1
|
Zheng M, Kumar A, Sharma V, Behl T, Sehgal A, Wal P, Shinde NV, Kawaduji BS, Kapoor A, Anwer MK, Gulati M, Shen B, Singla RK, Bungau SG. Revolutionizing pediatric neuroblastoma treatment: unraveling new molecular targets for precision interventions. Front Cell Dev Biol 2024; 12:1353860. [PMID: 38601081 PMCID: PMC11004261 DOI: 10.3389/fcell.2024.1353860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Neuroblastoma (NB) is the most frequent solid tumor in pediatric cases, contributing to around 15% of childhood cancer-related deaths. The wide-ranging genetic, morphological, and clinical diversity within NB complicates the success of current treatment methods. Acquiring an in-depth understanding of genetic alterations implicated in the development of NB is essential for creating safer and more efficient therapies for this severe condition. Several molecular signatures are being studied as potential targets for developing new treatments for NB patients. In this article, we have examined the molecular factors and genetic irregularities, including those within insulin gene enhancer binding protein 1 (ISL1), dihydropyrimidinase-like 3 (DPYSL3), receptor tyrosine kinase-like orphan receptor 1 (ROR1) and murine double minute 2-tumor protein 53 (MDM2-P53) that play an essential role in the development of NB. A thorough summary of the molecular targeted treatments currently being studied in pre-clinical and clinical trials has been described. Recent studies of immunotherapeutic agents used in NB are also studied in this article. Moreover, we explore potential future directions to discover new targets and treatments to enhance existing therapies and ultimately improve treatment outcomes and survival rates for NB patients.
Collapse
Affiliation(s)
- Min Zheng
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Ludhiana, Punjab, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | | | | | - Anupriya Kapoor
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
2
|
Rodrigues MJ, Casadei CM, Weinert T, Panneels V, Schertler GFX. Correction of rhodopsin serial crystallography diffraction intensities for a lattice-translocation defect. Acta Crystallogr D Struct Biol 2023; 79:224-233. [PMID: 36876432 PMCID: PMC9986800 DOI: 10.1107/s2059798323000931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 03/01/2023] Open
Abstract
Rhodopsin is a G-protein-coupled receptor that detects light and initiates the intracellular signalling cascades that underpin vertebrate vision. Light sensitivity is achieved by covalent linkage to 11-cis retinal, which isomerizes upon photo-absorption. Serial femtosecond crystallography data collected from rhodopsin microcrystals grown in the lipidic cubic phase were used to solve the room-temperature structure of the receptor. Although the diffraction data showed high completeness and good consistency to 1.8 Å resolution, prominent electron-density features remained unaccounted for throughout the unit cell after model building and refinement. A deeper analysis of the diffraction intensities uncovered the presence of a lattice-translocation defect (LTD) within the crystals. The procedure followed to correct the diffraction intensities for this pathology enabled the building of an improved resting-state model. The correction was essential to both confidently model the structure of the unilluminated state and interpret the light-activated data collected after photo-excitation of the crystals. It is expected that similar cases of LTD will be observed in other serial crystallography experiments and that correction will be required in a variety of systems.
Collapse
Affiliation(s)
- Matthew J. Rodrigues
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Cecilia M. Casadei
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Biology, ETH-Zurich, Zurich, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Valerie Panneels
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Gebhard F. X. Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Biology, ETH-Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Prins R, Windsor P, Miller BR, Maiden S. Alleles of unc-33/CRMP exhibit defects during Caenorhabditis elegans epidermal morphogenesis. Dev Dyn 2022; 251:1741-1753. [PMID: 35538612 DOI: 10.1002/dvdy.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Microtubule-associated proteins regulate the dynamics, organization, and function of microtubules, impacting a number of vital cellular processes. CRMPs have been shown to control microtubule assembly and axon outgrowth during neuronal differentiation. While many microtubule-associated proteins have been linked to roles in cell division and neuronal development, it is still unclear the complement that control the formation of parallel microtubule arrays in epithelial cells. RESULTS Here we show through time-lapse DIC microscopy that Caenorhabditis elegans embryos homozygous for the weak loss-of-function allele unc-33(e204) progress more slowly through epidermal morphogenesis, while animals homozygous for strong loss-of-function alleles exhibit more embryonic lethality. Identification of two novel missense mutations in unc-33(e572), Val476Gly and Ser731Thr, lead to computational approaches to determine the potential effects of these changes on UNC-33/CRMP structure. Molecular dynamics simulations show that for Asp389Asn and Arg502His, two other known missense mutations, local changes in protein-protein hydrogen bonding affect the stability of the protein. However, the Val476Gly/Ser731Thr combination does not alter the structure or energetics of UNC-33 drastically when compared to the wild-type protein. CONCLUSIONS These results support a novel role for UNC-33/CRMP in C. elegans epidermal development and shed light on how individual amino acid changes cause a loss-of-function in UNC-33. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rachel Prins
- Department of Biology, Truman State University, Kirksville, MO
| | - Peter Windsor
- Department of Chemistry, Truman State University, Kirksville, MO
| | - Bill R Miller
- Department of Chemistry, Truman State University, Kirksville, MO
| | | |
Collapse
|
4
|
Maimon R, Ankol L, Gradus Pery T, Altman T, Ionescu A, Weissova R, Ostrovsky M, Tank E, Alexandra G, Shelestovich N, Opatowsky Y, Dori A, Barmada S, Balastik M, Perlson E. A CRMP4-dependent retrograde axon-to-soma death signal in amyotrophic lateral sclerosis. EMBO J 2021; 40:e107586. [PMID: 34190355 PMCID: PMC8408612 DOI: 10.15252/embj.2020107586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal non-cell-autonomous neurodegenerative disease characterized by the loss of motor neurons (MNs). Mutations in CRMP4 are associated with ALS in patients, and elevated levels of CRMP4 are suggested to affect MN health in the SOD1G93A -ALS mouse model. However, the mechanism by which CRMP4 mediates toxicity in ALS MNs is poorly understood. Here, by using tissue from human patients with sporadic ALS, MNs derived from C9orf72-mutant patients, and the SOD1G93A -ALS mouse model, we demonstrate that subcellular changes in CRMP4 levels promote MN loss in ALS. First, we show that while expression of CRMP4 protein is increased in cell bodies of ALS-affected MN, CRMP4 levels are decreased in the distal axons. Cellular mislocalization of CRMP4 is caused by increased interaction with the retrograde motor protein, dynein, which mediates CRMP4 transport from distal axons to the soma and thereby promotes MN loss. Blocking the CRMP4-dynein interaction reduces MN loss in human-derived MNs (C9orf72) and in ALS model mice. Thus, we demonstrate a novel CRMP4-dependent retrograde death signal that underlies MN loss in ALS.
Collapse
Affiliation(s)
- Roy Maimon
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Lior Ankol
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Tal Gradus Pery
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Topaz Altman
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Ariel Ionescu
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Romana Weissova
- Institue of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Elizabeth Tank
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Gayster Alexandra
- Department of PathologySheba Medical CenterTel HashomerRamat GanIsrael
| | - Natalia Shelestovich
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Department of PathologySheba Medical CenterTel HashomerRamat GanIsrael
| | - Yarden Opatowsky
- The Mina and Everard Goodman Faculty of Life ScienceBar Ilan UniversityIsrael
| | - Amir Dori
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Department of NeurologySheba Medical CenterTel HashomerRamat GanIsrael
| | - Sami Barmada
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Martin Balastik
- Institue of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Eran Perlson
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
5
|
Park SY, Kim JT, Park ES, Hwang YS, Yoon HR, Baek KE, Jung H, Yoon SR, Kim BY, Cho HJ, Lee HG. Collapsin response mediator protein 4 enhances the radiosensitivity of colon cancer cells through calcium‑mediated cell signaling. Oncol Rep 2021; 45:6. [PMID: 33655336 PMCID: PMC7877015 DOI: 10.3892/or.2021.7957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is an effective treatment against various types of cancer, but some radiation‑resistant cancer cells remain a major therapeutic obstacle; thus, understanding radiation resistance mechanisms is essential for cancer treatment. In this study, we established radiation‑resistant colon cancer cell lines and examined the radiation‑induced genetic changes associated with radiation resistance. Using RNA‑sequencing analysis, collapsin response mediator protein 4 (<em>CRMP4</em>) was identified as the candidate gene associated with radiation sensitivity. When cells were exposed to radiation, intracellular Ca2+ influx, collapse of mitochondrial membrane potential, and cytochrome c release into the cytosol were increased, followed by apoptosis induction. Radiation treatment‑ or Ca2+ ionophore A23187‑induced apoptosis was significantly inhibited in <em>CRMP4</em>‑deficient cells, including radiation‑resistant or <em>CRMP4</em>‑shRNA cell lines. Furthermore, treatment of <em>CRMP4</em>‑deficient cells with low levels (<5 µM) of BAPTA‑AM, a Ca2+ chelator, resulted in radiation resistance. Conversely, Ca2+ deficiency induced by a high BAPTA‑AM concentration (>10 µM) resulted in higher cell death in the <em>CRMP4</em>‑depleted cells compared to <em>CRMP4</em>‑expressing control cells. Our results suggest that <em>CRMP4</em> plays an important role in Ca2+‑mediated cell death pathways under radiation exposure and that CRMP4 may be a therapeutical target for colon cancer treatment.
Collapse
Affiliation(s)
- Sang Yoon Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jong-Tae Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eun Sun Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Yo Sep Hwang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hyang Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kyoung Eun Baek
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Bo Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Correspondence to: Dr Hee Gu Lee or Dr Hee Jun Cho, Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea, E-mail: , E-mail:
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Correspondence to: Dr Hee Gu Lee or Dr Hee Jun Cho, Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea, E-mail: , E-mail:
| |
Collapse
|
6
|
Li L, Dai S, Gao GF, Wang J. Lattice-translocation defects in specific crystals of the catalytic head domain of influenza neuraminidase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1057-1064. [PMID: 33135677 DOI: 10.1107/s2059798320011869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/28/2020] [Indexed: 11/10/2022]
Abstract
Neuraminidase (NA) inhibitors are one of the two major classes of antivirals available for the treatment and prevention of influenza. X-ray crystal structure determination of NA head domains and their complexes with various inhibitors are of importance for the design and optimization of anti-influenza drugs. However, the globular tetrameric properties of NA head domains may produce crystals with pathological imperfections, lattice-translocation defects, making structure determination no longer straightforward. In this report, using a crystal of the NA head domain from the Wuhan Asiatic toad influenza virus as an example, the identification and solution of this type of crystal pathology are presented. Furthermore, its underlying mechanism of formation is explored.
Collapse
Affiliation(s)
- Linghui Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Shuliu Dai
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
7
|
Khanna R, Moutal A, Perez-Miller S, Chefdeville A, Boinon L, Patek M. Druggability of CRMP2 for Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:2492-2505. [PMID: 32693579 DOI: 10.1021/acschemneuro.0c00307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are ubiquitously expressed phosphoproteins that coordinate cytoskeletal formation and regulate cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. Accumulating evidence has also demonstrated a key role for CRMP2 in trafficking of voltage- and ligand-gated ion channels. These functions are tightly regulated by post-translational modifications including phosphorylation and SUMOylation (addition of a small ubiquitin like modifier). Over the past decade, it has become increasingly clear that dysregulated post-translational modifications of CRMP2 contribute to the pathomechanisms of diverse diseases, including cancer, neurodegenerative diseases, chronic pain, and bipolar disorder. Here, we review the discovery, functions, and current putative preclinical and clinical therapeutics targeting CRMP2. These potential therapeutics include CRMP2-based peptides that inhibit protein-protein interactions and small-molecule compounds. Capitalizing on the availability of structural information, we identify druggable pockets on CRMP2 and predict binding modes for five known CRMP2-targeting compounds, setting the stage for optimization and de novo drug discovery targeting this multifunctional protein.
Collapse
Affiliation(s)
- Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Graduate Interdisciplinary Program in Neuroscience, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
- Regulonix LLC, Tucson, Arizona 85718, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Marcel Patek
- BrightRock Path, LLC, Tucson, Arizona 85704, United States
| |
Collapse
|
8
|
Nakamura F, Ohshima T, Goshima Y. Collapsin Response Mediator Proteins: Their Biological Functions and Pathophysiology in Neuronal Development and Regeneration. Front Cell Neurosci 2020; 14:188. [PMID: 32655376 PMCID: PMC7325199 DOI: 10.3389/fncel.2020.00188] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs), which consist of five homologous cytosolic proteins, are one of the major phosphoproteins in the developing nervous system. The prominent feature of the CRMP family proteins is a new class of microtubule-associated proteins that play important roles in the whole process of developing the nervous system, such as axon guidance, synapse maturation, cell migration, and even in adult brain function. The CRMP C-terminal region is subjected to posttranslational modifications such as phosphorylation, which, in turn, regulates the interaction between the CRMPs and various kinds of proteins including receptors, ion channels, cytoskeletal proteins, and motor proteins. The gene-knockout of the CRMP family proteins produces different phenotypes, thereby showing distinct roles of all CRMP family proteins. Also, the phenotypic analysis of a non-phosphorylated form of CRMP2-knockin mouse model, and studies of pharmacological responses to CRMP-related drugs suggest that the phosphorylation/dephosphorylation process plays a pivotal role in pathophysiology in neuronal development, regeneration, and neurodegenerative disorders, thus showing CRMPs as promising target molecules for therapeutic intervention.
Collapse
Affiliation(s)
- Fumio Nakamura
- Department of Biochemistry, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
9
|
Lovelace JJ, Borgstahl GEO. Characterizing pathological imperfections in macromolecular crystals: lattice disorders and modulations. CRYSTALLOGR REV 2019; 26:3-50. [PMID: 33041501 DOI: 10.1080/0889311x.2019.1692341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jeffrey J Lovelace
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Gloria E O Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| |
Collapse
|
10
|
Yu J, Deng T, Xiang S. Structural basis for protein phosphatase 1 recruitment by glycogen‐targeting subunits. FEBS J 2018; 285:4646-4659. [DOI: 10.1111/febs.14699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/15/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Jun Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Shanghai Institute of Nutrition and Health Shanghai Institutes for Biological Sciences University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Tingting Deng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Shanghai Institute of Nutrition and Health Shanghai Institutes for Biological Sciences University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Song Xiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Shanghai Institute of Nutrition and Health Shanghai Institutes for Biological Sciences University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
- Key laboratory of Immune Microenvironment and Disease (Ministry of Education) Tianjin Medical University China
| |
Collapse
|
11
|
Structural basis for CRMP2-induced axonal microtubule formation. Sci Rep 2017; 7:10681. [PMID: 28878401 PMCID: PMC5587665 DOI: 10.1038/s41598-017-11031-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
Microtubule associated protein Collapsin response mediator protein 2 (CRMP2) regulates neuronal polarity in developing neurons through interactions with tubulins or microtubules. However, how CRMP2 promotes axonal formation by affecting microtubule behavior remains unknown. This study aimed to obtain the structural basis for CRMP2–tubulin/microtubule interaction in the course of axonogenesis. The X-ray structural studies indicated that the main interface to the soluble tubulin-dimer is the last helix H19 of CRMP2 that is distinct from the known C-terminal tail-mediated interaction with assembled microtubules. In vitro structural and functional studies also suggested that the H19-mediated interaction promoted the rapid formation of GTP-state microtubules directly, which is an important feature of the axon. Consistently, the H19 mutants disturbed axon elongation in chick neurons, and failed to authorize the structural features for axonal microtubules in Caenorhabditis elegans. Thus, CRMP2 induces effective axonal microtubule formation through H19-mediated interactions with a soluble tubulin-dimer allowing axonogenesis to proceed.
Collapse
|
12
|
Wangkanont K, Winton VJ, Forest KT, Kiessling LL. Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry 2017; 56:3983-3992. [PMID: 28608671 PMCID: PMC5739916 DOI: 10.1021/acs.biochem.7b00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
UDP-galactopyranose mutase (Glf or UGM) catalyzes the formation of uridine 5'-diphosphate-α-d-galactofuranose (UDP-Galf) from UDP-galactopyranose (UDP-Galp). The enzyme is required for the production of Galf-containing glycans. UGM is absent in mammals, but members of the Corynebacterineae suborder require UGM for cell envelope biosynthesis. The need for UGM in some pathogens has prompted the search for inhibitors that could serve as antibiotic leads. Optimizing inhibitor potency, however, has been challenging. The UGM from Klebsiella pneumoniae (KpUGM), which is not required for viability, is more effectively impeded by small-molecule inhibitors than are essential UGMs from species such as Mycobacterium tuberculosis or Corynebacterium diphtheriae. Why KpUGM is more susceptible to inhibition than other orthologs is not clear. One potential source of difference is UGM ortholog conformation. We previously determined a structure of CdUGM bound to a triazolothiadiazine inhibitor in the open form, but it was unclear whether the small-molecule inhibitor bound this form or to the closed form. By varying the terminal tag (CdUGM-His6 and GSG-CdUGM), we crystallized CdUGM to capture the enzyme in different conformations. These structures reveal a pocket in the active site that can be exploited to augment inhibitor affinity. Moreover, they suggest the inhibitor binds the open form of most prokaryotic UGMs but can bind the closed form of KpUGM. This model and the structures suggest strategies for optimizing inhibitor potency by exploiting UGM conformational flexibility.
Collapse
Affiliation(s)
- Kittikhun Wangkanont
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Valerie J. Winton
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Katrina T. Forest
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Department of Bacteriology University of Wisconsin-Madison, Madison, WI, 53706, USA,Corresponding authors: Katrina T. Forest (Tel. 608-265-3566, ) and Laura L. Kiessling (Tel. 608-262-0541, )
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Corresponding authors: Katrina T. Forest (Tel. 608-265-3566, ) and Laura L. Kiessling (Tel. 608-262-0541, )
| |
Collapse
|
13
|
Dustrude ET, Perez-Miller S, François-Moutal L, Moutal A, Khanna M, Khanna R. A single structurally conserved SUMOylation site in CRMP2 controls NaV1.7 function. Channels (Austin) 2017; 11:316-328. [PMID: 28277940 DOI: 10.1080/19336950.2017.1299838] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The neuronal collapsin response mediator protein 2 (CRMP2) undergoes several posttranslational modifications that codify its functions. Most recently, CRMP2 SUMOylation (addition of small ubiquitin like modifier (SUMO)) was identified as a key regulatory step within a modification program that codes for CRMP2 interaction with, and trafficking of, voltage-gated sodium channel NaV1.7. In this paper, we illustrate the utility of combining sequence alignment within protein families with structural analysis to identify, from several putative SUMOylation sites, those that are most likely to be biologically relevant. Co-opting this principle to CRMP2, we demonstrate that, of 3 sites predicted to be SUMOylated in CRMP2, only the lysine 374 site is a SUMOylation client. A reduction in NaV1.7 currents was the corollary of the loss of CRMP2 SUMOylation at this site. A 1.78-Å-resolution crystal structure of mouse CRMP2 was solved using X-ray crystallography, revealing lysine 374 as buried within the CRMP2 tetramer interface but exposed in the monomer. Since CRMP2 SUMOylation is dependent on phosphorylation, we postulate that this state forces CRMP2 toward a monomer, exposing the SUMO site and consequently, resulting in constitutive regulation of NaV1.7.
Collapse
Affiliation(s)
- Erik Thomas Dustrude
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - Samantha Perez-Miller
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - Liberty François-Moutal
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - Aubin Moutal
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - May Khanna
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - Rajesh Khanna
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA.,b Department of Anesthesiology, College of Medicine , University of Arizona , Tucson , AZ , USA.,c Neuroscience Graduate Interdisciplinary Program, College of Medicine , University of Arizona , Tucson , AZ , USA
| |
Collapse
|
14
|
Collapsin response mediator protein 2: high-resolution crystal structure sheds light on small-molecule binding, post-translational modifications, and conformational flexibility. Amino Acids 2017; 49:747-759. [PMID: 28044206 DOI: 10.1007/s00726-016-2376-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Collapsin response mediator protein 2 (CRMP-2) is a neuronal protein involved in axonal pathfinding. Intense research is focusing on its role in various neurological diseases. Despite a wealth of studies, not much is known about the molecular mechanisms of CRMP-2 function in vivo. The detailed structure-function relationships of CRMP-2 have also largely remained unknown, in part due to the fact that the available crystal structures lack the C-terminal tail, which is known to be a target for many post-translational modifications and protein interactions. Although CRMP-2, and other CRMPs, belong to the dihydropyrimidinase family, they have lost the enzymatic active site. Drug candidates for CRMP-2-related processes have come up during the recent years, but no reports of CRMP-2 complexes with small molecules have emerged. Here, CRMP-2 was studied at 1.25-Å resolution using X-ray crystallography. In addition, ligands were docked into the homotetrameric structure, and the C-terminal tail of CRMP-2 was produced recombinantly and analyzed. We have obtained the human CRMP-2 crystal structure at atomic resolution and could identify small-molecule binding pockets in the protein. Structures obtained in different crystal forms highlight flexible regions near possible ligand-binding pockets. We also used the CRMP-2 structure to analyze known or suggested post-translational modifications at the 3D structural level. The high-resolution CRMP-2 structure was also used for docking experiments with the sulfur amino acid metabolite lanthionine ketimine and its ester. We show that the C-terminal tail is intrinsically disordered, but it has conserved segments that may act as interaction sites. Our data provide the most accurate structural data on CRMPs to date and will be useful in further computational and experimental studies on CRMP-2, its function, and its binding to small-molecule ligands.
Collapse
|
15
|
Sporny M, Guez-Haddad J, Waterman DG, Isupov MN, Opatowsky Y. Molecular symmetry-constrained systematic search approach to structure solution of the coiled-coil SRGAP2 F-BARx domain. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:1241-1253. [PMID: 27917825 DOI: 10.1107/s2059798316016697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 10/18/2016] [Indexed: 02/05/2023]
Abstract
SRGAP2 (Slit-Robo GTPase-activating protein 2) is a cytoplasmic protein found to be involved in neuronal branching, restriction of neuronal migration and restriction of the length and density of dendritic postsynaptic spines. The extended F-BAR (F-BARx) domain of SRGAP2 generates membrane protrusions when expressed in COS-7 cells, while most F-BARs induce the opposite effect: membrane invaginations. As a first step to understand this discrepancy, the F-BARx domain of SRGAP2 was isolated and crystallized after co-expression with the carboxy domains of the protein. Diffraction data were collected from two significantly non-isomorphous crystals in the same monoclinic C2 space group. A correct molecular-replacment solution was obtained by applying a molecular symmetry-constrained systematic search approach that took advantage of the conserved biological symmetry of the F-BAR domains. It is shown that similar approaches can solve other F-BAR structures that were previously determined by experimental phasing. Diffraction data were reprocessed with a high-resolution cutoff of 2.2 Å, chosen using less strict statistical criteria. This has improved the outcome of multi-crystal averaging and other density-modification procedures.
Collapse
Affiliation(s)
- Michael Sporny
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Julia Guez-Haddad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | - Yarden Opatowsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
16
|
Liu SH, Huang SF, Hsu YL, Pan SH, Chen YJ, Lin YH. Structure of human collapsin response mediator protein 1: a possible role of its C-terminal tail. Acta Crystallogr F Struct Biol Commun 2015; 71:938-45. [PMID: 26249678 PMCID: PMC4528920 DOI: 10.1107/s2053230x15009243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/15/2015] [Indexed: 11/11/2022] Open
Abstract
Collapsin response mediator protein 1 (CRMP-1) is the first identified member of the CRMP family and is crucial for both the mediation of neuronal differentiation and in suppressing the invasion of lung cancer. The crystal structure of full-length human CRMP-1 was determined at a resolution of 3 Å. Human CRMP-1 comprises a tetrameric assembly; its overall structure is similar to that of mouse CRMP-1, but the measured electron density of the C-terminal residues 488-496 show a randomly coiled link that connects the protomers to each other, within which residues 497-572 are proteolytically susceptible in vivo. Deletion of residues 472-572 by thrombin in vitro not only releases a randomly coiled tail but also transduces observable structural changes of CRMP-1, as revealed by analytical size-exclusive chromatography and circular dichroism spectra. These results indicate a possible alternative role in CRMP dynamics and function.
Collapse
Affiliation(s)
- Szu-Heng Liu
- Life science group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- National Institute of Cancer Research, National Health Research Institute, Miaoli 35053, Taiwan
| | - Shih-Fang Huang
- Facility Utilization Group, Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yuan-Ling Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Ju Chen
- Life science group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yi-Hung Lin
- Life science group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Facility Utilization Group, Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
17
|
CRMP4 and CRMP2 Interact to Coordinate Cytoskeleton Dynamics, Regulating Growth Cone Development and Axon Elongation. Neural Plast 2015; 2015:947423. [PMID: 26064693 PMCID: PMC4442009 DOI: 10.1155/2015/947423] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 11/18/2022] Open
Abstract
Cytoskeleton dynamics are critical phenomena that underpin many fundamental cellular processes. Collapsin response mediator proteins (CRMPs) are highly expressed in the developing nervous system, mediating growth cone guidance, neuronal polarity, and axonal elongation. However, whether and how CRMPs associate with microtubules and actin coordinated cytoskeletal dynamics remain unknown. In this study, we demonstrated that CRMP2 and CRMP4 interacted with tubulin and actin in vitro and colocalized with the cytoskeleton in the transition-zone in developing growth cones. CRMP2 and CRMP4 also interacted with one another coordinately to promote growth cone development and axonal elongation. Genetic silencing of CRMP2 enhanced, whereas overexpression of CRMP2 suppressed, the inhibitory effects of CRMP4 knockdown on axonal development. In addition, knockdown of CRMP2 or overexpression of truncated CRMP2 reversed the promoting effect of CRMP4. With the overexpression of truncated CRMP2 or CRMP4 lacking the cytoskeleton interaction domain, the promoting effect of CRMP was suppressed. These data suggest a model in which CRMP2 and CRMP4 form complexes to bridge microtubules and actin and thus work cooperatively to regulate growth cone development and axonal elongation.
Collapse
|