9% of DEGs were associated with nuclease activity, followed by nucleotide binding (27.64%) and kinase activity (10.16%). Overall, 21.49% of DEGs were localized to the plasma membrane, followed by the cytosol (16.26%) and chloroplast (12.43%). Annotation of the top upregulated genes in copper RG compared to nickel RG identified genes and mechanisms that were specific to copper and not to nickel. NtPDR, AtHIPP10, and YSL1 were identified as genes associated with copper resistance. Various genes related to cell wall metabolism were identified, and they included genes encoding for HCT, CslE6, MPG, and polygalacturonase. Annotation of the top downregulated genes in copper RG compared to nickel RG revealed genes and mechanisms that were specific to nickel and not copper. Various regulatory and signaling-related genes associated with the stress response were identified. They included UGT, TIFY, ACC, dirigent protein, peroxidase, and glyoxyalase I. Additional research is needed to determine the specific functions of signaling and stress response mechanisms in nickel-resistant plants.
Collapse
Affiliation(s)
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
10
|
Wang D, Quan M, Qin S, Fang Y, Xiao L, Qi W, Jiang Y, Zhou J, Gu M, Guan Y, Du Q, Liu Q, El‐Kassaby YA, Zhang D. Allelic variations of WAK106-E2Fa-DPb1-UGT74E2 module regulate fibre properties in Populus tomentosa. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:970-986. [PMID: 37988335 PMCID: PMC10955495 DOI: 10.1111/pbi.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Wood formation, intricately linked to the carbohydrate metabolism pathway, underpins the capacity of trees to produce renewable resources and offer vital ecosystem services. Despite their importance, the genetic regulatory mechanisms governing wood fibre properties in woody plants remain enigmatic. In this study, we identified a pivotal module comprising 158 high-priority core genes implicated in wood formation, drawing upon tissue-specific gene expression profiles from 22 Populus samples. Initially, we conducted a module-based association study in a natural population of 435 Populus tomentosa, pinpointing PtoDPb1 as the key gene contributing to wood formation through the carbohydrate metabolic pathway. Overexpressing PtoDPb1 led to a 52.91% surge in cellulose content, a reduction of 14.34% in fibre length, and an increment of 38.21% in fibre width in transgenic poplar. Moreover, by integrating co-expression patterns, RNA-sequencing analysis, and expression quantitative trait nucleotide (eQTN) mapping, we identified a PtoDPb1-mediated genetic module of PtoWAK106-PtoDPb1-PtoE2Fa-PtoUGT74E2 responsible for fibre properties in Populus. Additionally, we discovered the two PtoDPb1 haplotypes that influenced protein interaction efficiency between PtoE2Fa-PtoDPb1 and PtoDPb1-PtoWAK106, respectively. The transcriptional activation activity of the PtoE2Fa-PtoDPb1 haplotype-1 complex on the promoter of PtoUGT74E2 surpassed that of the PtoE2Fa-PtoDPb1 haplotype-2 complex. Taken together, our findings provide novel insights into the regulatory mechanisms of fibre properties in Populus, orchestrated by PtoDPb1, and offer a practical module for expediting genetic breeding in woody plants via molecular design.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Shitong Qin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weina Qi
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yongsen Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyue Gu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yicen Guan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qing Liu
- CSIRO Agriculture and FoodBlack MountainCanberraACTAustralia
| | - Yousry A. El‐Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences CentreUniversity of British ColumbiaVancouverBCCanada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
11
|
Zhang S, Hu H, Cui S, Yan L, Wu B, Wei S. Genome-wide identification and functional analysis of the cellulose synthase-like gene superfamily in common oat (Avena sativa L.). PHYTOCHEMISTRY 2024; 218:113940. [PMID: 38056517 DOI: 10.1016/j.phytochem.2023.113940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Hemicelluloses constitute approximately one-third of the plant cell wall and can be used as a dietary fiber and food additive, and as raw materials for biofuels. Although genes involved in hemicelluloses synthesis have been investigated in some model plants, no comprehensive analysis has been conducted in common oat at present. In this study, we identified and systematically analyzed the cellulose synthase-like gene (Csl) family members in common oat and investigated them using various bioinformatics tools. The results showed that there are 76 members of the oat Csl gene family distributed on 17 chromosomes, and phylogenetic analysis indicated that the 76 Csl genes belong to the CslA, CslC, CslD, CslE, CslF, CslH, and CslJ subfamilies. A total of 14 classes of cis-acting elements were identified in the promoter regions, including hormone response, light response, cell development, and defense stress elements. The collinearity analysis identified 28 pairs of segmentally duplicated genes, most of which were found on chromosomes 2D and 6A. Expression pattern analysis showed that oat Csl genes display strong tissue-specific expression; of the 76 Csl genes, 33 were significantly up-regulated in stems and 30 were up-regulated in immature seeds. The expression of most members of the AsCsl gene family is repressed by abiotic stress, while the expression of some members is up-regulated by light. Immunoelectron microscopy shows that the product of AsCsl61, a member of CslF subfamily, mediates (1,3; 1,4)-β-D-glucan synthesis in transgenic Arabidopsis. These findings provide a fundamental understanding of the structural, functional, and evolutionary features of the oat Csl genes and may contribute to our general understanding of hemicellulose biosynthesis. Moreover, this information will be helpful in designing experiments for genetic manipulation of mixed-linkage glucan (MLG) synthesis with the goal of quality improvement in oat.
Collapse
Affiliation(s)
- Shanshan Zhang
- College of Life and Environmental Sciences, Minzu University of China, No. 27. Zhongguancun South Street, Beijing, 100081, China
| | - Haibin Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), No. 12. Zhongguancun South Street, Beijing, 100081, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Cui
- College of Life and Environmental Sciences, Minzu University of China, No. 27. Zhongguancun South Street, Beijing, 100081, China
| | - Lin Yan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), No. 12. Zhongguancun South Street, Beijing, 100081, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), No. 12. Zhongguancun South Street, Beijing, 100081, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Shanjun Wei
- College of Life and Environmental Sciences, Minzu University of China, No. 27. Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
12
|
Ge S, Sun P, Wu W, Chen X, Wang Y, Zhang M, Huang J, Liang YK. COBL7 is required for stomatal formation via regulation of cellulose deposition in Arabidopsis. THE NEW PHYTOLOGIST 2024; 241:227-242. [PMID: 37853545 DOI: 10.1111/nph.19327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
As a key regulator of plant photosynthesis, water use efficiency and immunity, stomata are specialized cellular structures that adopt defined shapes. However, our knowledge about the genetic players of stomatal pore formation and stomatal morphogenesis remains limited. Forward genetic screening, positional cloning, confocal and electron microscopy, physiological and pharmacological assays were employed for isolation and characterization of mutants and genes. We identified a mutant, dsm1, with impaired cytokinesis and deformed stomata. DSM1 is highly expressed in guard mother cells and guard cells, and encodes COBRA-LIKE 7 (COBL7), a plant-specific glycosylphosphatidylinositol (GPI)-anchored protein. COBRA-LIKE 7 and its closest homologue, COBL8, are first enriched on the forming cell plates during cytokinesis, and then their subcellular distribution and abundance change are correlated with the progressive stages of stomatal pore formation. Both COBL7 and COBL8 possess an ability to bind cellulose. Perturbing the expression of COBL7 and COBL8 leads to a decrease in cellulose content and inhibition of stomatal pore development. Moreover, we found that COBL7, COBL8 and CSLD5 have synergistic effects on stomatal development and plant growth. Our findings reveal that COBL7 plays a predominant and functionally redundant role with COBL8 in stomatal formation through regulating cellulose deposition and ventral wall modification in Arabidopsis.
Collapse
Affiliation(s)
- Shengchao Ge
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pengyue Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenjuan Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xinhang Chen
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yifei Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Min Zhang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
13
|
Hrmova M, Zimmer J, Bulone V, Fincher GB. Enzymes in 3D: Synthesis, remodelling, and hydrolysis of cell wall (1,3;1,4)-β-glucans. PLANT PHYSIOLOGY 2023; 194:33-50. [PMID: 37594400 PMCID: PMC10762513 DOI: 10.1093/plphys/kiad415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 08/19/2023]
Abstract
Recent breakthroughs in structural biology have provided valuable new insights into enzymes involved in plant cell wall metabolism. More specifically, the molecular mechanism of synthesis of (1,3;1,4)-β-glucans, which are widespread in cell walls of commercially important cereals and grasses, has been the topic of debate and intense research activity for decades. However, an inability to purify these integral membrane enzymes or apply transgenic approaches without interpretative problems associated with pleiotropic effects has presented barriers to attempts to define their synthetic mechanisms. Following the demonstration that some members of the CslF sub-family of GT2 family enzymes mediate (1,3;1,4)-β-glucan synthesis, the expression of the corresponding genes in a heterologous system that is free of background complications has now been achieved. Biochemical analyses of the (1,3;1,4)-β-glucan synthesized in vitro, combined with 3-dimensional (3D) cryogenic-electron microscopy and AlphaFold protein structure predictions, have demonstrated how a single CslF6 enzyme, without exogenous primers, can incorporate both (1,3)- and (1,4)-β-linkages into the nascent polysaccharide chain. Similarly, 3D structures of xyloglucan endo-transglycosylases and (1,3;1,4)-β-glucan endo- and exohydrolases have allowed the mechanisms of (1,3;1,4)-β-glucan modification and degradation to be defined. X-ray crystallography and multi-scale modeling of a broad specificity GH3 β-glucan exohydrolase recently revealed a previously unknown and remarkable molecular mechanism with reactant trajectories through which a polysaccharide exohydrolase can act with a processive action pattern. The availability of high-quality protein 3D structural predictions should prove invaluable for defining structures, dynamics, and functions of other enzymes involved in plant cell wall metabolism in the immediate future.
Collapse
Affiliation(s)
- Maria Hrmova
- School of Agriculture, Food and Wine, and the Waite Research Institute, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Jochen Zimmer
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Vincent Bulone
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Alba Nova University Centre, 106 91 Stockholm, Sweden
| | - Geoffrey B Fincher
- School of Agriculture, Food and Wine, and the Waite Research Institute, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
14
|
Gan P, Li P, Zhang X, Li H, Ma S, Zong D, He C. Comparative Transcriptomic and Metabolomic Analyses of Differences in Trunk Spiral Grain in Pinus yunnanensis. Int J Mol Sci 2023; 24:14658. [PMID: 37834105 PMCID: PMC10572851 DOI: 10.3390/ijms241914658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Having a spiral grain is considered to be one of the most important wood properties influencing wood quality. Here, transcriptome profiles and metabolome data were analyzed in the straight grain and twist grain of Pinus yunnanensis. A total of 6644 differential expression genes were found between the straight type and the twist type. A total of 126 differentially accumulated metabolites were detected. There were 24 common differential pathways identified from the transcriptome and metabolome, and these pathways were mainly annotated in ABC transporters, arginine and proline metabolism, flavonoid biosynthesis, isoquinoline alkaloid biosynthesis, linoleic acid metabolism, phenylpropanoid, tryptophan metabolism, etc. A weighted gene coexpression network analysis showed that the lightblue4 module was significantly correlated with 2'-deoxyuridine and that transcription factors (basic leucine zipper (bZIP), homeodomain leucine zipper (HD-ZIP), basic helix-loop-helix (bHLH), p-coumarate 3-hydroxylase (C3H), and N-acetylcysteine (NAC)) play important roles in regulating 2'-deoxyuridine, which may be involved in the formation of spiral grains. Meanwhile, the signal transduction of hormones may be related to spiral grain, as previously reported. ARF7 and MKK4_5, as indoleacetic acid (IAA)- and ethylene (ET)-related receptors, may explain the contribution of plant hormones in spiral grain. This study provided useful information on spiral grain in P. yunnanensis by transcriptome and metabolome analyses and could lay the foundation for future molecular breeding.
Collapse
Affiliation(s)
- Peihua Gan
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Peiling Li
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xiaolin Zhang
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Hailin Li
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Shaojie Ma
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Dan Zong
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| | - Chengzhong He
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
15
|
Wang C, Cheng H, Xu W, Xue J, Hua X, Tong G, Ma X, Yang C, Lan X, Shen SY, Yang Z, Huang J, Cheng Y. Arabidopsis pollen-specific glycerophosphodiester phosphodiesterase-like genes are essential for pollen tube tip growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2001-2017. [PMID: 37014030 DOI: 10.1111/jipb.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
In angiosperms, pollen tube growth is critical for double fertilization and seed formation. Many of the factors involved in pollen tube tip growth are unknown. Here, we report the roles of pollen-specific GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE-LIKE (GDPD-LIKE) genes in pollen tube tip growth. Arabidopsis thaliana GDPD-LIKE6 (AtGDPDL6) and AtGDPDL7 were specifically expressed in mature pollen grains and pollen tubes and green fluorescent protein (GFP)-AtGDPDL6 and GFP-AtGDPDL7 fusion proteins were enriched at the plasma membrane at the apex of forming pollen tubes. Atgdpdl6 Atgdpdl7 double mutants displayed severe sterility that was rescued by genetic complementation with AtGDPDL6 or AtGDPDL7. This sterility was associated with defective male gametophytic transmission. Atgdpdl6 Atgdpdl7 pollen tubes burst immediately after initiation of pollen germination in vitro and in vivo, consistent with the thin and fragile walls in their tips. Cellulose deposition was greatly reduced along the mutant pollen tube tip walls, and the localization of pollen-specific CELLULOSE SYNTHASE-LIKE D1 (CSLD1) and CSLD4 was impaired to the apex of mutant pollen tubes. A rice pollen-specific GDPD-LIKE protein also contributed to pollen tube tip growth, suggesting that members of this family have conserved functions in angiosperms. Thus, pollen-specific GDPD-LIKEs mediate pollen tube tip growth, possibly by modulating cellulose deposition in pollen tube walls.
Collapse
Affiliation(s)
- Chong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Wenjing Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jingshi Xue
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xinguo Hua
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Guimin Tong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xingguo Lan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shi-Yi Shen
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhongnan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
16
|
Lu H, Chen M, Fu M, Yan J, Su W, Zhan Y, Zeng F. Brassinosteroids affect wood development and properties of Fraxinus mandshurica. FRONTIERS IN PLANT SCIENCE 2023; 14:1167548. [PMID: 37546264 PMCID: PMC10400452 DOI: 10.3389/fpls.2023.1167548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023]
Abstract
Introduction Xylem development plays a crucial role in wood formation in woody plants. In recent years, there has been growing attention towards the impact of brassinosteroids (BRs) on this xylem development. In the present study, we evaluated the dynamic variation of xylem development in Fraxinus mandshurica (female parent, M8) and a novel interspecific hybrid F. mandshurica × Fraxinus sogdiana (1601) from May to August 2020. Methods We obtained RNA-Seq transcriptomes of three tissue types (xylem, phloem, and leaf) to identify the differences in xylem-differentially expressed genes (X-DEGs) and xylem-specifically expressed genes (X-SEGs) in M8 and 1601 variants. We then further evaluated these genes via weighted gene co-expression network analysis (WGCNA) alongside overexpressing FmCPD, a BR biosynthesis enzyme gene, in transient transgenic F. mandshurica. Results Our results indicated that the xylem development cycle of 1601 was extended by 2 weeks compared to that of M8. In addition, during the later wood development stages (secondary wall thickening) of 1601, an increased cellulose content (14%) and a reduced lignin content (11%) was observed. Furthermore, vessel length and width increased by 67% and 37%, respectively, in 1601 compared with those of M8. A total of 4589 X-DEGs were identified, including enzymes related to phenylpropane metabolism, galactose metabolism, BR synthesis, and signal transduction pathways. WGCNA identified hub X-SEGs involved in cellulose synthesis and BR signaling in the 1601 wood formation-related module (CESA8, COR1, C3H14, and C3H15); in contrast, genes involved in phenylpropane metabolism were significantly enriched in the M8 wood formation-related module (CCoAOMT and CCR). Moreover, overexpression of FmCPD in transient transgenic F. mandshurica affected the expression of genes associated with lignin and cellulose biosynthesis signal transduction. Finally, BR content was determined to be approximately 20% lower in the M8 xylem than in the 1601 xylem, and the exogenous application of BRs (24-epi brassinolide) significantly increased the number of xylem cell layers and altered the composition of the secondary cell walls in F. mandshurica. Discussion Our findings suggest that BR biosynthesis and signaling play a critical role in the differing wood development and properties observed between M8 and 1601 F. mandshurica.
Collapse
Affiliation(s)
- Han Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Mingjun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Meng Fu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jialin Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Wenlong Su
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
17
|
Fu Q, Cao H, Wang L, Lei L, Di T, Ye Y, Ding C, Li N, Hao X, Zeng J, Yang Y, Wang X, Ye M, Huang J. Transcriptome Analysis Reveals That Ascorbic Acid Treatment Enhances the Cold Tolerance of Tea Plants through Cell Wall Remodeling. Int J Mol Sci 2023; 24:10059. [PMID: 37373207 DOI: 10.3390/ijms241210059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Cold stress is a major environmental factor that adversely affects the growth and productivity of tea plants. Upon cold stress, tea plants accumulate multiple metabolites, including ascorbic acid. However, the role of ascorbic acid in the cold stress response of tea plants is not well understood. Here, we report that exogenous ascorbic acid treatment improves the cold tolerance of tea plants. We show that ascorbic acid treatment reduces lipid peroxidation and increases the Fv/Fm of tea plants under cold stress. Transcriptome analysis indicates that ascorbic acid treatment down-regulates the expression of ascorbic acid biosynthesis genes and ROS-scavenging-related genes, while modulating the expression of cell wall remodeling-related genes. Our findings suggest that ascorbic acid treatment negatively regulates the ROS-scavenging system to maintain ROS homeostasis in the cold stress response of tea plants and that ascorbic acid's protective role in minimizing the harmful effects of cold stress on tea plants may occur through cell wall remodeling. Ascorbic acid can be used as a potential agent to increase the cold tolerance of tea plants with no pesticide residual concerns in tea.
Collapse
Affiliation(s)
- Qianyuan Fu
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongli Cao
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Lu Wang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lei Lei
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Taimei Di
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yufan Ye
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Changqing Ding
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Nana Li
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Meng Ye
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianyan Huang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
18
|
Wu SZ, Chaves AM, Li R, Roberts AW, Bezanilla M. Cellulose synthase-like D movement in the plasma membrane requires enzymatic activity. J Cell Biol 2023; 222:e202212117. [PMID: 37071416 PMCID: PMC10120407 DOI: 10.1083/jcb.202212117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
Cellulose Synthase-Like D (CSLD) proteins, important for tip growth and cell division, are known to generate β-1,4-glucan. However, whether they are propelled in the membrane as the glucan chains they produce assemble into microfibrils is unknown. To address this, we endogenously tagged all eight CSLDs in Physcomitrium patens and discovered that they all localize to the apex of tip-growing cells and to the cell plate during cytokinesis. Actin is required to target CSLD to cell tips concomitant with cell expansion, but not to cell plates, which depend on actin and CSLD for structural support. Like Cellulose Synthase (CESA), CSLD requires catalytic activity to move in the plasma membrane. We discovered that CSLD moves significantly faster, with shorter duration and less linear trajectories than CESA. In contrast to CESA, CSLD movement was insensitive to the cellulose synthesis inhibitor isoxaben, suggesting that CSLD and CESA function within different complexes possibly producing structurally distinct cellulose microfibrils.
Collapse
Affiliation(s)
- Shu-Zon Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Arielle M. Chaves
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Rongrong Li
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Alison W. Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
19
|
Jayachandran D, Banerjee S, Chundawat SPS. Plant cellulose synthase membrane protein isolation directly from Pichia pastoris protoplasts, liposome reconstitution, and its enzymatic characterization. Protein Expr Purif 2023:106309. [PMID: 37211149 DOI: 10.1016/j.pep.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Cellulose is synthesized by a plant cell membrane-integrated processive glycosyltransferase (GT) called cellulose synthase (CesA). Since only a few of these plant CesAs have been purified and characterized to date, there are huge gaps in our mechanistic understanding of these enzymes. The biochemistry and structural biology studies of CesAs are currently hampered by challenges associated with their expression and extraction at high yields. To aid in understanding CesA reaction mechanisms and to provide a more efficient CesA extraction method, two putative plant CesAs - PpCesA5 from Physcomitrella patens and PttCesA8 from Populus tremula x tremuloides that are involved in primary and secondary cell wall formation in plants were expressed using Pichia pastoris as an expression host. We developed a protoplast-based membrane protein extraction approach to directly isolate these membrane-bound enzymes, as confirmed by immunoblotting and mass spectrometry-based analyses. Our method gives 3-4-fold higher purified protein yield than the standard cell homogenization protocol. Our method resulted in liposome reconstituted CesA5 and CesA8 enzymes with similar Michaelis-Menten kinetic constants, Km = 167 μM, 108 μM and Vmax = 7.88 × 10-5 μmol/min, 4.31 × 10-5 μmol/min, respectively, in concurrence with the previous studies for enzymes isolated using the standard protocol. Taken together, these results suggest that CesAs involved in primary and secondary cell wall formation can be expressed and purified using a simple and more efficient extraction method. This protocol could help isolate enzymes that unravel the mechanism of native and engineered cellulose synthase complexes involved in plant cell wall biosynthesis.
Collapse
Affiliation(s)
- Dharanidaran Jayachandran
- Department of Chemical and Biochemical Engineering, Rutgers-The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shoili Banerjee
- Department of Chemical and Biochemical Engineering, Rutgers-The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shishir P S Chundawat
- Department of Chemical and Biochemical Engineering, Rutgers-The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
20
|
McFarlane HE. Open questions in plant cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad110. [PMID: 36961357 DOI: 10.1093/jxb/erad110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Plant cells are surrounded by strong yet flexible polysaccharide-based cell walls that support the cell while also allowing growth by cell expansion. Plant cell wall research has advanced tremendously in recent years. Sequenced genomes of many model and crop plants have facilitated cataloging and characterization of many enzymes involved in cell wall synthesis. Structural information has been generated for several important cell wall synthesizing enzymes. Important tools have been developed including antibodies raised against a variety of cell wall polysaccharides and glycoproteins, collections of enzyme clones and synthetic glycan arrays for characterizing enzymes, herbicides that specifically affect cell wall synthesis, live-cell imaging probes to track cell wall synthesis, and an inducible secondary cell wall synthesis system. Despite these advances, and often because of the new information they provide, many open questions about plant cell wall polysaccharide synthesis persist. This article highlights some of the key questions that remain open, reviews the data supporting different hypotheses that address these questions, and discusses technological developments that may answer these questions in the future.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
21
|
Xu X, Guerriero G, Domergue F, Beine-Golovchuk O, Cocco E, Berni R, Sergeant K, Hausman JF, Legay S. Characterization of MdMYB68, a suberin master regulator in russeted apples. FRONTIERS IN PLANT SCIENCE 2023; 14:1143961. [PMID: 37021306 PMCID: PMC10067606 DOI: 10.3389/fpls.2023.1143961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Apple russeting is mainly due to the accumulation of suberin in the cell wall in response to defects and damages in the cuticle layer. Over the last decades, massive efforts have been done to better understand the complex interplay between pathways involved in the suberization process in model plants. However, the regulation mechanisms which orchestrate this complex process are still under investigation. Our previous studies highlighted a number of transcription factor candidates from the Myeloblastosis (MYB) transcription factor family which might regulate suberization in russeted or suberized apple fruit skin. Among these, we identified MdMYB68, which was co-expressed with number of well-known key suberin biosynthesis genes. METHOD To validate the MdMYB68 function, we conducted an heterologous transient expression in Nicotiana benthamiana combined with whole gene expression profiling analysis (RNA-Seq), quantification of lipids and cell wall monosaccharides, and microscopy. RESULTS MdMYB68 overexpression is able to trigger the expression of the whole suberin biosynthesis pathway. The lipid content analysis confirmed that MdMYB68 regulates the deposition of suberin in cell walls. Furthermore, we also investigated the alteration of the non-lipid cell wall components and showed that MdMYB68 triggers a massive modification of hemicelluloses and pectins. These results were finally supported by the microscopy. DISCUSSION Once again, we demonstrated that the heterologous transient expression in N. benthamiana coupled with RNA-seq is a powerful and efficient tool to investigate the function of suberin related transcription factors. Here, we suggest MdMYB68 as a new regulator of the aliphatic and aromatic suberin deposition in apple fruit, and further describe, for the first time, rearrangements occurring in the carbohydrate cell wall matrix, preparing this suberin deposition.
Collapse
Affiliation(s)
- Xuan Xu
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Frederic Domergue
- Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS) – Unité Mixte de Recherche (UMR) 5200, Laboratoire de biogenèse Membranaire, Bâtiment A3 ‐ Institut Natitonal de la Recherche Agronomique (INRA) Bordeaux Aquitaine, Villenave d’Ornon, France
| | - Olga Beine-Golovchuk
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Roberto Berni
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
22
|
Hossain MF, Dutta AK, Suzuki T, Higashiyama T, Miyamoto C, Ishiguro S, Maruta T, Muto Y, Nishimura K, Ishida H, Aboulela M, Hachiya T, Nakagawa T. Targeted expression of bgl23-D, a dominant-negative allele of ATCSLD5, affects cytokinesis of guard mother cells and exine formation of pollen in Arabidopsis thaliana. PLANTA 2023; 257:64. [PMID: 36811672 DOI: 10.1007/s00425-023-04097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Targeted expression of bgl23-D, a dominant-negative allele of ATCSLD5, is a useful genetic approach for functional analysis of ATCSLDs in specific cells and tissues in plants. Stomata are key cellular structures for gas and water exchange in plants and their development is influenced by several genes. We found the A. thaliana bagel23-D (bgl23-D) mutant showing abnormal bagel-shaped single guard cells. The bgl23-D was a novel dominant mutation in the A. thaliana cellulose synthase-like D5 (ATCSLD5) gene that was reported to function in the division of guard mother cells. The dominant character of bgl23-D was used to inhibit ATCSLD5 function in specific cells and tissues. Transgenic A. thaliana expressing bgl23-D cDNA with the promoter of stomata lineage genes, SDD1, MUTE, and FAMA, showed bagel-shaped stomata as observed in the bgl23-D mutant. Especially, the FAMA promoter exhibited a higher frequency of bagel-shaped stomata with severe cytokinesis defects. Expression of bgl23-D cDNA in the tapetum with SP11 promoter or in the anther with ATSP146 promoter induced defects in exine pattern and pollen shape, novel phenotypes that were not shown in the bgl23-D mutant. These results indicated that bgl23-D inhibited unknown ATCSLD(s) that exert the function of exine formation in the tapetum. Furthermore, transgenic A. thaliana expressing bgl23-D cDNA with SDD1, MUTE, and FAMA promoters showed enhanced rosette diameter and increased leaf growth. Taken together, these findings suggest that the bgl23-D mutation could be a helpful genetic tool for functional analysis of ATCSLDs and manipulating plant growth.
Collapse
Affiliation(s)
- Md Firose Hossain
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8550, Japan
| | - Amit Kumar Dutta
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
- Department of Microbiology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Chiharu Miyamoto
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Sumie Ishiguro
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Takanori Maruta
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Yuki Muto
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
| | - Kohji Nishimura
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Hideki Ishida
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Mostafa Aboulela
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8550, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, 690-8504, Japan.
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8550, Japan.
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan.
| |
Collapse
|
23
|
Purushotham P, Ho R, Yu L, Fincher GB, Bulone V, Zimmer J. Mechanism of mixed-linkage glucan biosynthesis by barley cellulose synthase-like CslF6 (1,3;1,4)-β-glucan synthase. SCIENCE ADVANCES 2022; 8:eadd1596. [PMID: 36367939 PMCID: PMC9651860 DOI: 10.1126/sciadv.add1596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Mixed-linkage (1,3;1,4)-β-glucans, which are widely distributed in cell walls of the grasses, are linear glucose polymers containing predominantly (1,4)-β-linked glucosyl units interspersed with single (1,3)-β-linked glucosyl units. Their distribution in cereal grains and unique structures are important determinants of dietary fibers that are beneficial to human health. We demonstrate that the barley cellulose synthase-like CslF6 enzyme is sufficient to synthesize a high-molecular weight (1,3;1,4)-β-glucan in vitro. Biochemical and cryo-electron microscopy analyses suggest that CslF6 functions as a monomer. A conserved "switch motif" at the entrance of the enzyme's transmembrane channel is critical to generate (1,3)-linkages. There, a single-point mutation markedly reduces (1,3)-linkage formation, resulting in the synthesis of cellulosic polysaccharides. Our results suggest that CslF6 monitors the orientation of the nascent polysaccharide's second or third glucosyl unit. Register-dependent interactions with these glucosyl residues reposition the polymer's terminal glucosyl unit to form either a (1,3)- or (1,4)-β-linkage.
Collapse
Affiliation(s)
- Pallinti Purushotham
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Ruoya Ho
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Long Yu
- Adelaide Glycomics, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Geoffrey B. Fincher
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Vincent Bulone
- Adelaide Glycomics, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, SE-10691, Sweden
| | - Jochen Zimmer
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| |
Collapse
|
24
|
Huang H, Zhao S, Chen J, Li T, Guo G, Xu M, Liao S, Wang R, Lan J, Su Y, Liao X. Genome-wide identification and functional analysis of Cellulose synthase gene superfamily in Fragaria vesca. FRONTIERS IN PLANT SCIENCE 2022; 13:1044029. [PMID: 36407613 PMCID: PMC9669642 DOI: 10.3389/fpls.2022.1044029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 05/28/2023]
Abstract
The Cellulose synthase (CesA) and Cellulose synthase-like (Csl) gene superfamilies encode key enzymes involved in the synthesis of cellulose and hemicellulose, which are major components of plant cell walls, and play important roles in the regulation of fruit ripening. However, genome-wide identification and functional analysis of the CesA and Csl gene families in strawberry remain limited. In this study, eight CesA genes and 25 Csl genes were identified in the genome of diploid woodland strawberry (Fragaria vesca). The protein structures, evolutionary relationships, and cis-acting elements of the promoter for each gene were investigated. Transcriptome analysis and quantitative real-time PCR (qRT-PCR) results showed that the transcript levels of many FveCesA and FveCsl genes were significantly decreased during fruit ripening. Moreover, based on the transcriptome analysis, we found that the expression levels of many FveCesA/Csl genes were changed after nordihydroguaiaretic acid (NDGA) treatment. Transient overexpression of FveCesA4 in immature strawberry fruit increased fruit firmness and reduced fresh fruit weight, thereby delaying ripening. In contrast, transient expression of FveCesA4-RNAi resulted in the opposite phenotypes. These findings provide fundamental information on strawberry CesA and Csl genes and may contribute to the elucidation of the molecular mechanism by which FveCesA/Csl-mediated cell wall synthesis regulates fruit ripening. In addition, these results may be useful in strawberry breeding programs focused on the development of new cultivars with increased fruit shelf-life.
Collapse
Affiliation(s)
- Hexin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai Zhao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Key Laboratory of Crop Biotechnology in Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junli Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianxiang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ganggang Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming Xu
- College of Agriculture, Key Laboratory of Crop Biotechnology in Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sufeng Liao
- College of Agriculture, Key Laboratory of Crop Biotechnology in Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruoting Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayi Lan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yangxin Su
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiong Liao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
25
|
Qi L, Shi Y, Li C, Liu J, Chong SL, Lim KJ, Si J, Han Z, Chen D. Glucomannan in Dendrobium catenatum: Bioactivities, Biosynthesis and Perspective. Genes (Basel) 2022; 13:1957. [PMID: 36360194 PMCID: PMC9690530 DOI: 10.3390/genes13111957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 07/13/2024] Open
Abstract
Dendrobium catenatum is a classical and precious dual-use plant for both medicine and food in China. It was first recorded in Shen Nong's Herbal Classic, and has the traditional functions of nourishing yin, antipyresis, tonifying the stomach, and promoting fluid production. The stem is its medicinal part and is rich in active polysaccharide glucomannan. As an excellent dietary fiber, glucomannan has been experimentally confirmed to be involved in anti-cancer, enhancing immunity, lowering blood sugar and blood lipids, etc. Here, the status quo of the D. catenatum industry, the structure, bioactivities, biosynthesis pathway and key genes of glucomannan are systematically described to provide a crucial foundation and theoretical basis for understanding the value of D. catenatum and the potential application of glucomannan in crop biofortification.
Collapse
Affiliation(s)
- Luyan Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Yan Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Cong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Sun-Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Zhigang Han
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| |
Collapse
|
26
|
Wang J, Li J, Lin W, Deng B, Lin L, Lv X, Hu Q, Liu K, Fatima M, He B, Qiu D, Ma X. Genome-wide identification and adaptive evolution of CesA/Csl superfamily among species with different life forms in Orchidaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:994679. [PMID: 36247544 PMCID: PMC9559377 DOI: 10.3389/fpls.2022.994679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Orchidaceae, with more than 25,000 species, is one of the largest flowering plant families that can successfully colonize wide ecological niches, such as land, trees, or rocks, and its members are divided into epiphytic, terrestrial, and saprophytic types according to their life forms. Cellulose synthase (CesA) and cellulose synthase-like (Csl) genes are key regulators in the synthesis of plant cell wall polysaccharides, which play an important role in the adaptation of orchids to resist abiotic stresses, such as drought and cold. In this study, nine whole-genome sequenced orchid species with three types of life forms were selected; the CesA/Csl gene family was identified; the evolutionary roles and expression patterns of CesA/Csl genes adapted to different life forms and abiotic stresses were investigated. The CesA/Csl genes of nine orchid species were divided into eight subfamilies: CesA and CslA/B/C/D/E/G/H, among which the CslD subfamily had the highest number of genes, followed by CesA, whereas CslB subfamily had the least number of genes. Expansion of the CesA/Csl gene family in orchids mainly occurred in the CslD and CslF subfamilies. Conserved domain analysis revealed that eight subfamilies were conserved with variations in orchids. In total, 17 pairs of CesA/Csl homologous genes underwent positive selection, of which 86%, 14%, and none belonged to the epiphytic, terrestrial, and saprophytic orchids, respectively. The inter-species collinearity analysis showed that the CslD genes expanded in epiphytic orchids. Compared with terrestrial and saprophytic orchids, epiphytic orchids experienced greater strength of positive selection, with expansion events mostly related to the CslD subfamily, which might have resulted in strong adaptability to stress in epiphytes. Experiments on stem expression changes under abiotic stress showed that the CslA might be a key subfamily in response to drought stress for orchids with different life forms, whereas the CslD might be a key subfamily in epiphytic and saprophytic orchids to adapt to freezing stress. This study provides the basic knowledge for the further systematic study of the adaptive evolution of the CesA/Csl superfamily in angiosperms with different life forms, and research on orchid-specific functional genes related to life-history trait evolution.
Collapse
Affiliation(s)
- Jingjing Wang
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ban Deng
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lixian Lin
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanrui Lv
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qilin Hu
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kunpeng Liu
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mahpara Fatima
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bizhu He
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Sinclair R, Hsu G, Davis D, Chang M, Rosquete M, Iwasa JH, Drakakaki G. Plant cytokinesis and the construction of new cell wall. FEBS Lett 2022; 596:2243-2255. [PMID: 35695093 DOI: 10.1002/1873-3468.14426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Cytokinesis in plants is fundamentally different from that in animals and fungi. In plant cells, a cell plate forms through the fusion of cytokinetic vesicles and then develops into the new cell wall, partitioning the cytoplasm of the dividing cell. The formation of the cell plate entails multiple stages that involve highly orchestrated vesicle accumulation, fusion, and membrane maturation, which occur concurrently with the timely deposition of polysaccharides such as callose, cellulose, and cross-linking glycans. This review summarizes the major stages in cytokinesis, endomembrane components involved in cell plate assembly and its transition to a new cell wall. An animation that can be widely used for educational purposes further summarizes the process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Grace Hsu
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Destiny Davis
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Lawrence Berkeley National Lab, Emeryville, CA, 94608, USA
| | - Mingqin Chang
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Michel Rosquete
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Janet H Iwasa
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Georgia Drakakaki
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
28
|
Li X, Tang C, Li X, Zhu X, Cai Y, Wang P, Zhang S, Wu J. Cellulose accumulation mediated by PbrCSLD5, a cellulose synthase-like protein, results in cessation of pollen tube growth in Pyrus bretschneideri. PHYSIOLOGIA PLANTARUM 2022; 174:e13700. [PMID: 35526262 DOI: 10.1111/ppl.13700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Cellulose, a key component of the cell wall, plays an important role in maintaining the growth of pollen tubes. However, the molecular mechanism of cellulose participating in the cessation of pear pollen tube growth remains unclear. Here, we reported that at 15 h post-cultured (HPC), the slow-growth pear pollen tubes showed thickened cell walls and cellulose accumulation in the inner wall. Transcriptome data and quantitative real-time PCR analysis showed that PbrCSLD5, a cellulose synthesis-like gene, was highly expressed in the 15 HPC pear pollen tubes. Knockdown of PbrCSLD5 caused a decrease in cellulose content in pear pollen tubes. Moreover, PbrCSLD5 overexpression in Arabidopsis resulted in the accumulation of cellulose and disruption of normal pollen tube growth. Transcription factor PbrMADS52 was found to bind to the promoter of PbrCSLD5 and enhanced its expression. Our results suggested that the PbrMADS52-PbrCSLD5 signaling pathway led to increased cellulose content in the pear pollen tube cell wall, thereby inhibiting pollen tube growth. These results provided new insights into the regulation of pollen tube growth.
Collapse
Affiliation(s)
- Xian Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Chao Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Xiaoqiang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxuan Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yiling Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| |
Collapse
|
29
|
Voiniciuc C. Modern mannan: a hemicellulose's journey. THE NEW PHYTOLOGIST 2022; 234:1175-1184. [PMID: 35285041 DOI: 10.1111/nph.18091] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Hemicellulosic polysaccharides built of β-1,4-linked mannose units have been found throughout the plant kingdom and have numerous industrial applications. Here, I review recent advances in the biosynthesis and modification of plant β-mannans. These matrix polymers can associate with cellulose bundles to impact the mechanical properties of plant fibers or biocomposites. In certain algae, mannan microfibrils even replace cellulose as the dominant structural component of the cell wall. Conversely, patterned galactoglucomannan found in Arabidopsis thaliana seed mucilage significantly modulates cell wall architecture and abiotic stress tolerance despite its relatively low content. I also discuss the subcellular requirements for β-mannan biosynthesis, the increasing number of carbohydrate-active enzymes involved in this process, and the players that continue to be puzzling. I discuss how cellulose synthase-like enzymes elongate (gluco)mannans in orthogonal hosts and highlight the discoveries of plant enzymes that add specific galactosyl or acetyl decorations. Hydrolytic enzymes such as endo-β-1,4-mannanases have recently been involved in a wide range of biological contexts including seed germination, wood formation, heavy metal tolerance, and defense responses. Synthetic biology tools now provide faster tracks to modulate the increasingly-relevant mannan structures for improved plant traits and bioproducts.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
30
|
Larson RT, McFarlane HE. Small but Mighty: An Update on Small Molecule Plant Cellulose Biosynthesis Inhibitors. PLANT & CELL PHYSIOLOGY 2021; 62:1828-1838. [PMID: 34245306 DOI: 10.1093/pcp/pcab108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Cellulose is one of the most abundant biopolymers on Earth. It provides mechanical support to growing plant cells and important raw materials for paper, textiles and biofuel feedstocks. Cellulose biosynthesis inhibitors (CBIs) are invaluable tools for studying cellulose biosynthesis and can be important herbicides for controlling weed growth. Here, we review CBIs with particular focus on the most widely used CBIs and recently discovered CBIs. We discuss the effects of these CBIs on plant growth and development and plant cell biology and summarize what is known about the mode of action of these different CBIs.
Collapse
Affiliation(s)
- Raegan T Larson
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Heather E McFarlane
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
31
|
Kim SJ, Brandizzi F. Advances in Cell Wall Matrix Research with a Focus on Mixed-Linkage Glucan. PLANT & CELL PHYSIOLOGY 2021; 62:1839-1846. [PMID: 34245308 DOI: 10.1093/pcp/pcab106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Mixed β(1,3;1,4)-linkage glucan (MLG) is commonly found in the monocot lineage, at particularly high levels in the Poaceae family, but also in the evolutionally distant genus, Equisetum. MLG has several properties that make it unique from other plant cell wall polysaccharides. It consists of β1,4-linked polymers of glucose interspersed with β1,3-linkages, but the presence of β1,3-linkages provides quite different physical properties compared to its closest form of the cell wall component, cellulose. The mechanisms of MLG biosynthesis have been investigated to understand whether single or multiple enzymes are required to build mixed linkages in the glucan chain. Currently, MLG synthesis by a single enzyme is supported by mutagenesis analyses of cellulose synthase-like F6, the major MLG synthase, but further investigation is needed to gather mechanistic insights. Because of transient accumulation of MLG in elongating cells and vegetative tissues, several hypotheses have been proposed to explain the role of MLG in the plant cell wall. Studies have been carried out to identify gene expression regulators during development and light cycles as well as enzymes involved in MLG organization in the cell wall. A role of MLG as a storage molecule in grains is evident, but the role of MLG in vegetative tissues is still not well understood. Characterization of a cell wall component is difficult due to the complex heterogeneity of the plant cell wall. However, as detailed in this review, recent exciting research has made significant impacts in the understanding of MLG biology in plants.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
32
|
Karas BJ, Ross L, Novero M, Amyot L, Shrestha A, Inada S, Nakano M, Sakai T, Bonetta D, Sato S, Murray JD, Bonfante P, Szczyglowski K. Intragenic complementation at the Lotus japonicus CELLULOSE SYNTHASE-LIKE D1 locus rescues root hair defects. PLANT PHYSIOLOGY 2021; 186:2037-2050. [PMID: 34618101 PMCID: PMC8331140 DOI: 10.1093/plphys/kiab204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Root hair cells form the primary interface of plants with the soil environment, playing key roles in nutrient uptake and plant defense. In legumes, they are typically the first cells to become infected by nitrogen-fixing soil bacteria during root nodule symbiosis. Here, we report a role for the CELLULOSE SYNTHASE-LIKE D1 (CSLD1) gene in root hair development in the legume species Lotus japonicus. CSLD1 belongs to the cellulose synthase protein family that includes cellulose synthases and cellulose synthase-like proteins, the latter thought to be involved in the biosynthesis of hemicellulose. We describe 11 Ljcsld1 mutant alleles that impose either short (Ljcsld1-1) or variable (Ljcsld1-2 to 11) root hair length phenotypes. Examination of Ljcsld1-1 and one variable-length root hair mutant, Ljcsld1-6, revealed increased root hair cell wall thickness, which in Ljcsld1-1 was significantly more pronounced and also associated with a strong defect in root nodule symbiosis. Lotus japonicus plants heterozygous for Ljcsld1-1 exhibited intermediate root hair lengths, suggesting incomplete dominance. Intragenic complementation was observed between alleles with mutations in different CSLD1 domains, suggesting CSLD1 function is modular and that the protein may operate as a homodimer or multimer during root hair development.
Collapse
Affiliation(s)
- Bogumil J Karas
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
| | - Loretta Ross
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Lisa Amyot
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
| | - Arina Shrestha
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Sayaka Inada
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Michiharu Nakano
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-nino-cho, Nishiku, Niigata 950-2181, Japan
| | - Dario Bonetta
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Sushei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Jeremy D Murray
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
33
|
Daras G, Templalexis D, Avgeri F, Tsitsekian D, Karamanou K, Rigas S. Updating Insights into the Catalytic Domain Properties of Plant Cellulose synthase ( CesA) and Cellulose synthase-like ( Csl) Proteins. Molecules 2021; 26:molecules26144335. [PMID: 34299608 PMCID: PMC8306620 DOI: 10.3390/molecules26144335] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
The wall is the last frontier of a plant cell involved in modulating growth, development and defense against biotic stresses. Cellulose and additional polysaccharides of plant cell walls are the most abundant biopolymers on earth, having increased in economic value and thereby attracted significant interest in biotechnology. Cellulose biosynthesis constitutes a highly complicated process relying on the formation of cellulose synthase complexes. Cellulose synthase (CesA) and Cellulose synthase-like (Csl) genes encode enzymes that synthesize cellulose and most hemicellulosic polysaccharides. Arabidopsis and rice are invaluable genetic models and reliable representatives of land plants to comprehend cell wall synthesis. During the past two decades, enormous research progress has been made to understand the mechanisms of cellulose synthesis and construction of the plant cell wall. A plethora of cesa and csl mutants have been characterized, providing functional insights into individual protein isoforms. Recent structural studies have uncovered the mode of CesA assembly and the dynamics of cellulose production. Genetics and structural biology have generated new knowledge and have accelerated the pace of discovery in this field, ultimately opening perspectives towards cellulose synthesis manipulation. This review provides an overview of the major breakthroughs gathering previous and recent genetic and structural advancements, focusing on the function of CesA and Csl catalytic domain in plants.
Collapse
|
34
|
Role and Evolution of the Extracellular Matrix in the Acquisition of Complex Multicellularity in Eukaryotes: A Macroalgal Perspective. Genes (Basel) 2021; 12:genes12071059. [PMID: 34356075 PMCID: PMC8307928 DOI: 10.3390/genes12071059] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Multicellular eukaryotes are characterized by an expanded extracellular matrix (ECM) with a diversified composition. The ECM is involved in determining tissue texture, screening cells from the outside medium, development, and innate immunity, all of which are essential features in the biology of multicellular eukaryotes. This review addresses the origin and evolution of the ECM, with a focus on multicellular marine algae. We show that in these lineages the expansion of extracellular matrix played a major role in the acquisition of complex multicellularity through its capacity to connect, position, shield, and defend the cells. Multiple innovations were necessary during these evolutionary processes, leading to striking convergences in the structures and functions of the ECMs of algae, animals, and plants.
Collapse
|
35
|
Kim D, Yang J, Gu F, Park S, Combs J, Adams A, Mayes HB, Jeon SJ, Bahk JD, Nielsen E. A temperature-sensitive FERONIA mutant allele that alters root hair growth. PLANT PHYSIOLOGY 2021; 185:405-423. [PMID: 33721904 PMCID: PMC8133571 DOI: 10.1093/plphys/kiaa051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 05/22/2023]
Abstract
In plants, root hairs undergo a highly polarized form of cell expansion called tip-growth, in which cell wall deposition is restricted to the root hair apex. In order to identify essential cellular components that might have been missed in earlier genetic screens, we identified conditional temperature-sensitive (ts) root hair mutants by ethyl methanesulfonate mutagenesis in Arabidopsis thaliana. Here, we describe one of these mutants, feronia-temperature sensitive (fer-ts). Mutant fer-ts seedlings were unaffected at normal temperatures (20°C), but failed to form root hairs at elevated temperatures (30°C). Map based-cloning and whole-genome sequencing revealed that fer-ts resulted from a G41S substitution in the extracellular domain of FERONIA (FER). A functional fluorescent fusion of FER containing the fer-ts mutation localized to plasma membranes, but was subject to enhanced protein turnover at elevated temperatures. While tip-growth was rapidly inhibited by addition of rapid alkalinization factor 1 (RALF1) peptides in both wild-type and fer-ts mutants at normal temperatures, root elongation of fer-ts seedlings was resistant to added RALF1 peptide at elevated temperatures. Additionally, at elevated temperatures fer-ts seedlings displayed altered reactive oxygen species (ROS) accumulation upon auxin treatment and phenocopied constitutive fer mutant responses to a variety of plant hormone treatments. Molecular modeling and sequence comparison with other Catharanthus roseus receptor-like kinase 1L (CrRLK1L) receptor family members revealed that the mutated glycine in fer-ts is highly conserved, but is not located within the recently characterized RALF23 and LORELI-LIKE-GLYCOPROTEIN 2 binding domains, perhaps suggesting that fer-ts phenotypes may not be directly due to loss of binding to RALF1 peptides.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Applied Life Sciences (BK21plus), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jiyuan Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Fangwei Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sungjin Park
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jonathon Combs
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander Adams
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Heather B Mayes
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Su Jeong Jeon
- Division of Applied Life Sciences (BK21plus), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jeong Dong Bahk
- Division of Applied Life Sciences (BK21plus), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
36
|
Eldridge BM, Larson ER, Weldon L, Smyth KM, Sellin AN, Chenchiah IV, Liverpool TB, Grierson CS. A Centrifuge-Based Method for Identifying Novel Genetic Traits That Affect Root-Substrate Adhesion in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:602486. [PMID: 33732271 PMCID: PMC7959780 DOI: 10.3389/fpls.2021.602486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The physical presence of roots and the compounds they release affect the cohesion between roots and their environment. However, the plant traits that are important for these interactions are unknown and most methods that quantify the contributions of these traits are time-intensive and require specialist equipment and complex substrates. Our lab developed an inexpensive, high-throughput phenotyping assay that quantifies root-substrate adhesion in Arabidopsis thaliana. We now report that this method has high sensitivity and versatility for identifying different types of traits affecting root-substrate adhesion including root hair morphology, vesicle trafficking pathways, and root exudate composition. We describe a practical protocol for conducting this assay and introduce its use in a forward genetic screen to identify novel genes affecting root-substrate interactions. This assay is a powerful tool for identifying and quantifying genetic contributions to cohesion between roots and their environment.
Collapse
Affiliation(s)
- Bethany M. Eldridge
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Emily R. Larson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Laura Weldon
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Kevin M. Smyth
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Annabelle N. Sellin
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | - Claire S. Grierson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
37
|
The molecular basis of plant cellulose synthase complex organisation and assembly. Biochem Soc Trans 2021; 49:379-391. [PMID: 33616627 DOI: 10.1042/bst20200697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/02/2023]
Abstract
The material properties of cellulose are heavily influenced by the organisation of β-1,4-glucan chains into a microfibril. It is likely that the structure of this microfibril is determined by the spatial arrangement of catalytic cellulose synthase (CESA) proteins within the cellulose synthase complex (CSC). In land plants, CESA proteins form a large complex composed of a hexamer of trimeric lobes termed the rosette. Each rosette synthesises a single microfibril likely composed of 18 glucan chains. In this review, the biochemical events leading to plant CESA protein assembly into the rosette are explored. The protein interfaces responsible for CESA trimerization are formed by regions that define rosette-forming CESA proteins. As a consequence, these regions are absent from the ancestral bacterial cellulose synthases (BcsAs) that do not form rosettes. CSC assembly occurs within the context of the endomembrane system, however the site of CESA assembly into trimers and rosettes is not determined. Both the N-Terminal Domain and Class Specific Region of CESA proteins are intrinsically disordered and contain all of the identified phosphorylation sites, making both regions candidates as sites for protein-protein interactions and inter-lobe interface formation. We propose a sequential assembly model, whereby CESA proteins form stable trimers shortly after native folding, followed by sequential recruitment of lobes into a rosette, possibly assisted by Golgi-localised STELLO proteins. A comprehensive understanding of CESA assembly into the CSC will enable directed engineering of CESA protein spatial arrangements, allowing changes in cellulose crystal packing that alter its material properties.
Collapse
|
38
|
Yuan W, Liu J, Takáč T, Chen H, Li X, Meng J, Tan Y, Ning T, He Z, Yi G, Xu C. Genome-Wide Identification of Banana Csl Gene Family and Their Different Responses to Low Temperature between Chilling-Sensitive and Tolerant Cultivars. PLANTS 2021; 10:plants10010122. [PMID: 33435621 PMCID: PMC7827608 DOI: 10.3390/plants10010122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/04/2023]
Abstract
The cell wall plays an important role in responses to various stresses. The cellulose synthase-like gene (Csl) family has been reported to be involved in the biosynthesis of the hemicellulose backbone. However, little information is available on their involvement in plant tolerance to low-temperature (LT) stress. In this study, a total of 42 Csls were identified in Musa acuminata and clustered into six subfamilies (CslA, CslC, CslD, CslE, CslG, and CslH) according to phylogenetic relationships. The genomic features of MaCsl genes were characterized to identify gene structures, conserved motifs and the distribution among chromosomes. A phylogenetic tree was constructed to show the diversity in these genes. Different changes in hemicellulose content between chilling-tolerant and chilling-sensitive banana cultivars under LT were observed, suggesting that certain types of hemicellulose are involved in LT stress tolerance in banana. Thus, the expression patterns of MaCsl genes in both cultivars after LT treatment were investigated by RNA sequencing (RNA-Seq) technique followed by quantitative real-time PCR (qPCR) validation. The results indicated that MaCslA4/12, MaCslD4 and MaCslE2 are promising candidates determining the chilling tolerance of banana. Our results provide the first genome-wide characterization of the MaCsls in banana, and open the door for further functional studies.
Collapse
Affiliation(s)
- Weina Yuan
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Jing Liu
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 783 75 Olomouc, Czech Republic;
| | - Houbin Chen
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Xiaoquan Li
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Jian Meng
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Yehuan Tan
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Tong Ning
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Zhenting He
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (G.Y.); (C.X.)
| | - Chunxiang Xu
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
- Correspondence: (G.Y.); (C.X.)
| |
Collapse
|
39
|
Ramírez-Rodríguez EA, McFarlane HE. Insights from the Structure of a Plant Cellulose Synthase Trimer. TRENDS IN PLANT SCIENCE 2021; 26:4-7. [PMID: 33008741 DOI: 10.1016/j.tplants.2020.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 05/27/2023]
Abstract
Cellulose is an essential component of plant cell walls and the most abundant biopolymer on Earth. Despite its chemical simplicity, questions remain regarding the mechanisms of cellulose synthesis. A cryo-electron microscopy structure of a simplified plant cellulose synthase enzyme complex provides new insights into assembly, localization, and regulation of this complex.
Collapse
Affiliation(s)
| | - Heather E McFarlane
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.
| |
Collapse
|
40
|
Verhertbruggen Y, Bouder A, Vigouroux J, Alvarado C, Geairon A, Guillon F, Wilkinson MD, Stritt F, Pauly M, Lee MY, Mortimer JC, Scheller HV, Mitchell RAC, Voiniciuc C, Saulnier L, Chateigner-Boutin AL. The TaCslA12 gene expressed in the wheat grain endosperm synthesizes wheat-like mannan when expressed in yeast and Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110693. [PMID: 33288007 DOI: 10.1016/j.plantsci.2020.110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 06/12/2023]
Abstract
Mannan is a class of cell wall polysaccharides widespread in the plant kingdom. Mannan structure and properties vary according to species and organ. The cell walls of cereal grains have been extensively studied due to their role in cereal processing and to their beneficial effect on human health as dietary fiber. Recently, we showed that mannan in wheat (Triticum aestivum) grain endosperm has a linear structure of β-1,4-linked mannose residues. The aim of this work was to study the biosynthesis and function of wheat grain mannan. We showed that mannan is deposited in the endosperm early during grain development, and we identified candidate mannan biosynthetic genes expressed in the endosperm. The functional study in wheat was unsuccessful therefore our best candidate genes were expressed in heterologous systems. The endosperm-specificTaCslA12 gene expressed in Pichia pastoris and in an Arabidopsis thaliana mutant depleted in glucomannan led to the production of wheat-like linear mannan lacking glucose residues and with moderate acetylation. Therefore, this gene encodes a mannan synthase and is likely responsible for the synthesis of wheat endosperm mannan.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark D Wilkinson
- Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JK, UK
| | - Fabian Stritt
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Mi Yeon Lee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | - Cătălin Voiniciuc
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | | | | |
Collapse
|
41
|
Xi H, Liu J, Li Q, Chen X, Liu C, Zhao Y, Yao J, Chen D, Si J, Liu C, Zhang L. Genome-wide identification of Cellulose-like synthase D gene family in Dendrobium catenatum. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1941252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Hangxian Xi
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Qing Li
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, PR China
| | - Xueliang Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Chen Liu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Yuxue Zhao
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jinbo Yao
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Chenghong Liu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences\Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, PR China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, PR China
| |
Collapse
|
42
|
Stratilová B, Kozmon S, Stratilová E, Hrmova M. Plant Xyloglucan Xyloglucosyl Transferases and the Cell Wall Structure: Subtle but Significant. Molecules 2020; 25:E5619. [PMID: 33260399 PMCID: PMC7729885 DOI: 10.3390/molecules25235619] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Plant xyloglucan xyloglucosyl transferases or xyloglucan endo-transglycosylases (XET; EC 2.4.1.207) catalogued in the glycoside hydrolase family 16 constitute cell wall-modifying enzymes that play a fundamental role in the cell wall expansion and re-modelling. Over the past thirty years, it has been established that XET enzymes catalyse homo-transglycosylation reactions with xyloglucan (XG)-derived substrates and hetero-transglycosylation reactions with neutral and charged donor and acceptor substrates other than XG-derived. This broad specificity in XET isoforms is credited to a high degree of structural and catalytic plasticity that has evolved ubiquitously in algal, moss, fern, basic Angiosperm, monocot, and eudicot enzymes. These XET isoforms constitute gene families that are differentially expressed in tissues in time- and space-dependent manners during plant growth and development, and in response to biotic and abiotic stresses. Here, we discuss the current state of knowledge of broad specific plant XET enzymes and how their inherently carbohydrate-based transglycosylation reactions tightly link with structural diversity that underlies the complexity of plant cell walls and their mechanics. Based on this knowledge, we conclude that multi- or poly-specific XET enzymes are widespread in plants to allow for modifications of the cell wall structure in muro, a feature that implements the multifaceted roles in plant cells.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská Dolina, SK-84215 Bratislava, Slovakia
| | - Stanislav Kozmon
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
| | - Eva Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
| | - Maria Hrmova
- School of Life Science, Huaiyin Normal University, Huai’an 223300, China
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
43
|
The synthesis of xyloglucan, an abundant plant cell wall polysaccharide, requires CSLC function. Proc Natl Acad Sci U S A 2020; 117:20316-20324. [PMID: 32737163 PMCID: PMC7443942 DOI: 10.1073/pnas.2007245117] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plant cells have a polysaccharide-based wall that maintains their structural and functional integrity and determines their shape. Reorganization of wall components is required to allow growth and differentiation. One matrix polysaccharide that is postulated to play an important role in this reorganization is xyloglucan (XyG). While the structure of XyG is well understood, its biosynthesis is not. Through genetic studies with Arabidopsis CSLC genes, we demonstrate that they are responsible for the synthesis of the XyG glucan backbone. A quintuple cslc mutant is able to grow and develop normally but lacks detectable XyG. These results raise important questions regarding cell wall structure and its reorganization during growth. The series of cslc mutants will be valuable tools for investigating these questions. Xyloglucan (XyG) is an abundant component of the primary cell walls of most plants. While the structure of XyG has been well studied, much remains to be learned about its biosynthesis. Here we employed reverse genetics to investigate the role of Arabidopsis cellulose synthase like-C (CSLC) proteins in XyG biosynthesis. We found that single mutants containing a T-DNA in each of the five Arabidopsis CSLC genes had normal levels of XyG. However, higher-order cslc mutants had significantly reduced XyG levels, and a mutant with disruptions in all five CSLC genes had no detectable XyG. The higher-order mutants grew with mild tissue-specific phenotypes. Despite the apparent lack of XyG, the cslc quintuple mutant did not display significant alteration of gene expression at the whole-genome level, excluding transcriptional compensation. The quintuple mutant could be complemented by each of the five CSLC genes, supporting the conclusion that each of them encodes a XyG glucan synthase. Phylogenetic analyses indicated that the CSLC genes are widespread in the plant kingdom and evolved from an ancient family. These results establish the role of the CSLC genes in XyG biosynthesis, and the mutants described here provide valuable tools with which to study both the molecular details of XyG biosynthesis and the role of XyG in plant cell wall structure and function.
Collapse
|
44
|
Kuki H, Yokoyama R, Kuroha T, Nishitani K. Xyloglucan Is Not Essential for the Formation and Integrity of the Cellulose Network in the Primary Cell Wall Regenerated from Arabidopsis Protoplasts. PLANTS (BASEL, SWITZERLAND) 2020; 9:E629. [PMID: 32423049 PMCID: PMC7285283 DOI: 10.3390/plants9050629] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023]
Abstract
The notion that xyloglucans (XG) play a pivotal role in tethering cellulose microfibrils in the primary cell wall of plants can be traced back to the first molecular model of the cell wall proposed in 1973, which was reinforced in the 1990s by the identification of Xyloglucan Endotransglucosylase/Hydrolase (XTH) enzymes that cleave and reconnect xyloglucan crosslinks in the cell wall. However, this tethered network model has been seriously challenged since 2008 by the identification of the Arabidopsis thaliana xyloglucan-deficient mutant (xxt1 xxt2), which exhibits functional cell walls. Thus, the molecular mechanism underlying the physical integration of cellulose microfibrils into the cell wall remains controversial. To resolve this dilemma, we investigated the cell wall regeneration process using mesophyll protoplasts derived from xxt1 xxt2 mutant leaves. Imaging analysis revealed only a slight difference in the structure of cellulose microfibril network between xxt1 xxt2 and wild-type (WT) protoplasts. Additionally, exogenous xyloglucan application did not alter the cellulose deposition patterns or mechanical stability of xxt1 xxt2 mutant protoplasts. These results indicate that xyloglucan is not essential for the initial assembly of the cellulose network, and the cellulose network formed in the absence of xyloglucan provides sufficient tensile strength to the primary cell wall regenerated from protoplasts.
Collapse
Affiliation(s)
- Hiroaki Kuki
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan; (H.K.); (R.Y.); (T.K.)
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Ryusuke Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan; (H.K.); (R.Y.); (T.K.)
| | - Takeshi Kuroha
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan; (H.K.); (R.Y.); (T.K.)
- Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8604, Japan
| | - Kazuhiko Nishitani
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan; (H.K.); (R.Y.); (T.K.)
- Department of Biological Science, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| |
Collapse
|
45
|
O'Leary BM. Another Brick in the Plant Cell Wall: Characterization of Arabidopsis CSLD3 Function in Cell Wall Synthesis. THE PLANT CELL 2020; 32:1359-1360. [PMID: 32169958 PMCID: PMC7203942 DOI: 10.1105/tpc.20.00190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Brendan M O'Leary
- ARC Centre of Excellence in Plant Energy BiologyUniversity of Western Australia
| |
Collapse
|