1
|
Nayak N, Mehrotra S, Karamchandani AN, Santelia D, Mehrotra R. Recent advances in designing synthetic plant regulatory modules. FRONTIERS IN PLANT SCIENCE 2025; 16:1567659. [PMID: 40241826 PMCID: PMC11999978 DOI: 10.3389/fpls.2025.1567659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Introducing novel functions in plants through synthetic multigene circuits requires strict transcriptional regulation. Currently, the use of natural regulatory modules in synthetic circuits is hindered by our limited knowledge of complex plant regulatory mechanisms, the paucity of characterized promoters, and the possibility of crosstalk with endogenous circuits. Synthetic regulatory modules can overcome these limitations. This article introduces an integrative de novo approach for designing plant synthetic promoters by utilizing the available online tools and databases. The recent achievements in designing and validating synthetic plant promoters, enhancers, transcription factors, and the challenges of establishing synthetic circuits in plants are also discussed.
Collapse
Affiliation(s)
- Namitha Nayak
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| | | | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich Universitätstrasse, Zürich, Switzerland
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| |
Collapse
|
2
|
Hou Z, Liang J, Cai X, Lin J, Wang X, Liu R, Lu L, Chai G, An C, Chen S, Qin Y, Zheng P. PeHVA22 gene family in passion fruit ( Passiflora edulis): initial characterization and expression profiling diversity. FRONTIERS IN PLANT SCIENCE 2024; 14:1279001. [PMID: 38312363 PMCID: PMC10835403 DOI: 10.3389/fpls.2023.1279001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Passion fruit, an economically valuable fruit crop, is highly vulnerable to adverse climate conditions. The HVA22 genes, recognized as abscisic acid (ABA) and stress-inducible, play vital roles in stress response and growth regulation in diverse eukaryotic organisms. Here, six HVA22 genes were firstly identified in passion fruit genome and all predicted to be localized within the endoplasmic reticulum. Phylogenetic analyses showed that all PeHVA22s were divided into four subgroups. The gene structural features of PeHVA22 genes clustered in the same subgroup were relatively conserved, while the gene structure characteristics of PeHVA22s from different subgroups varied significantly. PeHVA22A and PeHVA22C closely clustered with barley HVA22 in Group II, were also induced by ABA and drought stress treatment, suggesting conserved roles similar to barley HVA22. Meanwhile, most PeHVA22s exhibited induced expression post-drought treatment but were suppressed under salt, low and high-temperature conditions, indicating a unique role in drought response. Additionally, PeHVA22s displayed tissue-specific expression patterns across diverse tissues, except for PeHVA22B which maybe a pseudogene. Notably, PeHVA22C, PeHVA22E, and PeHVA22F predominantly expressed in fruit, indicating their involvement in fruit development. Almost all PeHVA22s showed variable expression at different developmental stages of stamens or ovules, implying their roles in passion fruit's sexual reproduction. The intricate roles of PeHVA22s may result from diverse regulatory factors including transcription factors and CREs related to plant growth and development, hormone and stress responsiveness. These observations highlighted that PeHVA22s might play conserved roles in ABA response and drought stress tolerance, and also be participated in the regulation of passion fruit growth and floral development.
Collapse
Affiliation(s)
- Zhimin Hou
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianxiang Liang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinkai Cai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingting Lin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
| | - Ruoyu Liu
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Lu
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gaifeng Chai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chang An
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengzhen Chen
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Zheng
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Li Z, Li S, Jin D, Yang Y, Pu Z, Han X, Hu Y, Jiang Y. U-box E3 ubiquitin ligase PUB8 attenuates abscisic acid responses during early seedling growth. PLANT PHYSIOLOGY 2023; 191:2519-2533. [PMID: 36715300 PMCID: PMC10069885 DOI: 10.1093/plphys/kiad044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
ABSCISIC ACID-INSENSITIVE3 (ABI3) and ABI5 are 2 crucial transcription factors in abscisic acid (ABA) signaling, and their homeostasis at the protein level plays a decisive role in seed germination and subsequent seedling growth. Here, we found that PLANT U-BOX 8 (PUB8), a U-box E3 ubiquitin ligase, physically interacts with ABI3 and ABI5 and negatively regulates ABA responses during early Arabidopsis (Arabidopsis thaliana) seedling growth. Loss-of-function pub8 mutants were hypersensitive to ABA-inhibited cotyledon greening, while lines overexpressing PUB8 with low levels of ABI5 protein abundance were insensitive to ABA. Genetic analyses showed that ABI3 and ABI5 were required for the ABA-sensitive phenotype of pub8, indicating that PUB8 functions upstream of ABI3 and ABI5 to regulate ABA responses. Biochemical analyses showed that PUB8 can associate with ABI3 and ABI5 for degradation through the ubiquitin-mediated 26S proteasome pathway. Correspondingly, loss-of-function of PUB8 led to enhanced ABI3 and ABI5 stability, while overexpression of PUB8 impaired accumulation of ABI3 and ABI5 in planta. Further phenotypic analysis indicated that PUB8 compromised the function of ABI5 during early seedling growth. Taken together, our results reveal the regulatory role of PUB8 in modulating the early seedling growth by controlling the homeostasis of ABI3 and ABI5.
Collapse
Affiliation(s)
- Zhipeng Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongjie Jin
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyan Pu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- Author for correspondence: (Y.J.), (Y.H.)
| | | |
Collapse
|
4
|
Ndathe R, Dale R, Kato N. Dynamic modeling of ABA-dependent expression of the Arabidopsis RD29A gene. FRONTIERS IN PLANT SCIENCE 2022; 13:928718. [PMID: 36092424 PMCID: PMC9458874 DOI: 10.3389/fpls.2022.928718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/02/2022] [Indexed: 06/01/2023]
Abstract
The abscisic acid (ABA) signaling pathway is the key defense mechanism against drought stress in plants. In the pathway, signal transduction among four core proteins, pyrabactin resistance (PYR), protein phosphatase 2C (PP2C), sucrose-non-fermenting-1-related protein kinase 2 (SnRK2), and ABRE binding factor (ABF) leads to altered gene expression kinetics that is driven by an ABA-responsive element (ABRE). A most recent and comprehensive study provided data suggesting that ABA alters the expression kinetics in over 6,500 genes through the ABF-ABRE associations in Arabidopsis. Of these genes, termed ABA gene regulatory network (GRN), over 50% contain a single ABRE within 4 kb of the gene body, despite previous findings suggesting that a single copy of ABRE is not sufficient to drive the gene expression. To understand the expression system of the ABA GRN by the single ABRE, a dynamic model of the gene expression for the desiccation 29A (RD29A) gene was constructed with ordinary differential equations. Parameter values of molecular-molecular interactions and enzymatic reactions in the model were implemented from the data obtained by previously conducted in vitro experiments. On the other hand, parameter values of gene expression and translation were determined by comparing the kinetics of gene expression in the model to the expression kinetics of RD29A in real plants. The optimized model recapitulated the trend of gene expression kinetics of RD29A in ABA dose-response that were previously investigated. Further analysis of the model suggested that a single ABRE controls the time scale and dynamic range of the ABA-dependent gene expression through the PP2C feedback regulation even though an additional cis-element is required to drive the expression. The model construed in this study underpins the importance of a single ABRE in the ABA GRN.
Collapse
Affiliation(s)
- Ruth Ndathe
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Renee Dale
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
5
|
Fick A, Swart V, van den Berg N. The Ups and Downs of Plant NLR Expression During Pathogen Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:921148. [PMID: 35720583 PMCID: PMC9201817 DOI: 10.3389/fpls.2022.921148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Plant Nucleotide binding-Leucine rich repeat (NLR) proteins play a significant role in pathogen detection and the activation of effector-triggered immunity. NLR regulation has mainly been studied at a protein level, with large knowledge gaps remaining regarding the transcriptional control of NLR genes. The mis-regulation of NLR gene expression may lead to the inability of plants to recognize pathogen infection, lower levels of immune response activation, and ultimately plant susceptibility. This highlights the importance of understanding all aspects of NLR regulation. Three main mechanisms have been shown to control NLR expression: epigenetic modifications, cis elements which bind transcription factors, and post-transcriptional modifications. In this review, we aim to provide an overview of these mechanisms known to control NLR expression, and those which contribute toward successful immune responses. Furthermore, we discuss how pathogens can interfere with NLR expression to increase pathogen virulence. Understanding how these molecular mechanisms control NLR expression would contribute significantly toward building a complete picture of how plant immune responses are activated during pathogen infection-knowledge which can be applied during crop breeding programs aimed to increase resistance toward numerous plant pathogens.
Collapse
Affiliation(s)
- Alicia Fick
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Velushka Swart
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Yang J, Gu W, Feng Z, Yu B, Niu J, Wang G. Synthesis of Abscisic Acid in Neopyropia yezoensis and Its Regulation of Antioxidase Genes Expressions Under Hypersaline Stress. Front Microbiol 2022; 12:775710. [PMID: 35082766 PMCID: PMC8784606 DOI: 10.3389/fmicb.2021.775710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Abscisic acid (ABA) is regarded as crucial for plant adaptation to water-limited conditions and it functions evolutionarily conserved. Thus, insights into the synthesis of ABA and its regulation on downstream stress-responsive genes in Neopyropia yezoensis, a typical Archaeplastida distributed in intertidal zone, will improve the knowledge about how ABA signaling evolved in plants. Here, the variations in ABA contents, antioxidant enzyme activities and expression of the target genes were determined under the presence of exogenous ABA and two specific inhibitors of the ABA precursor synthesis. ABA content was down-regulated under the treatments of each or the combination of the two inhibitors. Antioxidant enzyme activities like SOD, CAT and APX were decreased slightly with inhibitors, but up-regulated when the addition of exogenous ABA. The quantitative assays using real-time PCR (qRT-PCR) results were consistent with the enzyme activities. All the results suggested that ABA can also alleviate oxidative stress in N. yezoensis as it in terrestrial plant. Combined with the transcriptome assay, it was hypothesized that ABA is synthesized in N. yezoensis via a pathway that is similar to the carotenoid pathway in higher plants, and both the MVA and that the MEP pathways for isoprenyl pyrophosphate (IPP) synthesis likely exist simultaneously. The ABA signaling pathway in N. yezoensis was also analyzed from an evolutionary standpoint and it was illustrated that the emergence of the ABA signaling pathway in this alga is an ancestral one. In addition, the presence of the ABRE motif in the promoter region of antioxidase genes suggested that the antioxidase system is regulated by the ABA signaling pathway.
Collapse
Affiliation(s)
- Jiali Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Zezhong Feng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Bin Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Niu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| |
Collapse
|
7
|
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Functional genomics in plant abiotic stress responses and tolerance: From gene discovery to complex regulatory networks and their application in breeding. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:470-492. [PMID: 36216536 PMCID: PMC9614206 DOI: 10.2183/pjab.98.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
Land plants have developed sophisticated systems to cope with severe stressful environmental conditions during evolution. Plants have complex molecular systems to respond and adapt to abiotic stress, including drought, cold, and heat stress. Since 1989, we have been working to understand the complex molecular mechanisms of plant responses to severe environmental stress conditions based on functional genomics approaches with Arabidopsis thaliana as a model plant. We focused on the function of drought-inducible genes and the regulation of their stress-inducible transcription, perception and cellular signal transduction of stress signals to describe plant stress responses and adaptation at the molecular and cellular levels. We have identified key genes and factors in the regulation of complex responses and tolerance of plants in response to dehydration and temperature stresses. In this review article, we describe our 30-year experience in research and development based on functional genomics to understand sophisticated systems in plant response and adaptation to environmental stress conditions.
Collapse
Affiliation(s)
- Kazuo SHINOZAKI
- RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki, Japan
| | - Kazuko YAMAGUCHI-SHINOZAKI
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
In Silico and Transcription Analysis of Trehalose-6-phosphate Phosphatase Gene Family of Wheat: Trehalose Synthesis Genes Contribute to Salinity, Drought Stress and Leaf Senescence. Genes (Basel) 2021; 12:genes12111652. [PMID: 34828258 PMCID: PMC8618227 DOI: 10.3390/genes12111652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Trehalose-6-phosphate phosphatase (TPP) genes take part in trehalose metabolism and also in stress tolerance, which has been well documented in many species but poorly understood in wheat. The present research has identified a family of 31 TPP genes in Triticum aestivum L. through homology searches and classified them into five clades by phylogenetic tree analysis, providing evidence of an evolutionary status with Hordeum vulgare, Brachypodium distachyon and Oryza sativa. The exon-intron distribution revealed a discrete evolutionary history and projected possible gene duplication occurrences. Furthermore, different computational approaches were used to analyze the physical and chemical properties, conserved domains and motifs, subcellular and chromosomal localization, and three-dimensional (3-D) protein structures. Cis-regulatory elements (CREs) analysis predicted that TaTPP promoters consist of CREs related to plant growth and development, hormones, and stress. Transcriptional analysis revealed that the transcription levels of TaTPPs were variable in different developmental stages and organs. In addition, qRT-PCR analysis showed that different TaTPPs were induced under salt and drought stresses and during leaf senescence. Therefore, the findings of the present study give fundamental genomic information and possible biological functions of the TaTPP gene family in wheat and will provide the path for a better understanding of TaTPPs involvement in wheat developmental processes, stress tolerance, and leaf senescence.
Collapse
|
9
|
Arabidopsis LSH8 Positively Regulates ABA Signaling by Changing the Expression Pattern of ABA-Responsive Proteins. Int J Mol Sci 2021; 22:ijms221910314. [PMID: 34638657 PMCID: PMC8508927 DOI: 10.3390/ijms221910314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 01/17/2023] Open
Abstract
Phytohormone ABA regulates the expression of numerous genes to significantly affect seed dormancy, seed germination and early seedling responses to biotic and abiotic stresses. However, the function of many ABA-responsive genes remains largely unknown. In order to improve the ABA-related signaling network, we conducted a large-scale ABA phenotype screening. LSH, an important transcription factor family, extensively participates in seedling development and floral organogenesis in plants, but whether its family genes are involved in the ABA signaling pathway has not been reported. Here we describe a new function of the transcription factor LSH8 in an ABA signaling pathway. In this study, we found that LSH8 was localized in the nucleus, and the expression level of LSH8 was significantly induced by exogenous ABA at the transcription level and protein level. Meanwhile, seed germination and root length measurements revealed that lsh8 mutant lines were ABA insensitive, whereas LSH8 overexpression lines showed an ABA-hypersensitive phenotype. With further TMT labeling quantitative proteomic analysis, we found that under ABA treatment, ABA-responsive proteins (ARPs) in the lsh8 mutant presented different changing patterns with those in wild-type Col4. Additionally, the number of ARPs contained in the lsh8 mutant was 397, six times the number in wild-type Col4. In addition, qPCR analysis found that under ABA treatment, LSH8 positively mediated the expression of downstream ABA-related genes of ABI3, ABI5, RD29B and RAB18. These results indicate that in Arabidopsis, LSH8 is a novel ABA regulator that could specifically change the expression pattern of APRs to positively mediate ABA responses.
Collapse
|
10
|
Yang Y, Lee JH, Poindexter MR, Shao Y, Liu W, Lenaghan SC, Ahkami AH, Blumwald E, Stewart CN. Rational design and testing of abiotic stress-inducible synthetic promoters from poplar cis-regulatory elements. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1354-1369. [PMID: 33471413 PMCID: PMC8313130 DOI: 10.1111/pbi.13550] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/31/2020] [Accepted: 01/09/2021] [Indexed: 05/27/2023]
Abstract
Abiotic stress resistance traits may be especially crucial for sustainable production of bioenergy tree crops. Here, we show the performance of a set of rationally designed osmotic-related and salt stress-inducible synthetic promoters for use in hybrid poplar. De novo motif-detecting algorithms yielded 30 water-deficit (SD) and 34 salt stress (SS) candidate DNA motifs from relevant poplar transcriptomes. We selected three conserved water-deficit stress motifs (SD18, SD13 and SD9) found in 16 co-expressed gene promoters, and we discovered a well-conserved motif for salt response (SS16). We characterized several native poplar stress-inducible promoters to enable comparisons with our synthetic promoters. Fifteen synthetic promoters were designed using various SD and SS subdomains, in which heptameric repeats of five-to-eight subdomain bases were fused to a common core promoter downstream, which, in turn, drove a green fluorescent protein (GFP) gene for reporter assays. These 15 synthetic promoters were screened by transient expression assays in poplar leaf mesophyll protoplasts and agroinfiltrated Nicotiana benthamiana leaves under osmotic stress conditions. Twelve synthetic promoters were induced in transient expression assays with a GFP readout. Of these, five promoters (SD18-1, SD9-2, SS16-1, SS16-2 and SS16-3) endowed higher inducibility under osmotic stress conditions than native promoters. These five synthetic promoters were stably transformed into Arabidopsis thaliana to study inducibility in whole plants. Herein, SD18-1 and SD9-2 were induced by water-deficit stress, whereas SS16-1, SS16-2 and SS16-3 were induced by salt stress. The synthetic biology design pipeline resulted in five synthetic promoters that outperformed endogenous promoters in transgenic plants.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Jun Hyung Lee
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Magen R. Poindexter
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Yuanhua Shao
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Wusheng Liu
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- Department of Horticultural ScienceNorth Carolina State UniversityRaleighNCUSA
| | - Scott C. Lenaghan
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
| | - Amir H. Ahkami
- Environmental Molecular Sciences Laboratory (EMSL)Pacific Northwest National Laboratory (PNNL)RichlandWAUSA
| | | | - Charles Neal Stewart
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
11
|
Gupta C, Ramegowda V, Basu S, Pereira A. Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance. Front Genet 2021; 12:652189. [PMID: 34249082 PMCID: PMC8264776 DOI: 10.3389/fgene.2021.652189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice (Oryza sativa). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.
Collapse
Affiliation(s)
- Chirag Gupta
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Venkategowda Ramegowda
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Supratim Basu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
12
|
Massel K, Lam Y, Wong ACS, Hickey LT, Borrell AK, Godwin ID. Hotter, drier, CRISPR: the latest edit on climate change. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1691-1709. [PMID: 33420514 DOI: 10.1007/s00122-020-03764-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/30/2020] [Indexed: 05/23/2023]
Abstract
Integrating CRISPR/Cas9 genome editing into modern breeding programs for crop improvement in cereals. Global climate trends in many agricultural regions have been rapidly changing over the past decades, and major advances in global food systems are required to ensure food security in the face of these emerging challenges. With increasing climate instability due to warmer temperatures and rising CO2 levels, the productivity of global agriculture will continue to be negatively impacted. To combat these growing concerns, creative approaches will be required, utilising all the tools available to produce more robust and tolerant crops with increased quality and yields under more extreme conditions. The integration of genome editing and transgenics into current breeding strategies is one promising solution to accelerate genetic gains through targeted genetic modifications, producing crops that can overcome the shifting climate realities. This review focuses on how revolutionary genome editing tools can be directly implemented into breeding programs for cereal crop improvement to rapidly counteract many of the issues affecting agriculture production in the years to come.
Collapse
Affiliation(s)
- Karen Massel
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Yasmine Lam
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Albert C S Wong
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lee T Hickey
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew K Borrell
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ian D Godwin
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
13
|
Cellular Phosphorylation Signaling and Gene Expression in Drought Stress Responses: ABA-Dependent and ABA-Independent Regulatory Systems. PLANTS 2021; 10:plants10040756. [PMID: 33924307 PMCID: PMC8068880 DOI: 10.3390/plants10040756] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Drought is a severe and complex abiotic stress that negatively affects plant growth and crop yields. Numerous genes with various functions are induced in response to drought stress to acquire drought stress tolerance. The phytohormone abscisic acid (ABA) accumulates mainly in the leaves in response to drought stress and then activates subclass III SNF1-related protein kinases 2 (SnRK2s), which are key phosphoregulators of ABA signaling. ABA mediates a wide variety of gene expression processes through stress-responsive transcription factors, including ABA-RESPONSIVE ELEMENT BINDING PROTEINS (AREBs)/ABRE-BINDING FACTORS (ABFs) and several other transcription factors. Seed plants have another type of SnRK2s, ABA-unresponsive subclass I SnRK2s, that mediates the stability of gene expression through the mRNA decay pathway and plant growth under drought stress in an ABA-independent manner. Recent research has elucidated the upstream regulators of SnRK2s, RAF-like protein kinases, involved in early responses to drought stress. ABA-independent transcriptional regulatory systems and ABA-responsive regulation function in drought-responsive gene expression. DEHYDRATION RESPONSIVE ELEMENT (DRE) is an important cis-acting element in ABA-independent transcription, whereas ABA-RESPONSIVE ELEMENT (ABRE) cis-acting element functions in ABA-responsive transcription. In this review article, we summarize recent advances in research on cellular and molecular drought stress responses and focus on phosphorylation signaling and transcription networks in Arabidopsis and crops. We also highlight gene networks of transcriptional regulation through two major regulatory pathways, ABA-dependent and ABA-independent pathways, that ABA-responsive subclass III SnRK2s and ABA-unresponsive subclass I SnRK2s mediate, respectively. We also discuss crosstalk in these regulatory systems under drought stress.
Collapse
|
14
|
Joo H, Baek W, Lim CW, Lee SC. Post-translational Modifications of bZIP Transcription Factors in Abscisic Acid Signaling and Drought Responses. Curr Genomics 2021; 22:4-15. [PMID: 34045920 PMCID: PMC8142349 DOI: 10.2174/1389202921999201130112116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 10/03/2020] [Indexed: 11/22/2022] Open
Abstract
Under drought stress, plants have developed various mechanisms to survive in the reduced water supply, of which the regulation of stress-related gene expression is responsible for several transcription factors. The basic leucine zippers (bZIPs) are one of the largest and most diverse transcription factor families in plants. Among the 10 Arabidopsis bZIP groups, group A bZIP transcription factors function as a positive or negative regulator in ABA signal transduction and drought stress response. These bZIP transcription factors, which are involved in the drought response, have also been isolated in various plant species such as rice, pepper, potato, and maize. Recent studies have provided substantial evidence that many bZIP transcription factors undergo the post-translational modifications, through which the regulation of their activity or stability affects plant responses to various intracellular or extracellular stimuli. This review aims to address the modulation of the bZIP proteins in ABA signaling and drought responses through phosphorylation, ubiquitination and sumoylation.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Woonhee Baek
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| |
Collapse
|
15
|
Gupta C, Ramegowda V, Basu S, Pereira A. Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance. Front Genet 2021. [PMID: 34249082 DOI: 10.1101/2020.04.29.068379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice (Oryza sativa). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.
Collapse
Affiliation(s)
- Chirag Gupta
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Venkategowda Ramegowda
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Supratim Basu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
16
|
de Melo BP, Lourenço-Tessutti IT, Paixão JFR, Noriega DD, Silva MCM, de Almeida-Engler J, Fontes EPB, Grossi-de-Sa MF. Transcriptional modulation of AREB-1 by CRISPRa improves plant physiological performance under severe water deficit. Sci Rep 2020; 10:16231. [PMID: 33004844 PMCID: PMC7530729 DOI: 10.1038/s41598-020-72464-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Plants are sessile organisms, which are vulnerable to environmental stresses. As such, plants have developed multiple molecular, physiological, and cellular mechanisms to cope with natural stressors. However, these environmental adversities, including drought, are sources of the main agribusiness problems since they interfere with plant growth and productivity. Particularly under water deprivation conditions, the abscisic acid-responsive element-binding protein AREB1/ABF2 plays an important role in drought stress response and physiological adaptation. In this investigation, we provide substantial confirmation for the role of AREB1/ABF2 in plant survival under severe water deficit using the CRISPR activation (CRISPRa) technique to enhance the AREB1 gene expression. In our strategy, the inactive nuclease dCas9 was fused with an Arabidopsis histone acetyltransferase 1, which improves gene expression by remodeling chromatin. The AREB1 overexpression promotes an improvement in the physiological performance of the transgenic homozygous plants under drought, which was associated with an increase in chlorophyll content, antioxidant enzyme activity, and soluble sugar accumulation, leading to lower reactive oxygen species accumulation. Finally, we found that the CRISPR-mediated up-regulation of AREB1 changes the abundance of several downstream ABA-inducible genes, allowing us to report that CRISPRa dCas9-HAT is a valuable biotechnological tool to improve drought stress tolerance through the positive regulation of AREB1.
Collapse
Affiliation(s)
- Bruno Paes de Melo
- Embrapa Genetic Resources and Biotechnology-EMBRAPA CENARGEN, Brasília, DF, Brazil
- Biochemistry and Molecular Biology, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | | | - Joaquin Felipe Roca Paixão
- Embrapa Genetic Resources and Biotechnology-EMBRAPA CENARGEN, Brasília, DF, Brazil
- Medical Biochemistry Institute, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Daniel David Noriega
- Embrapa Genetic Resources and Biotechnology-EMBRAPA CENARGEN, Brasília, DF, Brazil
- Genomic Sciences and Biotechnology, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil
| | | | | | - Elizabeth Pacheco Batista Fontes
- Biochemistry and Molecular Biology, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions (INCTIPP)-BIOAGRO, Viçosa, MG, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology-EMBRAPA CENARGEN, Brasília, DF, Brazil.
- Genomic Sciences and Biotechnology, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil.
- National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasília, DF, Brazil.
| |
Collapse
|
17
|
Abstract
Plants are subjected to extreme environmental conditions and must adapt rapidly. The phytohormone abscisic acid (ABA) accumulates during abiotic stress, signaling transcriptional changes that trigger physiological responses. Epigenetic modifications often facilitate transcription, particularly at genes exhibiting temporal, tissue-specific and environmentally-induced expression. In maize (Zea mays), MEDIATOR OF PARAMUTATION 1 (MOP1) is required for progression of an RNA-dependent epigenetic pathway that regulates transcriptional silencing of loci genomewide. MOP1 function has been previously correlated with genomic regions adjoining particular types of transposable elements and genic regions, suggesting that this regulatory pathway functions to maintain distinct transcriptional activities within genomic spaces, and that loss of MOP1 may modify the responsiveness of some loci to other regulatory pathways. As critical regulators of gene expression, MOP1 and ABA pathways each regulate specific genes. To determine whether loss of MOP1 impacts ABA-responsive gene expression in maize, mop1-1 and Mop1 homozygous seedlings were subjected to exogenous ABA and RNA-sequencing. A total of 3,242 differentially expressed genes (DEGs) were identified in four pairwise comparisons. Overall, ABA-induced changes in gene expression were enhanced in mop1-1 homozygous plants. The highest number of DEGs were identified in ABA-induced mop1-1 mutants, including many transcription factors; this suggests combinatorial regulatory scenarios including direct and indirect transcriptional responses to genetic disruption (mop1-1) and/or stimulus-induction of a hierarchical, cascading network of responsive genes. Additionally, a modest increase in CHH methylation at putative MOP1-RdDM loci in response to ABA was observed in some genotypes, suggesting that epigenetic variation might influence environmentally-induced transcriptional responses in maize.
Collapse
|
18
|
Jameel A, Noman M, Liu W, Ahmad N, Wang F, Li X, Li H. Tinkering Cis Motifs Jigsaw Puzzle Led to Root-Specific Drought-Inducible Novel Synthetic Promoters. Int J Mol Sci 2020; 21:E1357. [PMID: 32085397 PMCID: PMC7072871 DOI: 10.3390/ijms21041357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Following an in-depth transcriptomics-based approach, we first screened out and analyzed (in silico) cis motifs in a group of 63 drought-inducible genes (in soybean). Six novel synthetic promoters (SynP14-SynP19) were designed by concatenating 11 cis motifs, ABF, ABRE, ABRE-Like, CBF, E2F-VARIANT, G-box, GCC-Box, MYB1, MYB4, RAV1-A, and RAV1-B (in multiple copies and various combination) with a minimal 35s core promoter and a 222 bp synthetic intron sequence. In order to validate their drought-inducibility and root-specificity, the designed synthetic assemblies were transformed in soybean hairy roots to drive GUS gene using pCAMBIA3301. Through GUS histochemical assay (after a 72 h 6% PEG6000 treatment), we noticed higher glucuronidase activity in transgenic hairy roots harboring SynP15, SynP16, and SynP18. Further screening through GUS fluorometric assay flaunted SynP16 as the most appropriate combination of efficient drought-responsive cis motifs. Afterwards, we stably transformed SynP15, SynP16, and SynP18 in Arabidopsis and carried out GUS staining as well as fluorometric assays of the transgenic plants treated with simulated drought stress. Consistently, SynP16 retained higher transcriptional activity in Arabidopsis roots in response to drought. Thus the root-specific drought-inducible synthetic promoters designed using stimulus-specific cis motifs in a definite fashion could be exploited in developing drought tolerance in soybean and other crops as well. Moreover, the rationale of design extends our knowledge of trial-and-error based cis engineering to construct synthetic promoters for transcriptional upgradation against other stresses.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaowei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (A.J.); (M.N.); (W.L.); (N.A.)
| | - Haiyan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (A.J.); (M.N.); (W.L.); (N.A.)
| |
Collapse
|
19
|
Chang HC, Tsai MC, Wu SS, Chang IF. Regulation of ABI5 expression by ABF3 during salt stress responses in Arabidopsis thaliana. BOTANICAL STUDIES 2019; 60:16. [PMID: 31399930 PMCID: PMC6689043 DOI: 10.1186/s40529-019-0264-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/31/2019] [Indexed: 05/02/2023]
Abstract
Background Basic region/leucine zippers (bZIPs) are transcription factors (TFs) encoded by a large gene family in plants. ABF3 and ABI5 are Group A bZIP TFs that are known to be important in abscisic acid (ABA) signaling. However, questions of whether ABF3 regulates ABI5 are still present. Results In vitro kinase assay results showed that Thr-128, Ser-134, and Thr-451 of ABF3 are calcium-dependent protein kinase phosphorylation sites. Bimolecular fluorescence complementation (BiFC) analysis results showed a physical interaction between ABF3 and 14-3-3ω. A Thr-451 to Ala point mutation abolished the interaction but did not change the subcellular localization. In addition, the Arabidopsis protoplast transactivation assay using a luciferase reporter exhibited ABI5 activation by either ABF3 alone or by co-expression of ABF3 and 14-3-3ω. Moreover, chromatin immunoprecipitation-qPCR results showed that in Arabidopsis, ABI5 ABA-responsive element binding proteins (ABREs) of the promoter region (between − 1376 and − 455) were enriched by ABF3 binding under normal and 150 mM NaCl salt stress conditions. Conclusion Taken together, our results demonstrated that ABI5 expression is regulated by ABF3, which could contribute to salt stress tolerance in Arabidopsis thaliana. Electronic supplementary material The online version of this article (10.1186/s40529-019-0264-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui-Chun Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Min-Chieh Tsai
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Sih-Sian Wu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
Kimotho RN, Baillo EH, Zhang Z. Transcription factors involved in abiotic stress responses in Maize ( Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ 2019; 7:e7211. [PMID: 31328030 PMCID: PMC6622165 DOI: 10.7717/peerj.7211] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maize (Zea mays L.) is a principal cereal crop cultivated worldwide for human food, animal feed, and more recently as a source of biofuel. However, as a direct consequence of water insufficiency and climate change, frequent occurrences of both biotic and abiotic stresses have been reported in various regions around the world, and recently, this has become a constant threat in increasing global maize yields. Plants respond to abiotic stresses by utilizing the activities of transcription factors (TFs), which are families of genes coding for specific TF proteins. TF target genes form a regulon that is involved in the repression/activation of genes associated with abiotic stress responses. Therefore, it is of utmost importance to have a systematic study on each TF family, the downstream target genes they regulate, and the specific TF genes involved in multiple abiotic stress responses in maize and other staple crops. METHOD In this review, the main TF families, the specific TF genes and their regulons that are involved in abiotic stress regulation will be briefly discussed. Great emphasis will be given on maize abiotic stress improvement throughout this review, although other examples from different plants like rice, Arabidopsis, wheat, and barley will be used. RESULTS We have described in detail the main TF families in maize that take part in abiotic stress responses together with their regulons. Furthermore, we have also briefly described the utilization of high-efficiency technologies in the study and characterization of TFs involved in the abiotic stress regulatory networks in plants with an emphasis on increasing maize production. Examples of these technologies include next-generation sequencing, microarray analysis, machine learning, and RNA-Seq. CONCLUSION In conclusion, it is expected that all the information provided in this review will in time contribute to the use of TF genes in the research, breeding, and development of new abiotic stress tolerant maize cultivars.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Elamin Hafiz Baillo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Muzammil S, Shrestha A, Dadshani S, Pillen K, Siddique S, Léon J, Naz AA. An Ancestral Allele of Pyrroline-5-carboxylate synthase1 Promotes Proline Accumulation and Drought Adaptation in Cultivated Barley. PLANT PHYSIOLOGY 2018; 178:771-782. [PMID: 30131422 PMCID: PMC6181029 DOI: 10.1104/pp.18.00169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/08/2018] [Indexed: 05/20/2023]
Abstract
Water scarcity is a critical threat to global crop production. Here, we used the natural diversity of barley (Hordeum vulgare) to dissect the genetic control of proline (Pro) mediated drought stress adaptation. Genetic mapping and positional cloning of a major drought-inducible quantitative trait locus (QPro.S42-1H) revealed unique allelic variation in pyrroline-5-carboxylate synthase (P5cs1) between the cultivated cultivar Scarlett (ssp. vulgare) and the wild barley accession ISR42-8 (ssp. spontaneum). The putative causative mutations were located in the promoter of P5cs1 across the DNA binding motifs for abscisic acid-responsive element binding transcription factors. Introgression line (IL) S42IL-143 carrying the wild allele of P5cs1 showed significant up-regulation of P5cs1 expression compared to Scarlett, which was consistent with variation in Pro accumulation under drought. Next, we transiently expressed promoter::reporter constructs of ISR42-8 and Scarlett alleles in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. GUS expression analysis showed a significantly higher activation of the ISR42-8 promoter compared to Scarlett upon abscisic acid treatment. Notably, the ISR42-8 promoter activity was impaired in protoplasts isolated from the loss-of-function abf1abf2abf3abf4 quadruple mutant. A series of phenotypic evaluations demonstrated that S42IL-143 maintained leaf water content and photosynthetic activity longer than Scarlett under drought. These findings suggest that the ancestral variant of P5cs1 has the potential for drought tolerance and understanding drought physiology of barley and related crops.
Collapse
Affiliation(s)
- Shumaila Muzammil
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany
| | - Asis Shrestha
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany
| | - Said Dadshani
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany
| | - Klaus Pillen
- Department of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Shahid Siddique
- Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany
| | - Jens Léon
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany
| | - Ali Ahmad Naz
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
22
|
Simpson K, Fuentes P, Quiroz-Iturra LF, Flores-Ortiz C, Contreras R, Handford M, Stange C. Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4113-4126. [PMID: 29860511 PMCID: PMC6054239 DOI: 10.1093/jxb/ery207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/21/2018] [Indexed: 05/09/2023]
Abstract
Phytoene synthase (PSY) is the first committed enzyme of the carotenoid biosynthesis pathway and the most important point of regulation. Carotenoids are precursors of abscisic acid (ABA), which mediates abiotic stress tolerance responses in plants. ABA activates the synthesis of its own precursors through induction of PSY expression. Carrot, a species that accumulates very high amounts of carotenoids in its reserve root, has two PSY paralog genes that are expressed differentially in the root. Here, we determined that DcPSY2 expression is induced by salt stress and ABA. A DcPSY2 promoter fragment was obtained and characterized. Bioinformatic analysis showed the presence of three ABA responsive elements (ABREs). Through overexpressing pPSY2:GFP in Nicotiana tabacum we determined that all three ABREs are necessary for the ABA response. In the carrot transcriptome, we identified three ABRE binding protein (DcAREB) transcription factor candidates that localized in the nucleus, but only one, DcAREB3, was induced under ABA treatment in carrot roots. We found that AREB transcription factors bind to the carrot DcPSY2 promoter and transactivate the expression of reporter genes. We conclude that DcPSY2 is involved in ABA-mediated salt stress tolerance in carrot through the binding of AREB transcription factors to its promoter.
Collapse
Affiliation(s)
- Kevin Simpson
- Laboratorio de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Paulina Fuentes
- Laboratorio de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Luis Felipe Quiroz-Iturra
- Laboratorio de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Carlos Flores-Ortiz
- Laboratorio de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Rodrigo Contreras
- Laboratorio de Fisiología y Biotecnología Vegetal, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Michael Handford
- Laboratorio de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Claudia Stange
- Laboratorio de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
- Correspondence:
| |
Collapse
|
23
|
Uwase G, Enrico TP, Chelimo DS, Keyser BR, Johnson RR. Measuring Gene Expression in Bombarded Barley Aleurone Layers with Increased Throughput. J Vis Exp 2018. [PMID: 29658925 DOI: 10.3791/56728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The aleurone layer of barley grains is an important model system for hormone-regulated gene expression in plants. In aleurone cells, genes required for germination or early seedling development are activated by gibberellin (GA), while genes associated with stress responses are activated by abscisic acid (ABA). The mechanisms of GA and ABA signaling can be interrogated by introducing reporter gene constructs into aleurone cells via particle bombardment, with the resulting transient expression measured using enzyme assays. An improved protocol is reported that partially automates and streamlines the grain homogenization step and the enzyme assays, allowing significantly more throughput than existing methods. Homogenization of the grain samples is carried out using an automated tissue homogenizer, and GUS (β-glucuronidase) assays are carried out using a 96-well plate system. Representative results using the protocol suggest that phospholipase D activity may play an important role in the activation of HVA1 gene expression by ABA, through the transcription factor TaABF1.
Collapse
|
24
|
Zhong Y, Li L, Hao X, Fu X, Ma Y, Xie L, Shen Q, Kayani S, Pan Q, Sun X, Tang K. AaABF3, an Abscisic Acid-Responsive Transcription Factor, Positively Regulates Artemisinin Biosynthesis in Artemisia annua. FRONTIERS IN PLANT SCIENCE 2018; 9:1777. [PMID: 30546379 PMCID: PMC6279931 DOI: 10.3389/fpls.2018.01777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/15/2018] [Indexed: 05/21/2023]
Abstract
Artemisinin is well known for its irreplaceable curative effect on the devastating parasitic disease, Malaria. This sesquiterpenoid is specifically produced in Chinese traditional herbal plant Artemisia annua. Earlier studies have shown that phytohormone abscisic acid (ABA) plays an important role in increasing the artemisinin content, but how ABA regulates artemisinin biosynthesis is still poorly understood. In this study, we identified that AaABF3 encoded an ABRE (ABA-responsive elements) binding factor. qRT-PCR analysis showed that AaABF3 was induced by ABA and expressed much higher in trichomes where artemisinin is synthesized and accumulated. To further investigate the mechanism of AaABF3 regulating the artemisinin biosynthesis, we carried out dual-luciferase analysis, yeast one-hybrid assay and electrophoretic mobility shift assay. The results revealed that AaABF3 could directly bind to the promoter of ALDH1 gene, which is a key gene in artemisinin biosynthesis, and activate the expression of ALDH1. Functional analysis revealed that overexpression of AaABF3 in A. annua enhanced the production of artemisinin, while RNA interference of AaABF3 resulted in decreased artemisinin content. Taken together, our results demonstrated that AaABF3 played an important role in ABA-regulated artemisinin biosynthesis through direct regulation of artemisinin biosynthesis gene, ALDH1.
Collapse
|
25
|
Takahashi F, Kuromori T, Sato H, Shinozaki K. Regulatory Gene Networks in Drought Stress Responses and Resistance in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:189-214. [PMID: 30288711 DOI: 10.1007/978-981-13-1244-1_11] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant responses to drought stress have been analyzed extensively to reveal complex regulatory gene networks, including the detection of water deficit signals, as well as the physiological, cellular, and molecular responses. Plants recognize water deficit conditions at their roots and transmit this signal to their shoots to synthesize abscisic acid (ABA) in their leaves. ABA is a key phytohormone that regulates physiological and molecular responses to drought stress, such as stomatal closure, gene expression, and the accumulation of osmoprotectants and stress proteins. ABA transporters function as the first step for propagating synthesized ABA. To prevent water loss, ABA influx in guard cells is detected by several protein kinases, such as SnRK2s and MAPKs that regulate stomatal closure. ABA mediates a wide variety of gene expression machineries with stress-responsive transcription factors, including DREBs and AREBs, to acquire drought stress resistance in whole tissues. In this chapter, we summarize recent advances in drought stress signaling, focusing on gene networks in cellular and intercellular stress responses and drought resistance.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan.
| | - Takashi Kuromori
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Hikaru Sato
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan.
| |
Collapse
|
26
|
Drought and exogenous abscisic acid alter hydrogen peroxide accumulation and differentially regulate the expression of two maize RD22-like genes. Sci Rep 2017; 7:8821. [PMID: 28821770 PMCID: PMC5562893 DOI: 10.1038/s41598-017-08976-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
Increased biosynthesis of abscisic acid (ABA) occurs in plants in response to water deficit, which is mediated by changes in the levels of reactive oxygen species such as H2O2. Water deficit and ABA induce expression of some RD22-like proteins. This study aimed to evaluate the effect of water deficit and exogenous ABA (50 µM ABA applied every 24 hours for a total of 72 hours) on H2O2 content in Zea mays (maize) and to characterise genes encoding two putative maize RD22-like proteins (designated ZmRD22A and ZmRD22B). The expression profiles of the two putative maize RD22-like genes in response to water deficit and treatment with ABA were examined in leaves. In silico analyses showed that the maize RD22-like proteins share domain organisation with previously characterized RD22-like proteins. Both water deficit and exogenous ABA resulted in increased H2O2 content in leaves but the increase was more pronounced in response to water deficit than to exogenous ABA. Lignin content was not affected by exogenous ABA, whereas it was decreased by water deficit. Expression of both RD22-like genes was up-regulated by drought but the ZmRD22A gene was not influenced by exogenous ABA, whereas ZmRD22B was highly responsive to exogenous ABA.
Collapse
|
27
|
Agarwal PK, Gupta K, Lopato S, Agarwal P. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2135-2148. [PMID: 28419345 DOI: 10.1093/jxb/erx118] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Dehydration responsive element binding (DREB) factors or CRT element binding factors (CBFs) are members of the AP2/ERF family, which comprises a large number of stress-responsive regulatory genes. This review traverses almost two decades of research, from the discovery of DREB/CBF factors to their optimization for application in plant biotechnology. In this review, we describe (i) the discovery, classification, structure, and evolution of DREB genes and proteins; (ii) induction of DREB genes by abiotic stresses and involvement of their products in stress responses; (iii) protein structure and DNA binding selectivity of different groups of DREB proteins; (iv) post-transcriptional and post-translational mechanisms of DREB transcription factor (TF) regulation; and (v) physical and/or functional interaction of DREB TFs with other proteins during plant stress responses. We also discuss existing issues in applications of DREB TFs for engineering of enhanced stress tolerance and improved performance under stress of transgenic crop plants.
Collapse
Affiliation(s)
- Pradeep K Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar-364 002, (Gujarat), India
| | - Kapil Gupta
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar-364 002, (Gujarat), India
| | - Sergiy Lopato
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar-364 002, (Gujarat), India
| |
Collapse
|
28
|
Sumoylation stabilizes RACK1B and enhance its interaction with RAP2.6 in the abscisic acid response. Sci Rep 2017; 7:44090. [PMID: 28272518 PMCID: PMC5341030 DOI: 10.1038/srep44090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/01/2017] [Indexed: 12/16/2022] Open
Abstract
The highly conserved eukaryotic WD40 repeat protein, Receptor for Activated C Kinase 1 (RACK1), is involved in the abscisic acid (ABA) response in Arabidopsis. However, the regulation of RACK1 and the proteins with which it interacts are poorly understood. Here, we show that RACK1B is sumoylated at four residues, Lys50, Lys276, Lys281 and Lys291. Sumoylation increases RACK1B stability and its tolerance to ubiquitination-mediated degradation in ABA response. As a result, sumoylation leads to enhanced interaction between RACK1B and RAP2.6, an AP2/ERF family transcription factor. RACK1B binds directly to the AP2 domain of RAP2.6, which alters the affinity of RAP2.6 for CE1 and GCC cis-acting regulatory elements. Taken together, our findings illustrate that protein stability controlled by dynamic post-transcriptional modification is a critical regulatory mechanism for RACK1B, which functions as scaffold protein for RAP2.6 in ABA signaling.
Collapse
|
29
|
Tang J, Lin J, Li X, Yang Q, Cheng Q, Cheng ZM(M, Chang Y. Characterization and Expression Profiling Analysis of Calmodulin Genes in Response to Salt and Osmotic Stresses in Pear ( Pyrus bretschneideri Rehd.) and in Comparison with Arabidopsis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7904162. [PMID: 28373986 PMCID: PMC5360957 DOI: 10.1155/2017/7904162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 01/09/2023]
Abstract
A genome-wide identification and cloning of CaM genes in pear was conducted and in compared with Arabidopsis that indicated a conserved expansion of CaM genes in pear, and PbCaMs and AtCaMs had a similar distribution of cis-elements and expressions in response to salt and osmotic stress. In particular, PbCaM1 and PbCaM3 were both significantly upregulated in response to salt and osmotic stress in pear.
Collapse
Affiliation(s)
- Jun Tang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Jing Lin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaogang Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qingsong Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qunkang Cheng
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Youhong Chang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
30
|
Shamustakimova AO, Leonova ТG, Taranov VV, de Boer AH, Babakov AV. Cold stress increases salt tolerance of the extremophytes Eutrema salsugineum (Thellungiella salsuginea) and Eutrema (Thellungiella) botschantzevii. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:128-138. [PMID: 27940414 DOI: 10.1016/j.jplph.2016.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
A comparative study was performed to analyze the effect of cold acclimation on improving the resistance of Arabidopsis thaliana, Eutrema salsugineum and Eutrema botschantzevii plants to salt stress. Shoot FW, sodium and potassium accumulation, metabolite content, expression of proton pump genes VAB1, VAB2,VAB3, VP2, HA3 and genes encoding ion transporters SOS1, HKT1, NHX1, NHX2, NHX5 located in the plasma membrane or tonoplast were determined just after the cold treatment and the onset of the salt stress. In the same cold-acclimated E. botschantzevii plants, the Na+ concentration after salt treatment was around 80% lower than in non-acclimated plants, whereas the K+ concentration was higher. As a result of cold acclimation, the expression of, VAB3, NHX2, NHX5 genes and of SOS1, VP2, HA3 genes was strongly enhanced in E. botschantzevii and in E. salsugineum plants correspondently. None of the 10 genes analyzed showed any expression change in A. thaliana plants after cold acclimation. Altogether, the results indicate that cold-induced adaptation to subsequent salt stress exists in the extremophytes E. botschantzevii and to a lesser extend in E. salsugineum and is absent in Arabidopsis. This phenomenon may be attributed to the increased expression of ion transporter genes during cold acclimation in the Eutrema species.
Collapse
Affiliation(s)
- A O Shamustakimova
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia
| | - Т G Leonova
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia
| | - V V Taranov
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia
| | - A H de Boer
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - A V Babakov
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia.
| |
Collapse
|
31
|
Zhao BY, Hu YF, Li JJ, Yao X, Liu KD. BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis. BOTANICAL STUDIES 2016; 57:12. [PMID: 28597422 PMCID: PMC5432893 DOI: 10.1186/s40529-016-0127-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/27/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Abiotic stresses such as drought and salt stresses have a negative effect on the growth and productivity of plants. Improvement of stress tolerance through genetic engineering in plants has been reported in intense studies. Transcription factors play vital roles in plant adaptation to stresses by regulating expression of a great deal of target genes. A family of Arabidopsis basic region leucine zipper (bZIP) transcription factors that can recognize and bind to the abscisic acid (ABA)-responsive elements (ABREs) in promoter is named as ABRE binding factors (ABFs)/ABRE binding proteins (AREBs). They play a key role in the regulation of expression of downstream stress-responsive genes in ABA signalling. Genetic transformation of ABF/ABRE transcription factors has been suggested to be an effective approach for engineering stress-tolerant plants. However, whether the ABF/ABRE transcription factors are able to be used for generating stress-tolerant rapeseed plants has not yet been studied. RESULTS BnaABF2, encoding a bZIP transcription factor, was cloned from rapeseed in this study. Subcellular localization and transactivation analyses showed that BnaABF2 was localized to the nucleus with transactivation activity in plant cells. BnaABF2 gene expression was induced by drought and salt stresses and BnaABF2 positively functions in ABA signalling during the vegetative stage. Overexpression of BnaABF2 was found to render drought and salt tolerance to Arabidopsis plants. The resistance of the BnaABF2-expressing transgenic plants to drought and salt stresses is due to reduced water-loss rate and expression of stress-responsive genes such as RD29B, RAB18 and KIN2. The expression of RD29B, RAB18 and KIN2 regulated by BnaABF2 is involved in an ABA-dependent stress signalling. CONCLUSIONS Identification of the positive role of rapeseed BnaABF2 in plant tolerance to drought and salt provides evidence for ability of engineering stress-tolerant rapeseed plants by genetic transformation of BnaABF2.
Collapse
Affiliation(s)
- Bi-Yan Zhao
- College of plant science and technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yu-Feng Hu
- College of plant science and technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Juan-juan Li
- College of plant science and technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuan Yao
- College of plant science and technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ke-de Liu
- College of plant science and technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
32
|
Szewińska J, Simińska J, Bielawski W. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:10-21. [PMID: 27771502 DOI: 10.1016/j.jplph.2016.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteolysis is an important process for development and germination of cereal seeds. Among the many types of proteases identified in plants are the cysteine proteases (CPs) of the papain and legumain families, which play a crucial role in hydrolysing storage proteins during seed germination as well as in processing the precursors of these proteins and the inactive forms of other proteases. Moreover, all of the tissues of cereal seeds undergo progressive degradation via programed cell death, which is integral to their growth. In view of the important roles played by proteases, their uncontrolled activity could be harmful to the development of seeds and young seedlings. Thus, the activities of these enzymes are regulated by intracellular inhibitors called phytocystatins (PhyCys). The phytocystatins inhibit the activity of proteases of the papain family, and the presence of an additional motif in their C-termini allows them to also regulate the activity of members of the legumain family. A balance between the levels of cysteine proteases and phytocystatins is necessary for proper cereal seed development, and this is maintained through the antagonistic activities of gibberellins (GAs) and abscisic acid (ABA), which regulate the expression of the corresponding genes. Transcriptional regulation of cysteine proteases and phytocystatins is determined by cis-acting elements located in the promoters of these genes and by the expression of their corresponding transcription factors (TFs) and the interactions between different TFs.
Collapse
Affiliation(s)
- Joanna Szewińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland.
| | - Joanna Simińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| | - Wiesław Bielawski
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| |
Collapse
|
33
|
Negative feedback regulation of ABA biosynthesis in peanut (Arachis hypogaea): a transcription factor complex inhibits AhNCED1 expression during water stress. Sci Rep 2016; 6:37943. [PMID: 27892506 PMCID: PMC5124963 DOI: 10.1038/srep37943] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023] Open
Abstract
Abscisic acid (ABA), a key plant stress-signaling hormone, is produced in response to drought and counteracts the effects of this stress. The accumulation of ABA is controlled by the enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). In Arabidopsis, NCED3 is regulated by a positive feedback mechanism by ABA. In this study in peanut (Arachis hypogaea), we demonstrate that ABA biosynthesis is also controlled by negative feedback regulation, mediated by the inhibitory effect on AhNCED1 transcription of a protein complex between transcription factors AhNAC2 and AhAREB1. AhNCED1 was significantly down-regulated after PEG treatment for 10 h, at which time ABA content reached a peak. A ChIP-qPCR assay confirmed AhAREB1 and AhNAC2 binding to the AhNCED1 promoter in response to ABA. Moreover, the interaction between AhAREB1 and AhNAC2, and a transient expression assay showed that the protein complex could negatively regulate the expression of AhNCED1. The results also demonstrated that AhAREB1 was the key factor in AhNCED1 feedback regulation, while AhNAC2 played a subsidiary role. ABA reduced the rate of AhAREB1 degradation and enhanced both the synthesis and degradation rate of the AhNAC2 protein. In summary, the AhAREB1/AhNAC2 protein complex functions as a negative feedback regulator of drought-induced ABA biosynthesis in peanut.
Collapse
|
34
|
Gahlaut V, Jaiswal V, Kumar A, Gupta PK. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2019-2042. [PMID: 27738714 DOI: 10.1007/s00122-016-2794-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 09/15/2016] [Indexed: 05/26/2023]
Abstract
TFs involved in drought tolerance in plants may be utilized in future for developing drought tolerant cultivars of wheat and some other crops. Plants have developed a fairly complex stress response system to deal with drought and other abiotic stresses. These response systems often make use of transcription factors (TFs); a gene encoding a specific TF together with -its target genes constitute a regulon, and take part in signal transduction to activate/silence genes involved in response to drought. Since, five specific families of TFs (out of >80 known families of TFs) have gained widespread attention on account of their significant role in drought tolerance in plants, TFs and regulons belonging to these five multi-gene families (AP2/EREBP, bZIP, MYB/MYC, NAC and WRKY) have been described and their role in improving drought tolerance discussed in this brief review. These TFs often undergo reversible phosphorylation to perform their function, and are also involved in complex networks. Therefore, some details about reversible phosphorylation of TFs by different protein kinases/phosphatases and the co-regulatory networks, which involve either only TFs or TFs with miRNAs, have also been discussed. Literature on transgenics involving genes encoding TFs and that on QTLs and markers associated with TF genes involved in drought tolerance has also been reviewed. Throughout the review, there is a major emphasis on wheat as an important crop, although examples from the model cereal rice (sometimes maize also), and the model plant Arabidopsis have also been used. This knowledge base may eventually allow the use of TF genes for development of drought tolerant cultivars, particularly in wheat.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Vandana Jaiswal
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Plant Molecular Biology and Genetic Engineering, CSIR-National Botanical Research Institute, Lucknow, India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology, Dehradun, India
| | | |
Collapse
|
35
|
Tang J, Lin J, Li H, Li X, Yang Q, Cheng ZM, Chang Y. Characterization of CIPK Family in Asian Pear (Pyrus bretschneideri Rehd) and Co-expression Analysis Related to Salt and Osmotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2016; 7:1361. [PMID: 27656193 PMCID: PMC5013074 DOI: 10.3389/fpls.2016.01361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/26/2016] [Indexed: 05/24/2023]
Abstract
Asian pear (Pyrus bretschneideri) is one of the most important fruit crops in the world, and its growth and productivity are frequently affected by abiotic stresses. Calcineurin B-like interacting protein kinases (CIPKs) as caladium-sensor protein kinases interact with Ca(2+)-binding CBLs to extensively mediate abiotic stress responses in plants. Although the pear genome sequence has been released, little information is available about the CIPK genes in pear, especially in response to salt and osmotic stresses. In this study, we systematically identified 28 CIPK family members from the sequenced pear genome and analyzed their organization, phylogeny, gene structure, protein motif, and synteny duplication divergences. Most duplicated PbCIPKs underwent purifying selection, and their evolutionary divergences accompanied with the pear whole genome duplication. We also investigated stress -responsive expression patterns and co-expression networks of CIPK family under salt and osmotic stresses, and the distribution of stress-related cis-regulatory elements in promoter regions. Our results suggest that most PbCIPKs could play important roles in the abiotic stress responses. Some PbCIPKs, such as PbCIPK22, -19, -18, -15, -8, and -6 can serve as core regulators in response to salt and osmotic stresses based on co-expression networks of PbCIPKs. Some sets of genes that were involved in response to salt did not overlap with those in response to osmotic responses, suggesting the sub-functionalization of CIPK genes in stress responses. This study revealed some candidate genes that play roles in early responses to salt and osmotic stress for further characterization of abiotic stress responses medicated by CIPKs in pear.
Collapse
Affiliation(s)
- Jun Tang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural SciencesNanjing, China
- Department of Plant Sciences, University of Tennessee at Knoxville, KnoxvilleTN, USA
| | - Jing Lin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Hui Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Xiaogang Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Qingsong Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Zong-Ming Cheng
- Department of Plant Sciences, University of Tennessee at Knoxville, KnoxvilleTN, USA
| | - Youhong Chang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural SciencesNanjing, China
| |
Collapse
|
36
|
Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Kölling K, Pfeifhofer HW, Zeeman SC, Santelia D. Regulation of Leaf Starch Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance in Plants. THE PLANT CELL 2016; 28:1860-78. [PMID: 27436713 PMCID: PMC5006701 DOI: 10.1105/tpc.16.00143] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/05/2016] [Accepted: 07/19/2016] [Indexed: 05/18/2023]
Abstract
Starch serves functions that range over a timescale of minutes to years, according to the cell type from which it is derived. In guard cells, starch is rapidly mobilized by the synergistic action of β-AMYLASE1 (BAM1) and α-AMYLASE3 (AMY3) to promote stomatal opening. In the leaves, starch typically accumulates gradually during the day and is degraded at night by BAM3 to support heterotrophic metabolism. During osmotic stress, starch is degraded in the light by stress-activated BAM1 to release sugar and sugar-derived osmolytes. Here, we report that AMY3 is also involved in stress-induced starch degradation. Recently isolated Arabidopsis thaliana amy3 bam1 double mutants are hypersensitive to osmotic stress, showing impaired root growth. amy3 bam1 plants close their stomata under osmotic stress at similar rates as the wild type but fail to mobilize starch in the leaves. (14)C labeling showed that amy3 bam1 plants have reduced carbon export to the root, affecting osmolyte accumulation and root growth during stress. Using genetic approaches, we further demonstrate that abscisic acid controls the activity of BAM1 and AMY3 in leaves under osmotic stress through the AREB/ABF-SnRK2 kinase-signaling pathway. We propose that differential regulation and isoform subfunctionalization define starch-adaptive plasticity, ensuring an optimal carbon supply for continued growth under an ever-changing environment.
Collapse
Affiliation(s)
- Matthias Thalmann
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Diana Pazmino
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - David Seung
- Institute for Agricultural Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Daniel Horrer
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Arianna Nigro
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Tiago Meier
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Katharina Kölling
- Institute for Agricultural Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Hartwig W Pfeifhofer
- Institut für Pflanzenwissenschaften, Karl-Franzens-Universität Graz, 8010 Graz, Austria
| | - Samuel C Zeeman
- Institute for Agricultural Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Diana Santelia
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| |
Collapse
|
37
|
Intronic Sequence Regulates Sugar-Dependent Expression of Arabidopsis thaliana Production of Anthocyanin Pigment-1/MYB75. PLoS One 2016; 11:e0156673. [PMID: 27248141 PMCID: PMC4889055 DOI: 10.1371/journal.pone.0156673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/18/2016] [Indexed: 01/12/2023] Open
Abstract
Sucrose-specific regulation of gene expression is recognized as an important signaling response, distinct from glucose, which serves to modulate plant growth, metabolism, and physiology. The Arabidopsis MYB transcription factor Production of Anthocyanin Pigment-1 (PAP1) plays a key role in anthocyanin biosynthesis and expression of PAP1 is known to be regulated by sucrose. Sucrose treatment of Arabidopsis seedlings led to a 20-fold induction of PAP1 transcript, which represented a 6-fold increase over levels in glucose-treated seedlings. The PAP1 promoter was not sufficient for conferring a sucrose response to a reporter gene and did not correctly report expression of PAP1 in plants. Although we identified 3 putative sucrose response elements in the PAP1 gene, none were found to be necessary for this response. Using deletion analysis, we identified a 90 bp sequence within intron 1 of PAP1 that is necessary for the sucrose response. This sequence was sufficient for conferring a sucrose response to a minimal promoter: luciferase reporter when present in multiple copies upstream of the promoter. This work lays the foundation for dissecting the sucrose signaling pathway of PAP1 and contributes to understanding the interplay between sucrose signaling, anthocyanin biosynthesis, and stress responses.
Collapse
|
38
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 DOI: 10.3389/fpls.2016.00571/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Kambham R Reddy
- Department of Plant and Soil Sciences, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| |
Collapse
|
39
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 PMCID: PMC4855980 DOI: 10.3389/fpls.2016.00571] [Citation(s) in RCA: 612] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/17/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K. Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Kambham R. Reddy
- Department of Plant and Soil Sciences, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| |
Collapse
|
40
|
Ghosh TK, Kaneko M, Akter K, Murai S, Komatsu K, Ishizaki K, Yamato KT, Kohchi T, Takezawa D. Abscisic acid-induced gene expression in the liverwort Marchantia polymorpha is mediated by evolutionarily conserved promoter elements. PHYSIOLOGIA PLANTARUM 2016; 156:407-20. [PMID: 26456006 DOI: 10.1111/ppl.12385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/04/2015] [Accepted: 07/17/2015] [Indexed: 05/23/2023]
Abstract
Abscisic acid (ABA) is a phytohormone widely distributed among members of the land plant lineage (Embryophyta), regulating dormancy, stomata closure and tolerance to environmental stresses. In angiosperms (Magnoliophyta), ABA-induced gene expression is mediated by promoter elements such as the G-box-like ACGT-core motifs recognized by bZIP transcription factors. In contrast, the mode of regulation by ABA of gene expression in liverworts (Marchantiophyta), representing one of the earliest diverging land plant groups, has not been elucidated. In this study, we used promoters of the liverwort Marchantia polymorpha dehydrin and the wheat Em genes fused to the β-glucuronidase (GUS) reporter gene to investigate ABA-induced gene expression in liverworts. Transient assays of cultured cells of Marchantia indicated that ACGT-core motifs proximal to the transcription initiation site play a role in the ABA-induced gene expression. The RY sequence recognized by B3 transcriptional regulators was also shown to be responsible for the ABA-induced gene expression. In transgenic Marchantia plants, ABA treatment elicited an increase in GUS expression in young gemmalings, which was abolished by simultaneous disruption of the ACGT-core and RY elements. ABA-induced GUS expression was less obvious in mature thalli than in young gemmalings, associated with reductions in sensitivity to exogenous ABA during gametophyte growth. In contrast, lunularic acid, which had been suggested to function as an ABA-like substance, had no effect on GUS expression. The results demonstrate the presence of ABA-specific response mechanisms mediated by conserved cis-regulatory elements in liverworts, implying that the mechanisms had been acquired in the common ancestors of embryophytes.
Collapse
Affiliation(s)
- Totan K Ghosh
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Midori Kaneko
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Khaleda Akter
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shuhei Murai
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kenji Komatsu
- Department of Bioproduction Technology, Junior College of Tokyo University of Agriculture, Tokyo, Japan
| | | | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Engineering, Kinki University, Higashiosaka, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Daisuke Takezawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Institute for Environmental Science and Technology, Saitama University, Saitama, Japan
| |
Collapse
|
41
|
Lehmeyer M, Kanofsky K, Hanko EKR, Ahrendt S, Wehrs M, Machens F, Hehl R. Functional dissection of a strong and specific microbe-associated molecular pattern-responsive synthetic promoter. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:61-71. [PMID: 25819608 PMCID: PMC11388824 DOI: 10.1111/pbi.12357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/12/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Synthetic promoters are important for temporal and spatial gene expression in transgenic plants. To identify novel microbe-associated molecular pattern (MAMP)-responsive cis-regulatory sequences for synthetic promoter design, a combination of bioinformatics and experimental approaches was employed. One cis-sequence was identified which confers strong MAMP-responsive reporter gene activity with low background activity. The 35-bp-long cis-sequence was identified in the promoter of the Arabidopsis thaliana DJ1E gene, a homologue of the human oncogene DJ1. In this study, this cis-sequence is shown to be a tripartite cis-regulatory module (CRM). A synthetic promoter with four copies of the CRM linked to a minimal promoter increases MAMP-responsive reporter gene expression compared to the wild-type DJ1E promoter. The CRM consists of two WT-boxes (GGACTTTT and GGACTTTG) and a variant of the GCC-box (GCCACC), all required for MAMP and salicylic acid (SA) responsivity. Yeast one-hybrid screenings using a transcription factor (TF)-only prey library identified two AP2/ERFs, ORA59 and ERF10, interacting antagonistically with the CRM. ORA59 activates reporter gene activity and requires the consensus core sequence GCCNCC for gene expression activation. ERF10 down-regulates MAMP-responsive gene expression. No TFs interacting with the WT-boxes GGACTTTT and GGACTTTG were selected in yeast one-hybrid screenings with the TF-only prey library. In transgenic Arabidopsis, the synthetic promoter confers strong and specific reporter gene activity in response to biotrophs and necrotrophs as well as SA.
Collapse
Affiliation(s)
- Mona Lehmeyer
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Konstantin Kanofsky
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Erik K R Hanko
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sarah Ahrendt
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Wehrs
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Fabian Machens
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
42
|
MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis. PLoS One 2015; 10:e0142446. [PMID: 26562158 PMCID: PMC4643029 DOI: 10.1371/journal.pone.0142446] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/21/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. RESULTS The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. CONCLUSION The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.
Collapse
|
43
|
Li WW, Chen M, Zhong L, Liu JM, Xu ZS, Li LC, Zhou YB, Guo CH, Ma YZ. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis. Biochem Biophys Res Commun 2015; 468:800-6. [PMID: 26577407 DOI: 10.1016/j.bbrc.2015.11.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation.
Collapse
Affiliation(s)
- Wei-wei Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Ming Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Zhong
- Guizhou Institute of Prataculture, Gui Academy of Agricultural Sciences, Guiyang, Guizhou 550006, China
| | - Jia-ming Liu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Zhao-shi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lian-cheng Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong-Bin Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chang-Hong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| | - You-Zhi Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
44
|
Dey N, Sarkar S, Acharya S, Maiti IB. Synthetic promoters in planta. PLANTA 2015; 242:1077-94. [PMID: 26250538 DOI: 10.1007/s00425-015-2377-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/22/2015] [Indexed: 05/03/2023]
Abstract
This paper reviews the importance, prospective and development of synthetic promoters reported in planta. A review of the synthetic promoters developed in planta would help researchers utilize the available resources and design new promoters to benefit fundamental research and agricultural applications. The demand for promoters for the improvement and application of transgenic techniques in research and agricultural production is increasing. Native/naturally occurring promoters have some limitations in terms of their induction conditions, transcription efficiency and size. The strength and specificity of native promoter can be tailored by manipulating its 'cis-architecture' by the use of several recombinant DNA technologies. Newly derived chimeric promoters with specific attributes are emerging as an efficient tool for plant molecular biology. In the last three decades, synthetic promoters have been used to regulate plant gene expression. To better understand synthetic promoters, in this article, we reviewed promoter structure, the scope of cis-engineering, strategies for their development, their importance in plant biology and the total number of such promoters (188) developed in planta to date; we then categorized them under different functional regimes as biotic stress-inducible, abiotic stress-inducible, light-responsive, chemical-inducible, hormone-inducible, constitutive and tissue-specific. Furthermore, we identified a set of 36 synthetic promoters that control multiple types of expression in planta. Additionally, we illustrated the differences between native and synthetic promoters and among different synthetic promoter in each group, especially in terms of efficiency and induction conditions. As a prospective of this review, the use of ideal synthetic promoters is one of the prime requirements for generating transgenic plants suitable for promoting sustainable agriculture and plant molecular farming.
Collapse
Affiliation(s)
- Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India.
| | - Shayan Sarkar
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Sefali Acharya
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Indu B Maiti
- KTRDC, College of Agriculture-Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|
45
|
Yang K, Monfared SR, Wang H, Lundgren A, Brodelius PE. The activity of the artemisinic aldehyde Δ11(13) reductase promoter is important for artemisinin yield in different chemotypes of Artemisia annua L. PLANT MOLECULAR BIOLOGY 2015; 88:325-40. [PMID: 25616735 DOI: 10.1007/s11103-015-0284-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/12/2015] [Indexed: 05/03/2023]
Abstract
The artemisinic aldehyde double bond reductase (DBR2) plays an important role in the biosynthesis of the antimalarial artemisinin in Artemisia annua. Artemisinic aldehyde is reduced into dihydroartemisinic aldehyde by DBR2. Artemisinic aldehyde can also be oxidized by amorpha-4,11-diene 12-hydroxylase and/or aldehyde dehydrogenase 1 to artemisinic acid, a precursor of arteannuin B. In order to better understand the effects of DBR2 expression on the flow of artemisinic aldehyde into either artemisinin or arteannuin B, we determined the content of dihydroartemisinic aldehyde, artemisinin, artemisinic acid and arteannuin B content of A. annua varieties sorted into two chemotypes. The high artemisinin producers (HAPs), which includes the '2/39', 'Chongqing' and 'Anamed' varieties, produce more artemisinin than arteannuin B; the low artemisinin producers (LAPs), which include the 'Meise', 'Iran#8', 'Iran#14', 'Iran#24' and 'Iran#47' varieties, produce more arteannuin B than artemisinin. Quantitative PCR showed that the relative expression of DBR2 was significantly higher in the HAP varieties. We cloned and sequenced the promoter of the DBR2 gene from varieties of both the LAP and the HAP groups. There were deletions/insertions in the region just upstream of the ATG start codon in the LAP varities, which might be the reason for the different promoter activities of the HAP and LAP varieties. The relevance of promoter variation, DBR2 expression levels and artemisinin biosynthesis capabilities are discussed and a selection method for HAP varieties with a DNA marker is suggested. Furthermore, putative cis-acting regulatory elements differ between the HAP and LAP varieties.
Collapse
Affiliation(s)
- Ke Yang
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | | | | | | | | |
Collapse
|
46
|
Zhang L, Gu L, Ringler P, Smith S, Rushton PJ, Shen QJ. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:214-22. [PMID: 26025535 DOI: 10.1016/j.plantsci.2015.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/14/2015] [Accepted: 04/19/2015] [Indexed: 05/06/2023]
Abstract
Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets.
Collapse
Affiliation(s)
- Liyuan Zhang
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Lingkun Gu
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Patricia Ringler
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Stanley Smith
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Paul J Rushton
- Texas A&M AgriLife Research and Extension Center, Dallas, TX 75252, USA
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA.
| |
Collapse
|
47
|
Functional Analysis of the Maize C-Repeat/DRE Motif-Binding Transcription Factor CBF3 Promoter in Response to Abiotic Stress. Int J Mol Sci 2015; 16:12131-46. [PMID: 26030672 PMCID: PMC4490434 DOI: 10.3390/ijms160612131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/16/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022] Open
Abstract
The ZmCBF3 gene is a member of AP2/ERF transcription factor family, which is a large family of plant-specific transcription factors that share a well-conserved DNA-binding domain. To understand the regulatory mechanism of ZmCBF3 gene expression, we isolated and characterized the ZmCBF3 promoter (PZmCBF3). Three deletion fragments of PZmCBF3 were generated, C1-C3, from the translation start codon at position -1079, -638, and -234, and fused to the GUS reporter gene. Each deletion construct was analyzed by Agrobacterium-mediated stable transformation and expression in Arabidopsis thaliana. GUS expression assays indicated that the PZmCBF3 exhibited root-specific expression activity. A 234-bp fragment upstream of the ZmCBF3 gene conferred a high level of GUS activity in Arabidopsis. Some cis-acting elements involved in the down-regulation of gene expression were detected in the promoter, encompassing positions -1079 to -234. PZmCBF3 was activated by cold stress. The MYCCONSENSUSAT elements (CANNTG) were responsible for the ability of PZmCBF3 to respond to cold stress. The results of the present study suggest that PZmCBF3 might play a role in cold tolerance in maize.
Collapse
|
48
|
de los Reyes BG, Mohanty B, Yun SJ, Park MR, Lee DY. Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining. RICE (NEW YORK, N.Y.) 2015; 8:14. [PMID: 25844119 PMCID: PMC4385054 DOI: 10.1186/s12284-015-0041-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/12/2015] [Indexed: 05/23/2023]
Abstract
Dissecting the upstream regulatory architecture of rice genes and their cognate regulator proteins is at the core of network biology and its applications to comparative functional genomics. With the rapidly advancing comparative genomics resources in the genus Oryza, a reference genome annotation that defines the various cis-elements and trans-acting factors that interface each gene locus with various intrinsic and extrinsic signals for growth, development, reproduction and adaptation must be established to facilitate the understanding of phenotypic variation in the context of regulatory networks. Such information is also important to establish the foundation for mining non-coding sequence variation that defines novel alleles and epialleles across the enormous phenotypic diversity represented in rice germplasm. This review presents a synthesis of the state of knowledge and consensus trends regarding the various cis-acting and trans-acting components that define spatio-temporal regulation of rice genes based on representative examples from both foundational studies in other model and non-model plants, and more recent studies in rice. The goal is to summarize the baseline for systematic upstream sequence annotation of the rapidly advancing genome sequence resources in Oryza in preparation for genus-wide functional genomics. Perspectives on the potential applications of such information for gene discovery, network engineering and genomics-enabled rice breeding are also discussed.
Collapse
Affiliation(s)
| | - Bijayalaxmi Mohanty
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576 Singapore
| | - Song Joong Yun
- />Department of Crop Science and Institute of Agricultural Science and Technology, Chonbuk National University, Chonju, 561-756 Korea
| | - Myoung-Ryoul Park
- />School of Biology and Ecology, University of Maine, Orono, ME 04469 USA
| | - Dong-Yup Lee
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576 Singapore
| |
Collapse
|
49
|
Chen YS, Lo SF, Sun PK, Lu CA, Ho THD, Yu SM. A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:105-16. [PMID: 25200982 DOI: 10.1111/pbi.12241] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 05/20/2023]
Abstract
Regulation of root architecture is essential for maintaining plant growth under adverse environment. A synthetic abscisic acid (ABA)/stress-inducible promoter was designed to control the expression of a late embryogenesis abundant protein (HVA1) in transgenic rice. The background of HVA1 is low but highly inducible by ABA, salt, dehydration and cold. HVA1 was highly accumulated in root apical meristem (RAM) and lateral root primordia (LRP) after ABA/stress treatments, leading to enhanced root system expansion. Water-use efficiency (WUE) and biomass also increased in transgenic rice, likely due to the maintenance of normal cell functions and metabolic activities conferred by HVA1 which is capable of stabilizing proteins, under osmotic stress. HVA1 promotes lateral root (LR) initiation, elongation and emergence and primary root (PR) elongation via an auxin-dependent process, particularly by intensifying asymmetrical accumulation of auxin in LRP founder cells and RAM, even under ABA/stress-suppressive conditions. We demonstrate a successful application of an inducible promoter in regulating the spatial and temporal expression of HVA1 for improving root architecture and multiple stress tolerance without yield penalty.
Collapse
Affiliation(s)
- Yi-Shih Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan; Department of Life Sciences, National Central University, Jhongli City, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Lee SB, Lee SJ, Kim SY. AtERF15 is a positive regulator of ABA response. PLANT CELL REPORTS 2015; 34:71-81. [PMID: 25253450 DOI: 10.1007/s00299-014-1688-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 05/22/2023]
Abstract
The Arabidopsis AP2/ERF family transcription factor AtERF15 is nuclear-localized and positively regulates ABA and stress responses. Abscisic acid (ABA) is a major plant hormone that controls the expression of hundreds genes involved in various aspects of plant growth and development, such as seed development, germination, seedling growth and abiotic stress response. Several cis-elements mediating the ABA-regulated gene expression have been reported, and one of the regulatory elements is Coupling Element 1 (CE1). We previously isolated a group of AP2/ERF family proteins that bind CE1, but their functions are mostly unknown. In this study, we demonstrate that one of the CE1 binding factors (CEBFs), AtERF15, is involved in ABA response. To investigate the AtERF15 function, we generated its overexpression (OX) lines by expressing the AtERF15 coding region under the control of CaMV 35S promoter and analyzed their phenotypes. We found that the AtERF15 OX lines were hypersensitive to ABA at the germination stage. The ABA hypersensitivity was also observed in our root elongation assay of seedlings. Furthermore, the transgenic lines were hypersensitive to high salinity and high osmolarity at the seedling establishment stage, and the transgenic seedlings were drought-tolerant. We also determined the tissue-specific expression pattern and the subcellular localization of AtERF15. Our results indicate that it is highly expressed in roots and embryos and nuclear-localized. Collectively, our data suggest that AtERF15 is a positive regulator of ABA response.
Collapse
Affiliation(s)
- Seul-bee Lee
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, South Korea
| | | | | |
Collapse
|