1
|
Zhao CX, Yan YF, Zhao LX, Tang X, Chen YG, Song WJ, Long LP, Chen J, Tan CL, Zhang QZ, Pu XL, Shen QQ, Fan YZ, Tao Y, Ye X, Li SH, Liu Y. Characterization of a 4'-O-rhamnosyltransferase and de novo biosynthesis of bioactive steroidal triglycosides from Paris polyphylla. PLANT COMMUNICATIONS 2025; 6:101257. [PMID: 39844466 PMCID: PMC12010398 DOI: 10.1016/j.xplc.2025.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Steroidal saponins in Paris polyphylla featuring complicated sugar chains exhibit notable biological activities, but their sugar-chain biosynthesis is still not fully understood. Here, we identified a 4'-O-rhamnosyltransferase (UGT73DY2) from P. polyphylla, which catalyzes the 4'-O-rhamnosylation of polyphyllins V and VI, producing dioscin and pennogenin 3-O-β-chacotrioside, respectively. UGT73DY2 exhibits strict substrate specificity toward steroidal diglycosides and UDP-rhamnose, and a new steroidal triglycoside can be synthesized through enzyme catalysis. A mutation library was generated based on semi-rational design, identifying three mutants, I358T, A342V, and A132T, which displayed approximately two-fold enhanced enzyme activity. Molecular dynamics simulations revealed that shortened distances between the 4'-OH group of the sugar acceptor and either the crucial residue H20 or the donor UDP-Rha contribute to the enhanced enzyme activity. Moreover, subcellular localization analysis of UGT73DY2 and other biosynthetic enzymes indicated that dioscin biosynthesis predominantly occurs in the endoplasmic reticulum of plant cells. By co-expressing 14 biosynthetic genes in Nicotiana benthamiana, optimizing HMGR subcellular localization and cytochrome P450 gene sets, and engineering UGT73DY2, we successfully established a dioscin biosynthesis system with a yield of 3.12 ± 0.11 μg/g dry weight. This study not only clarifies the 4'-O-rhamnosylation process in steroidal saponin biosynthesis but also presents an alternative approach for the production of steroidal saponins in P. polyphylla through synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Chen-Xiao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Yuan-Feng Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Li-Xiao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Yue-Gui Chen
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Wen-Jun Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Li-Ping Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Jing Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Chun-Lin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Qiao-Zhuo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Xiu-Lan Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Qin-Qin Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Yu-Zhou Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Yang Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Xiao Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China; State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China.
| |
Collapse
|
2
|
Liang J, Deng Y, Yan X, Wang Z, Zeng P, Le M, Zhou H, Sun J. Fine Mapping of the QTL qRLP12 That Controls Root Length Under Polyethylene glycol-Induced Drought Stress During the Early Seedling Stage of Sesame. Int J Mol Sci 2025; 26:2886. [PMID: 40243507 PMCID: PMC11988704 DOI: 10.3390/ijms26072886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
A deeper root system can improve the efficiency of water and nutrient absorption from soil; therefore, genetic improvements to the root length of crops are essential for yield stability under drought stress. We previously identified a stable quantitative trait locus (QTL) qRLP12 for root length under polyethylene glycol (PEG)-induced drought stress in a Jinhuangma (JHM, sensitive)/Zhushanbai (ZSB, tolerant) recombinant inbred line (RIL) population. To validate and fine map this QTL, in this study, a secondary F2 population was constructed, and the genetic effect of the target QTL was validated by comparing the phenotype data of different genotypes. Using newly developed markers, 14 genotypes of recombinant F2 individuals were obtained. A phenotypic analysis of homozygous recombinant progeny lines narrowed qRLP12 to a 91 kb region. Seven putative predicted genes were identified in the target region, among which LOC105165547, a callose synthase gene, was the only one containing nonsynonymous variations in the coding region between two parents. Quantitative real-time PCR analysis revealed that LOC105165547 was significantly induced by PEG stress in the qRLP12+ line. These indicated that LOC105165547 might be the candidate gene for qRLP12, which is responsible for root length subjected to PEG stress. Our results provide a favored gene resource for improving root length under drought stress in sesame.
Collapse
Affiliation(s)
- Junchao Liang
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Jiangxi Province Key Laboratory for Genetic Improvement of Oilcrops, Nanchang 330200, China; (J.L.); (Y.D.); (X.Y.); (Z.W.); (P.Z.); (M.L.); (H.Z.)
| | - Yanxin Deng
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Jiangxi Province Key Laboratory for Genetic Improvement of Oilcrops, Nanchang 330200, China; (J.L.); (Y.D.); (X.Y.); (Z.W.); (P.Z.); (M.L.); (H.Z.)
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xiaowen Yan
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Jiangxi Province Key Laboratory for Genetic Improvement of Oilcrops, Nanchang 330200, China; (J.L.); (Y.D.); (X.Y.); (Z.W.); (P.Z.); (M.L.); (H.Z.)
| | - Zhiqi Wang
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Jiangxi Province Key Laboratory for Genetic Improvement of Oilcrops, Nanchang 330200, China; (J.L.); (Y.D.); (X.Y.); (Z.W.); (P.Z.); (M.L.); (H.Z.)
| | - Pan Zeng
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Jiangxi Province Key Laboratory for Genetic Improvement of Oilcrops, Nanchang 330200, China; (J.L.); (Y.D.); (X.Y.); (Z.W.); (P.Z.); (M.L.); (H.Z.)
| | - Meiwang Le
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Jiangxi Province Key Laboratory for Genetic Improvement of Oilcrops, Nanchang 330200, China; (J.L.); (Y.D.); (X.Y.); (Z.W.); (P.Z.); (M.L.); (H.Z.)
| | - Hongying Zhou
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Jiangxi Province Key Laboratory for Genetic Improvement of Oilcrops, Nanchang 330200, China; (J.L.); (Y.D.); (X.Y.); (Z.W.); (P.Z.); (M.L.); (H.Z.)
| | - Jian Sun
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Jiangxi Province Key Laboratory for Genetic Improvement of Oilcrops, Nanchang 330200, China; (J.L.); (Y.D.); (X.Y.); (Z.W.); (P.Z.); (M.L.); (H.Z.)
| |
Collapse
|
3
|
Liao W, Guo R, Li J, Liu N, Jiang L, Whelan J, Shou H. CRISPR/Cas9-mediated mutagenesis of SEED FATTY ACID REDUCER genes significantly increased seed oil content in soybean. PLANT & CELL PHYSIOLOGY 2025; 66:273-284. [PMID: 39707619 DOI: 10.1093/pcp/pcae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Increasing seed oil content (SOC) is an important breeding goal for soybean breeding. While significant efforts have been made to improve SOC through metabolic pathway engineering, research to increase soybean SOC by reducing lipid degradation and fatty acid (FA) decomposition during seed maturation process is limited. Seed fatty acid reducers (SFARs) are members of the GDSL enzyme family and play a crucial role in lipid metabolism. Among them, a pair of the GmSFAR4 genes is highly expressed in soybean seeds during seed desiccation and germination. In the study, GmSFAR4a/b double mutants were generated using CRISPR/Cas9-mediated gene editing technique. The seed FA content of GmSFAR4a/b double mutants was significantly increased by ∼8% compared to wild type when grown in greenhouse, and ∼17% when grown in the field, without any adverse effects on seed vitality and plant growth. Our work enriches the understanding of soybean seed oil metabolism and provides a new approach to increase soybean SOC.
Collapse
Affiliation(s)
- Wenying Liao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Runze Guo
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Na Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - James Whelan
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huixia Shou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
4
|
Wang Q, De Vriese K, Desmet S, Wang R, Luklová M, Liu Q, Pollier J, Lu Q, Schlag S, Vetter W, Goossens A, Russinova E, Goeminne G, Geelen D, Beeckman T, Vanneste S. The selective estrogen receptor modulator clomiphene inhibits sterol biosynthesis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1131-1146. [PMID: 39680055 DOI: 10.1093/jxb/erae481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Sterols are produced via complex, multistep biosynthetic pathways involving similar enzymatic conversions in plants, animals, and fungi, yielding a variety of sterol metabolites with slightly different chemical properties to exert diverse and specific functions. A tremendously diverse landscape of sterols, and sterol-derived compounds can be found across the plant kingdom, determining a wide spectrum of functions. Resolving the underlying biosynthetic pathways is thus instrumental to understanding the function and use of these molecules. In only a few plants, sterol biosynthesis has been studied using mutants. In non-model species, a pharmacological approach is required. However, this relies on only a few inhibitors. Here, we investigated a collection of inhibitors of mammalian cholesterol biosynthesis to identify new inhibitors of plant sterol biosynthesis. We showed that imidazole-type fungicides, bifonazole, clotrimazole, and econazole, inhibited the obtusifoliol 14α-demethylase CYP51 in plants. Moreover, we found that the selective estrogen receptor modulator, clomiphene, inhibited sterol biosynthesis in part by inhibiting the plant-specific cyclopropyl-cycloisomerase CPI1. These results demonstrate that rescreening of inhibitors of animal sterol biosynthesis is an easy approach for identifying novel inhibitors of plant sterol biosynthesis. The molecules used in this study expand the range of inhibitors for studying and manipulating sterol biosynthesis in the plant kingdom.
Collapse
Affiliation(s)
- Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Sandrien Desmet
- VIB Metabolomics Core Ghent, Technologiepark 71, B-9052 Ghent, Belgium
| | - Ren Wang
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Markéta Luklová
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Qianqian Liu
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jacob Pollier
- VIB Metabolomics Core Ghent, Technologiepark 71, B-9052 Ghent, Belgium
| | - Qing Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Sarah Schlag
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Geert Goeminne
- VIB Metabolomics Core Ghent, Technologiepark 71, B-9052 Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
5
|
Hou X, Yang J, Xie Y, Ma B, Wang K, Pan W, Ma S, Wang L, Dong CH. The RNA helicase LOS4 regulates pre-mRNA splicing of key genes (EIN2, ERS2, CTR1) in the ethylene signaling pathway. PLANT CELL REPORTS 2024; 43:252. [PMID: 39367948 DOI: 10.1007/s00299-024-03340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
KEY MESSAGE The Arabidopsis RNA helicase LOS4 plays a key role in regulating pre-mRNA splicing of the genes EIN2, CTR1, and ERS2 in ethylene signaling pathway. The plant hormone ethylene plays diverse roles in plant growth, development, and responses to stress. Ethylene is perceived by the membrane-bound ethylene receptors complex, and then triggers downstream components, such as EIN2, to initiate signal transduction into the nucleus, leading to the activation of ethylene-responsive genes. Over the past decades, substantial information has been accumulated regarding gene cloning, protein-protein interactions, and downstream gene expressions in the ethylene pathway. However, our understanding of mRNA post-transcriptional processing and modification of key genes in the ethylene signaling pathway remains limited. This study aims to provide evidence demonstrating the involvement of the Arabidopsis RNA helicase LOS4 in pre-mRNA splicing of the genes EIN2, CTR1, and ERS2 in ethylene signaling pathway. Various genetic approaches including RNAi gene silencing, CRISPR-Cas9 gene editing, and amino acid mutations were employed in this study. When LOS4 was silenced or knocked down, the ethylene sensitivity of etiolated seedlings was significantly enhanced. Further investigation revealed errors in the EIN2 pre-mRNA splicing when LOS4 was knocked down. In addition, aberrant pre-mRNA splicing was observed in the ERS2 and CTR1 genes in the pathway. Biochemical assays indicated that the los4-2 (E94K) mutant protein exhibited increased ATP binding and enhanced ATP hydrolytic activity. Conversely, the los4-1 (G364R) mutant had reduced substrate RNA binding and lower ATP binding activities. These findings significantly advanced our comprehension of the regulatory functions and molecular mechanisms of RNA helicase in ethylene signaling.
Collapse
Affiliation(s)
- Xiaomin Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Jingli Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- Weifang University of Science and Technology, Weifang, 262700, China
| | - Yanhua Xie
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Binran Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kun Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenqiang Pan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shaoqi Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lijuan Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Zhou Y, Gao YH, Zhang BC, Yang HL, Tian YB, Huang YH, Yin CC, Tao JJ, Wei W, Zhang WK, Chen SY, Zhou YH, Zhang JS. CELLULOSE SYNTHASE-LIKE C proteins modulate cell wall establishment during ethylene-mediated root growth inhibition in rice. THE PLANT CELL 2024; 36:3751-3769. [PMID: 38943676 PMCID: PMC11371184 DOI: 10.1093/plcell/koae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
The cell wall shapes plant cell morphogenesis and affects the plasticity of organ growth. However, the way in which cell wall establishment is regulated by ethylene remains largely elusive. Here, by analyzing cell wall patterns, cell wall composition and gene expression in rice (Oryza sativa, L.) roots, we found that ethylene induces cell wall thickening and the expression of cell wall synthesis-related genes, including CELLULOSE SYNTHASE-LIKE C1, 2, 7, 9, 10 (OsCSLC1, 2, 7, 9, 10) and CELLULOSE SYNTHASE A3, 4, 7, 9 (OsCESA3, 4, 7, 9). Overexpression and mutant analyses revealed that OsCSLC2 and its homologs function in ethylene-mediated induction of xyloglucan biosynthesis mainly in the cell wall of root epidermal cells. Moreover, OsCESA-catalyzed cellulose deposition in the cell wall was enhanced by ethylene. OsCSLC-mediated xyloglucan biosynthesis likely plays an important role in restricting cell wall extension and cell elongation during the ethylene response in rice roots. Genetically, OsCSLC2 acts downstream of ETHYLENE-INSENSITIVE3-LIKE1 (OsEIL1)-mediated ethylene signaling, and OsCSLC1, 2, 7, 9 are directly activated by OsEIL1. Furthermore, the auxin signaling pathway is synergistically involved in these regulatory processes. These findings link plant hormone signaling with cell wall establishment, broadening our understanding of root growth plasticity in rice and other crops.
Collapse
Affiliation(s)
- Yang Zhou
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hong Gao
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao-Cai Zhang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Han-Lei Yang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan-Bao Tian
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hua Huang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Jun Tao
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hua Zhou
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Song Zhang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Li XK, Huang YH, Zhao R, Cao WQ, Lu L, Han JQ, Zhou Y, Zhang X, Wu WA, Tao JJ, Wei W, Zhang WK, Chen SY, Ma B, Zhao H, Yin CC, Zhang JS. Membrane protein MHZ3 regulates the on-off switch of ethylene signaling in rice. Nat Commun 2024; 15:5987. [PMID: 39013913 PMCID: PMC11252128 DOI: 10.1038/s41467-024-50290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Ethylene regulates plant growth, development, and stress adaptation. However, the early signaling events following ethylene perception, particularly in the regulation of ethylene receptor/CTRs (CONSTITUTIVE TRIPLE RESPONSE) complex, remains less understood. Here, utilizing the rapid phospho-shift of rice OsCTR2 in response to ethylene as a sensitive readout for signal activation, we revealed that MHZ3, previously identified as a stabilizer of ETHYLENE INSENSITIVE 2 (OsEIN2), is crucial for maintaining OsCTR2 phosphorylation. Genetically, both functional MHZ3 and ethylene receptors prove essential for OsCTR2 phosphorylation. MHZ3 physically interacts with both subfamily I and II ethylene receptors, e.g., OsERS2 and OsETR2 respectively, stabilizing their association with OsCTR2 and thereby maintaining OsCTR2 activity. Ethylene treatment disrupts the interactions within the protein complex MHZ3/receptors/OsCTR2, reducing OsCTR2 phosphorylation and initiating downstream signaling. Our study unveils the dual role of MHZ3 in fine-tuning ethylene signaling activation, providing insights into the initial stages of the ethylene signaling cascade.
Collapse
Affiliation(s)
- Xin-Kai Li
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Hua Huang
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Zhao
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wu-Qiang Cao
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia-Qi Han
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Zhou
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xun Zhang
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Ai Wu
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - He Zhao
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
| | - Cui-Cui Yin
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Song Zhang
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Kong X, Xiong Y, Song X, Wadey S, Yu S, Rao J, Lale A, Lombardi M, Fusi R, Bhosale R, Huang G. Ethylene regulates auxin-mediated root gravitropic machinery and controls root angle in cereal crops. PLANT PHYSIOLOGY 2024; 195:1969-1980. [PMID: 38446735 DOI: 10.1093/plphys/kiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
Root angle is a critical factor in optimizing the acquisition of essential resources from different soil depths. The regulation of root angle relies on the auxin-mediated root gravitropism machinery. While the influence of ethylene on auxin levels is known, its specific role in governing root gravitropism and angle remains uncertain, particularly when Arabidopsis (Arabidopsis thaliana) core ethylene signaling mutants show no gravitropic defects. Our research, focusing on rice (Oryza sativa L.) and maize (Zea mays), clearly reveals the involvement of ethylene in root angle regulation in cereal crops through the modulation of auxin biosynthesis and the root gravitropism machinery. We elucidated the molecular components by which ethylene exerts its regulatory effect on auxin biosynthesis to control root gravitropism machinery. The ethylene-insensitive mutants ethylene insensitive2 (osein2) and ethylene insensitive like1 (oseil1), exhibited substantially shallower crown root angle compared to the wild type. Gravitropism assays revealed reduced root gravitropic response in these mutants. Hormone profiling analysis confirmed decreased auxin levels in the root tips of the osein2 mutant, and exogenous auxin (NAA) application rescued root gravitropism in both ethylene-insensitive mutants. Additionally, the auxin biosynthetic mutant mao hu zi10 (mhz10)/tryptophan aminotransferase2 (ostar2) showed impaired gravitropic response and shallow crown root angle phenotypes. Similarly, maize ethylene-insensitive mutants (zmein2) exhibited defective gravitropism and root angle phenotypes. In conclusion, our study highlights that ethylene controls the auxin-dependent root gravitropism machinery to regulate root angle in rice and maize, revealing a functional divergence in ethylene signaling between Arabidopsis and cereal crops. These findings contribute to a better understanding of root angle regulation and have implications for improving resource acquisition in agricultural systems.
Collapse
Affiliation(s)
- Xiuzhen Kong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yali Xiong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Song
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel Wadey
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Suhang Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinliang Rao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aneesh Lale
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Marco Lombardi
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Riccardo Fusi
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Rahul Bhosale
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Hyderabad, India
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Chien YC, Yoon GM. Subcellular dynamics of ethylene signaling drive plant plasticity to growth and stress: Spatiotemporal control of ethylene signaling in Arabidopsis. Bioessays 2024; 46:e2400043. [PMID: 38571390 DOI: 10.1002/bies.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Volatile compounds, such as nitric oxide and ethylene gas, play a vital role as signaling molecules in organisms. Ethylene is a plant hormone that regulates a wide range of plant growth, development, and responses to stress and is perceived by a family of ethylene receptors that localize in the endoplasmic reticulum. Constitutive Triple Response 1 (CTR1), a Raf-like protein kinase and a key negative regulator for ethylene responses, tethers to the ethylene receptors, but undergoes nuclear translocation upon activation of ethylene signaling. This ER-to-nucleus trafficking transforms CTR1 into a positive regulator for ethylene responses, significantly enhancing stress resilience to drought and salinity. The nuclear trafficking of CTR1 demonstrates that the spatiotemporal control of ethylene signaling is essential for stress adaptation. Understanding the mechanisms governing the spatiotemporal control of ethylene signaling elements is crucial for unraveling the system-level regulatory mechanisms that collectively fine-tune ethylene responses to optimize plant growth, development, and stress adaptation.
Collapse
Affiliation(s)
- Yuan-Chi Chien
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
10
|
Qi Z, Liu C, Wang N, Cui J, Hu J, Gu R, Meng L, Wang P, Zhai J, Shui G, Cui S. The dehydration-responsive protein PpFAS1.3 in moss Physcomitrium patens plays a regulatory role in lipid metabolism. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154253. [PMID: 38703549 DOI: 10.1016/j.jplph.2024.154253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
Moss plants appear in the early stages of land colonization and possess varying degrees of dehydration tolerance. In this study, a protein called PpFAS1.3 was identified, which contains a fasciclin 1-like domain and is essential for the moss Physcomitrium patens' response to short-term rapid dehydration. When the FAS1.3 protein was knocked out, leafyshoots showed a significant decrease in tolerance to rapid dehydration, resulting in accelerated water loss and increased membrane leakage. Phylogenetic analysis suggests that PpFAS1.3 and its homologous proteins may have originated from bacteria and are specifically found in non-vascular plants like mosses and liverworts. As a dehydration-related protein, FAS1.3 plays a significant role in regulating lipid metabolism, particularly in the synthesis of free fatty acids (FFA) and the metabolism of two phospholipids, PC and PA. This discovery highlights the close connection between PpFAS1.3 and lipid metabolism, providing new insights into the molecular mechanisms underlying plant adaptation to stresses.
Collapse
Affiliation(s)
- Zhenyu Qi
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Chen Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ning Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jipeng Cui
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jia Hu
- Central Laboratory, Capital Medical University, Beijing, 100029, China
| | - Ruoqing Gu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Le Meng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Pan Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jianan Zhai
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China.
| |
Collapse
|
11
|
Zhang M, Chen D, Tian J, Cao J, Xie K, He Y, Yuan M. OsGELP77, a QTL for broad-spectrum disease resistance and yield in rice, encodes a GDSL-type lipase. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1352-1371. [PMID: 38100249 PMCID: PMC11022805 DOI: 10.1111/pbi.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Lipids and lipid metabolites have essential roles in plant-pathogen interactions. GDSL-type lipases are involved in lipid metabolism modulating lipid homeostasis. Some plant GDSLs modulate lipid metabolism altering hormone signal transduction to regulate host-defence immunity. Here, we functionally characterized a rice lipase, OsGELP77, promoting both immunity and yield. OsGELP77 expression was induced by pathogen infection and jasmonic acid (JA) treatment. Overexpression of OsGELP77 enhanced rice resistance to both bacterial and fungal pathogens, while loss-of-function of osgelp77 showed susceptibility. OsGELP77 localizes to endoplasmic reticulum and is a functional lipase hydrolysing universal lipid substrates. Lipidomics analyses demonstrate that OsGELP77 is crucial for lipid metabolism and lipid-derived JA homeostasis. Genetic analyses confirm that OsGELP77-modulated resistance depends on JA signal transduction. Moreover, population genetic analyses indicate that OsGELP77 expression level is positively correlated with rice resistance against pathogens. Three haplotypes were classified based on nucleotide polymorphisms in the OsGELP77 promoter where OsGELP77Hap3 is an elite haplotype. Three OsGELP77 haplotypes are differentially distributed in wild and cultivated rice, while OsGELP77Hap3 has been broadly pyramided for hybrid rice development. Furthermore, quantitative trait locus (QTL) mapping and resistance evaluation of the constructed near-isogenic line validated OsGELP77, a QTL for broad-spectrum disease resistance. In addition, OsGELP77-modulated lipid metabolism promotes JA accumulation facilitating grain yield. Notably, the hub defence regulator OsWRKY45 acts upstream of OsGELP77 by initiating the JA-dependent signalling to trigger immunity. Together, OsGELP77, a QTL contributing to immunity and yield, is a candidate for breeding broad-spectrum resistant and high-yielding rice.
Collapse
Affiliation(s)
- Miaojing Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Dan Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Jingjing Tian
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Jianbo Cao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
12
|
Gao L, Jiang H, Li M, Wang D, Xiang H, Zeng R, Chen L, Zhang X, Zuo J, Yang S, Shi Y. Genetic and lipidomic analyses reveal the key role of lipid metabolism for cold tolerance in maize. J Genet Genomics 2024; 51:326-337. [PMID: 37481121 DOI: 10.1016/j.jgg.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Lipid remodeling is crucial for cold tolerance in plants. However, the precise alternations of lipidomics during cold responses remain elusive, especially in maize (Zea mays L.). In addition, the key genes responsible for cold tolerance in maize lipid metabolism have not been identified. Here, we integrate lipidomic, transcriptomic, and genetic analysis to determine the profile of lipid remodeling caused by cold stress. We find that the homeostasis of cellular lipid metabolism is essential for maintaining cold tolerance of maize. Also, we detect 210 lipid species belonging to 13 major classes, covering phospholipids, glycerides, glycolipids, and free fatty acids. Various lipid metabolites undergo specific and selective alterations in response to cold stress, especially mono-/di-unsaturated lysophosphatidic acid, lysophosphatidylcholine, phosphatidylcholine, and phosphatidylinositol, as well as polyunsaturated phosphatidic acid, monogalactosyldiacylglycerol, diacylglycerol, and triacylglycerol. In addition, we identify a subset of key enzymes, including ketoacyl-acyl-carrier protein synthase II (KAS II), acyl-carrier protein 2 (ACP2), male sterility33 (Ms33), and stearoyl-acyl-carrier protein desaturase 2 (SAD2) involved in glycerolipid biosynthetic pathways are positive regulators of maize cold tolerance. These results reveal a comprehensive lipidomic profile during the cold response of maize and provide genetic resources for enhancing cold tolerance in crops.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Haifang Jiang
- State Key Laboratory of Wheat & Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Minze Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Danfeng Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Xiang
- Suihua Branch of Heilongjiang Academy of Agricultural Machinery Sciences, Suihua, Heilongjiang 152052, China
| | - Rong Zeng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Qin H, Xiao M, Li Y, Huang R. Ethylene Modulates Rice Root Plasticity under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:432. [PMID: 38337965 PMCID: PMC10857340 DOI: 10.3390/plants13030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Plants live in constantly changing environments that are often unfavorable or stressful. Root development strongly affects plant growth and productivity, and the developmental plasticity of roots helps plants to survive under abiotic stress conditions. This review summarizes the progress being made in understanding the regulation of the phtyohormone ethylene in rice root development in response to abiotic stresses, highlighting the complexity associated with the integration of ethylene synthesis and signaling in root development under adverse environments. Understanding the molecular mechanisms of ethylene in regulating root architecture and response to environmental signals can contribute to the genetic improvement of crop root systems, enhancing their adaptation to stressful environmental conditions.
Collapse
Affiliation(s)
- Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Minggang Xiao
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China;
| | - Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (R.H.)
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| |
Collapse
|
14
|
Dong Y, Li G, Zhang X, Feng Z, Li T, Li Z, Xu S, Xu S, Liu W, Xue J. Genome-Wide Association Study for Maize Hybrid Performance in a Typical Breeder Population. Int J Mol Sci 2024; 25:1190. [PMID: 38256265 PMCID: PMC10816832 DOI: 10.3390/ijms25021190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Maize is one of the major crops that has demonstrated success in the utilization of heterosis. Developing high-yield hybrids is a crucial part of plant breeding to secure global food demand. In this study, we conducted a genome-wide association study (GWAS) for 10 agronomic traits using a typical breeder population comprised 442 single-cross hybrids by evaluating additive, dominance, and epistatic effects. A total of 49 significant single nucleotide polymorphisms (SNPs) and 69 significant pairs of epistasis were identified, explaining 26.2% to 64.3% of the phenotypic variation across the 10 traits. The enrichment of favorable genotypes is significantly correlated to the corresponding phenotype. In the confident region of the associated site, 532 protein-coding genes were discovered. Among these genes, the Zm00001d044211 candidate gene was found to negatively regulate starch synthesis and potentially impact yield. This typical breeding population provided a valuable resource for dissecting the genetic architecture of yield-related traits. We proposed a novel mating strategy to increase the GWAS efficiency without utilizing more resources. Finally, we analyzed the enrichment of favorable alleles in the Shaan A and Shaan B groups, as well as in each inbred line. Our breeding practice led to consistent results. Not only does this study demonstrate the feasibility of GWAS in F1 hybrid populations, it also provides a valuable basis for further molecular biology and breeding research.
Collapse
Affiliation(s)
- Yuan Dong
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Guoliang Li
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Xinghua Zhang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhiqian Feng
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Ting Li
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhoushuai Li
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenxin Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
15
|
Duan L, Wang F, Shen H, Xie S, Chen X, Xie Q, Li R, Cao A, Li H. Identification, evolution, and expression of GDSL-type Esterase/Lipase (GELP) gene family in three cotton species: a bioinformatic analysis. BMC Genomics 2023; 24:795. [PMID: 38129780 PMCID: PMC10734139 DOI: 10.1186/s12864-023-09717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND GDSL esterase/lipases (GELPs) play important roles in plant growth, development, and response to biotic and abiotic stresses. Presently, an extensive and in-depth analysis of GELP family genes in cotton is still not clear enough, which greatly limits the further understanding of cotton GELP function and regulatory mechanism. RESULTS A total of 389 GELP family genes were identified in three cotton species of Gossypium hirsutum (193), G. arboreum (97), and G. raimondii (99). These GELPs could be classified into three groups and eight subgroups, with the GELPs in same group to have similar gene structures and conserved motifs. Evolutionary event analysis showed that the GELP family genes tend to be diversified at the spatial dimension and certain conservative at the time dimension, with a trend of potential continuous expansion in the future. The orthologous or paralogous GELPs among different genomes/subgenomes indicated the inheritance from genome-wide duplication during polyploidization, and the paralogous GELPs were derived from chromosomal segment duplication or tandem replication. GELP genes in the A/D subgenome underwent at least three large-scale replication events in the evolutionary process during the period of 0.6-3.2 MYA, with two large-scale evolutionary events between 0.6-1.8 MYA that were associated with tetraploidization, and the large-scale duplication between 2.6-9.1 MYA that occurred during diploidization. The cotton GELPs indicated diverse expression patterns in tissue development, ovule and fiber growth, and in response to biotic and abiotic stresses, combining the existing cis-elements in the promoter regions, suggesting the GELPs involvements of functions to be diversification and of the mechanisms to be a hormone-mediated manner. CONCLUSIONS Our results provide a systematic and comprehensive understanding the function and regulatory mechanism of cotton GELP family, and offer an effective reference for in-depth genetic improvement utilization of cotton GELPs.
Collapse
Affiliation(s)
- Lisheng Duan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Rong Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
16
|
Tian D, Qin L, Verma KK, Wei L, Li J, Li B, Zhou W, He Z, Wei D, Huang S, Long S, Huang Q, Li C, Wei S. Transcriptomic and metabolomic differences between banana varieties which are resistant or susceptible to Fusarium wilt. PeerJ 2023; 11:e16549. [PMID: 38107578 PMCID: PMC10722978 DOI: 10.7717/peerj.16549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Background Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense race 4 (Foc4), is the most lethal disease of bananas in Asia. Methods To better understand the defense response of banana to Fusarium wilt, the transcriptome and metabolome profiles of the roots from resistant and susceptible bananas inoculated with Foc4 were compared. Results After Foc4 inoculation, there were 172 and 1,856 differentially expressed genes (DEGs) in the Foc4-susceptible variety (G1) and Foc4-resistant variety (G9), respectively. In addition, a total of 800 DEGs were identified between G1 and G9, which were mainly involved in the oxidation-reduction process, cell wall organization, phenylpropanoid biosynthesis, and lipid and nitrogen metabolism, especially the DEGs of Macma4_08_g22610, Macma4_11_g19760, and Macma4_03_g06480, encoding non-classical arabinogalactan protein; GDSL-like lipase; and peroxidase. In our study, G9 showed a stronger and earlier response to Foc4 than G1. As the results of metabolomics, lipids, phenylpropanoids and polyketides, organic acids, and derivatives played an important function in response to Fusarium wilt. More importantly, Macma4_11_g19760 might be one of the key genes that gave G9 more resistance to Foc4 by a lowered expression and negative regulation of lipid metabolism. This study illustrated the difference between the transcriptomic and metabolomic profiles of resistant and susceptible bananas. These results improved the current understanding of host-pathogen interactions and will contribute to the breeding of resistant banana plants.
Collapse
Affiliation(s)
- Dandan Tian
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liuyan Qin
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liping Wei
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jialin Li
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Baoshen Li
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wei Zhou
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhangfei He
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Di Wei
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Sumei Huang
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shengfeng Long
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Quyan Huang
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chaosheng Li
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shaolong Wei
- Guangxi Subtropical Crops Research Institute, Naning, China
| |
Collapse
|
17
|
Huang YH, Han JQ, Ma B, Cao WQ, Li XK, Xiong Q, Zhao H, Zhao R, Zhang X, Zhou Y, Wei W, Tao JJ, Zhang WK, Qian W, Chen SY, Yang C, Yin CC, Zhang JS. A translational regulator MHZ9 modulates ethylene signaling in rice. Nat Commun 2023; 14:4674. [PMID: 37542048 PMCID: PMC10403538 DOI: 10.1038/s41467-023-40429-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
Ethylene plays essential roles in rice growth, development and stress adaptation. Translational control of ethylene signaling remains unclear in rice. Here, through analysis of an ethylene-response mutant mhz9, we identified a glycine-tyrosine-phenylalanine (GYF) domain protein MHZ9, which positively regulates ethylene signaling at translational level in rice. MHZ9 is localized in RNA processing bodies. The C-terminal domain of MHZ9 interacts with OsEIN2, a central regulator of rice ethylene signaling, and the N-terminal domain directly binds to the OsEBF1/2 mRNAs for translational inhibition, allowing accumulation of transcription factor OsEIL1 to activate the downstream signaling. RNA-IP seq and CLIP-seq analyses reveal that MHZ9 associates with hundreds of RNAs. Ribo-seq analysis indicates that MHZ9 is required for the regulation of ~ 90% of genes translationally affected by ethylene. Our study identifies a translational regulator MHZ9, which mediates translational regulation of genes in response to ethylene, facilitating stress adaptation and trait improvement in rice.
Collapse
Affiliation(s)
- Yi-Hua Huang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia-Qi Han
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biao Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wu-Qiang Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Kai Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - He Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Jun Tao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shou-Yi Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao Yang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Cui-Cui Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Song Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Yin CC, Huang YH, Zhang X, Zhou Y, Chen SY, Zhang JS. Ethylene-mediated regulation of coleoptile elongation in rice seedlings. PLANT, CELL & ENVIRONMENT 2023; 46:1060-1074. [PMID: 36397123 DOI: 10.1111/pce.14492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Rice is an important food crop in the world and the study of its growth and plasticity has a profound influence on sustainable development. Ethylene modulates multiple agronomic traits of rice as well as abiotic and biotic stresses during its lifecycle. It has diverse roles, depending on the organs, developmental stages and environmental conditions. Compared to Arabidopsis (Arabidopsis thaliana), rice ethylene signalling pathway has its own unique features due to its special semiaquatic living environment and distinct plant structure. Ethylene signalling and responses are part of an intricate network in crosstalk with internal and external factors. This review will summarize the current progress in the mechanisms of ethylene-regulated coleoptile growth in rice, with a special focus on ethylene signaling and interaction with other hormones. Insights into these molecular mechanisms may shed light on ethylene biology and should be beneficial for the genetic improvement of rice and other crops.
Collapse
Affiliation(s)
- Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Yi-Hua Huang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Xun Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Chen T, Xiao W, Huang C, Zhou D, Liu Y, Guo T, Chen Z, Wang H. Fine Mapping of the Affecting Tillering and Plant Height Gene CHA-1 in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:1507. [PMID: 37050133 PMCID: PMC10096525 DOI: 10.3390/plants12071507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The plant architecture of rice is an important factor affecting yield. Strigolactones (SLs) are newly discovered carotenoid-derived plant hormones that play an important role in rice plant architecture. In this study, a high-tillering dwarf mutant, CHA-1, was identified by spatial mutagenesis. CHA-1 was located in the region of 31.52-31.55 MB on chromosome 1 by map-based cloning. Compared with the wild-type THZ, the CHA-1 mutant showed that ACCAC replaced TGGT in the coding region of the candidate gene LOC_Os01g54810, leading to premature termination of expression. Genetic complementation experiments proved that LOC_Os01g54810 was CHA-1, which encodes a putative member of Class III lipase. Expression analysis showed that CHA-1 was constitutively expressed in various organs of rice. Compared with those in THZ, the expression levels of the D17 and D10 genes were significantly downregulated in the CHA-1 mutant. In addition, the concentrations of ent-2'-epi-5-deoxystrigol (epi-5DS) in the root exudates of the CHA-1 mutant was significantly reduced compared with that of THZ, and exogenous application of GR24 inhibited the tillering of the CHA-1 mutant. These results suggest that CHA-1 influences rice architecture by affecting SL biosynthesis.
Collapse
|
20
|
Wang J, Zhao H, Qu Y, Yang P, Huang J. The binding pocket properties were fundamental to functional diversification of the GDSL-type esterases/lipases gene family in cotton. FRONTIERS IN PLANT SCIENCE 2023; 13:1099673. [PMID: 36743561 PMCID: PMC9889996 DOI: 10.3389/fpls.2022.1099673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Cotton is one of the most important crops in the world. GDSL-type esterases/lipases (GELPs) are widely present in all kingdoms and play an essential role in regulating plant growth, development, and responses to abiotic and biotic stresses. However, the molecular mechanisms underlying this functional diversity remain unclear. Here, based on the identification of the GELP gene family, we applied genetic evolution and molecular simulation techniques to explore molecular mechanisms in cotton species. A total of 1502 GELP genes were identified in 10 cotton species. Segmental duplication and differences in evolutionary rates are the leading causes of the increase in the number and diversity of GELP genes during evolution for ecological adaptation. Structural analysis revealed that the GELP family has high structural diversity. Moreover, molecular simulation studies have demonstrated significant differences in the properties of the binding pockets among cotton GELPs. In the process of adapting to the environment, GELPs not only have segmental duplication but also have different evolutionary rates, resulting in gene diversity. This diversity leads to significant differences in the 3D structure and binding pocket properties and, finally, to functional diversity. These findings provide a reference for further functional analyses of plant GELPs.
Collapse
Affiliation(s)
- Jianshe Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Haiyan Zhao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Yunfang Qu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Peng Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jinling Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
21
|
Liu J, Liu J, Wang H, Khan A, Xu Y, Hou Y, Wang Y, Zhou Z, Zheng J, Liu F, Cai X. Genome wide identification of GDSL gene family explores a novel GhirGDSL26 gene enhancing drought stress tolerance in cotton. BMC PLANT BIOLOGY 2023; 23:14. [PMID: 36609252 PMCID: PMC9824929 DOI: 10.1186/s12870-022-04001-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Current climate change scenarios are posing greater threats to the growth and development of plants. Thus, significant efforts are required that can mitigate the negative effects of drought on the cotton plant. GDSL esterase/lipases can offer an imperative role in plant development and stress tolerance. However, thesystematic and functional roles of the GDSL gene family, particularly in cotton under water deficit conditions have not yet been explored. RESULTS In this study, 103, 103, 99, 198, 203, 239, 249, and 215 GDSL proteins were identified in eight cotton genomes i.e., Gossypium herbaceum (A1), Gossypium arboretum (A2), Gossypium raimondii (D5), Gossypium hirsutum (AD1), Gossypium barbadense (AD2), Gossypium tomentosum (AD3), Gossypium mustelinum (AD4), Gossypium darwinii (AD5), respectively. A total of 198 GDSL genes of Gossypium hirsutum were divided into eleven clades using phylogenetic analysis, and the number of GhirGDSL varied among different clades. The cis-elements analysis showed that GhirGDSL gene expression was mainly related to light, plant hormones, and variable tense environments. Combining the results of transcriptome and RT-qPCR, GhirGDSL26 (Gh_A01G1774), a highly up-regulated gene, was selected for further elucidating its tole in drought stress tolerance via estimating physiological and biochemical parameters. Heterologous expression of the GhirGDSL26 gene in Arabidopsis thaliana resulted in a higher germination and survival rates, longer root lengths, lower ion leakage and induced stress-responsive genes expression under drought stress. This further highlighted that overexpressed plants had a better drought tolerance as compared to the wildtype plants. Moreover, 3, 3'-diaminobenzidine (DAB) and Trypan staining results indicated reduced oxidative damage, less cell membrane damage, and lower ion leakage in overexpressed plants as compared to wild type. Silencing of GhirGDSL26 in cotton via VIGS resulting in a susceptible phenotype, higher MDA and H2O2 contents, lower SOD activity, and proline content. CONCLUSION Our results demonstrated that GhirGDSL26 plays a critical role in cotton drought stress tolerance. Current findings enrich our knowledge of GDSL genes in cotton and provide theoretical guidance and excellent gene resources for improving drought tolerance in cotton.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jiangna Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Heng Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Aziz Khan
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, 530005, Nanning, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Zheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, 572025, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, 572025, China.
| |
Collapse
|
22
|
Zhang Y, Xiao T, Yi F, Yu J. SimiR396d targets SiGRF1 to regulate drought tolerance and root growth in foxtail millet. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111492. [PMID: 36243168 DOI: 10.1016/j.plantsci.2022.111492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
MicroRNAs play critical roles in growth, development and abiotic stress responses. SimR396d is a miRNA whose expression level is much higher in foxtail millet roots than other tissues. Whether SimR396d is involved in foxtail millet root growth and response to abiotic stress is still unknown. Here, we demonstrate that SimiR396d modulates both drought response and root growth in foxtail millet. The expression of SimiR396d is induced by PEG treatment. Overexpression of SimiR396d enhances drought tolerance and root length, while knockdown SimiR396d expression using target mimics of SimiR396d (MIM396) resulted in reduced drought tolerance and shortened root length. Furthermore, we identified and confirmed a plant-specific transcription factor, growth-regulating factor 1 (SiGRF1), as a direct target of SimiR396d. Overexpression of SiGRF1 in foxtail millet resulted in suppressed root growth and reduced sensitivity to drought stress. Moreover, ethylene signaling is necessary for SimiR396d and SiGRF1 to participate in the regulation of plant root growth. These results revealed a pivotal role of SimiR396d in drought tolerance and root growth in foxtail millet. SimiR396d-SiGRF1 regulatory module provides a strategy to improve drought-stress resistance of crop.
Collapse
Affiliation(s)
- Yifan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tong Xiao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fei Yi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Huang Y, Cui Z, Wei X, Wang J, Yao J, Cai C, Wang J. Nicotinamide supplementation alters plasma lipidomic profiles of peripartal dairy cows. Anim Sci J 2023; 94:e13857. [PMID: 37496108 DOI: 10.1111/asj.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023]
Abstract
Fatty liver syndrome, a common health problem in dairy cows, occurs during the transition from pregnancy to lactation. If the energy supplied to the cow's body cannot meet its needs, a negative energy balance ensues, and the direct response is fat mobilization. Nicotinamide (NAM) has been reported to reduce the nonesterified fatty acid concentration of postpartum plasma. To study the biochemical adaptations underlying this physiologic dysregulation, 12 dairy cows were sequentially assigned to a NAM (45 g/day) treatment or control group. Blood samples were collected on day (D) 1 and D21 relative to parturition. Changes to the plasma lipid metabolism of dairy cows in the two groups were compared using lipidomics. There were significant increases in plasma sphingomyelins d18:1/18:0, d18:1/23:0, d18:1/24:1, d18:1/24:0, and d18:0/24:0 in the NAM group on D1 relative to parturition. In addition, fatty acids 18:2, 18:1, 18:0, 16:1, and 16:0 were obviously decreased on D21 relative to calving. This research has provided insights into how NAM supplementation improves lipid metabolism in perinatal dairy cows.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Zhijie Cui
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaoshi Wei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiayu Wang
- Lipidall Technologies Company Limited, Changzhou, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
24
|
Zhou Y, Ma B, Tao JJ, Yin CC, Hu Y, Huang YH, Wei W, Xin PY, Chu JF, Zhang WK, Chen SY, Zhang JS. Rice EIL1 interacts with OsIAAs to regulate auxin biosynthesis mediated by the tryptophan aminotransferase MHZ10/OsTAR2 during root ethylene responses. THE PLANT CELL 2022; 34:4366-4387. [PMID: 35972379 PMCID: PMC9614475 DOI: 10.1093/plcell/koac250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 05/11/2023]
Abstract
Ethylene plays essential roles in adaptive growth of rice (Oryza sativa). Understanding of the crosstalk between ethylene and auxin (Aux) is limited in rice. Here, from an analysis of the root-specific ethylene-insensitive rice mutant mao hu zi 10 (mhz10), we identified the tryptophan aminotransferase (TAR) MHZ10/OsTAR2, which catalyzes the key step in indole-3-pyruvic acid-dependent Aux biosynthesis. Genetically, OsTAR2 acts downstream of ethylene signaling in root ethylene responses. ETHYLENE INSENSITIVE3 like1 (OsEIL1) directly activated OsTAR2 expression. Surprisingly, ethylene induction of OsTAR2 expression still required the Aux pathway. We also show that Os indole-3-acetic acid (IAA)1/9 and OsIAA21/31 physically interact with OsEIL1 and show promotive and repressive effects on OsEIL1-activated OsTAR2 promoter activity, respectively. These effects likely depend on their EAR motif-mediated histone acetylation/deacetylation modification. The special promoting activity of OsIAA1/9 on OsEIL1 may require both the EAR motifs and the flanking sequences for recruitment of histone acetyltransferase. The repressors OsIAA21/31 exhibit earlier degradation upon ethylene treatment than the activators OsIAA1/9 in a TIR1/AFB-dependent manner, allowing OsEIL1 activation by activators OsIAA1/9 for OsTAR2 expression and signal amplification. This study reveals a positive feedback regulation of ethylene signaling by Aux biosynthesis and highlights the crosstalk between ethylene and Aux pathways at a previously underappreciated level for root growth regulation in rice.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Hua Huang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei-Yong Xin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Fang Chu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Identification of Two GDSL-Type Esterase/Lipase Genes Related to Tissue-Specific Lipolysis in Dendrobium catenatum by Multi-Omics Analysis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101563. [PMID: 36294998 PMCID: PMC9604673 DOI: 10.3390/life12101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022]
Abstract
Dendrobium catenatum is an important herb and widely cultivated in China. GDSL-Type Esterase/Lipase proteins (GELPs) are widely distributed in plants and play crucial roles in stress responses, plant growth, and development. However, no identification or functional analysis of GELPs was reported in D. catenatum. This study identifies 52 GELPs in D. catenatum genome, which is classified into four groups by phylogenetic analysis. Four conservative blocks (Ser-Gly-Asn-His) are found in most GELP domains. Transcriptome analysis reveals the expression profiles of GELPs in different organs and flowering phases. Co-expression analysis of the transcriptome and lipidome identifies a GELP gene, Dca016600, that positively correlates with 23 lipids. The purified Dca016600 protein shows the optimum pH is active from 8.0 to 8.5, and the optimum temperature is active from 30 °C to 40 °C. The kinetic study provides Vmax (233.43 μmol·min-1·mg-1) and Km (1.49 mM) for substrate p-nitrophenyl palmitate (p-NPP). Integrated analysis of the transcriptome and proteome identifies a GELP gene, Dca005399, which is specially induced by freezing. Interestingly, Dca005399 shows high expression in symbiotic germination seeds and sepals. This study provides new insights into the function of D. catenatum GELPs in plant development and stress tolerance.
Collapse
|
26
|
Zhou Y, Lu Q, Ma J, Wang D, Li X, Di H, Zhang L, Hu X, Dong L, Liu X, Zeng X, Zhou Z, Weng J, Wang Z. Using a high density bin map to analyze quantitative trait locis of germination ability of maize at low temperatures. FRONTIERS IN PLANT SCIENCE 2022; 13:978941. [PMID: 36072324 PMCID: PMC9441762 DOI: 10.3389/fpls.2022.978941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Low temperatures in the spring often lead to a decline in the emergence rate and uniformity of maize, which can affect yield in northern regions. This study used 365 recombinant inbred lines (RILs), which arose from crossing Qi319 and Ye478, to identify low-temperature resistance during the germination stage by measuring eight low-temperature-related traits. The quantitative trait locis (QTLs) were mapped using R/qtl software by combining phenotypic data, and the genotyping by sequencing (GBS) method to produce a high-density genetic linkage map. Twenty QTLs were detected during QTL mapping, of which seven QTLs simultaneously detected a consistent 197.10-202.30 Mb segment on chromosome 1. The primary segment was named cQTL1-2, with a phenotypic variation of 5.18-25.96% and a physical distance of 5.2 Mb. This combines the phenotype and genotype with the identification of seven chromosome segment substitution lines (CSSLs), which were derived from Ye478*Qi319 and related to cQTL1-2. The physical distance of cQTL1-2 was reduced to approximately 1.9 Mb. The consistent meta-QTL mQTL1 was located at 619.06 cM on chromosome 1, had a genetic distance of 7.27 cM, and overlapped with cQTL1-2. This was identified by combining the results of previous QTL studies assessing maize tolerance to low temperatures at the germination stage. An assessment of the results of the RIL population, CSSLs, and mQTL1 found the consistent QTL to be LtQTL1-1. It was identified in bin1.06-1.07 at a confidence interval of between 200,400,148 and 201,775,619 bp. In this interval, qRT-PCR found that relative expression of the candidate genes GRMZM2G082630 and GRMZM2G115730 were both up-regulated in low-temperature tolerant lines and down-regulated in sensitive lines (P < 0.01).
Collapse
Affiliation(s)
- Yu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Qing Lu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jinxin Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Dandan Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xin Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hong Di
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lin Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xinge Hu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ling Dong
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xianjun Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xing Zeng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
27
|
Rastogi L, Chaudhari AA, Sharma R, Pawar PAM. Arabidopsis GELP7 functions as a plasma membrane-localized acetyl xylan esterase, and its overexpression improves saccharification efficiency. PLANT MOLECULAR BIOLOGY 2022; 109:781-797. [PMID: 35577991 DOI: 10.1007/s11103-022-01275-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Acetyl substitution on the xylan chain is critical for stable interaction with cellulose and other cell wall polymers in the secondary cell wall. Xylan acetylation pattern is governed by Golgi and extracellular localized acetyl xylan esterase (AXE). We investigated the role of Arabidopsis clade Id from the GDSL esterase/lipase or GELP family in polysaccharide deacetylation. The investigation of the AtGELP7 T-DNA mutant line showed a decrease in stem esterase activity and an increase in stem acetyl content. We further generated overexpressor AtGELP7 transgenic lines, and these lines showed an increase in AXE activity and a decrease in xylan acetylation compared to wild-type plants. Therefore, we have named this enzyme as AtAXE1. The subcellular localization and immunoblot studies showed that the AtAXE1 enzyme is secreted out, associated with the plasma membrane and involved in xylan de-esterification post-synthesis. The cellulose digestibility was improved in AtAXE1 overexpressor lines without pre-treatment, after alkali and xylanases pre-treatment. Furthermore, we have also established that the AtGELP7 gene is upregulated in the overexpressor line of AtMYB46, a secondary cell wall specific transcription factor. This transcriptional regulation can drive AtGELP7 or AtAXE1 to perform de-esterification of xylan in a tissue-specific manner. Overall, these data suggest that AtGELP7 overexpression in Arabidopsis reduces xylan acetylation and improves digestibility properties of polysaccharides of stem lignocellulosic biomass.
Collapse
Affiliation(s)
- Lavi Rastogi
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Aniket Anant Chaudhari
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Raunak Sharma
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Prashant Anupama-Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
28
|
Wei Y, Zhu B, Ma G, Shao X, Xie H, Cheng X, Zeng H, Shi H. The coordination of melatonin and anti-bacterial activity by EIL5 underlies ethylene-induced disease resistance in cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:683-697. [PMID: 35608142 DOI: 10.1111/tpj.15843] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Ethylene and melatonin are widely involved in plant development and environmental stress responses. However, the role of their direct relationship in the immune response and the underlying molecular mechanisms in plants remain elusive. Here, we found that Xanthomonas axonopodis pv. manihotis (Xam) infection increased endogenous ethylene levels, which positively modulated plant disease resistance through activating melatonin accumulation in cassava. In addition, the ethylene-responsive transcription factor ETHYLENE INSENSITIVE LIKE5 (MeEIL5), a positive regulator of disease resistance, was essential for ethylene-induced melatonin accumulation and disease resistance in cassava. Notably, the identification of heat stress transcription factor 20 (MeHsf20) as an interacting protein of MeEIL5 indicated the association between ethylene and melatonin in plant disease resistance. MeEIL5 physically interacted with MeHsf20 to promote the transcriptional activation of the gene encoding N-acetylserotonin O-methyltransferase 2 (MeASMT2), thereby improving melatonin accumulation. Moreover, MeEIL5 promoted the physical interaction of MeHsf20 and pathogen-related gene 3 (MePR3), resulting in improved anti-bacterial activity of MePR3. This study illustrates the dual roles of MeEIL5 in fine-tuning MeHsf20-mediated coordination of melatonin biosynthesis and anti-bacterial activity, highlighting the ethylene-responsive MeEIL5 as the integrator of ethylene and melatonin signals in the immune response in cassava.
Collapse
Affiliation(s)
- Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Binbin Zhu
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Guowen Ma
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Xiaodie Shao
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haoqi Xie
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Xiao Cheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| |
Collapse
|
29
|
Shen G, Sun W, Chen Z, Shi L, Hong J, Shi J. Plant GDSL Esterases/Lipases: Evolutionary, Physiological and Molecular Functions in Plant Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040468. [PMID: 35214802 PMCID: PMC8880598 DOI: 10.3390/plants11040468] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/02/2022] [Accepted: 02/04/2022] [Indexed: 05/14/2023]
Abstract
GDSL esterases/lipases (GELPs), present throughout all living organisms, have been a very attractive research subject in plant science due mainly to constantly emerging properties and functions in plant growth and development under both normal and stressful conditions. This review summarizes the advances in research on plant GELPs in several model plants and crops, including Arabidopsis, rice, maize and tomato, while focusing on the roles of GELPs in regulating plant development and plant-environment interactions. In addition, the possible regulatory network and mechanisms of GELPs have been discussed.
Collapse
|
30
|
Yang C, Shen S, Zhou S, Li Y, Mao Y, Zhou J, Shi Y, An L, Zhou Q, Peng W, Lyu Y, Liu X, Chen W, Wang S, Qu L, Liu X, Fernie AR, Luo J. Rice metabolic regulatory network spanning the entire life cycle. MOLECULAR PLANT 2022; 15:258-275. [PMID: 34715392 DOI: 10.1016/j.molp.2021.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/09/2021] [Accepted: 10/21/2021] [Indexed: 05/18/2023]
Abstract
As one of the most important crops in the world, rice (Oryza sativa) is a model plant for metabolome research. Although many studies have focused on the analysis of specific tissues, the changes in metabolite abundance across the entire life cycle have not yet been determined. In this study, combining both targeted and nontargeted metabolite profiling methods, a total of 825 annotated metabolites were quantified in rice samples from different tissues covering the entire life cycle. The contents of metabolites in different tissues of rice were significantly different, with various metabolites accumulating in the plumule and radicle during seed germination. Combining these data with transcriptome data obtained from the same time period, we constructed the Rice Metabolic Regulation Network. The metabolites and co-expressed genes were further divided into 12 clusters according to their accumulation patterns, with members within each cluster displaying a uniform and clear pattern of abundance across development. Using this dataset, we established a comprehensive metabolic profile of the rice life cycle and used two independent strategies to identify novel transcription factors-namely the use of known regulatory genes as bait to screen for new networks underlying lignin metabolism and the unbiased identification of new glycerophospholipid metabolism regulators on the basis of tissue specificity. This study thus demonstrates how guilt-by-association analysis of metabolome and transcriptome data spanning the entire life cycle in cereal crops provides novel resources and tools to aid in understanding the mechanisms underlying important agronomic traits.
Collapse
Affiliation(s)
- Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shen Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyuan Mao
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Junjie Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yuheng Shi
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Longxu An
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wenju Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Lyu
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Xuemei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shouchuang Wang
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
31
|
Chen R, Deng Y, Ding Y, Guo J, Qiu J, Wang B, Wang C, Xie Y, Zhang Z, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D, Liu Y, Li J. Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2022. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
Affiliation(s)
- Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changsheng Wang
- National Center for Gene Research, Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihua Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
32
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
33
|
Tao Y, Zou T, Zhang X, Liu R, Chen H, Yuan G, Zhou D, Xiong P, He Z, Li G, Zhou M, Liu S, Deng Q, Wang S, Zhu J, Liang Y, Yu X, Zheng A, Wang A, Liu H, Wang L, Li P, Li S. Secretory lipid transfer protein OsLTPL94 acts as a target of EAT1 and is required for rice pollen wall development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:358-377. [PMID: 34314535 DOI: 10.1111/tpj.15443] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The plant pollen wall protects the male gametophyte from various biotic and abiotic stresses. The formation of a unique pollen wall structure and elaborate exine pattern is a well-organized process, which needs coordination between reproductive cells and the neighboring somatic cells. However, molecular mechanisms underlying this process remain largely unknown. Here, we report a rice male-sterile mutant (l94) that exhibits defective pollen exine patterning and abnormal tapetal cell development. MutMap and knockout analyses demonstrated that the causal gene encodes a type-G non-specific lipid transfer protein (OsLTPL94). Histological and cellular analyses established that OsLTPL94 is strongly expressed in the developing microspores and tapetal cells, and its protein is secreted to the plasma membrane. The l94 mutation impeded the secretory ability of OsLTPL94 protein. Further in vivo and in vitro investigations supported the hypothesis that ETERNAL TAPETUM 1 (EAT1), a basic helix-loop-helix transcription factor (bHLH TF), activated OsLTPL94 expression through direct binding to the E-box motif of the OsLTPL94 promoter, which was supported by the positive correlation between the expression of EAT1 and OsLTPL94 in two independent eat1 mutants. Our findings suggest that the secretory OsLTPL94 plays a key role in the coordinated development of tapetum and microspores with the regulation of EAT1.
Collapse
Affiliation(s)
- Yang Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqiang Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pingping Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyuan He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gongwen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Menglin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sijing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aijun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huainian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
34
|
Perincherry L, Urbaniak M, Pawłowicz I, Kotowska K, Waśkiewicz A, Stępień Ł. Dynamics of Fusarium Mycotoxins and Lytic Enzymes during Pea Plants' Infection. Int J Mol Sci 2021; 22:9888. [PMID: 34576051 PMCID: PMC8467997 DOI: 10.3390/ijms22189888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Fusarium species are common plant pathogens that cause several important diseases. They produce a wide range of secondary metabolites, among which mycotoxins and extracellular cell wall-degrading enzymes (CWDEs) contribute to weakening and invading the host plant successfully. Two species of Fusarium isolated from peas were monitored for their expression profile of three cell wall-degrading enzyme coding genes upon culturing with extracts from resistant (Sokolik) and susceptible (Santana) pea cultivars. The extracts from Santana induced a sudden increase in the gene expression, whereas Sokolik elicited a reduced expression. The coherent observation was that the biochemical profile of the host plant plays a major role in regulating the fungal gene expression. In order to uncover the fungal characteristics in planta, both pea cultivars were infected with two strains each of F. proliferatum and F. oxysporum on the 30th day of growth. The enzyme activity assays from both roots and rhizosphere indicated that more enzymes were used for degrading the cell wall of the resistant host compared to the susceptible host. The most commonly produced enzymes were cellulase, β-glucosidase, xylanase, pectinase and lipase, where the pathogen selectively degraded the components of both the primary and secondary cell walls. The levels of beauvericin accumulated in the infected roots of both cultivars were also monitored. There was a difference between the levels of beauvericin accumulated in both the cultivars, where the susceptible cultivar had more beauvericin than the resistant one, showing that the plants susceptible to the pathogen were also susceptible to the toxin accumulation.
Collapse
Affiliation(s)
- Lakshmipriya Perincherry
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (K.K.)
| | - Monika Urbaniak
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (K.K.)
| | - Izabela Pawłowicz
- Department of Plant Physiology, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Karolina Kotowska
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (K.K.)
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, 60-625 Poznań, Poland;
| | - Łukasz Stępień
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (K.K.)
| |
Collapse
|
35
|
Wang M, Li P, Ma Y, Nie X, Grebe M, Men S. Membrane Sterol Composition in Arabidopsis thaliana Affects Root Elongation via Auxin Biosynthesis. Int J Mol Sci 2021; 22:ijms22010437. [PMID: 33406774 PMCID: PMC7794993 DOI: 10.3390/ijms22010437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Plant membrane sterol composition has been reported to affect growth and gravitropism via polar auxin transport and auxin signaling. However, as to whether sterols influence auxin biosynthesis has received little attention. Here, by using the sterol biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) and sterol application, we reveal that cycloeucalenol, a CPI1 substrate, and sitosterol, an end-product of sterol biosynthesis, antagonistically affect auxin biosynthesis. The short root phenotype of cpi1-1 was associated with a markedly enhanced auxin response in the root tip. Both were neither suppressed by mutations in polar auxin transport (PAT) proteins nor by treatment with a PAT inhibitor and responded to an auxin signaling inhibitor. However, expression of several auxin biosynthesis genes TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) was upregulated in cpi1-1. Functionally, TAA1 mutation reduced the auxin response in cpi1-1 and partially rescued its short root phenotype. In support of this genetic evidence, application of cycloeucalenol upregulated expression of the auxin responsive reporter DR5:GUS (β-glucuronidase) and of several auxin biosynthesis genes, while sitosterol repressed their expression. Hence, our combined genetic, pharmacological, and sterol application studies reveal a hitherto unexplored sterol-dependent modulation of auxin biosynthesis during Arabidopsis root elongation.
Collapse
Affiliation(s)
- Meng Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
| | - Panpan Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
| | - Yao Ma
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
| | - Xiang Nie
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
| | - Markus Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany;
| | - Shuzhen Men
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
- Correspondence:
| |
Collapse
|
36
|
Zhao H, Yin CC, Ma B, Chen SY, Zhang JS. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:102-125. [PMID: 33095478 DOI: 10.1111/jipb.13028] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 05/22/2023]
Abstract
Ethylene is a gaseous hormone which plays important roles in both plant growth and development and stress responses. Based on studies in the dicot model plant species Arabidopsis, a linear ethylene signaling pathway has been established, according to which ethylene is perceived by ethylene receptors and transduced through CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) and ETHYLENE-INSENSITIVE 2 (EIN2) to activate transcriptional reprogramming. In addition to this canonical signaling pathway, an alternative ethylene receptor-mediated phosphor-relay pathway has also been proposed to participate in ethylene signaling. In contrast to Arabidopsis, rice, a monocot, grows in semiaquatic environments and has a distinct plant structure. Several novel regulators and/or mechanisms of the rice ethylene signaling pathway have recently been identified, indicating that the ethylene signaling pathway in rice has its own unique features. In this review, we summarize the latest progress and compare the conserved and divergent aspects of the ethylene signaling pathway between Arabidopsis and rice. The crosstalk between ethylene and other plant hormones is also reviewed. Finally, we discuss how ethylene regulates plant growth, stress responses and agronomic traits. These analyses should help expand our knowledge of the ethylene signaling mechanism and could further be applied for agricultural purposes.
Collapse
Affiliation(s)
- He Zhao
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Strable J. Keeping the Ethylene Response Fluid: GDSL Lipase MHZ11 Modulates Sterol Levels and Ethylene Signaling in Rice Roots. THE PLANT CELL 2020; 32:1352-1353. [PMID: 32193205 PMCID: PMC7203939 DOI: 10.1105/tpc.20.00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Josh Strable
- Plant Biology SectionSchool of Integrative Plant ScienceCornell University
| |
Collapse
|